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Abstract

In repeated games there is in general a large set of equilibria. We also know that

in the repeated prisoners dilemma there is a profusion of neutrally stable strategies,

but no strategy that is evolutionarily stable. This paper investigates whether and

how neutrally stable strategies can be upset in a process of mutation and selection.

While neutral stability excludes that mutants have a selective advantage themselves, it

does not rule out the possibility that mutants that are neutral can enter a population

and create a selective advantage for a second mutant. This will be called an indirect

invasion and the central results show that, for high enough continuation probability,

there is no strategy that is robust against indirect invasions. Such stepping stone paths

out of equilibrium generally exist both in the direction of more and in the direction of

less cooperation.

Keywords: Repeated games, evolutionary stability, robust against indirect inva-

sions.
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1 Introduction: joy in repetition

Repeating a game generally opens up a variety of possibilities for equilibrium behaviour

that the one-shot version does not possess. Repeated games therefore have been studied

extensively; see for instance Friedman (1971), Aumann & Shapley (1976), Rubinstein (1979,

1980), Fudenberg & Maskin (1986), Abreu (1988) and van Damme (1989). The standard

example under study is the prisoners dilemma, where the Nash equilibrium in the one-shot

game is not Pareto-efficient and where repetition offers a possible escape from inefficiency.

An interesting and natural follow up question is if evolution found an escape route too,

and if it did, if it is the same escape route as the one that game theorists found. Again

the literature is quite substantial, with for instance Axelrod (1984), Boyd & Lorberbaum

(1987), Farrell & Ware (1989), Fudenberg & Maskin (1990), Binmore & Samuelson (1992,

1997), Bendor & Swistak (1995, 1997, 1998) and Lorberbaum, Bohning, Shastri & Sine

(2002). The main problem these papers face is that in general there is no evolutionarily

stable strategy in repeated games, while evolutionary stability is the main and usually also

the most promising tool from the evolutionary game theory toolbox (see Weibull, 1995).

This paper examines how unfortunate that is. Helped by the careful distinctions between

different definitions of stability from Bendor & Swistak (1995) and using arguments that

are similar (but not identical) to those in Selten & Hammerstein (1984) and Farrell & Ware

(1989) we begin with a general theorem concerning the non-existence of a finite mixture of

strategies that is evolutionarily stable in the classical definition (Maynard Smith & Price,

1973, Maynard Smith, 1974). One way of dealing with such a negative result is to try

out less demanding equilibrium refinements in order to overcome non-existence. Although

positive results have been achieved with this approach (see Bendor & Swistak (1995, 1997,

1998) and, in a slightly different setting, Binmore & Samuelson (1992, 1997)), we will argue

that there is a fundamental instability of all equilibria in interesting, non-trivial repeated

games. In order to show why that is, we define robustness against indirect invasions. This

definition rules out indirect invasions throwing an equilibrium off balance and thereby it

formally acknowledges the possibility that one at first harmless mutant can serve as a

stepping stone, or a springboard, for the invasion of a second mutant. It is shown that

for repeated games such stepping stone paths out of equilibrium generally exist both in

the direction of more and in the direction of less cooperation - that is, if a higher resp.

lower level of cooperation is possible and, for increases in cooperation, if the probability of

breakdown is small enough. This indicates that there is no population state that, once it

is reached, cannot be overturned by a succession of mutants.

After the main results in Section 3, the dynamics that follow typical indirect invasions

will be discussed in Section 4. Stability properties of the concept of robustness against

indirect invasions are discussed in Section 5, including application to games other than
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repeated ones.

2 No ESS

The literature concerning evolutionary stability and repeated games can at first sight be

a bit confusing. The reason, as Bendor & Swistak (1995) show, is that different authors

have used different definitions of evolutionary stability. They also convincingly argue that

Maynard Smith’s (1974) definition of an evolutionarily stable strategy (ESS), or a weaker

version, that Maynard Smith (1982) calls a neutrally stable strategy (NSS) is dynamically

much more interesting and meaningful. We will therefore adopt the more standard definition

of an evolutionarily stable strategy. Here S is a space of pure strategies for the repeated
game and Π : S × S → R is the payoff function, where Π (S, T ) is the payoff of a player
playing strategy S against a player playing strategy T . The payoff of the opponent T in

this encounter is given by Π (T, S), thereby assuming that the game is symmetric.

The pure strategy version of the definition - [2] in Bendor & Swistak (1995) - is as

follows.

Definition 1 (Pure ESS) A strategy S is evolutionarily stable if both

Π (S, S) ≥ Π (T, S) for all T and
if Π (S, S) = Π (T, S) then Π (S, T ) > Π (T, T ) for all T 6= S

As the standard definition of an ESS also allows for mixed strategies, we would like to

do the same. We therefore equate mixed strategies with probability distributions over the

strategy space S to obtain the following definition (Section 3 and Appendix A show how S
can be endowed with a metric to make it a separable metric space).

Definition 2 (Mixed ESS) A strategy P is evolutionarily stable if both

Π (P,P ) ≥ Π (Q,P ) for all Q and

if Π (P, P ) = Π (Q,P ) then Π (P,Q) > Π (Q,Q) for all Q 6= P

Using Definition 1 - the pure strategy definition of an ESS - Selten & Hammerstein (1984) ar-

gue that every pure strategy in every non-trivial repeated game has neutral mutants (where

a trivial game would be one in which the stage game has a singleton strategy set). The

reason is that for every strategy S playing against itself, there is always an off-equilibrium

path. On the off-equilibrium path a strategy can be changed without consequences for pay-

offs. This creates a mutant strategy T for which Π (T, S) = Π (S, S) = Π (T, T ) = Π (S, T )

and hence no strategy S can be ESS.

The following theorem states that finite mixtures of strategies can also not be evolution-

ary stable. In terms of Definition 2, that is, no strategy P can be ESS if P is a probability

distribution which puts probability 1 on a finite number of strategies. The proof is a simple
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generalization of Selten & Hammerstein’s argument; in a finite mixture there is only a finite

number of equilibrium paths and hence there is always an infinite number of off-equilibrium

paths left on which behaviour can be changed without affecting payoffs. Please note that

Farrell & Ware (1989) make the same claim - and prove it - but they use a different defi-

nition of evolutionary stability. Furthermore we will focus on games with discouning, but

this theorem holds for undiscounted repeated games too.

Theorem 3 In a non-trivial repeated game there is no finite mixture of strategies that is

evolutionarily stable

Proof. Assume that P is a finite mixture of strategies. Let P1, ..., Pn denote the

composing pure strategies of P and let p1, ..., pn with
Pn

i=1 pi = 1 be the probabilities with

which they are played in P . It is safe to assume that P is a Nash equilibrium, as being ESS

implies being a Nash equilibrium.

There can be no more than n2 paths that are followed by combinations of two pure

strategies from this mixture. There is, however, an (uncountably) infinite number of possi-

ble paths; if k represents the number of possible actions of each player in the stage game,

then there are k2 possible action profiles per repetition, and there is an infinite number of

repetitions. (Note that a game is non-trivial if k > 1). For every finite mixture of strategies,

we can create a new strategy that performs exactly as well as the other strategies in the

mixture. Take one of the strategies present in the mixture, say strategy n, and mutate it

into strategy n+1 by only changing its behaviour for a history that does not occur along any

of the at most n2 paths followed by duo’s of strategies from this mixture interacting. Some

such changes could turn it into one of the other n− 1 strategies, but there is a (countably)
infinite number of possible histories to chose from (see also Section 3) and only a finite

number of strategies in the mixture, so there always exists one such mutant that really is a

new strategy. This new strategy does not cause any changes; when paired with any of the

n strategies both strategies n and n+ 1 follow the same paths and also the path of n with

itself is the same as n+ 1 with itself. Hence n+ 1 receives exactly the same payoff as the

other strategies from the mixture and we have a mutant that is not driven out. Therefore

the finite mixture is not evolutionarily stable.

One reaction to a non-existence result like this is to be less demanding. Bendor & Swistak

(1995, 1997, 1998) did this and chose to look at strategies that satisfy a weaker condition

- [3] in their paper. This condition equals Definition 1, but then with all inequalities

non-strict. They chose to name strategies that satisfy this relaxed condition evolutionarily

stable too, but clarity might be served with following Maynard Smith (1982) and Weibull

(1995) in terming such strategies neutrally stable (NSS). In the current paper the definition

also includes mixed strategies, as opposed to Bendor & Swistak (1995, 1997, 1998)
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Definition 4 (Mixed NSS) A strategy P is neutrally stable if both

Π (P,P ) ≥ Π (Q,P ) for all Q and

if Π (P, P ) = Π (Q,P ) then Π (P,Q) ≥ Π (Q,Q)

While there is no ESS, Bendor & Swistak (1995, 1997, 1998) do find a profusion of (pure)

NSS ’es. They also find that nice and retaliatory strategies have larger basins of ‘non-

repulsion’.1

A question one could ask is how much is lost if the demands are lowered from evo-

lutionary to neutral stability. After all, the fact that there is no ESS does by itself not

make neutral stability a more stable concept. It therefore seems worth trying to find out

exactly how stable or unstable those NSS’es in the repeated prisoners dilemma are. As

the only difference between the definitions of an ESS and an NSS is that the latter allows

for invasions by neutral mutants, the question then becomes how much harm these neutral

mutants can do. If all that happens is that they drift in and out of the population, not

being selected against nor being selected for, then the equilibrium could be considered to

be stable, especially if the mutants do not change the behaviour on the equilibrium path

and actual behaviour in the whole population therefore remains unchanged. But if drift can

take the population to a state in which further mutations can arise that actually do have a

selective advantage, then the first mutant opens the door for the invasion of a second one.

As paths out of equilibrium typically have such a stepping stone structure, we would like

to consider whether all strategies can fall victim to a succession of mutants or if there are

also NSS’es that are immune to these two-stage invasions. In order to be able to make this

distinction, a refinement of the concept of an NSS is suggested. This refinement allows for

inconsequential neutral mutants but excludes mutants that open doors for other mutants.

The definition is less concise than for instance the definition of an ESS or an NSS. It

will also take some effort to indicate why this definition captures the difference between

harmless and harmful mutants. Its most important feature however is that it excludes the

following. Let P be a (symmetric) Nash equilibrium. Suppose furthermore that there is an

α ∈ (0, 1) and that there are strategies Q and R for which the following holds:

Π (P, P ) = Π (Q,P )

Π (P,Q) = Π (Q,Q)

Π (R,αP + (1− α)Q) > Π (P,αP + (1− α)Q)

1 In a finite automata setting with complexity costs and lexicographic preferences Binmore & Samuelson

(1992, 1997) relax the requirement of an ESS to a MESS (see also Swinkels & Samuelson (2003) for a

perfectly accurate and meaningful characterization of the different definitions). Their results are also in

favour of efficiency.
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The first two equations makeQ a neutral mutant, as they imply thatΠ (P,αP + (1− α)Q) =

Π (Q,αP + (1− α)Q) for all α ∈ [0, 1]. The third formalises what harm that could do. The
neutral mutant Q can by random drift attain a share α in the population for which a second

mutant R outperforms both P and Q. As this is the way out of equilibrium that the theo-

rems in Section 3 focus on, it is possible for readers to go there directly and still understand

how equilibria in repeated games can always be upset.2 It is however also worthwhile to

give a positive (rather than a negative) definition that can properly be placed in between

ESS and NSS, that are also positive definitions. Therefore we define robustness against

indirect invasions and below we will also indicate why a strategy that is robust against in-

direct invasions, although not necessarily as stable as an ESS, is fundamentally more stable

than an NSS that is not robust against indirect invasions.

Definition 5 A strategy P is robust against indirect invasions if

1) Π (P,P ) ≥ Π (Q,P ) for all Q and

2) if Π (P, P ) = Π (Q,P ) then Π (P,Q) ≥ Π (Q,Q)
3) if Π (P, P ) = Π (Q,P ) and Π (P,Q) = Π (Q,Q) then Π (Q,Q) ≥ Π (R,Q) for all R

and

4) if Π (P, P ) = Π (Q,P ) and Π (P,Q) = Π (Q,Q) = Π (R,Q) then Π (Q,R) ≥ Π (R,R)

It is not too hard to see that this definition indeed excludes the path out of equilibrium

that is described above. Conditions 1) and 3) imply that no strategy R can ever do better

against any mix of P and a neutral mutant Q than P and Q themselves. Taking R for

Q in 1) we know that Π (P, P ) ≥ Π (R,P ). Together with 3) this directly gives that

Π (R,αP + (1− α)Q) = αΠ (R,P ) + (1− α)Π (R,Q) ≤ αΠ (P, P ) + (1− α)Π (P,Q) =

Π (P, αP + (1− α)Q) for all α ∈ [0, 1]. We also know that the first two equalities in

condition 3) imply that Π (P,αP + (1− α)Q) = Π (Q,αP + (1− α)Q) for all α ∈ [0, 1]
and therefore both P and Q do at least as good as R against any mix of the first two.

While condition 2) rules out Nash equilibria that can be invaded by best responses

that outperform P against themselves, condition 4) does the same for indirect invasions.

Showing this is perhaps slightly tedious, but other than that also straightforward and in-

sightful. If there is an α ∈ [0, 1] for which Π (R,αP + (1− α)Q) = Π (P, αP + (1− α)Q) =

Π (Q,αP + (1− α)Q), then conditions 2) and 4) imply that the mix αP + (1− α)Q per-

forms at least as good against R as R does against itself. In order to see why, it is worth

noting that equality of Π (R,αP + (1− α)Q) and Π (P,αP + (1− α)Q) then either holds

2Please note that two mutants feature also in Boyd & Lorberbaum (1987), Lorberbaum (1994) and

Lorberbaum, Bohning, Shastri & Sine (2002). The difference is that they assume that some mutations,

although having a selective disadvantage, will always be present in the population in some proportion. We

however look at neutral (first) mutants, that is, mutants that do not have a selective disadvantage. Their

share in the population can therefore in- or decrease by random drift.
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for all α ∈ [0, 1], or only for α = 0, or only for α = 1. We will deal with these cases

separately.

If all three strategies perform equally well against both P and Q - that is: Π (P, P ) =

Π (Q,P ) = Π (R,P ) and Π (P,Q) = Π (Q,Q) = Π (R,Q) - then Π (R,αP + (1− α)Q) =

Π (P, αP + (1− α)Q) holds for all α ∈ [0, 1]. In this case, we know from taking R for Q

in 2) that Π (P,R) ≥ Π (R,R). From 4) we also know that Π (Q,R) ≥ Π (R,R). Thus
Π (αP + (1− α)Q,R) = αΠ (P,R) + (1− α)Π (Q,R) ≥ αΠ (R,R) + (1− α)Π (R,R) =

Π (R,R).

If all three strategies perform equally well against Q, but not against P , that is:

Π (P, P ) = Π (Q,P ) > Π (R,P ) andΠ (P,Q) = Π (Q,Q) = Π (R,Q), thenΠ (R,αP + (1− α)Q) =

Π (P, αP + (1− α)Q) holds for α = 0 only. But then the ‘mix’ consists purely of Q, and

from 4) we know that Π (Q,R) ≥ Π (R,R).
If all three strategies perform equally well against P , but not against Q, that is:

Π (P, P ) = Π (Q,P ) = Π (R,P ) andΠ (P,Q) = Π (Q,Q) > Π (R,Q), thenΠ (R,αP + (1− α)Q) =

Π (P, αP + (1− α)Q) only holds for α = 1. Here the ‘mix’ consists purely of P , and from

2) we know that Π (P,R) ≥ Π (R,R).

In Section 5 we will return to this definition, explore the scope for further nesting, and see

how it relates to other concepts such as for instance the ES set. Here we only observe that

there are some inclusions that follow directly from the definitions. If ∆ESS is the set of

ESS’es, ∆NSS is the set of NSS’es, ∆NE is the set of Nash equilibria and ∆RII is the set

of equilibria that are robust against indirect invasions, then

∆ESS ⊂ ∆RII ⊂ ∆NSS ⊂ ∆NE

For non-trivial repeated games we know that ∆ESS does not contain finite mixtures (The-

orem 3) and that ∆NSS is a very rich set (Bendor & Swistak, 1995, 1997, 1998). Below

we will show however that for sufficiently low probability of breakdown also ∆RII does

not contain finite mixtures, which means that all finite NSS’es are vulnerable to indirect

invasions. If a strategy is a neutrally stable, but not robust against indirect invasions, we

will sometimes also refer to it as indirectly invadable.

3 Stepping stones in either direction

This section contains two theorems that state conditions under which strategies are not

robust against indirect invasions. The first one shows that any positive level of cooperation

can be undermined by a succession of two mutations. The second states that if there are

possible gains from (increased) cooperation and the probability of continuation is sufficiently

high, then a stepping stone route into more cooperation exists. Together they imply that
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no equilibrium in interesting repeated games with low enough probability of breakdown

is robust against indirect invasions, and mostly there are ways out of equilibrium in the

direction of in- as well as in the direction of decreasing cooperation. Both theorems come

in a pure strategy version for expositional clarity and a mixed version for generality.

We start with a few formal definitions. Consider a symmetric one-shot 2-player game g

characterized by a set of players I = {1, 2}, an action space A, equal for both players, and
a payoff function π : A×A→ R2. Using a discount factor δ, interpreted as a continuation
probability, this one-shot game is turned into a repeated one, which will be called Γ (δ). A

history at time t is a list of the actions played up to and including time t − 1, where an
empty pair of brackets is used to denote the history ‘no history’. If at,i is the action played

by player i at time t, then these histories are:

h1 = ()

ht = ((a1,1, a1,2) , ..., (at−1,1, at−1,2)) , t = 2, 3, ...

Sometimes we will also write (ht, (at,1, at,2)) for a history ht+1. The set of possible histories

at time t is:

H1 = {h1}
Ht =

Qt−1
i=1 (A×A) t = 2, 3, ...

and the set of all possible histories is:

H =
∞S
t=1

Ht.

It will furthermore be useful to have a way of writing down a history with the roles of the

players reversed. Given a history ht as they are defined above, its mirror image h←t is found

by simply renumbering the players:

h←1 = ()

h←t = ((a1,2, a1,1) , ..., (at−1,2, at−1,1)) , t = 2, 3, ...

The reason why histories with roles reversed are needed, is that we assume that both players

label themselves as player 1 and the other as player 2 and therefore face mirrored histories

as they go along.

A strategy is a function that maps histories to the action space: S : H → A. For two

strategies, say S and T , the course of actions is determined by recursion; all actions at all

stages are determined by the initiation

hS,T1 = ()
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and the recursion step

aS,Tt =
³
S
³
hS,Tt

´
, T
³
hS,T←t

´´
hS,Tt+1 =

³
ht, a

S,T
t

´
, t = 1, 2, ...

The discounted normalised payoffs to (a player that uses) strategy S against strategy T is

given by:

Π (S, T ) = (1− δ)
∞P
t=1

δt−1π1
³
aS,Tt

´
With these definitions, we can prove the first theorem. Note that strategies here are pure,

and that we write that S is an equilibrium strategy, which is short for (S, S) being a

symmetric equilibrium of the game Γ (δ).

Theorem 6 Let S be a strategy in the game Γ (δ) and let there be a time τ at which aS,Sτ

is not an equilibrium of the stage game. Then S is not robust against indirect invasions.

Proof. Assume that condition 1) of Definition 5 is satisfied and S is an equilibrium.

Let T be the strategy that equals S for all histories, except for those that are elements of

the set bH =
©
ht | t > τ, aτ,2 = argmaxa∈A π2

¡
S
¡
hS,Sτ

¢
, a
¢ª
. These histories only occur

off the equilibrium path, since it is assumed that players playing S against each other do

not play an equilibrium of the stage game at time τ . For those histories ht ∈ bH we take

T (ht) = S
³
hS,St

´
. Obviously, the paths of T against S, T against T , S against S and S

against T are all the same; hT,St = hT,Tt = hS,St = hS,Tt ∀ t. Consequently the corresponding
payoffs are also equal; Π (T, S) = Π (S, S) = Π (T, T ) = Π (S, T ).

Now let U be the strategy that equals S, except for hS,Sτ , for which we take U
¡
hS,Sτ

¢
=

argmaxa∈A π1
¡
a, S

¡
hS,Sτ

¢¢
and except for histories that are elements of the set eH =©

ht | t > τ, aτ,1 = argmaxa∈A π1
¡
a, S

¡
hS,Sτ

¢¢ª
, for which we take U (ht) = S

³
hS,St

´
, ht ∈eH.

It is obvious that Π (U, S) ≤ Π (S, S), for S is an equilibrium, and it is also clear that
Π (U, T ) > Π (T, T ) = Π (S, T ), because U improves itself at time τ without being punished

by T . As a result of this, requirement 3) of Definition 5 is not satisfied.

Note that Π (U,T ) > Π (T, T ) = Π (S, S) ≥ Π (U, S), and therefore that T 6= S. In other

words, if T = S, then U does strictly better against S than S itself and that contradicts S

being an equilibrium.

What this theorem indicates is that as soon as there are equilibrium actions that must

be upheld by the threat of punishment, then there can be mutants that do not punish,

and subsequently there can be other mutants that takes advantage of the first mutant
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not punishing. One thing worth noting is that the proof constructs only one way out of

equilibrium. While this particular stepping stone path changes behaviour for histories that

are elements of rather moderate sets bH and eH, other ways out of equilibrium may come

with changes on larger, and sometimes also more natural sets of histories, as we will see

later in Section 4. But what the theorem shows is that if there is cooperation in equilibrium,

at least the existence of an indirect way out is guaranteed.

While the reference point in Theorem 6 is the equilibrium of the one-shot game, we

will now focus on departures from what in non-trivial games is the other extreme: the

maximally feasible symmetric payoffs. Therefore we define πmax = maxa∈A π1 (a, a) and

amax = argmaxa∈A π1 (a, a). Note that amax is an action, while aS,Sτ =
¡
S
¡
hS,Sτ

¢
, S
¡
hS,Sτ

¢¢
is an action profile. The following theorem states that if there is a point in the course of play

of an equilibrium strategy at which unilaterally initiating cooperation could be offset by

future gains from (increased) cooperation, then the strategy is not robust against indirect

invasions.

Theorem 7 Let S be a strategy in the game Γ (δ) and let there be a time τ , for which the

following holds:

1. π1
¡
aS,Sτ

¢
− π1

¡
amax, S

¡
hS,Sτ

¢¢
<

∞P
t=τ+1

δt−τ
³
πmax − π1

³
aS,St

´´
.

2. amax 6= S
¡
hS,Sτ

¢
Then S is not robust against indirect invasions.

Proof. Assume that condition 1) of Definition 5 is satisfied and S is an equilibrium. Let

T be the strategy that equals S for all histories, except for those that are elements of the setbH = {ht | t > τ, au,2 = amax, u ≥ τ}. These histories only occur off the equilibrium path,

as it is assumed that amax 6= S
¡
hS,Sτ

¢
. For those histories ht ∈ bH we take T (ht) = amax.

Obviously, the paths of T against S, T against T , S against S and S against T are all the

same; hT,St = hT,Tt = hS,St = hS,Tt ∀ t. Consequently the corresponding payoffs are also

equal; Π (T, S) = Π (S, S) = Π (T, T ) = Π (S, T ).

Now let U be the strategy that equals S, except for the history hS,Sτ , for which we

choose U
¡
hS,Sτ

¢
= amax and except for the histories that are elements of the set eH =

{ht | t > τ, aτ,1 = amax and au,2 = amax, u > τ}, for which we take U (ht) = amax, ht ∈ eH.
It is obvious that Π (U, S) ≤ Π (S, S), for S is an equilibrium, and it is also clear that

Π (U, T ) > Π (T, T ) = Π (S, T ), because that follows directly from the first requirement of

the theorem. As a result of this, requirement 3) of Definition 5 is not satisfied.

As in the proof of Theorem 6, S being an equilibrium implies that T 6= S.

The requirements in this theorem are slightly less simple to check for than those in Theorem

6, but when translated to prisoners dilemma’s, it turns out to imply something that is

10



relatively easy to handle. Before doing so, however, it good to realize that discounted,

normalised payoffs that belong to a combination of two strategies can vary with δ and that

they do so in different ways. If we look at symmetric equilibria, then it might be that two

different strategies that both play against themselves have the same discounted, normalised

payoff for a given δ, while a higher δ increases them for one and decreases them for the

other strategy.

The next theorem states that for repeated prisoners dilemma’s, all symmetric equilibria

with payoffs less than π1 (C,C) − (1− δ) [π1 (C,C)− π1 (C,D)] are not robust against

indirect invasions. If we take more or less standard values, that is π1 (D,C) = 4, π1 (C,C) =

3, π1 (D,D) = 1, π1 (C,D) = 0, then this amounts to 3δ; all strategies S with with payoffs

Π (S, S) less then 3δ are indirectly invadable. There may be many other equilibria that are

also not robust against indirect invasions, but Theorem 8 shows that at least all strategies

with relatively low payoffs satisfy the criteria for Theorem 7. It also means that the closer

δ gets to 1, the more strategies are shown to be vulnerable to indirect invasions with

increasing cooperation, and for any strategy S with payoff Π (S, S) < π1 (C,C) there is

a δ ∈ (0, 1) such that S indirectly invadable for all δ ∈
¡
δ, 1
¢
. Together with Theorem 6

that implies that for sufficiently high δ no symmetric equilibrium strategy is robust against

indirect invasions.

Theorem 8 In a repeated prisoner’s dilemma, all strategies S with Π (S, S) < π1 (C,C)−
(1− δ) [π1 (C,C)− π1 (C,D)] are not robust against indirect invasions.

Proof. First realize that S is π1 (C,C)−Π (S, S) short from full, symmetric efficiency.

Then choose as time τ in Theorem 7 the first period that S plays defect. The second

requirement of the same theorem is then automatically fulfilled.

The following can then be derived

Π (S, S) < π1 (C,C)− (1− δ) (π1 (C,C)− π1 (C,D))⇒

Π (S, S) < π1 (C,C)− (1− δ) δτ (π1 (C,C)− π1 (C,D))⇔

π1 (D,D)− π1 (C,D) <
1

(1−δ)δτ [π1 (C,C)−Π (S, S)]− [π1 (C,C)− π1 (D,D)]⇔

π1
¡
aS,Sτ

¢
− π1

³
amax, S

³
hS,Sτ−1

´´
<
∞P
t=τ

δt−τ
³
πmax − π1

³
aS,St

´´
−
¡
πmax − π1

¡
aS,Sτ

¢¢
This satisfies the first requirement of Theorem 7.

Again, the proof of Theorem 7 only gives one stepping stone route out of equilibrium, but

there may be lots of ways in which successive mutants can throw an equilibrium off balance

with an increasing level of cooperation.

11



3.1 Mixed strategies

In evolutionary as well as in standard game theory, equilibrium concepts usually allow for

mixed strategies. While the standard setting of symmetric 2-person bi-matrix games (see

Weibull, 1995) naturally comes with definitions in terms of mixed strategies, the literature

on repeated games is much more focussed on pure equilibria (with exceptions such as for

instance Binmore & Samuelson, 1992, and Samuelson & Swinkels, 2003). It seems how-

ever no less natural to include mixed strategies here too, especially since the paths out of

equilibrium at least at first lead away from pure strategies (or homogeneous populations)

and into mixtures of strategies. While Theorem 3 shows that there is also no mixed ESS,

Theorems 6 and 7 do not yet exclude the possibility that there is a mixture of strategies

that is robust against indirect invasions. In this subsection we therefore give the equiva-

lents of those theorems for finite mixtures. Here we will directly focus on repeated prisoners

dilemma’s rather than repeated games in general. This will keep notation simpler, it hope-

fully helps the intuition and still captures the essentials. Also, Π (D,D) will be used to

denote (1− δ)
P∞

t=0 δ
t−1π1 (D,D) = π1 (D,D), which is the normalised discounted payoff

of AllD against AllD.

Theorem 9

Let P be a finite mixture of strategies in Γ (δ).

If Π (P, P ) > Π (D,D) then P is not robust against indirect invasions.

Proof. See Appendix B

As with the pure strategy version, the proof in the appendix just constructs one particular

way out of equilibrium, while there may be many other stepping stone paths, some of which

can be considered to be more likely than others. But the theorem shows that indirect

invasions are always possible for equilibria with cooperation.

In order to formulate the mixed strategy counterpart for increasing cooperation, it will

be helpful to define the following. Let P1, ..., Pn be the composing pure strategies of P and

let p1, ..., pn, with
Pn

i=1 pi = 1, be the probabilities with which they are played in P . For

any defection that occurs along a path of interaction between any two strategies Pi and

Pj from P we can discount the possible gains in the future and compare it to the current

period loss of switching from D to C as an initiation of cooperation. Therefore we first

define Ei (j)t =
n
Pl | hPi,Plt = h

Pi,Pj
t

o
, which makes it the set of strategies against which

the history of Pi at time t is the same as against Pj . Since we assume that P is a finite

mixture, we know that limt→∞Ei (j)t = Ei (j), where Ei (j) is defined (see also the proof

of Theorem 9) as Ei (j) =
n
Pl | aPi,Plt = a

Pi,Pj
t ∀ t

o
. For any combination of strategies

(Pi, Pj) and any time t we can compute δij,t as follows:

12



δij,t =



δ |
P

Pl∈Ei(j)t
pl

³
π1

³
aPi,Plt

´
− π1

³
C, aPi,Plt,2

´´
=

P
Pl∈Ei(j)t

pl
∞P

u=t+1
δu−t

¡
π1 (C,C)− π1

¡
aPi,Plu

¢¢

if aPi,Pjt,1 = D and the equation has a solution δ ∈ (0, 1)

1 otherwise

This definition greatly simplifies the formulation of the next theorem.

Theorem 10

Let P be a finite mixture of strategies in Γ (δ).

If mini,j,t δij,t < δ ≤ 1 then P is not robust against indirect invasions.

Proof. See Appendix B.1

4 Out of equilibrium

In Section 3 it was already mentioned that the proofs only provide one stepping stone path

out of equilibrium. For most equilibria however there are many ways out, some of which can

be considered to be more natural than the ones provided. In this section we will consider

two examples, with simple strategies that have received some attention in the literature.

We will also look at what happens after the indirect invasion.

For the prisoners dilemma we use the same payoffs as in the previous section: π1 (D,C) =

4, π1 (C,C) = 3, π1 (D,D) = 1, π1 (C,D) = 0. For the probability of continuation we

choose δ = 0.75. The first strategy we look at is Tit-for-tat, where AllC is the first and

AllD is the second mutant. The payoffs of these strategies against themselves and each

other are easily computed (see Appendix C) and summarized in the following payoffmatrix.

TFT C D

TFT 3 3 0.75

C 3 3 0

D 1.75 4 1

All points on the boundary face between TFT and C are obviously rest points of the dynam-

ics. We can compute the payoff ofD against a mixture of the first two -Π (D,αTFT + (1− α)C)

- and compare it to the payoff of TFT and C against the same mixture. They are equal

for α = 4
9 , so for α > 4

9 the population will directly be pushed back onto the boundary face

after an invasion of D. Then there is a range of α’s smaller than 4
9 , but larger than

1
6 , for
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which the trajectory after invasions of D first moves away from the boundary face, and then

takes a detour to return to the boundary face, but then at the other side of α = 4
9 . Then

for the last part of the boundary face, with 0 ≤ α < 1
6 , invasions of D result in convergence

towards the vertex where all play D.

C

TFT D

If the strategy space would be restricted to those three strategies only, D would be the only

ESS. Although on the larger part of the boundary face between TFT and C, invasions of

D are (eventually) driven out - reducing the share of the first mutant in the process - there

is an α = 1
6 such that if the share of TFT falls below it, mutants playing D will not just

successfully invade, but also take over.

The second example is AllD, with Suspicious Tit-for-tat (a.k.a. tat-for-tit) as the

neutral first, and Cooperate-Tit-for-tat as the second mutant. STFT differs from tit-for-

tat in that it starts with playing D. Afterwards, it also copies the previous move of the

other player. CTFT starts with playing C in periods 1 and 2, and then copies the previous

move of the other player.3 The payoffs of these strategies against themselves and each other

are again computed in Appendix C and summarized in a payoff matrix.

D STFT CTFT

D 1 1 2 516

STFT 1 1 314

CTFT 9
16 214 3

All points on the boundary face between D and STFT are rest points. We can compute

the payoff of CTFT against a mixture of the first two - Π (CTFT, αD + (1− α)STFT ) -

3Results would not change if we took TF2T (tit-for-two-tats, see Bendor & Swistak, 1995) to replace

CTFT .
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and compare it to the payoff of TFT and C against the same mixture. They are equal for

α = 20
27 , so for α > 20

27 the population will directly be pushed back to the boundary face after

an invasion of CTFT . For α’s smaller than 20
27 invasions of CTFT result in convergence

towards the mixed equilibrium where 1
6 plays STFT and

7
6 plays CTFT .

STFT

D CTFT

If the strategy space would be restricted to those three strategies only, the mixed equilibrium¡
0, 16 ,

7
6

¢
would be the only ESS, and for the larger part of the boundary face between D

and STFT , invasions of CTFT lead to this equilibrium.

Although they are first of all examples of natural stepping stone paths out of an NSS,

the two phase plots are also representative for the indirect invasions that are constructed

in the proofs of Theorem 9 and 10, or their pure strategy equivalents 6 and 7. This can

be seen if we consider the typical payoff matrix that represents an indirect invasion in a

strategy P that is an NSS.

P Q R

P a a d

Q a a e

R b c f

The block of a’s reflects that P and its neutral mutant Q earn the same payoff when they

play themselves and each other; Π (P,P ) = Π (Q,P ) = Π (P,Q) = Π (Q,Q). In both proofs

the sequence of mutations given violates condition 3) of the definition of robustness against

indirect invasions. This means that c > a and hence also that b < a. (The strictness of the

second inequality follows from P being NSS and not just a Nash equilibrium; if c > a and

b = a, then P would not be an NSS). The shape of the dynamics in the three-dimensional

simplex therefore depends on how d, e and f are ordered.
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Inspection of the proof of Theorem 9 or 6 shows that the two mutants are constructed

such that f > d > e. (It is also true there that a > f , but the replicator dynamics are

invariant with respect to adding or substracting constant to or from the rows, so that is

not informative about the behaviour of the dynamics). Because c > a and f > e, it follows

that on the whole boundary face between Q and R the dynamics go in the direction of R.

Because b < a and f > d the boundary face between P and R has an unstable rest point,

with dynamics on either side going towards the pure extremes. Furthermore strategy P

weakly dominates Q, because d > e.

In the proof of Theorem 10 and 7 the mutants imply payoffs for which e > f > d.

(Here d > a, but again that does not affect the dynamics). Because c > a and e > f , the

boundary face between Q and R has a mixed rest point, and on this boundary face the

dynamics point towards it. Because b < a and f > d the boundary face between P and

R again has an unstable rest point, with dynamics on either sides going towards the pure

extremes. Furthermore e > d, implying that now Q weakly dominates P .

5 Indirect invasions and ES sets

The definition of robustness against indirect invasions is designed to single out equilibria

that are not susceptible to (two-stage) indirect invasions. It seems natural to also consider

whether or not we should include three-stage or higher order indirect invasions in this or

perhaps in another definition. While conditions 1) and 2) of Definition 5 imply that no

mutant has a selective advantage over a strategy P that is robust against indirect invasions,

3) and 4) imply that no mutant has a selective advantage over any mixture of P and any

neutral mutant Q. One could therefore wonder whether there is scope for further nesting,

as it is not excluded that there are mutants R that themselves are neutral for all mixtures

of P and a neutral mutant Q. A further mutant S might then have a selective advantage

over a mixture of P,Q and R.

As the construction of indirect invasions in the proofs of Theorem 9 and 10 already

indicates, almost all of the higher order indirect invasions can be rewritten as two-stage

indirect invasions. This will be shown formally in Theorem 11. Situations to which that

theorem does not apply are those where neutral mutations first have to completely replace

the incumbent strategy in order to allow for other neutral mutants. Although perhaps

not the most likely possibility, such paths are not excluded by the definition of robustness

against indirect invasions. We will illustrate that with a simple game and show that the

concept of robustness against indirect invasions nonetheless fits in a sequence of definitions

with increasing stability properties.

The scenario with higher order invasions mentioned above is that a second mutant R is

neutral for a mixture of P and a neutral mutant Q. If P is robust against indirect invasions,
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and R is neutral for αP + (1− α)Q with α ∈ (0, 1), then it must be also be neutral for all
α. Condition (*) in the following theorem captures exactly that, and drift can then take

the population to any convex combination of P,Q and R. The case where R is only neutral

for αP + (1− α)Q if α = 0 is a different one, and will be discussed right after this one.

Theorem 11

If a strategy P is robust against indirect invasions and

Π (P, P ) = Π (Q,P ) = Π (R,P ),

Π (P,Q) = Π (Q,Q) = Π (R,Q) and (*)

Π (P,R) = Π (Q,R) = Π (R,R).

then for all α, β, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ α+ β ≤ 1 and all strategies S
5) Π (P, αP + βQ+ (1− α− β)R) ≥ Π (S,αP + βQ+ (1− α− β)R) and

6) if Π (P, αP + βQ+ (1− α− β)R) = Π (S, αP + βQ+ (1− α− β)R) then

Π (αP + βQ+ (1− α− β)R,S) ≥ Π (S, S)

Proof. See Appendix B.2

The following example illustrates what is not excluded by the definition of robustness

against indirect invasions. Consider the payoff matrix below, where the letters now indicate

pure strategies:

S T U V

S 1 1 1 1

T 1 1 1 1

U 0 1 1 1

V 0 0 1 2

(1)

In this game there is a number of different equilibria. First V is an ESS. Then U is a Nash

equilibrium, but not an NSS. Furthermore T is an NSS, but not robust against indirect

invasions. Finally S is robust against indirect invasions, but not ESS.

Looking at the replicator dynamics for this game, we observe that there is a path along

which drift and a sequence of neutral mutations can take a population from S to V . If first

the neutral mutant T arises, and drift drives S extinct, and second the mutant U that is

neutral for T arises, and drift drives T extinct, then V can successfully invade and take over

the population. This possibility is not excluded by robustness against indirect invasions. It

should however be noted that U is not neutral for S. Hence a reintroduction of S anywhere

between T and U throws the population back onto the boundary face between S and T ,
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because U has a selective disadvantage anywhere but at the boundary face between T and

U itself. It is therefore reasonable to think that S is more stable than T and T is more

stable than U (while V off course is the most stable). It is also worth noting that if we

would make U neutral for both S and T by changing Π (U, S) from 0 to 1, then S is no

longer robust against indirect invasions.

Generalisations of this game are also possible, if we define a game with strategies S1 to

Sn as follows:

Π (Si, Sj) =


1 if i ≤ j + 1 and i 6= n

0 if i > j + 1

2 i = j = n

If we take n ≥ 4, then Sn is an ESS, Sn−1 is a Nash equilibrium, but not an NSS, Sn−2 is

an NSS, but not robust against indirect invasions, and S1, ..., Sn−3 are all robust against

indirect invasions, but not ESS. Still it is clear that the higher n, the more stable S1 and

its neutral mutant S2 - or the boundary face between S1 and S2 - is.

Robustness against indirect invasions puts restrictions on how (third) mutants perform

against a set of strategies, namely its neutral mutants. It can therefore, for finite strategy

spaces, be useful to relate that to an ES set, which is a setwise generalisation of the ESS

concept (Thomas, 1985, and see also Weibull, 1995, p51 & p105 for the related concept of

an ES* set). An example from Weibull (1995, p106-108) shows that a set of equilibria that

is asymptotically stable need not be an ES set. All the equilibria in that example are also

robust against indirect invasions, and the remainder of the set of equilibria are all neutral

mutants, so the same game can also be used to show that a strategy that is robust against

indirect invasions, together with its neutral mutants, need not be an ES set. Here we give

another game for which the same holds.

S T U

S 1 1 1

T 1 1 0

U 1 0 1

(2)

The set of S and all of its neutral mutants - the faces between S and T and between S and

U - is asymptotically stable, but not an ES set. Please note that if Q is a neutral mutant

of P , then so is αQ+ (1− α)P for all α ∈ (0, 1). The example however illustrates that if
Q and R are neutral mutants of P , then αQ+(1− α)R for α ∈ (0, 1) need not be one too.

Theorem 12 Suppose S is a finite set. If X is an ES set, and P ∈ X, then P is robust

against indirect invasions

18



Proof. From the observation in Weibull (1995, p51) that X must be a subset of

∆NSS it follows that requirements 1) and 2) are satisfied. Furthermore, if Q is a neutral

mutant of P - that is: Π (P, P ) = Π (Q,P ) and Π (P,Q) = Π (Q,Q) - then all strategies

Qα = αQ+ (1− α)P for α ∈ [0, 1] must also be elements of X; if not, then by closedness
of ES sets, there is a Qα ∈ X for which every neighbourhood U of Qα contains a strategy

Qβ /∈ X, for which Π (Qα, Qβ) = Π (Qβ , Qβ), which contradicts that X is an ES set. By the

same observation from Weibull (1995) these must also be NSS, implying that requirements

3) and 4) are also satisfied.

For repeated games however an ES set does not seem to be a particularly useful concept.

One reason is that it is not obvious what topology should be used on the set of strategies S
(see Spreij & Van Veelen, ...., and references therein), but more important is that Theorems

9 and 10 show that robustness against indirect invasions already cannot be satisfied.

6 Conclusion and discussion

Theorems 9 and 10 show that with sufficiently large continuation probability δ, there is

no strategy in the repeated prisoners dilemma that is robust against indirect invasions.

In other words: every equilibrium can be upset, either by a mutant, if the strategy is

not neutrally stable, or by a succession of mutants if the strategy is NSS. The richness of

the strategy space therefore excludes that there is an equilibrium refinement, or a static

stability concept, that by only looking at the game itself can predict what happens in a

population with random matching, mutation and selection.

One thing that can be learned from this, is that what we expect to evolve must depend

on further assumptions. Besides - obviously - the true size of δ, the most important of those

will have to concern mutation probabilities. The proofs of the results show that there are

stepping stone paths out of equilibrium with in- and with decreasing levels of cooperation.

Whether we can expect cooperation to in- or decrease, however, depends on how many

more of these paths there are, and, more importantly, on the probabilities with which the

different mutations occur. Also the starting point might matter, although it seems that a

natural starting point for evolution is the strategy to always defect.

Another possibility to get stability results is to restrict the strategy space. Here it is

worthwhile noticing that a restriction of the strategy space to, say, a subset T of S is in fact
a special case of a combination of a starting point (somewhere within T ) and an assumption
concerning mutation probabilities (they are zero for all mutations from elements of T to

elements of S\T ).
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A A metric for S

Let f : H × S × S → {0, 1} be defined by

f (ht, S, T ) =

(
0 if S (ht) = T (ht)

1 if S (ht) 6= T (ht)

We assume that the action space A is finite, and that it has k elements, a1, ..., ak. The

number of possible histories in Ht therefore is k2t−2.

Define the distance between S and T , both S, T ∈ S, as follows:

d (S, T ) =
∞P
t=1

ρt
P

ht∈Ht

|f (ht, S, T )|

with ρ = δ
k2 and δ ∈ (0, 1).
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If we take for St ⊂ S the set of strategies in S that all play a1 for all histories hu with

u > t, then it is a finite set; it has k(
t
v=1 k

2t−2) = k
k2t−1
k2−1 elements. The set

∞S
t=1
St is

therefore countable, but it is easy to see that it is dense in S.

B Proofs of theorems

Proof of Theorem 9 Assume that condition 1) of Definition 5 is satisfied and P is an equi-

librium. Let P1, ..., Pn be the composing pure strategies of P and let p1, ..., pn,
Pn

i=1 pi = 1,

be the probabilities with which they are played in P . If Π (P, P ) > Π (D,D), then obvi-

ously not all combinations of Pi and Pj , with 1 ≤ i, j ≤ n, can always play D when they

interact. So there must be at least one i and one j, with 1 ≤ i, j ≤ n, and a time τ for

which a
Pi,Pj
τ 6= (D,D). First it is clear that there cannot only be a finite number of times

that C is played in the mixture. Suppose that were true, and there is a time τ and an i and

a j, with 1 ≤ i, j ≤ n, for which a
Pi,Pj
τ 6= (D,D) and a

Pi,Pj
t = (D,D) for all i and j and

t > τ , then the mixture is not an equilibrium; without restricting generality we can assume

that Pi
³
h
Pi,Pj
τ

´
= C and then a strategy that equals Pi for all histories at times t < τ

and plays D for all histories at times t ≥ τ earns a higher payoff than Pi and therefore also

higher than all other composing strategies. Hence C must be played infinitely many times

in the mixed population. Since there is only a finite number of combinations (Pi, Pj), it

also follows that there is at least one in which Pi plays C an infinite number of times.

Let (Pi, Pj) be a combination of strategies in which Pi plays C infinitely often. Let

E (i, j) be the set of combinations of strategies (Pk, Pl) for which aPk,Plt = a
Pi,Pj
t ∀ t, that

is, strategies Pk and Pl that follow the same path as when Pi interacts with Pj. Given

that P is a finite mixture, there is a finite time τ 0 which is sufficiently large to determine

whether or not (Pk, Pl) ∈ E (i, j), that is, there is a τ 0 such that if aPk,Plt = a
Pi,Pj
t ∀ t ≤ τ 0

then aPk,Plt = a
Pi,Pj
t ∀ t. Let τ 00 > τ 0 be the first time t after τ 0 at which a

Pi,Pj
t,1 = C.

Let Ei (j) be the set of strategies Pl such that (Pi, Pl) ∈ E (i, j). For all Pl ∈ Ei (j) one

can define Ql as the pure strategy that equals Pl for all histories, except for those in the setbH =
n
ht | t > τ 00, au = a

Pj ,Pi
u for u ≤ τ 0 and aτ 00,2 = D

o
. These histories only occur off all

equilibrium paths, since the history up to and including τ 0 implies that this history does not

occur along an equilibrium path outside E (i, j), as experienced by j, while the remainder

implies that it does not occur along equilibrium paths in E (i, j). For the histories ht ∈ bH
we take Ql (ht) = a

Pj ,Pi
t = Pl

³
h
Pj ,Pi
t

´
. Obviously, the path of Ql against Pm is the same

as the path of Pl against Pm for all m, 1 ≤ m ≤ n and all Pl ∈ Ei (j). Define Q as the

strategie that plays Ql with probability pl for Pl ∈ Ei (j) and Pl with probability pl for all

Pl /∈ Ei (j). For this strategy we have that Π (Q,P ) = Π (P,P ) = Π (Q,Q) = Π (P,Q) .

Let R be the strategy that equals Pi, except for h
Pi,Pj
τ 00 , for which we take R

³
h
Pi,Pj
τ 00

´
= D

and except for histories that are elements of the set eH =
n
ht | t > τ 00, au = a

Pi,Pj
u for u ≤ τ 0 and aτ 00,1 = D

o
,
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for which we take R (ht) = Pi

³
h
Pi,Pj
t

´
, ht ∈ eH.

Because P is an equilibrium, it must be that Π (R,P ) ≤ Π (P, P ). It is also clear that
Π (R,Q) > Π (Q,Q) = Π (P,Q), because R improves itself against strategies Ql ∈ Ei (j) at

time τ 00 without being punished and remains unchanged against strategies that are not in

Ei (j). As a result of this, requirement 3) of definition 5 is not satisfied.

Note that if Ql = Pl ∀ Pl ∈ Ei (j), that would contradict P being an equilibrium,

because if P = Q then Π (R,Q) > Π (Q,Q) would contradict that Π (R,P ) ≤ Π (P, P ).

B.1

Proof of Theorem 10 Assume that condition 1) of Definition 5 is satisfied and P is

an equilibrium. Take i, j and τ such that δij,τ = mink,l,t δkl,t. For all Pl ∈ Ei (j)τ one

can define Ql as the pure strategy that equals Pl for all histories, except for those that

are elements of the set bH = {ht | t > τ, au,2 = C,u ≥ τ}. These histories only occur off
all equilibrium paths; the assumption implies that δij,τ < 1 and hence it is not possible

that aPl,Piτ,2 = C, for that would make π1
¡
aPi,Plτ

¢
− π1

¡
C, aPi,Plτ

¢
= 0 ∀ Pl ∈ Ei (j)τ .

For those histories ht ∈ bH we take Ql (ht) = C. Obviously, the path of Ql against Pm

is the same as the path of Pl against Pm for all m, 1 ≤ m ≤ n and all Pl ∈ Ei (j)τ .

Define Q as the strategie that plays Ql with probability pl for Pl ∈ Ei (j)τ and Pl with

probability pl for all Pl /∈ Ei (j). Consequently the corresponding payoffs are also equal;

Π (Q,P ) = Π (P, P ) = Π (Q,Q) = Π (P,Q).

Now let R be the strategy that equals Pi, except for the history h
Pi,Pj
τ , for which

we choose R
³
h
Pi,Pj
τ

´
= C and except for the histories that are elemens of the set eH =n

ht | t > τ, au = a
Pi,Pj
u for u < τ , aτ,1 = C and au,2 = C, u > τ

o
, for which we also take

R (ht) = C, ht ∈ eH.
Because P is an equilibrium, it must be that Π (R,P ) ≤ Π (P, P ). It is also clear that

Π (R,Q) > Π (Q,Q) = Π (P,Q), because R improves itself against strategies Ql ∈ Ei (j) at

time τ 00 without being punished and remains unchanged against strategies that are not in

Ei (j)τ . As a result of this, requirement 3) of definition 5 is not satisfied.

Note again that if Ql = Pl ∀ Pl ∈ Ei (j)τ , that would contradict P being an equilibrium,

because if P = Q then Π (R,Q) > Π (Q,Q) would contradict that Π (R,P ) ≤ Π (P, P )

B.2

Proof of Theorem 11 The robustness against indirect invasions of P will be exploited a

number of times in this proof, by making specific choices for the Q and R in Definition 5.

In order to avoid confusion, we will number these choices with a subscript as they follow

each other in the proof.
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First observe that if α = 1, then 5) and 6) in this theorem are exactly point 1) and 2)

of Definition 5, if we take Q1 = S. Therefore we only need to prove the theorem for α0 < 1.

To prove 5), define Q2 =
β
1−αQ+

1−α−β
1−α R and R2 = S. From condition (*) it follows that

Π (P, P ) = Π (Q2, P ) and Π (P,Q2) = Π (Q2, Q2) ∀ α, β. Since P is robust against indirect
invasions, we know from condition 3) in Definition 5 that then Π (P,Q2) = Π (Q2, Q2) ≥
Π (R2, Q2) for all α, β. Taking Q3 = S in condition 1) of the same definition tells that

Π (P, P ) ≥ Π (S, P ). Hence Π (P, αP + (1− α)Q2) ≥ Π (S, αP + (1− α)Q2) for all α, β,

which is 5).

Please realize that condition (*) together with 5) can also be written as:

Π (P,P ) = Π (Q,P ) = Π (R,P ) ≥ Π (S, P ),
Π (P,Q) = Π (Q,Q) = Π (R,Q) ≥ Π (S,Q) and
Π (P,R) = Π (Q,R) = Π (R,R) ≥ Π (S,R).

To prove 6), we begin with Π (P, P ) ≥ Π (S, P ), which above was shown to hold. First
consider the possibility that Π (P, P ) > Π (S, P ). Then the condition in 6) can only hold for

α = 0, and then it reads Π (P,Q2) = Π (R2, Q2). This makes the conditions in requirement

4) of Definition 5 hold, so it implies that Π (Q2, R2) ≥ Π (R2, R2), which prooves 6) for
Π (P, P ) > Π (S, P ).

Then we consider the possibility that Π (P, P ) = Π (S,P ). By taking Q3 = S again, this

by 2) implies that Π (P, S) ≥ Π (S, S). Because we have already shown that 5) holds, we
also know that Π (P,Q) ≥ Π (S,Q). First consider the possibility that Π (P, P ) = Π (S, P )
and Π (P,Q) > Π (S,Q). Here the condition in 6) can only hold for β = 0, and then it reads

Π (P, αP + (1− α)R) = Π (S, αP + (1− α)R) which by Π (P,P ) = Π (S, P ) is equivalent

to Π (P,R) = Π (S,R). Taking Q4 = R and R4 = S in condition 4) of Definition 5, we

must conclude that Π (R,S) ≥ Π (S, S). But then Π (αP + (1− α)R,S) ≥ Π (S, S).
Then consider the possibility that Π (P, P ) = Π (S, P ) and Π (P,Q) = Π (S,Q). Because

we have already shown that 5) holds, we also know that Π (P,R) ≥ Π (S,R). First con-
sider the possibility that Π (P, P ) = Π (S, P ) and Π (P,Q) = Π (S,Q) and Π (P,R) >

Π (S,R). Here the condition in 6) can only hold for α + β = 1, and then it reads

Π (P, αP + (1− α)Q) = Π (S, αP + (1− α)Q), which by Π (P, P ) = Π (S, P ) is equiva-

lent to Π (P,Q) = Π (S,Q). Taking Q5 = Q and R5 = S in condition 4) of Definition 5, we

must conclude that Π (Q,S) ≥ Π (S, S). But then Π (αP + (1− α)Q,S) ≥ Π (S, S).
Finally consider the possibility that Π (P,P ) = Π (S,P ) and Π (P,Q) = Π (S,Q)

and Π (P,R) = Π (S,R). If we use Q2 and R2 again, but now in 4), we conclude that

Π (Q2, R2) ≥ Π (R2, R2). Because Π (P, S) ≥ Π (S, S), as was shown above, this prooves
6).
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C Payoffs of strategies for examples Section 4

Payoffs of strategies against themselves and each other in the first example, with δ = 0.75.

Π (C,C) = Π (C, TFT ) = Π (TFT,C) = Π (TFT, TFT ) = (1− δ)
P∞

i=0 3δ
i = 3

Π (TFT,D) = (1− δ)
¡
0 +

P∞
i=1 1δ

i
¢
= δ = 0.75

Π (C,D) = (1− δ)
P∞

i=0 0δ
i = 0

Π (D,TFT ) = (1− δ)
¡
4 +

P∞
i=1 1δ

i
¢
= 4 (1− δ) + δ = 1.75

Π (D,C) = (1− δ)
P∞

i=0 4δ
i = 4

Π (D,D) = (1− δ)
P∞

i=0 1δ
i = 1

Π (D,αTFT + (1− α)C) = Π (TFT,αTFT + (1− α)C)

(4− 3δ)α+ 4 (1− α) = 3⇔ α = 1
3δ =

4
9

Π (TFT, αTFT + (1− α)D) = Π (D,αTFT + (1− α)D)

3α+ (1− α) δ = α (4− 3δ) + (1− α)⇔ α = 1−δ
2δ = 1

6

Payoffs of strategies against themselves and each other in the second example, with δ = 0.75.

Π (D,D) = Π (D,STFT ) = Π (STFT,D) = Π (STFT, STFT ) = 1

Π (D,CTFT ) = (1− δ)
¡
4 + 4δ +

P∞
i=2 1δ

i
¢
= 4

¡
1− δ2

¢
+ δ2 = 37

16

Π (STFT,CTFT ) = (1− δ)
¡
4 +

P∞
i=1 3δ

i
¢
= 4 (1− δ) + 3δ = 13

4

Π (CTFT,D) = (1− δ)
¡
0 + 0δ +

P∞
i=2 1δ

i
¢
= δ2 = 9

16

Π (CTFT, STFT ) = (1− δ)
¡
0 +

P∞
i=1 3δ

i
¢
= 3δ = 9

4

Π (CTFT,CTFT ) = Π (C,C) = 3

Π (D,αD + (1− α)CTFT ) = Π (CTFT, αD + (1− α)CTFT )

α+ (1− α)
¡
4− 3δ2

¢
= αδ2 + 3 (1− α)⇔ α = 1

2δ2

¡
3δ2 − 1

¢
= 11

18

Π (D,αD + (1− α)STFT ) = Π (CTFT, αD + (1− α)STFT )

α+ (1− α) = αδ2 + 3 (1− α) δ ⇔ α = 3δ−1
3δ−δ2 =

20
27

Π (STFT, αSTFT + (1− α)CTFT ) = Π (CTFT, αSTFT + (1− α)CTFT )

α+ (1− α) (4− δ) = 3δα+ 3 (1− α)⇔ α = 1−δ
2δ = 1

6
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D Phase plots for examples Section 5

S

T U

Example 1

S

T U

Example 2
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