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On the optimal policy for deterministic and exponential polling

systems∗

Bruno Gaujal † Arie Hordijk ‡ Dinard van der Laan §

April 26, 2005

Abstract

In this paper, we consider deterministic (both fluid and discrete) polling systems with N queues
with infinite buffers and we show how to compute the best polling sequence (minimizing the average
total workload). With two queues, the best polling sequence is always periodic when the system
is stable and forms a regular sequence. The fraction of time spent by the server in the first queue
is highly non continuous in the parameters of the system (arrival rate and service rate) and shows
a fractal behavior. Convexity properties are shown in Appendix as well as a generalization of the
computations to the stochastic exponential case.
Keywords Polling systems, regular sequences, multimodularity, optimal control.

1 Introduction

In this paper we consider a polling system with N queues with infinite buffers. Time is slotted and
the time-slot sizes are either deterministic with unit size or exponential distributed with mean one. In
each queue one customer arrives in each time-slot, we assume that its required service time is queue
dependent, it is a fixed amount in the deterministic polling model and it is exponentially distributed
in the exponential model. For the deterministic model we also consider the model with fluid input.
There is one server, and at the beginning of each time-slot the decision has to be made which queue is
being served during the next time-slot, we assume zero switching times as is usual in the performance
analysis of communication networks. The service-discipline is first-in-first-out for each queue and it is
work-conservative. The control of the server is an open-loop control, which means that the decision,
which queue to be served in the next time-slot is independent of the actual workloads in the nodes.
The open-loop polling sequence is an infinite sequence where its n − th element gives the queue which
is served during the n − th time-slot. We derive an efficient algorithm for computing the optimal
open-loop polling sequence with objective the sum of the average workloads in the queues, for the
deterministic and for the exponential polling model with N = 2 queues. We exploit the theory on
multimodularity of the average workload and the optimality of regular sequences as it has been derived
in recent papers (see [1] and [2]). It follows from this theory that for N = 2 queues the optimal polling
policy assigns time-slots to the first queue (service sequence of the first queue as we will call it) as a
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regular sequence, say with density d̂1 ( and also the service sequence for the second queue is also regular
with density d̂2 = 1− d̂1). As we show in Appendix A, the sum (in general of any linear combination)
of the average workloads in both queues say B(d1, d2) is a convex function of the densities (d1, d2) if
the service sequences are regular for both queues. Our algorithms compute this convex function for the
deterministic and for the exponential model, and it finds the optimal densities (d̂1, d̂2) for both models.

In the sections 2 to 4 we analyze the two deterministic models with discrete and fluid input. For
fixed densities (d1, d2) the average workloads in both queues become independent of each other and
the average workloads can be studied separately. In Section 3 the average workload for one queue
with regular service sequence as function of its density is analyzed, it is shown that it is a convex
piecewise-linear function. Using results from number theory we derive explicit formulae for the average
workload in case the service density is a best approximation point of the input rate. With the use of the
continued fraction expansion of the input rate we then derive an efficient algorithm for calculating the
average workload for any density. Doing these calculations for both queues gives an efficient algorithm
for calculating mind1+d2=1 B(d1, d2), which provides the exact optimal polling policy. In section 4 we
illustrate the algorithm with numerical experiments. Also in section 4 we derive results on the structure
of the optimal policy. We prove that for deterministic polling systems with N ≥ 2 queues and rational
input rates there is always an periodic optimal policy.

In Appendix B, the algorithm for calculating the optimal polling sequence for the exponential system
is derived. The sum of the workloads in both queues is again a convex function in the densities (d1, d2).
Using the Kernel method the exact optimal policy is computed in an efficient way.

There is an extensive literature on the many variants of polling systems (see [6, 21]). In several papers
[4, 17, 5] an algorithm is derived for calculating efficient visit orders to the queues, also called polling
tables.. In [12] the exponential polling model is converted to a Markov decision chain with no state
information and an algorithm to compute a nearly optimal polling policy is given. In [7] a heavy-traffic
averaging principle is derived. To the knowledge of the authors no algorithm for computing the exact
optimal polling sequence is available in the literature. Also it seems that our structural results are
new. Since a polling can be seen as a server routing model there is a duality with the customer routing
model. The authors have studied the latter model recently (for the deterministic model see [2] and
[13], and for the exponential model see [10]).

2 Description of deterministic polling systems

We consider a polling model in which queues are served by one server, which serves at a constant rate of
1. So, if a queue is served by this server (and not considering any new input of workload in the queue)
then the workload in the queue decreases by 1 per time-unit until the queue is empty or the server
stops serving the queue. We assume that the input in the queues is deterministic, but we consider
two slightly different models. In the first model the input in queue i, i = 1, 2, . . . , N , is discrete and
in fact we assume for i = 1, 2, . . . , N that at all the integer times T = 0, 1, 2, . . . a job with constant
workload λi arrives in queue i. In the second model we assume that the workload input in queue i,
i = 1, 2, . . . , N is fluid which flows in with constant rate λi.

In both models we assume that at all the integer times T = 0, 1, 2, . . . a queue is chosen to be served
by the server for the next time-unit. So, in case of N queues numbered 1, 2, . . . , N the polling policy
can be described by the infinite sequence U = (U1, U2, . . .) where Un is the queue to be served by the
server during the time interval [n − 1, n]. For both models we describe the system with N queues by
the N -dimensional vector λ := (λ1, λ2, . . . , λN ). An infinite sequence U corresponding to an polling
policy for such a system is a so-called word on the alphabet {1, 2, . . . , N} (see [13] and [18]). The set
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of all words on the alphabet {1, 2, . . . , N} (corresponding to all the possible polling policies for some λ
system) is denoted by A(N).

For i = 1, 2, . . . , N and t ∈ R≥0 let Vi(t) be the (remaining) workload in queue i at time t. Then the
long-run average workload in queue i is given by the Cesaro integral

Bi := lim sup
T→∞

1

T

∫ T

t=0
Vi(t)dt.

We define for U ∈ A(N) for i = 1, 2, . . . , N an infinite sequence ui = (ui
1, u

i
2, . . .) of zeros and ones by

ui
n = 1 if Un = i and un

i = 0 if Un 6= i. We call such a sequence of zeros and ones corresponding to the
server-assignment for one queue for short service sequence. This in contrast to Chapter 9 of [2] and
[1], where such a sequence is called a vacation sequence. Note that given the fact that we consider a
model with fluid or discrete input the value of Bi for a given queue i depends only on the arrival rate
λi in the queue and the service sequence ui for this queue.

For both the discrete model and the fluid model the objective of the polling is to minimize the total
long-run average workload which is given by

B = B(U) :=

N∑

i=1

Bi,

where U is the polling policy. So, a polling policy U ′ is called optimal for a given λ system (either
for the discrete or the fluid model) if B(U ′) = minU∈A(N) B(U). The minimal total long-run average

workload for some λ system is given by

B̃ = B̃(λ) := inf
U∈A(N)

B(U).

3 On the average workload in a single queue

In this section we consider a single queue of the polling system with given input rate λ > 0. In the
sequel the input can be both discrete and fluid unless it is specified which model we consider. Since we
consider in this section a single queue of the system we omit in notation all the sub-indices i referring to
the queue. Let u = (u1, u2, . . .) be the infinite service sequence of zeros and ones for this queue. Then
for n = 0, 1, 2, . . . we denote by κu(n) :=

∑n
i=1 ui the partial sum of the first n terms of u. So, κu(n) is

the number from the first n time intervals of unit length that the server is serving this particular queue.

We always assume that the queue is empty at time t = 0 which means that V (0) = 0. Moreover,
for the model with discrete arrivals of workload λ > 0 at t = 0, 1, 2, . . . we make the convention that
V (t) = limt′↑t V (t′) for t > 0. Hence for t = 0, 1, 2, . . . we have limt′↓t V (t′) = V (t) + λ in this model.
For the model with fluid input it is easily seen that the function V (t) is continuous for t ≥ 0. For both
models let G(t) = {t′ ∈ [0, t] : V (t) = 0} and let m(t) be the Lebesgue measure of G(t). Then for a
given vacancy sequence u = (u1, u2, . . .) we have the following formulas for V (t) for every t ≥ 0.

Lemma 3.1 For the model with discrete input we have

V (t) = λ⌈t⌉ − κu(⌊t⌋) − u⌊t⌋+1 · (t − ⌊t⌋) + m(t) for every t ≥ 0 (1)

and for the model with fluid input we have

V (t) = λt − κu(⌊t⌋) − u⌊t⌋+1 · (t − ⌊t⌋) + m(t) · (1 − λ) for every t ≥ 0. (2)

3



We denote by d := lim supt→∞
κu(t)

t
the upper density of u and by d := lim inft→∞

κu(t)
t

the lower

density of u. If d = d then we say that u has a density d = limt→∞
κu(t)

t
.

An infinite sequence of zeros and ones u = (u1, u2, . . .) is called regular with density d ∈ [0, 1] (see
for example [2](where it is called balanced), [3], [23] and [22]) if for every n ∈ N we have for every
subsequence v = (uk, uk+1, . . . , uk+n−1) of u of length n that the number of ones in v is equal to ⌊nd⌋
or ⌈nd⌉. For d ∈ [0, 1] let S(d) be the set of all infinite regular sequences of zeros and ones with density
d. Moreover, let ω(d) = (ω1, ω2, . . .) be the sequence defined by κω(n) = ⌈nd⌉ for all n ∈ N and let
π(d) = (π1, π2, . . .) be the sequence defined by κπ(d)(n) = ⌊nd⌋ for all n ∈ N. It is easily seen that the
following lemma holds which gives a characterization of ω(d) and π(d) in the set of regular sequences
of density d.

Lemma 3.2 For every d ∈ [0, 1] we have that ω(d) ∈ S(d) and π(d) ∈ S(d). Moreover, for every
u ∈ S(d) we have that

κπ(d)(n) ≤ κu(n) ≤ κω(n) for n = 0, 1, 2, . . . .

Therefore ω(d) is called the upper bracket sequence sequence of density d and π(d) is called the lower
bracket sequence of density d.

By results in [2] (see Appendix A) it follows that assigning the server to the queue according to a
regular service sequence of density d is optimal (thus minimizes the long-run average workload in the
queue) among all polling sequences of upper density at most d. Note that if u, v ∈ S(d) are two regular
sequences of the same density d that then u and v have the same performance. So, if we denote with
slight abuse of notation the long-run average workload in the queue for any service sequence u with
B(u) = Bλ(u) and we define for d ∈ [0, 1] the long-run average workload in the queue for regular service
sequences with density d as B(d) := B(π(d)) then we can summarize this with the following lemma.

Lemma 3.3 For every input rate λ and any service sequence u of upper density at most d we have
that B(u) ≥ B(d) = B(π(d)).

In the remaining of this section we obtain properties of B(d) as function of d and we give an algorithm
for calculating the value of B(d) for any given input rate λ and density d.

An infinite sequence u = (u1, u2, . . .) is periodic with period T if un = un+T for n = 1, 2, . . . and T is
the minimal positive integer with this property. If u is periodic with period T then the finite sequence
(u1, u2, . . . , uT ) is called the period word of u. It is easily seen that if u = (u1, u2, . . .) is a regular
sequence of zeros and ones with a rational density d = p

q
with p, q ∈ N, gcd(p, q) = 1 that then u is

periodic with periodic q. For such rational density d = p
q

the period word (ω1, ω2, . . . , ωq) of the upper
bracket sequence is denoted by w(d) and the period word (π1, π2, . . . , πq) of the lower bracket sequence
is denoted by p(d).

Consider a service sequence for k consecutively time-intervals of unit length corresponding to a finite
sequence u of length k. Suppose that the first of these k intervals starts at time t0 ∈ Z≥0 and thus
the last at time t0 + k − 1. Then we say that u lasts from t0 to t0 + k and we say that u is workload
non-increasing if for every initial workload V (t0) it holds that V (t0 + k) ≤ V (t0). The following lemma
will be useful for proving properties of B(d).

Lemma 3.4 Let d ∈ Q, 0 ≤ d ≤ 1. Then p(d), the period word of the lower bracket sequence of density
d, is workload non-increasing if and only if d ≥ λ.
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Proof. We consider the model with discrete input and let d = p
q

with gcd(p, q) = 1. Suppose that p(d)
lasts from t0 ∈ Z to t0 + q ∈ Z. By (1) we have that

V (t0 + q)−V (t0) = λ(t0 + q)+m(t0 + q)− (λ · t0 +m(t0))−κq(p(d)) = λ ·q−p+(m(t0+ q)−m(t0)).

It is obvious that m(t0 + q)−m(t0) ≥ 0. So, if d < λ then V (t0 + q)− V (t0) ≥ λ · q − p > d · q − p = 0
and thus p(d) is not workload non-increasing.

It is obvious that the value of m(t0 + k) − m(t0) is monotonically decreasing with the value of V (t0).
Hence, by Lemma 3.1 it follows that some finite factor u = (u1, u2, . . . , uk) is workload non-increasing
if for this factor V (t0) = 0 implies that V (t0 + k) = 0. So, suppose that d ≥ λ and V (t0) = 0.
Put t′ = maxt∈[t0,t0+q]:V (t)=0 and t∗ = t′ − t0. Since the workload only increases at integer times it
follows that t′ is an integer number and by definition we have that m(t′) = m(t0 + q). Moreover,
t∗ := t′ − t0 ∈ [0, 1, . . . , q]. Hence by (1) we have that ,

V (t0 + q) = V (t0 + q) − V (t′) = λ · (q − t∗) − (κq(p(d)) − κt∗(p(d)) =

λ · (q − t∗) − (p − ⌊t∗ · d⌋) ≤ d · (q − t∗) − p + t∗ · d = 0.

So, V (t0 + q) = 0 and thus p(d) is workload non-increasing if d ≥ λ. For the model with fluid this can
be proved analogously. 2

Suppose that d ∈ Q, d ≥ λ and that the server is serving the queue according to the periodic lower
bracket sequence π(d) = p(d)∞. Then it follows from Lemma 3.4 that if the workload is 0 at the
beginning of an p(d) factor then it is also 0 at the end of the factor and thus at the beginning of the
next factor. So, since the workload is 0 at t = 0, the beginning of the first p(d) factor, it follows that
the workload is 0 at the end of every p(d) factor. Thus the workload process is renewed after every
p(d) factor. Hence we have the following corollary of Lemma 3.4.

Corollary 3.5 If d ∈ Q, d ≥ λ then B(d) is equal to the average workload in the queue during any
period p(d).

On the other hand if d < λ then it is easily seen that the workload goes to infinity if the queue is served
according to the lower bracket sequence π(d) and thus B(d) = ∞ in that case. We will call [λ, 1] the
interval of stability since the workload remains bounded and thus B(d) is finite if d ∈ [λ, 1]. We will
examine some properties of the function B(d) on the interval of stability. By Lemma 3.4 and Corollary
3.5 the following property follows analogously to Theorem 5.8 in [13] (see also [14]).

Theorem 3.6 For given input rate 0 ≤ λ ≤ 1 we have that the function B(d) is convex on the interval
of stability [λ, 1].

3.1 Farey intervals

We use in this subsection several notions defined in [13] and we summarize results which can be obtained
analogously to results in [13]. We also recall that if d1, d2 are rational numbers with 0 ≤ d1 ≤ d2 ≤ 1,
di = pi

qi
and gcd(pi, qi) = 1 for i = 1, 2, that then I = [d1, d2] is called a Farey interval if and only if

q1 · p2 − p1 · q2 = 1. Put d0 = p1+p2

q1+q2
. If I = [d1, d2] is a Farey interval then I ′ = [d1, d0] and I ′′ = [d0, d2]

are also Farey intervals and all rational numbers in (d1, d2) have denominator greater than or equal to
q1 + q2.

The following result for the factorization of period words of lower bracket sequences follows analogously
to lemma 4.3 in [13].
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Lemma 3.7 Let I = [d1, d2] be a Farey interval and d0 = p1+p2

q1+q2
as above. Then p(d0) = p(d1)p(d2).

By Lemma 3.7 we have analogously to theorem 4.4 in [13] the following theorem.

Theorem 3.8 Let I = [d1, d2] be a Farey interval and put X := {p(d1), p(d2)}. Then for every
d ∈ (d1, d2) there exists a unique X-factorization of the lower bracket sequence π(d) of density d.
Moreover, if d is rational then there exists a unique finite X-factorization of the period word p(d) of
w(d).

According to the following theorem the function B(d) is besides being convex also piecewise linear.
More precisely, the theorem says that the function B(d) is linear on Farey intervals contained in the
stability interval [λ, 1]. This property will be very useful for computing the value of B(d) for any d and
input rate λ.

Theorem 3.9 Let d1, d2 ∈ [0, 1] be rational numbers such that I = [d1, d2] is a Farey interval and
λ ≤ d1 < d2, where λ is the input rate. Let d ∈ I, d = µ · d1 + (1 − µ) · d2, where µ ∈ [0, 1]. Then
B(d) = µ · B(d1) + (1 − µ) · B(d2).

Theorem 3.9 can be proved analogously to theorem 5.9 in [13] by combining Lemma 3.4, Corollary 3.5
and Theorem 3.8. Essential in the proof is that if the (unique) factorization of π(d) in p(d1) and p(d2)
factors is considered, then µ is the fraction (of time) taken by p(d1) factors and 1−µ the fraction taken
by p(d2) factors. Moreover, the workload is zero after every such a factor.

3.2 Best upper approximations

Definition 3.10 Let 0 < x ≤ 1 be a given real number and let s = p
q

with p ∈ N, q ∈ N with
gcd(p, q) = 1 be a rational number such that s ≥ x. Then s is called a best upper approximation of x
if there does not exist a rational number in the interval [x, s) with denominator smaller than or equal
to q.

Note that x is a best lower approximation of x itself if and only if x is a rational number.

Lemma 3.11 Let 0 < λ < 1 be the input rate and d = p
q

be a best upper approximation of λ, where
p, q ∈ N with gcd(p, q) = 1 . Suppose that the server is serving according to the lower bracket sequence
π(d) with period | p(d) |= q. Let J(d) := max{t ∈ [0, q] : m(t) = 0}. For discrete input we have that

V (q − 1) = λ(q − 1) − (p − 1) and J(d) − (q − 1) = λq − (p − 1) > 0.

For fluid input we have that

V (q − 1) = λ(q − 1) − (p − 1) and J(d) − (q − 1) =
λ(q − 1) − (p − 1)

1 − λ
≥ 0.

Proof. By Lemma 3.1 we have for t = 0, 1, 2, . . . that V (t) ≥ λt − κp(d)(t) = λt − ⌊dt⌋. Suppose

V (t) = 0 for some t ∈ [1, 2, . . . , q − 1]. Then λt − ⌊dt⌋ ≥ 0 and thus λ ≤ ⌊dt⌋
t

≤ d. Since the rational

number ⌊dt⌋
t

has denominator t < q, this contradicts the fact that d = p
q

is a best upper approximation
of λ. Hence V (t) > 0 for t = 1, 2, . . . , q − 1 and from this it is easily seen that V (t) > 0 for every
t ∈ (0, q − 1]. Hence m(q − 1) = 0 and thus we have by Lemma 3.1 that

V (q − 1) = λ(q − 1) − κp(d)(q − 1) = λ(q − 1) − ⌊p

q
(q − 1)⌋ = λ(q − 1) − (p − 1).

So, for the model with discrete input we have that J(d) − (q − 1) = V (q − 1) + λ = λq − (p − 1) > 0

and for the model with fluid input we have that J(d) − (q − 1) = V (q−1)
1−λ

= λ(q−1)−(p−1)
1−λ

≥ 0. 2
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Theorem 3.12 Let 0 < λ < 1 be the input rate and d = p
q

be a best upper approximation of λ, where
p, q ∈ N with gcd(p, q) = 1 Then for discrete input we have

Bλ(d) =
λq2 + λq − pq + q − 1 + λ2q2 − 2λpq + p2

2q

and for fluid input we have

Bλ(d) =
λq2 − λq + λ − pq − λpq + q + p2 − 1

2q(1 − λ)
.

Proof. According to Corollary 3.5 we have that Bλ(d) = 1
q

∫ q

t=0 V (t)dt. For the model with discrete
input we have by (1) and Lemma 3.11 that

V (t) = λ⌈t⌉ − ⌊⌊t⌋d⌋ − p(d)⌊t⌋+1 · (t − ⌊t⌋)

for every t ∈ [0, J(d)] and in particular for every t ∈ [0, q − 1]. Moreover, it is easily seen that
V (t) = V (q − 1) + λ − (t − (q − 1)) = λ · q + q − p − t for t ∈ (q − 1, J(d)] and V (t) = 0 for every
t ∈ [J(d), q]. Hence, by putting A :=

∫ q−1
t=0 (λ⌈t⌉)dt, B :=

∫ q−1
t=0 (⌊⌊t⌋d⌋)dt, C :=

∫ q−1
t=0 (p(d)⌊t⌋+1(t−⌊t⌋))dt

and D :=
∫ J(d)
t=q−1(λ · q + q − p − t)dt we have

Bλ(d) =
1

q
(A − B − C + D).

We have A =
∑q−1

n=1

∫ n

t=n−1(λ⌈t⌉)dt = λ · ∑q−1
n=1 n = λ

2 (q − 1)q and by theorem 100 in [11]

B =

q−2∑

n=0

∫ n+1

t=n

(⌊⌊t⌋d⌋)dt =

q−2∑

n=0

⌊nd⌋ =

q−1∑

n=0

⌊np

q
⌋−⌊(q−1)

p

q
⌋ =

1

2
(p−1)(q−1)−(p−1) =

1

2
(p−1)(q−3).

Moreover, since p(d) has an 1 as last component,

C =

q−1∑

n=1

∫ n

t=n−1
p(d)⌊t⌋+1(t − ⌊t⌋))dt = κp(d)(q − 1)

∫ 1

t=0
tdt =

1

2
(p − 1)

and

D =

∫ q−1+λq−(p−1)

t=q−1
(λ · q + q − p − t)dt =

∫ λq−(p−1)

t=0
(λ · q − (p − 1) − t)dt =

1

2
(λq − (p − 1))2.

Hence,

Bλ(d) =
1

q
(A − B − C + D) =

λq2 + λq − pq + q − 1 + λ2q2 − 2λpq + p2

2q
.

Analogously we have for the model with fluid input that

Bλ(d) =
1

q
(A∗ − B − C + D∗),

where A∗ =
∫ q−1
t=0 λtdt = 1

2λ(q − 1)2 and

D∗ =

∫ J(d)

t=q−1
(λ · (q − 1) + q − p− (1− λ)t)dt =

∫ q−1+ λ(q−1)−(p−1)
1−λ

t=q−1
(λ · (q − 1) + q − p− (1− λ)t)dt =

7



∫ λ(q−1)−(p−1)
1−λ

t=0
(λ(q − 1) − (p − 1) − (1 − λ)t)dt =

(λ(q − 1) − (p − 1))2

2(1 − λ)
.

Hence,

Bλ(d) =
1

q
(A∗ − B − C + D∗) =

λq2 − λq + λ − pq − λpq + q + p2 − 1

2(1 − λ)
.

2

Besides this closed formula of the value of B(d) for all the best upper approximations we give a separate
formula for d = λ, the initial point of the interval of stability

Lemma 3.13 Let 0 < λ ≤ 1 be the input rate. For the model with discrete input we have that
Bλ(λ) = λ+1

2 if λ is irrational, and Bλ(λ) = p+q−1
2q

if λ = p
q

with p, q ∈ N, gcd(p, q) = 1. For the model

with fluid input we have that Bλ(λ) = 1
2 in case λ is irrational, and Bλ(λ) = 1

2 − 1
2q

if λ = p
q

with
p, q ∈ N, gcd(p, q) = 1.

Proof. If λ is rational then λ = p
q

with p, q ∈ N, gcd(p, q) = 1 is a best upper approximation of λ.

Therefore the formulae for Bλ(λ) follow directly from Theorem 3.12 by substituting p
q

for λ.

In the sequel of this proof we suppose that λ is irrational and we first consider the model with discrete
input. For t = 1, 2, . . . we have that

λ⌈t⌉ − κπ(λ)(⌊t⌋) − π(λ)⌊t⌋+1(t − ⌊t⌋) = λt − ⌊λt⌋ > 0,

since λ is irrational and thus λt is not an integer for t = 1, 2, . . .. Hence for every t > 0 we have that
m(t) = 0 and V (t) = λ⌈t⌉ − ⌊λ⌊t⌋⌋ − π(λ)⌊t⌋+1(t − ⌊t⌋) > 0. So,

Bλ(λ) = lim sup
T→∞

1

T

∫ T

t=0
V (t)dt = A1 − A2,

where A1 = lim supT→∞
1
T

∫ T

t=0(λ⌈t⌉ − ⌊λ⌊t⌋⌋)dt and A2 = limT→∞ 1
T

∫ T

t=0(π(λ)⌊t⌋+1(t − ⌊t⌋))dt. By
the ergodic theorem of Weyl and von Neumann we have

A1 = lim sup
T→∞

1

T

T−1∑

t=0

(λ(t + 1) − ⌊λt⌋) = λ + lim
T→∞

1

T

T−1∑

t=0

(λt − ⌊λt⌋) = λ +

∫ 1

x=0
1dx = λ +

1

2
.

Moreover,

A2 = lim
T→∞

κπ(λ)(T )

T
·
∫ 1

t=0
(t − ⌊t⌋))dt = λ

∫ 1

t=0
tdt =

λ

2
.

Hence Bλ(λ) = λ + 1
2 − λ

2 = λ+1
2 if λ is irrational. For the model with fluid input and irrational λ we

have analogously to the model with discrete input that V (t) = λt− ⌊λ⌊t⌋⌋ − π(λ)⌊t⌋+1(t − ⌊t⌋) > 0 for

every t > 0 and thus Bλ(λ) = A3 − A2 = A3 − λ
2 where

A3 = lim sup
T→∞

1

T

∫ T

t=0
(λt − ⌊λ⌊t⌋⌋)dt.

We have

A3 = A1 − lim
T→∞

1

T

∫ T

t=0
(λ⌈t⌉ − λt)dt = (λ +

1

2
) − λ

∫ 1

t=0
(1 − t)dt =

λ + 1

2
,
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whence Bλ(λ) = 1
2 . 2

For given input rate 0 < λ ≤ 1 we have that s1 = 1 is the first best upper approximation of λ.
Consider the following iterative construction of best upper approximations of λ. Put i := 1 and do the
following iteratively. If si = λ then stop. Else let si+1 be the rational number of lowest denominator
in the interval [λ, si) and let i := i + 1. Since every subinterval of positive Lebesgue measure of the
open interval (0, 1) contains a unique rational number of lowest denominator the si are well defined.
Moreover, analogously to the properties for best lower approximations in [13] we have the following
properties for the best upper approximations.

Lemma 3.14 Some number d is a best upper approximation of 0 < λ ≤ 1 if and only if d = si for
some i ∈ N. Moreover, if λ is rational then there exists some k ∈ N such that

1 = s1 > s2 > . . . > sk = λ.

If λ is irrational then

1 = s1 > s2 > . . . and lim
i→∞

si = λ.

If si, si+1 are consecutive best upper approximations of λ then [si+1, si] is a Farey interval.

Note that by Theorem 3.9 and Lemma 3.14 it follows that the function B(d) = Bλ(d) is linear on any
interval [si+1, si] where si, si+1 are consecutive best upper approximations of λ. In fact it turns out
that the slope of the function Bλ(d) changes precisely at all the best upper approximations of λ. This
implies that the exact value of B(d) = Bλ(d) is easily computed if we can find the consecutive best
upper approximations si, si+1 of λ such that d ∈ [si+1, si]. We give an example to illustrate this.

Example. We calculate Bλ(d) for λ = 12
17 and d =

√
2

2 . It is easily seen that the best upper approxima-
tions of λ = 12

17 are consecutively s1 = 1
1 , s2 = 3

4 , s3 = 5
7 , s4 = 12

17 and we have that d ∈ [s4, s3] = [1217 , 5
7 ],

which is a Farey interval. We consider the model with discrete input (the computation for the model
with fluid input is similar). Then Lemma 3.13 gives B(12

17) = 12+17−1
2·17 = 14

17 and by Theorem 3.12 we

have that B(5
7) =

12
17

72+ 12
17

7−5·7+7−1+ 12
17

2
72−2 12

17
5·7+52

2·7 = 1522
2023 . Putting µ =

5
7
−d

5
7
− 12

17

= 85 − 119
2

√
2 we have

µ ∈ [0, 1] and d = µ12
17 + (1 − µ)5

7 . Hence by Theorem 3.9 we have

B 12
17

(

√
2

2
) = µB(

12

17
) + (1 − µ)B(

5

7
) = (85 − 119

2

√
2)

14

17
+ (

119

2

√
2 − 84)

1522

2023
=

1966

289
− 72

17

√
2.

3.3 An efficient algorithm for calculating Bλ(d)

The only remaining problem for the efficiency of the algorithm to calculate Bλ(d) for any given 0 <
λ < 1 and d ∈ [λ, 1] is to find in general (the) two consecutive best upper approximations si and si+1 of
λ such that d ∈ [si+1, si] in an efficient way. Following the arguments in [13] (where the same problem
appears with the only difference that best lower approximations have to found in stead of best upper
approximations), it can be shown that this problem can be efficiently solved by using the continued
fraction expansion of λ.

The following facts about the continued fraction expansion and the convergents of some real number
α > 0 are well known (see for example [11] and [20]).

The partial quotients a0, a1, . . . of the (simple) continued fraction expansion of α > 0 are recursively
defined by:

{
a0 = ⌊α⌋; α1 = 1

α−a0

an = ⌊αn⌋; αn+1 = 1
αn−an

for n = 1, 2, . . .

}
.
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Then

α = a0 +
1

a1 + 1
a2+... 1

an+...

:= [a0, a1, . . . , an, . . .].

Note that applying the continued fraction algorithm for some input rate 0 < λ < 1 we have that a0 = 0.
Moreover, note that a1, a2, . . . are positive integers. If α is rational then αm − am = 0 for some m ∈ N

and the process of computing the partial quotients stops for n = m, α = [0, a1, a2, . . . , am]. If α is
irrational then the continued fraction expansion of α is infinite.
We define pn, qn recursively by

p0 = a0, p1 = a0a0 + 1, pn = anpn−1 + pn−2(n ≥ 2),
q0 = 1, q1 = a1, qn = anqn−1 + qn−2(n ≥ 2)

.

Then xn := pn

qn
= [a0, a1, . . . , an] is called the nth convergent of α = [a0, a1, . . .]. If n is odd then xn ≥ α

is called an odd convergent and if n is even then xn ≤ α is called an even convergent.

Now that we have defined the convergents of α we also define the so-called intermediate convergents.

Definition 3.15 Let α = [a0, a1, . . .] if α is irrational or α = [a0, a1, . . . , am] for some m ∈ N if α is
rational. Then a rational number p

q
is an intermediate convergent of α if and only if p = pn−2 + c ·pn−1

and q = qn−2 + c · qn−1 for some positive integer n (with n less than or equal to m if α is rational) and
c ∈ {1, 2, . . . , an − 1}. Moreover, p

q
is called an odd (even) intermediate convergent if n is odd (even).

In [13] it is stated that all the best lower approximations of some positive real number α are either even
convergents of α, even intermediate convergents of α or α itself in case α is an odd convergent of itself.
Analogously we have that all the best upper approximations of some positive real number α are either
odd convergents of α, odd intermediate convergents of α or α itself in case α is an even convergent of
itself. So, we can use exactly the same algorithm as is used in [13] except that everything which was
‘even‘ becomes ‘odd‘ and vice versa.

We summarize below all the steps of the algorithm to calculate Bλ(d) for any given 0 < λ < 1 and
d ∈ [λ, 1], which is obtained by combining the foregoing results of this section.

Algorithm 3.16 Let 0 < λ < 1 and d ∈ [λ, 1] be given.

step 1. Apply the continued fraction algorithm to find consecutively the partial quotients a1, a2, . . .
and the corresponding convergents p1

q1
, p2

q2
, . . . of λ until we have found an odd convergent p2n+1

q2n+1

(n ≥ 0), that is smaller or equal than d or we have that λ = pN

qN
≤ d <

pN−1

qN−1
for some even

positive integer N . If we have the latter case then we put si =
pN−1

qN−1
and si+1 = pN

qN
= λ. Then

d ∈ [si+1, si) and we go to step 2 of the algorithm. So, suppose the former case. If n = 0 it follows
that d = s1 = p1

q1
= 1 and we go to step 2. If n > 0 then we have that p2n+1

q2n+1
≤ d < p2n−1

q2n−1
and

there exists some unique integer k, 0 ≤ k < a2n+1 such that (k+1)·p2n+p2n−1

(k+1)·q2n+q2n−1
≤ d < k·p2n+p2n−1

k·q2n+q2n−1
.

It is easily seen that this holds for k = ⌈p2n−1−dq2n−1

dq2n−p2n
⌉ − 1. By putting si = k·p2n+p2n−1

k·q2n+q2n−1
and

si+1 = (k+1)·p2n+p2n−1

(k+1)·q2n+q2n−1
we have that d ∈ [si+1, si) and we go to step 2.

step 2. If d = s1 = 1 then we have by Theorem 3.12 that Bλ(d) = λ2

2 in case of discrete input and
Bλ(d) = 0 in case of fluid input. Thus we are finished in that case. If d < 1 then we have found in
step 1 consecutive best upper approximations si, si+1 of λ such that d ∈ [si+1, si]. Next compute
by the formulae given in Theorem 3.12 (or eventually Lemma 3.13 if applicable) the values of
Bλ(si) and Bλ(si+1). If d = si or d = si+1 then we have calculated the value of Bλ(d) and we
are finished. Else we go to step 3.
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step 3. We have that d ∈ (si+1, si). Put µ = si−d
si−si+1

. Then we have d = µsi+1 + (1 − µ)si with

µ ∈ (0, 1). Thus by Theorem 3.9 we compute Bλ(d) = µB(si+1) + (1 − µ)B(si) and we are
finished.

Example. We consider the model with fluid input and suppose that the input rate λ = 1
π
. We

apply Algorithm 3.16 to compute Bλ(d) for d = 0.31831. In step 1 of the algorithm we start applying
the continued fraction algorithm to λ and we consecutively find a0 = 0 , p0

q0
= 0

1 , a1 = 3, p1

q1
= 1

3 ,

a2 = 7, p2

q2
= 7

22 , a3 = 15, p3

q3
= 106

333 , a4 = 1, p4

q4
= 113

355 , a5 = 292 and p5

q5
= 33102

103993 . We now have

that λ < p5

q5
≤ d and we stop applying the continued fraction algorithm. Next we compute that

k = ⌈p3−d·q3

d·q4−p4
⌉ − 1 = 55. So, it follows that si := k·p4+p3

k·q4+q3
= 6321

19858 and si+1 := (k+1)·p4+p3

(k+1)·q4+q3
= 6434

20213 are

consecutive best upper approximations of λ such that d ∈ [si+1, si]. We go to step 2 of the algorithm. By
the formula for fluid input in Theorem 3.12 we find that Bλ(si+1) = B 1

π
( 6434
20213 ) = 278494715−88633874π

40426(π−1)

and Bλ(si) = B 1
π
( 6321
19858 ) = 268797889−85547520π

39716(π−1) . We have that d ∈ (si+1, si) and go to step 3 of the

algorithm. Putting µ = si−d
si−si+1

= 20213
50000 we obtain

Bλ(d) = B 1
π
(0.31831) = µBλ(si+1)+(1−µ)Bλ(si) =

1363383097 − 433910308π

200000(π − 1)
∼ 0.4988368585346.

Remark. Analogously to the algorithm used in [13] it follows that the number of operations needed for
applying Algorithm 3.16 is of order log(q), where q is the denominator of the best upper approximation
si+1 of λ, which is obtained in step 1 of the algorithm. This follows from the fact that the algorithm
is based on the continued fraction expansion of λ.

4 Optimal polling with multiple queues

In this section we obtain results on the minimal long-run average workload for polling systems with N
parallel queues. For the moment it is not specified whether the queues are deterministic or exponential.
We denote for both the deterministic model as the exponential model with Bλi

(di) the (long-run)
average workload for regular polling with density di for queue i, where λi is the (expected) workload
arriving in queue i per time-unit. We recall that for the deterministic polling systems the parameter
λi was both for the fluid model and the discrete model defined in the beginning of Section 2. For the
exponential model (see Appendix B) the parameter λi is not defined explicitly. However, we recall that
the expected number of jobs arriving per time-unit according to a Poisson process was scaled to be 1,
while each job arriving in queue i brings a workload which is exponentially distributed with parameter
µi. Hence, for the exponential model we have that λi = 1

µi
for i = 1, 2, . . . , N .

For a given λ := (λ1, λ2, . . . , λN ) system and vector of polling densities d = (d1, d2, . . . , dN ) ∈ [0, 1]N

we put

Bλ(d) :=
N∑

i=1

Bλi
(di).

Thus Bλ(d) is the average workload in an λ system (the total over all queues) if the service sequence
for queue i would be regular with density di for i = 1, 2, . . . , N . However, note that in general the
composition of regular sequences is not a feasible polling sequence. But as we show next it provides a
lower bound. Indeed, let U be a polling policy applied in an λ polling system such that service sequence
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ui has density di for i = 1, 2, . . . , N . Then it is easily seen that
∑N

i=1 di = 1. So, the possible vector of
polling densities d is restricted to the compact and convex set

HN := {(x1, x2, . . . , xN ) ∈ RN : xi ≥ 0, i = 1, 2, . . . , N and

N∑

i=1

xi = 1}.

Moreover, by Lemma 3.3 we have for i = 1, 2, . . . , N that Bi(u
i), the average workload in queue i, is

greater or equal than Bλi
(di). Thus

B(U) =

N∑

i=1

Bi(u
i) ≥

N∑

i=1

Bλi
(di) = Bλ(d), (3)

which implies that Bλ(d) is a lower bound on the average workload for any policy U with polling
densities d.

By Appendix A, we have that this lower bound Bλ(d) is convex in the vector of polling densities
d = (d1, d2, . . . , dN ). So, Bλ(d) has a minimum over the convex and compact set HN and it follows
that this minimum is a lower bound on the average workload for any polling policy U for which each
corresponding service sequence ui has some density. Moreover, analogously to Theorem 25 of [2] it
follows that this minimum is a lower bound on the average workload for any polling policy U . By
putting for an λ system

D∗(λ) := {d ∈ HN : Bλ(d) = min
x∈HN

Bλ(x)} (4)

as the set of possible densities for which the lower bound Bλ(d) is minimal and

B∗(λ) := Bλ(d), where d ∈ D∗(λ)

as the minimal lower bound, we can summarize with the following proposition.

Proposition 4.1 For any λ polling system we have that D∗(λ) is a nonempty compact and convex
subset of HN . Moreover, for any polling policy U we have that

B(U) ≥ B∗(λ).

Suppose that we have an λ system for which
∑N

i=1 λi ≥ 1 in case of exponential queues or
∑N

i=1 λi > 1
in case of deterministic queues. Then for every (x1, x2, . . . , xN ) ∈ HN there exists some i for which
xi ≤ λi (respectively xi < λi) which implies that B∗(λ) = ∞ and thus B(U) = ∞ for every polling
policy U . Thus such system are unstable and optimal policies do not exist. We say that polling systems
for which

∑N
i=1 λi < 1 in case of exponential queues or

∑N
i=1 λi ≤ 1 in case of deterministic queues are

stable. For stable systems it follows directly from the results on polling to one queue that B∗(λ) < ∞.
Moreover, there exist policies U for which B(U) < ∞. In the sequel we consider only stable polling
systems.

Note that the problem of minimizing the lower bound Bλ(d) over the set HN and finding the minimum
value B∗(λ) is a problem of minimizing a convex functions in multiple variables over a convex and
compact set. There are standard techniques for this, but the best way depends on the time it takes
to compute the function value Bλ(d) for particular d. The similar problem is considered for a routing
system with parallel queues in the papers [9], [10] and [13]. For the polling model most results follow
in an analogously way.
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4.1 Optimality results for two queues

We first consider the case N = 2 in particular. Then we have for any d ∈ HN that d = (d, 1 − d) for
some d ∈ [0, 1]. Thus minimizing the function Bλ(d) over the set HN comes down to minimizing the
function Bλ(d, 1 − d), which is convex in the single variable d, over the interval [0, 1]. Putting

opt(λ) := {d ∈ [0, 1] : Bλ(d, 1 − d) is minimal }

we have by Proposition 4.1 that opt(λ) is a nonempty closed subinterval of [0, 1]. Moreover, given
d ∈ opt(λ), an optimal polling policy U for the system is obtained in the following way. Let U be such
that the serving of queue 1 is according to a regular service sequence u1 of density d. Then the service
sequence u2 for queue 2 is regular with density 1 − d and thus

B(U) = Bλ1(d) + Bλ2(1 − d) = Bλ(d) = B∗(λ).

Hence U is optimal according to Proposition 4.1. Thus in case of only two queues the lower bound of
Proposition 4.1 is attained and we have the following proposition.

Proposition 4.2 For every stable (λ1, λ2) polling system there exists a nonempty closed interval I ⊆
[0, 1] such that for every d ∈ I any regular polling policy U , for which the corresponding service sequences
u1 and u2 are regular with densities d and 1 − d respectively, is optimal and B(U) = B∗(λ).

Th structural result of Proposition 4.2 on optimal policies holds for polling systems with general input
and service times. A similar result as Proposition 4.2 holds for parallel routing systems (see [2]). For
these parallel routing systems the problem of computing an optimal (routing) density d (and thus a
corresponding optimal routing policy U) is dealt with in several papers. In [10] this problem is consid-
ered for Poisson arrivals and both servers have exponential service times. In [9] and [13] the problem is
considered for a deterministic system with constant inter-arrival times and constant service times for
both servers. Similar methods as considered in these papers can also be applied for the polling system
with two queues to determine an optimal density and thus an optimal policy.

4.2 Numerical experiments

We have used such methods to calculate the optimal polling density d (and thus also the corresponding
optimal regular polling policy) for deterministic (λ1, λ2) polling systems where we fix the ratio λ1

λ1+λ2

to be equal to 0.37 by putting λ1 = 0.37ρ and λ2 = 0.73ρ, where the load ρ is varied from 0 to 1.
For this family of polling systems we computed for both the discrete and the fluid case the value of
the optimal polling density αopt. For 0 < ρ < 1 we define αopt to be the rational number of lowest
denominator which is contained in the nonempty closed subinterval opt(λ1, λ2) of (0, 1). We note that
in almost all cases for varying (λ1, λ2) the set opt(λ1, λ2) consists of only one (rational)point, which
by the above definition is the point αopt. Moreover, in the few cases that opt(λ1, λ2) consists of more
than one point, it still holds by lemma 4.6.4 in [23] that αopt is unique and thus well defined. In case
ρ = 1 it is easily seen that the interval of stability consists of the single point λ1

λ1+λ2
which is fixed

to be 0.37 for this family of polling systems. Thus it is clear that for ρ = 1 the value of the optimal
polling density αopt has to be 0.37 for both the discrete and the fluid case. For both the discrete and
the fluid case we have computed the value of αopt for varying ρ by implementing Algorithm 3.16 and
the appropriate standard techniques for minimizing a convex function in a Maple program using exact
computations. In Figure 1 the value of αopt is plotted for varying load for the discrete case, while in
Figure 2 this is plotted for the fluid case. In both figures the load varies from 0.75 to 1, since it turned
out that for smaller loads the value of αopt is always equal to 0.5, which corresponds to the round robin
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Figure 1: The optimal polling density for varying load for discrete input

polling policy. So, in the figures we have restricted to an interval with high loads ρ, since this is by far
the most interesting part of the interval.

Remark. We see in Figure 1 and Figure 2 that for this example where λ1
λ1+λ2

= 0.37 the optimal

polling density α takes several rational values varying between 1
3 and 1

2 . We notice that only at the
very end of the interval, where ρ = 1 we have that α = 0.37, which is the fraction from the total arriving
workload that arrives at queue 1. It is also clearly seen that for low traffic intensity ρ the optimal ratio
α is greater than 0.37, which means that the queue with smaller arriving workload is served relatively
often for small load. In fact α = 1

2 , which corresponds to the round robin policy, is optimal for quite
a large part of the interval. Another thing we note is that α does not decrease monotonically from 1

2
for small load ρ to 0.37 for ρ = 1. For example for both the discrete model and the fluid model there
is some part of the interval where α = 1

3 , which is smaller than 0.37. In that case the queue with
the higher workload input is served relatively often. The fact that the optimal polling density α = 1

3
on some part of the interval can be explained from the fact that optimal densities tend to have a low
denominator in general, but that for example density 1

2 gives no longer a stable policy for such loads.
If the load is increased even further than also 1

3 gives no longer a stable policy until finally for ρ = 1
we have that only α = 0.37 gives a stable policy.

However, not every change of the optimal α for increasing load is explained by such stability consid-
erations. For example it is clearly seen in both Figure 1 and Figure 2 that 3

8 is the optimal polling
density on two disjunct intervals of varying load, while for loads between these intervals we have that
α has (among other values) a maximum of 2

5 .

Another point of interest we notice in the figures is that for any given load the α for the fluid model
is equal or larger than the α for the discrete model. Intuitively this is explained from the fact that for

14



0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

 

0.75 0.8 0.85 0.9 0.95 1

 

ρ

αopt

Figure 2: The optimal polling density for varying load for fluid input.

the discrete model the (whole) packets of workload enter the buffer at once, while in the fluid model it
takes more time before the same amount of workload has entered the buffer. So, for the discrete case
there should be more urgency to serve the queue where the packets of larger workload arrive. This
explains that for the discrete model the optimal service rate for the queue with larger input is never
lower than for the fluid model and in some cases higher.

We have also some two-dimensional plots (see Figure 3 and Figure 4), in which the input rates for
the two queues vary independently of each other. To plot these figures we have calculated the optimal
polling density α for various (λ1, λ2) systems in the triangle area {(x1, x2) : x1, x2 ≥ 0, x1 + x2 ≤ 1)}.
In Figure 3 and Figure 4 there is a black dot at a point (λ1, λ2) within these triangle area if one or
more of the neighboring points has another value of α.
The resulting Figure 3 and Figure 4 are quite similar looking fractal type pictures. It is obvious that
both pictures are symmetrical in the diagonal λ1 = λ2. In both figures it is easy to identify the
largest (and also most central containing the diagonal λ1 = λ2) white area within the triangle which
corresponds to α = 1

2 . The second largest white areas which are symmetrically situated with respect
to the diagonal λ1 = λ2 correspond to α = 1

3 and α = 2
3 respectively. We note that these large white

areas corresponding to α with low denominator are somewhat bigger in Figure 4 (the fluid model) than
in Figure 3 (the discrete model). This confirms our conjecture that for the discrete model the value of
|α − 1

2 | is always greater or equal than for the fluid model.

4.3 Structural results for deterministic polling systems

To obtain more structural results like Proposition 4.2 we restrict ourselves to deterministic polling
systems in the sequel of this section. The first result in that case follows from the following properties
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Figure 4: The regions of optimality for fluid input
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(which all follow from Section 3) of the function Bλ(d), where λ ∈ [0, 1] is the input rate in some queue.

• Bλ(d) = is convex for d ∈ [λ, 1], moreover Bλ(d) = ∞ for d < λ.

• Bλ(d) is piecewise linear in d and the slope changes only in the best upper approximations of λ
which are rational numbers.

• limε↓0
Bλ(λ)−Bλ(λ+ε)

ε
= ∞ if λ is irrational.

From these properties the following theorem follows analogously as the similar result (Theorem 7.9)
for deterministic routing systems in [13].

Theorem 4.3 Consider a deterministic λ = (λ1, λ2, . . . , λN ) polling system with N ≥ 2 queues such
that

∑N
i=1 λi < 1. Then there exists some x = (x1, x2, . . . , xN ) ∈ opt(λ) and some j ∈ {1, 2, . . . , N}

such that for every i 6= j it holds that xi is a best upper approximation of λi.

Corollary 4.4 Let λ = (λ1, λ2, . . . , λN ) be a deterministic polling system with
∑N

i=1 λi < 1. Then the
set opt(λ) contains a point with rational coordinates.

Remark 4.5 In section 7 of [13] an algorithm is given to obtain such a rational point for deterministic
parallel routing systems. With a slight modification the same algorithm can be used to find a rational
point in the set opt(λ) for deterministic polling systems. Moreover, we note that in most cases the
set opt(λ) consists of only one point, which according to Corollary 4.4 and Theorem 4.3 has rational
coordinates and all coordinates except at most one are best upper approximations of the input rate in
the corresponding queue.

Combining Theorem 4.2 and Corollary 4.4 it follows that for a deterministic polling system with only
2 queues and λ1 + λ2 < 1 there exists an optimal regular polling policy with rational densities. It
is easily seen that such a policy is periodic. So, we have obtained the following structural result on
optimal policies.

Theorem 4.6 For every deterministic (λ1, λ2) polling system with λ1 +λ2 < 1 there exists an optimal
regular and periodic polling policy U with B(U) = B∗(λ).

We note that a similar result on the optimality of periodic policies for deterministic parallel routing
systems with only 2 queues was obtained in [9]. However, for a deterministic λ polling systems with more
than 2 queues we do not have such a result. Indeed, in that case for a rational point (d1, d2, . . . , dN ) ∈
opt(λ) there does in general not exist some policy U such that service sequence ui is regular with
density di for i = 1, 2, . . . , N . Note that if such a policy U would exist than U would be periodic and
also optimal, since B(U) = B∗(λ). However, if such a policy does not exist it is possible that for an
optimal policy V it holds that B(V ) > B∗(λ). Moreover, such optimal policy V does not necessarily
have rational densities (d1, d2, . . . , dN ) ∈ opt(λ) and thus it may not be periodic. Nevertheless we
think that in most cases there also exists an optimal periodic policy for deterministic polling systems
with more than 2 queues. Besides, the following can be proved analogously to the similar result for
deterministic parallel routing systems considered in chapter 5 of [23].

Theorem 4.7 For a deterministic and stable λ polling system with rational input rates λi for i =
1, 2, . . . , N there exists an optimal routing policy U which is periodic.
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A Appendix 1: On the optimality of the bracket sequence and its

convexity for the arrival-driven polling model

Consider an arrival driven polling model (as in section 9.5 of [2]) with i.i.d. service and independent i.i.d.
inter-arrival times in every queue. Note that both the deterministic and exponential model which we
analyze in this paper can be described as such arrival driven model with i.i.d. service and independent
i.i.d. inter-arrival times. Moreover, if for queue i in a polling system with these assumptions we have
that τ is the mean inter-arrival time and 1

µi
is the mean service time of a job arriving in queue i, then

λi, the (expected) workload arriving in queue i per time-unit as described in the beginning of Section
4 is given by λi = 1

τµi
.

For one queue Lemma 54 in [2] gives for service sequence a that Vn(a), the expected workload in the
queue for the n-th arrival starting with an empty queue, is multimodular in a. Since for any service
sequence hence also for the bracket sequence ap(θ) it holds that

Vn(ap
n(θ), . . . , ap

1(θ)) ≤ Vn+1(a
p
n+1(θ), . . . , ap

1(θ)),

we have that Lemma 1 of [14] can be applied. Hence the average workload for the bracket sequence
with initial phase θ is independent of θ and it is convex in the density p, since

lim
N→∞

1

N

N∑

n=1

Vn(ap
1(θ), . . . , ap

n(θ)) = lim
n→∞

∫ 1

0
Vn(ap

1(θ), . . . , ap
n(θ))dθ. (5)

For the optimality of the bracket sequence we can apply Theorem 50 of [2], however it has the nonstan-
dard assumption that the initial distribution is the stationary regime that corresponds to the policy
that never takes vacation, and we would prefer to start with an initially empty queue. The approach
to prove this is similarly to the way it is done in the sections 4.6.3 and 4.6.4. of [2]. Let us first assume
that the inter-arrival(service) time is almost surely bounded from below(above), hence for some k ∈ N

we have (we use the notation of [2] where for queue i, τ i
n denotes the n -th inter-arrival time and σi

n

denotes the n-th service time) for queue i = 1, 2 and all n, almost surely

k∑

l=1

τ i
n+l ≥ σi

n.

Then for queues i = 1, 2

V i
n+1(k, ai

1, . . . , a
i
n) = V i

n(ai
1, . . . , a

i
n)

and hence both satisfy the conditions of Theorem 7 in [2], from which it follows that for queue i = 1, 2
the bracket sequence with density pi and any initial phase θi is optimal in the class of policies with
upper density smaller than or equal to pi. This gives together with (5) for service sequence a = (a1, a2)
with densities for queue 1 (2) equal to p1(p2 = (1− p1)) that

lim sup
N→∞

1

N

N∑

n=1

2∑

i=1

V i
n(ai

1, . . . , a
i
n) ≥ lim

n→∞

2∑

i=1

∫ 1

0
V i

n(api

1 (θ), . . . , api

n (θ))dθ.

The right-hand side, let us denote it with V∞(p1, p2), is a limit of convex functions and hence V∞(p1, p2)
is convex in (p1, p2). The proof for unbounded inter-arrival and service times is similar to the proof of
Theorem 22 in [2].

Combining the above results gives the following theorem for an arrival-driven polling model with the
i.i.d. and independence assumptions.

Theorem A.1 The optimal polling policy for N = 2 queues can be obtained by minimizing the convex
function V∞(p1, p2).
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B Appendix 2: Computation of the optimal policy in the Markovian

case

In this section, we show how the optimal polling sequence can be computed in a stochastic system
made of two Poisson arrival queues and one exponential server.

As in Appendix A, we consider an arrival driven polling model (as in section 9.5 of [2]) with i.i.d.
service and independent i.i.d. inter-arrival times in every queue. In this section, we show how the
optimal polling between two queues can be computed when the service is exponential (with rate µi in
queue i) and the inter-arrivals are synchronous and exponential (with rate λ in both queues).

We call m(k) the k − th polling decision (at arrival k). We set m(k) = 1 if the server is allocated to
queue 1 and m(k) = 0 if the server is allocated to queue 2.

We now show that under the polling by a periodic decision word m of period ℓ, the number of customers
in a queue can be modeled by a Markov Process. The behavior of the number of customers in one queue
(say queue 1, and index 1 will be omitted in the following) of the system is given by a continuous time
Markov chain Xt which state space is equal to N×{1, . . . , ℓ}. The first entry represents the number of
customers in the queue at time t while the second entry represents the current letter of the polling m
(modulo ℓ).

The continuous time Markov chain Xt is a quasi birth and death process whose generator Q is given
by

Q =




C A0 0 0 . . .
A2 A1 A0 0 . . .
0 A2 A1 A0 . . .
0 0 A2 A1 . . .
...

...
...

...
. . .




,

where matrices A0, A1, A2 and C are of size ℓ× ℓ, with A0[i, (i+1) mod ℓ] = λ, and is null everywhere
else, A2[i, i] = m(i)µ, and is null everywhere else, C[i, i] = −λ, and is null everywhere else, and
A1[i, i] = −λ − m(i)µ and is null everywhere else.

An example of the infinitesimal generator Q of Xt when the polling is m = (110)∞ is displayed in
Figure 5

1 2 3

λ µ

0

Figure 5: graph of the infinitesimal generator when the polling is m = (110)∞

Let π be the invariant measure of the process Xt (when it exists). This probability satisfies

πQ = 0. (6)
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We now refine the notation by introducing block vectors πn of dimension ℓ whose ith entry (πn(i))
represents the stationary probability to have n customers in the system when the current polling
decision is m(i). Hence πk(1) + · · · + πk(ℓ) is the stationary probability to have k customer in the
system. We will not try to compute π directly which can be quite hard, but we will rather determine
its generating function. Let D(0, 1) be the closed unit disk. The generating function of π is the function
Π(z) from D(0, 1) to Cℓ defined by

Π(z) =

∞∑

n=0

znπn.

The following theorem will be used to make sure that the stationary distribution (as well as the function
Π(z)) exists.

Lemma B.1 The process Xt is positive recurrent if and only if ℓλ
aµ

< 1.

Proof. This proof is based on Theorem 1.3.2 of [19] which states that Xt is positive recurrent if and
only if pA21 > pA01, where 1 is the column vector with all entries equal to one, and p is the stationary
distribution vector of the finite generator A = A0 + A1 + A2, (i.e pA = 0 and p1 = 1).

Let us compute p. Using formulas of A0, A1 and A2, we get A = −λI + A0. It should be clear that
p1 = p2 = . . . = pℓ = 1/ℓ. Hence, the stability condition becomes pA21 = aµ/ℓ > pA01 = λ.

Lemma B.2 Let K(z) be the ℓ × ℓ matrix defined by

K(z) =




µ(1 − z)m(1) − λz λz2

. . .
. . .

λz2

λz2 µ(1 − z)m(ℓ) − λz




.

Then the generating function satisfies the functional equation with kernel K(z),

Π(z)K(z) = π0µ(1 − z)M. (7)

Proof. Using the global balance equation (6) we get the induction

π0C + π1A2 = 0, (8)

πn−1A0 + πnA1 + πn+1A2 = 0, ∀n ≥ 1. (9)

By multiplying the second equation by zn+1 and by summing it follows

Σ∞
n=1πn−1z

n−1z2A0 + πnznzA1 + zn+1πn+1A2 = 0,

Π(z)(z2A0 + zA1 + A2) − π1A2z − π0A2 − π0A1z = 0,

which gives Π(z)(z2A0 + zA1 + A2) = π0µ(1 − z)M , where

M =



m(1) 0

. . .

0 m(ℓ)


 .
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Let us now study the zeros of K(z). More precisely we will focus on the zeros inside the unit disk since
Π(z) is a power series with radius of convergence one. Let us call ∆(z) the determinant of the matrix
K(z). Using the definition of the matrices A0, A1 and A2, one gets after direct computations

∆(z) = (−1)ℓ+1λℓz2ℓ + (−λz)ℓ−a(µ − (µ + λ)z)a.

Lemma B.3 If ℓλ
aµ

< 1 then the number of non-null roots of ∆(z) inside the unit disk is a. Moreover,
0 is a root with multiplicity ℓ − a.

Proof. It is obvious that 0 is a root with multiplicity ℓ − a. Let f(z) = (−λz)ℓ−a(µ − (µ + λ)z)a.
Obviously, f has exactly ℓ roots inside the unit disk.

Now, let |z| = 1+ε. |∆(z)−f(z)| = λℓ(1+2ℓε)+o(ε) and |f(z)| ≥ λℓ+(λℓ(ℓ−a)+µa−1(λ+µ)λl−aa)ε+
o(ε). A direct computation using the stability condition µ > ℓλ/a, shows that |∆(z) − f(z)| < |f(z)|
if ε is small enough. Then, the result follows from Rouché’s theorem.

–1.5
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–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0.5 1

Figure 6: Roots of ∆(z) when a = 5, ℓ = 18 and λ = 1, µ = 4.

To illustrate the previous lemma, Figure 6 displays all the roots of ∆(z) when a = 5, ℓ = 18 and
λ = 1, µ = 4. The number of roots inside the unit disk (including 1, which is always a root of ∆(z)) is
exactly 5.

Theorem B.4 If zi is the ith non-null root of ∆(z) in the unit disk and vi is the right eigenvector of
the eigenvalue 0 of K(zi), then π0 is a solution of the system :





π0(j) = 0, if m(j) = 0.
π0vi = 0, ∀ i ∈ {1, . . . , a} s.t. zi 6= 1

π01 = a/ℓ − λ/µ, when zi = 1,





. (10)

where 1 is the column vector with all its components equal to 1.

Proof. If |zi| < 1, then it comes by definition of vi that (1−zi)µπ0Mvi = 0. Since zi 6= 1 and π0(j) = 0
if Mjj = 0, yields π0vi = 0. Note that the rank of the matrix K(zi) is ℓ − 1 so that the vector vi is
unique up to a multiplicative constant.
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The case zi = 1 has to be handled differently since (1 − zi) = 0 and K(1)1 = 0.

µπ0M1 = lim
z→1

Π(z)K(z)1

1 − z
= lim

z→1
Π(z)

K(z)1 − K(1)1

1 − z
= −Π(1)K ′(1) = µa/ℓ − λ,

since Π(1) = (1/ℓ · · · 1/ℓ) (easy computation).

Now. we turn back to the two queue system. Once π0 has been computed, it is possible to compute
E (Nj(m)) and E (Vj(m)) (j = 1, 2) being respectively the expected number of customers and the
expected workload in the queue Qj when the polling is made according to m.

Since E (Nj(m)) = dΠ(z)1
dz

|z=1, introducing the vector k̂(z) which verifies K(z)k̂(z) = 1 yields

E (Nj(m)) =
d

dz

(
Π(z)1

)
|z=1 = µjπ0Mj

d

dz

(
(1 − z)k̂(z)

)
|z=1. (11)

In turn, this gives a way to compute the expected workload using the fact that

E (Vj(m)) =
1

µj

E (Nj(m)) (12)

Now, if we consider the system made of two synchronous queues, the polling sequence in the second
queue is the complementary sequence (m) of the polling in the first one (m). The total workload is
E (V1(m)) + (E (V2(m)). The optimal polling is a bracket sequence ω(αopt), which density αopt has to
be computed by:

αopt = argmind

(
E (V1(w(d))) + E

(
V2(w(d))

))
.

Using the fact that this function is convex in the density d (see Appendix A), the optimal density αopt

can be computed numerically by gradient descent in a similar fashion as in [10, 8]. We have run several
computations using a Maple program implementing the algorithm above (For each triple (λ,mu1, µ2),
compute the roots of ∆(z), then compute the corresponding eigenvectors, then compute π0 and finally
the corresponding workload).

0.38
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0.42

0.44

0.2 0.4 0.6 0.8 1

x

αopt

ρ

Figure 7: Computation of the optimal polling ratio αopt when the load ρ varies from .2 to 1.
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Figure 7 shows the values of αopt, the optimal frequency with which the first queue is served (as in the
deterministic case). We have chosen λ = 1 (in both queues) while µ1/(µ2 + µ1) = 37/100 to match
the intensities of the deterministic cases. Although one could expect that the stochastic assumption
should have a smoothing effect on the value of αopt, the numerical experiments in Figure 7 still suggest
that αopt is highly non-differentiable with many flat zones and many cusps. It is an open problem to
state about the continuity of αopt.

One can also observe that even when the two queues are not identical, αopt = 1/2 when the system is
lightly loaded, as in the deterministic case, although this is only true for very small loads here (ρ < 0.18,
to be compared with ρ < 0.78 in the deterministic case). Finally, when the system is heavily loaded,
αopt converges to the ratio of the service intensities, namely 0.37, as expected.
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