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Abstract

Recent models for credit risk management make use of Hidden Markov Models

(HMMs). The HMMs are used to forecast quantiles of corporate default rates.

Little research has been done on the quality of such forecasts if the underlying

HMM is potentially mis-specified. In this paper, we focus on mis-specification

in the dynamics and the dimension of the HMM. We consider both discrete and

continuous state HMMs. The differences are substantial. Underestimating the

number of discrete states has an economically significant impact on forecast

quality. Generally speaking, discrete models underestimate the high-quantile

default rate forecasts. Continuous state HMMs, however, vastly overestimate

high quantiles if the true HMM has a discrete state space. In the reverse set-

ting, the biases are much smaller, though still substantial in economic terms.

We illustrate the empirical differences using U.S. default data.

Key words: defaults; Markov switching; misspecification; quantile forecast;

Expectation-Maximization; simulated maximum likelihood; importance sam-

pling.
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1 Introduction

In this paper we employ Hidden Markov Models (HMMs) for forecasting quantiles

of corporate default rates. Such quantiles play an important role in financial risk

management. The class of HMMs has been popularized by Hamilton (1989) and

has proven useful for modeling and forecasting a variety of economic time series,

including as prime examples business cycles indicators and exchange rate. Over the

last years, several authors have implemented HMMs to model and forecast credit

risk dynamics. Crowder, Davis, and Giampieri (2005) uses the familiar model of

Hamilton (1989) with two regimes: a high and low default rate regime. In the

model of Crowder, the hidden Markov layer is observed via a binomial layer, where

the binomial draw is the number of defaults. This is slightly different from Hamilton

(1989), where the hidden layer is observed via a Gaussian series of observables.

Banachewicz et al. (2006) extends the model of Crowder by making the transition

probabilities in the MC dependent on macro-variables.

A different approach is taken by McNeil and Wendin (2007) and Koopman and

Lucas (2005). They distinguish a continuum of possible states, where the state

follows a simple time series process such as a low order autoregression. As in Crowder

et al. (2005), the observed time series of default counts is modeled as a binomial

process, where the success probability depends directly on the hidden Markov layer.

Koopman, Kraeussl, Lucas, and Monteiro (2006) and Duffie, Eckner, Horel, and

Saita (2006) further extend this approach to a continuous time setting, where the

hidden layer drives the intensity of a point process.

The main drawback of the HMMs is that they are more cumbersome to estimate.

Instead of straightforward maximum likelihood, one has to resort to simulated maxi-

mum likelihood, EM, or Bayesian methods. This is why some previous authors have

abstained from modeling a hidden layer, and have used observable state variables

instead. For example, Nickell, Perraudin, and Varotto (2000) and Bangia, Diebold,
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Kronimus, Schagen, and Schuermann (2002) use GDP growth rates and NBER busi-

ness cycle classifications to distinguish between high and low default rate regimes.

McNeil and Wendin (2007), Koopman et al. (2006), and Duffie et al. (2006), how-

ever, show that even if one includes observable macro variables, a hidden layer is still

needed to capture default rate dynamics correctly. Moreover, Lucas and Klaassen

(2006) show that default regimes based on observables like GDP growth and NBER

business cycle classifications result in a substantial underestimation of the annual

default rate volatility. This is in line with Dacco and Satchell (1999), who show

that a slight mis-classification of regimes can lead to a substantial deterioration in

forecasting performance of regime switching models.

The main conclusion from the literature is that HMMs constitute a promising tool

for dynamic credit risk modeling. So far, however, no systematic study has appeared

that compares the adequacy of the proposed competing HMM specifications for

forecasting. The models from the literature differ in the number of regimes they

distinguish, in the hidden layer dynamics, and in whether they have a discrete or

continuous state space.

The focus in our paper is on the effect of mis-specification in the hidden layer’s

state space dimension and dynamics on the quality of quantile forecasts. This ap-

pears particularly important given the limited number of time series observations

typically available for default rate modeling: annual, quarterly, or monthly time

series since the 1980s. For such data, it is far from trivial to reliably determine

the appropriate dimension of the state space or the dynamics in the hidden Markov

layer from the data.

We focus on forcasting quantiles rather than expectated values. This is in line

with the predominant use of quantiles rather than expected values for risk manage-

ment purposes in the financial industry. Following the new Basel Capital Accord

(2005), quantiles can be used directly by financial institutions to determine the size

of required capital buffers. It will turn out that the quality of quantile forecasts
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may be affected in a substantially different way by mis-specification than forecasts

of means.

We contribute to the existing literature in three ways. First, we provide a sys-

tematic comparison of the forecast accuracy of different non-Gaussian state space

models for credit risk. In particular, we are the first to compare both discrete-state

and continuous-state HMM specifications as they have been put forward in the recent

literature. Second, we concentrate on the effect of mis-specification in hidden layer

dynamics on quantile forecasts. And finally, we apply the various methodologies to

an empirical example.

We conduct a controlled simulation experiment, where we vary the number of

regimes, i.e., the dimension of the state space. We systematically study the effect

on quantile forecasts of over- or under-estimating the number of regimes. We find

that underestimating the number of regimes has a significant impact on forecast

quality. For the high quantiles typically used in practice, the differences appear

economically significant. Overestimating the number of regimes appears to have

less effect. Surprisingly, however, even correctly specified models have difficulty in

adequately estimating the high quantiles of the true distribution of future default

rates.

The continuous state models behave substantially differently from the discrete

state models at high quantiles. Typically, continuous state models result in much

higher quantiles. If the true data generating process (DGP) has a discrete state

space, the continuous state model vastly overestimates the high quantiles. Con-

versely, if the true DGP has a continuous state space, the discrete state models

substantially underestimate high quantile default rates. This holds even if we allow

for four or five different discrete regimes.

We also apply the different methods to an empirical data set of U.S. corporate

default rates, obtained from Standard and Poor’s. We find that a discrete model

with three states provides a good empirical description of the data. In terms of
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forecasting performance, the continuous state model picks up the dynamics of the

realized default rates better than the discrete state model. As usual, however, the

forecasts lag the realizations if we forecast further out of sample. The main problem

with the continuous-state specification is that its high-quantile forecasts are very

large. Due to the lagging behavior of the forecast with respect to the realization in

the more than one step ahead context, these large predicted quantiles might result

in overly conservative default scenarios and, thus, in overly conservative capital

requirements.

The rest of this paper is set up as follows. In Section 2 we describe the modeling

framework and estimation methodology. In Section 3, we describe the simulation

set-up. Section 4 discusses the simulation results, whereas Section 5 presents the

empirical application. Finally, Section 6 concludes.

2 Model formulation, estimation, and selection

2.1 Model specification

Consider a portfolio of defaultable units or counterparties. At each time t = 1, . . . , T

we observe a pair {Nt, Dt}. Here Dt is the number of counterparties that default

during period (t − 1, t], while Nt denotes the number of units at time t − 1. The

number of units Nt is affected by the number of defaults over the previous period

(Dt−1). In addition, Nt may also increase because units enter the sample (births),

or decrease because units leave the sample for reasons other than default. Along the

lines of, e.g., Bangia et al. (2002), births and withdrawals are treated as exogenous.

We assume that the default rate (Dt/Nt) dynamics are driven by a latent process

Wt. The variable Wt captures current credit market conditions. As is commonly

assumed in the literature, conditional on the realization of Wt, companies default

independently.

We formulate our model in terms of a general non-Gaussian, non-linear state
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space framework, along the lines of Durbin and Koopman (2001),

h (Wt|Wt−1) , (1)

g (Dt|Nt,Wt) = dbin(Dt, Nt, p(Wt)), (2)

where Wt is a state vector, Dt is the number of defaults, Nt is the number of

credit exposures, p(Wt) is between 0 and 1, and dbin(x, n, p) denotes the binomial

density function, i.e., the probability of drawing x successes in n trials with success

probability p. This flexible representation allows us to account directly for the

discrete nature of the default process. The occurrence of zeros and very small default

frequencies can now be dealt with in a natural way. Also, prediction, filtering and

smoothing problems can be addressed naturally in this setting.

The State Space Formulation (SSF) in (1) and (2) has two sources of uncertainty.

First, we have the familiar measurement errors in the measurement equation (2).

In our current context, these measurement errors are non-Gaussian. The second

source of uncertainty comes from the state equation (1). This uncertainty typically

has to be integrated out for likelihood evaluation and, therefore, complicates the

estimation process. We consider two specifications for the state dynamics (1). First,

we consider a discrete state specification. Here, we assume the latent process follows

a time-homogeneous Markov Chain taking values in the set {1, . . . , s},

Pr(Wt = i|Wt−1 = j) = Pij, i, j = 1, . . . , s, (1a)

where s denotes the number of discrete states or regimes, and Pij is the probability

of moving from state j at t − 1 to state i at t. The probabilities can be put into

a transition matrix P = (Pij)i,j=1,...,s. Models of type (1a) have been used in, e.g.,

Crowder et al. (2005) and Banachewicz et al. (2006).

As a convention in most parts of this paper, we interpret the state values 1 to

s as corresponding to the lowest and highest default regimes, respectively. Other
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interpretations are, however, also possible. For example, a four dimensional state

vector can be interpreted as corresponding to two default regimes with second order

dynamics. In this case, state 1 may be the low default regime if there was also a

low default regime the period before. State 2 is then the low default regime if there

was a high default regime the period before. State 3 and 4 are the high default

regimes if there was a low or high default regime the period before, respectively.

The transition matrix in this cases takes the restricted form



















P11 0 P13 0

P21 0 P23 0

0 P32 0 P34

0 P42 0 P44



















.

Using (1a), we can thus investigate both the effect of an incorrect number of regimes

as was as the effect of a correct number of regimes, but an incorrect dynamic speci-

fication of the MC.

Our second specification for (1) has continuous states. We model this by a linear

autoregressive time series process,

Wt = ΦWt−1 + V εt, (1b)

where εt is a Gaussian white noise with unit variance matrix. Using the standard

way of mapping a higher order autoregression into a vector autoregression of order

one, we are able to investigate the effect of dynamic mis-specification in the state

equation. Models of type (1b) have been used in, e.g., McNeil and Wendin (2007),

Koopman and Lucas (2005), Koopman et al. (2006), and Duffie et al. (2006).

To complete the model specification, we define the probability function p(Wt) in
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the measurement equation (2). In the discrete state specification (1a), we set

pt = p(Wt) = αWt
, (3a)

where αi denotes the default probability in state Wt = i. For the continuous state

model, we use a logistic mapping from the continuous Wt to the default probability.

In this paper we restrict our attention to cases where p(Wt) only depends on the

first element of Wt, or

pt = p(Wt) = (1 + exp (a + b · e′1Wt))
−1

. (3b)

where e1 is the first column of the unit matrix. The parameters b in (3b) and V in

(1b) cannot be identified simultaneously. For identification, we typically normalize

the unconditional variance of e′1Wt in (1b) to unity. Alternatively, one can restrict

the conditional variance V or the loading b to unity.

By combining (2) with (1a) or (1b), we obtain a discrete or continuous special

case of the nonlinear and non-Gaussian state space model as defined in part II of

Durbin and Koopman (2001). Parameter estimation in such models is not trivial

and differs substantially between the discrete and continuous state specification.

For completeness, we briefly review both estimation methodologies in the next two

subsections.

2.2 Estimation: discrete case

For the discrete state case, (1a) and (2), we estimate the model parameters via

EM using a modification of the Baum-Welch algorithm of Rabiner (1989). Details

are given in Appendix A.1. The basic idea is to define so-called forward and back-

ward variables αt(i) and βt(j). These variables are easy to compute recursively and

represent probabilities of partial observation sequences. The recursions are used
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to efficiently perform the Expectation step of the EM algorithm by computing the

expectation of the log-likelihood, see Dempster et al. (1977). Here, we can exploit

the special structure of the discrete state model. The expression for the expectation

can be decomposed into separate parts, so that the problem of optimization over all

model parameters simultaneously can be replaced by a set of univariate maximiza-

tion problems. Moreover, the update formulas for maxima of particular parameters

are expressed in terms of the forward and backward variables αt(i) and βt(j). New

parameter values are then used to re-compute the expectation, and this iterative

procedure is repeated until convergence. Further details on the implementation of

the procedure are provided in Appendix A.1.

2.3 Estimation: continuous case

The flexibility gained by moving to the continuous state specification (1b) comes at

the price of more complications in the likelihood evaluation. The principal difficulty

is that the likelihood requires the evaluation of a high-dimensional integral,

∫

· · ·

∫ T
∏

t=1

(dbin(Dt, Nt, p(Wt))h(Wt|Wt−1)) d WT . . . d W1. (4)

This integral has to be computed for every evaluation of the likelihood. The first

step to make the computations feasible is to replace the integrals by averages and use

Monte Carlo maximum likelihood methods for parameter estimation. Let W (k) =

{W
(k)
t }T

t=1 for k = 1, . . . , K denote a set of simulated paths of (1b). Then we

approximate (4) by

K−1

K
∑

k=1

T
∏

t=1

dbin(Dt, Nt, p(W
(k)
t )). (5)

Sampling directly from (1b), however, is highly inefficient as the paths W (k) would

have no relation to the realized sample and, would therefore contribute only little

to the final likelihood. This problem can be avoided by using importance samplers
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instead. Durbin and Koopman (2001) describe a way to create an efficient Gaussian

importance sampler G(W (k)|D1, N1, . . . , DT , NT ) to approximate (4) by

K−1

K
∑

k=1

∏T

t=1

(

dbin(Dt, Nt, p(W
(k)
t ))h(W

(k)
t |W

(k)
t−1)

)

G(W (k)|D1, N1, . . . , DT , NT )
. (6)

Koopman and Lucas (2005) extensively investigated the performance of this im-

portance sampler for the model at hand and conclude that K = 30 to K = 50

importance samples already provide a very accurate approximation to (4). The ba-

sic idea of the Gaussian importance sampler is to linearize the measurement equation

(2) around a linear Gaussian model with the same mean and mode and the same

curvature of the log-density. This gives a new, approximate measurement equation

with time varying mean and variance. The resulting linear approximate state space

model can be used for efficient sampling of the states (1b) conditional on the obser-

vations using standard Kalman filter techniques. For a more detailed exposition, the

reader is referred to Durbin and Koopman (2001) and Koopman and Lucas (2005).

2.4 Likelihood and model selection

In the general case of HMM modeling, we may want to determine the model on the

basis of the sample. In particular, we want to choose between competing models

with different dimensions s for the state space. We concentrate on likelihood based

selection criteria. In the continuous case (1b), the (approximate) likelihood is ob-

tained directly from the importance sampling scheme (6). In the discrete setting, the

likelihood is not a by-product of the estimation procedure, but has to be computed

separately. This can, however, be done in a computationally efficient way using the

same mathematical apparatus that is employed for parameter estimation. Using

the same, recursively defined variables αt(i) from Appendix A.1, we can write the
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likelihood as

LL =
s
∑

i=1

αT (i), (7)

where s is the number of regimes in the HMM and T is the number of observations.

Once the likelihood has been computed, we can compare different models using

for example the Akaike Information Criterion (AIC) or the Bayesian Information

Criterion (BIC). In the discrete case, these take the form

AIC = −2 ln(LL) + 2(s2 + s − 1),

BIC = −2 ln(LL) + (s2 + s − 1) ln(T ),

where s is the dimension of the state space. For the continuous state specification

(1b), the number of parameters is typically given by s + 2: the number of autore-

gressive parameters s and the logistic parameters a and b in (3b). A difference in

these model selection criteria between the discrete and continuous-state specifica-

tion, however, still has to be interpreted with care, as the behavior of these two

models in out-of-sample forecasting is very different. This is further illustrated in

Section 4.

3 Simulation set-up

In this section we describe our simulation experiment. The experiment is set up to

investigate the quality of quantile forecasts under possible mis-specification of the

hidden MC. The mis-specification may take the form of wrong sizes of the dimension

of the state space or a wrong dynamic specification of the MC.

Let Hs(θs) denote a discrete state HMM model, where s denotes the number of

regimes in the HMM, and θs gathers all the parameters of the HMM. The vector θ in

the discrete state case contains the levels of the default rates αi, the transition matrix

P , and the vector of initial state probabilities π0. The number of regimes s coincides
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with the dimension of the discrete state space Wt in (1b). For the continuous state

model, we use the notation H∞(θ∞).

Estimated values for the dimension and the parameters are denoted by ŝ and θ̂s,

respectively. For each model, we also define a quantile function for the h-step-ahead

forecast. Let Q(x; h,Hs(θs), πT ) be such that

Q(x; h,Hs(θs), πT ) = sup{y|Pr [Y ≤ y] ≤ x},

where Y is the h-step-ahead forecast from the HMM Hs(θs) with WT following the

distribution πT , and where x ∈ [0, 1]. Each Q(. . .) is estimated as an average over

2500 simulated sample paths.

Our prime interest will be in the bias and variability of the the quantile functions

Q. In our simulations, we use a pair (Hs(θs), π0) to generate a sample of Dts. The

Nts are treated exogenously and are set to their empirical values from Section 5.

Only out of sample we use a different scheme to set the value of NT+h, namely

NT+j = NT+j−1−DT+j−1 for j = 1, . . . , h. We thus abstract from units entering the

sample after time T , and concentrate on the forecasts of defaults only.

We construct three benchmarks Q(x; h,Hs(θs), πT ) that all use the correctly spec-

ified HMM, and only differ in their choice for the initial distribution πT . We start off

the MC with the (true) unconditional distribution πunc
T , the conditional (smoothed)

distribution πcond
T of the state WT using the simulated data and the true parameters,

and the degenerate distribution πdeg
T that has a unit point mass on the realized value

of WT . Note that the latter two distributions are different in each simulation run.

Let Qunc
s,h = Q(x; h,Hs(θs), π

unc
T ), where Qcond

s,h and Qdeg
s,h have similar definitions.

Using a simulated path of defaults, we can use the estimation methods discussed

in the previous section to obtain θ̂s∗ , where s∗ is unequal to s in the case of mis-

specification. If s∗ = s, we only have the effect of parameter estimation error

left. One can also investigate the case s∗ = ŝ, where ŝ is the estimate of the state
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dimension obtained by maximizing one of the selection criteria in Section 2.4. We

consider values for s, s∗ of 2 up to 5. In addition, we have the continuous state

model, which we denote by s, s∗ = ∞.

The specification for the continuous state model in our simulation experiment is

an autoregressive model of order 1, AR(1),

Wt = φWt−1 +
√

1 − φ2εt, (8)

where we normalized the unconditional variance to unity for identification, see Sec-

tion 2. Models of this type have been used in previous empirical studies on default

modeling and proven very useful, see McNeil and Wendin (2007), Koopman and

Lucas (2005), Koopman et al. (2006), and Duffie et al. (2006).

For each comparison of quantile functions, we perform M = 1000 simulations.

The final curves presented in the next section present the averages over the simula-

tions of Q̂unc
s∗,h − Qunc

s,h and Q̂cond
s∗,h − Qdeg

s,h as a function of x, where

Q̂unc
s∗,h = Q(x; h,Hs∗(θ̂s∗), π̂

unc
T ). (9)

A similar definition holds for Q̂cond
s∗,h .

We consider forecast horizons of 4, 8, and 12 quarters. We set the sample size

to T = 100. This corresponds to the typical size of for this type of data. Using

T = 100, we should get a good impression of the effect of parameter uncertainty on

the level and variability of quantile forecasts.

Finally, the parameters of the true DGPs in the simulations are chosen on the

basis of empirical estimates using the data from Section 5. The parameter values

are provided in Table 2 for 2, 3, and 5-state models. Interestingly, the 2-state model

constitutes an asymmetric time series process. The high default rate regime is much

less persistent than the low default rate regime. This may cause additional com-

plications for the symmetric continuous state model. The model with 5 regimes
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appears to be over-specified compared to the information in the data. Especially

the two lowest default regimes lie very close together, and the regime with default

probability 0.14% appears unstable. The model can nevertheless be used to investi-

gate the effect of overspecification on quantile forecast stability. This is done in the

next section.

<INSERT TABLE 2 AROUND HERE>

4 Simulation results

In this section, we present the outcome of the simulation experiments. In Subsections

4.1 and 4.2, we discuss the effect of overestimating and underestimating the state

dimension, respectively. Subsection 4.3 is dedicated to the problem of approximating

a continuous model with a discrete s-dimensional one, for different values of s.

4.1 Too many states

In this part of the simulation study we assume that the number of states is larger

than necessary, s∗ > s. The DGP is an HMM with a bivariate state space (s = 2).

We approximate this by HMMs of dimensions s∗ = 2, 3, 4,∞. The methodology

works for higher dimensional discrete HMMs as well (s∗ = 5, 6, 7, . . .). Fitting such

models, however, seems unrealistic given the limited sample size T = 100. As

explained in section 3, we present the differences Q̂unc
s∗,h − Qunc

s,h and Q̂cond
s∗,h − Qdeg

s,h .

The first measure compares the unconditional quantile approximation to the one

from the DGP. The second measure compares the quantile approximation based on

the smoothed starting distribution at time T with the quantile from the true DGP

starting from the actually realized WT .

Figure 1 presents the result for a 4-quarters-ahead forecasting horizon. The first

thing to note is that the quantile forecasts are very similar for s∗ = 2, . . . , 4. The
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bias is slightly negative for the fitted model with the correct s∗ = s = 2. The same

holds for the higher dimensional models. At the very high quantiles, the negative

bias in the higher dimensional models becomes smaller and in some cases transforms

to a slightly positive bias.

<INSERT FIGURE 1 AROUND HERE>

The second message from Figure 1 is the completely aberrant behavior of the

quantiles from the continuous state model (s∗ = ∞). The bias for s∗ is much higher

than for the discrete state models. The effect is stronger the further we move out into

the tails of the default rate distribution. The intuition for this is that the discrete

state models account for the fact that the true DGP only has two different values for

the default rate. The continuous state model, on the other hand, is calibrated partly

by matching the unconditional volatility in the default rate for (s∗ = ∞) model to

that of the true (s = 2) DGP. Given that the volatilities are roughly matched, the

continuous state model has the additional property that the predicted default rate

can increase much further if we move far out into the tails of WT+h. The interesting

feature in Figure 1 is that the potential quantile bias due to this phenomenon already

takes drastic forms for quantiles of 90% and higher.

The magnitude of the biases for the conditional quantile forecasts is illustrated

further in panel A of Table 1. The numbers for the unconditional forecasts shows

very similar results, and are therefore omitted. The bias in the predicted median

default rate is slightly positive for all models. The relative biases for the median in

the discrete state models hover around 0.2%. The continuous state model, however,

reveals a bias of 3.6% for the median. Further out into the tails, the relative biases

for the discrete state models remain modest and below 2% in absolute values. The

relative bias for the continuous state model, on the other hand, rises from 77% for

the 95th percentile to a staggering 149% for the 99th percentile. These percentage

biases tranform directly into percentage biases in economic capital if the loss given
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default is constant across firms.

<INSERT TABLE 1 AROUND HERE>

We now turn to the stability of our results over increasing forecasting horizons

h = 4, 8, 12. The results are reported in Figures 2. The figure not only presents the

average as well as the confidence band of the complete focecasted quantile function.

Since the outcomes are similar for s∗ = 2, 3, 4, we only present the results for s∗ =

s = 2.

<INSERT FIGURE 2 AROUND HERE>

For all time horizons, the median default rate quantile is captured within the

confidence bands. This follows from the fact that the bias at the 50th percentile is

insignificantly different from zero. The biases for other quantiles, however, show a

non-monotonic pattern. Moving from the median to the higher quantiles, the default

rate quantiles are first significantly underestimated. For the very high quantiles, the

bias reduces, but remains significant. This holds for both the unconditional and the

conditional quantile forecasts. The different behavior of the forecasts over quantiles

is important for risk management. It appears that the magnitude of the bias de-

pends on the quantile one is interested in. Typical quantiles for risk management

applications include 95%, 99%, and higher quantiles. At the 95th percentile, the

bias appears close to its maximum and an underestimate of the true risk. For higher

quantiles, this bias is somewhat smaller.

A general conclusion from this part of the study is that overestimating of the

number of regimes has a limited effect on high quantile estimation. Relative biases

are kept below 3% of the true quantile value. The main exception is the continuous

state model, which vastly overestimes high quantiles by up to 130% or more. More-

over, the magnitude of biases varies over the quantile of interest. Biases are small

near the median, increase further out in the tails, and decrease again in the extreme

tails.
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4.2 Too few states

We now turn to the opposite setting. We use a s = 5 dimensional HMM model and

approximate it by s∗ = 2, 3, 5,∞. For s∗ = 2, 3, we thus underestimate the number

of discrete regimes.

Figure 3 shows that all discrete state models underestimate the true quantile

functions. This even holds for the true model s∗ = 5. The models for s∗ = 2, 3

perform worse. The variation in high default rate values for the 2-state model

(s∗ = 2) is apparently insufficient to capture the high annual default rates in the

model with five regimes. This follows also from Table 2. The high default rate in

the 2-state model of 0.69% roughly averages the high default probabilities of 0.53%

and 0.86% in the 5-state model. Especially the high default rate of 0.86% can cause

the 2-state model to significantly underpredict the high default rate quantiles.

The continuous state model again substantially overestimates the high quantiles.

The biases are less than in Figure 1. This is due to the fact that the default rate in

the true DGP also has a higher default rate volatility and, therefore, produces higher

quantiles. The biases, however, appear still too large for practical risk management

purposes. This is underlined further in panel B of Table 1. The percentage errors

in the high quantile forecasts in panel B for s∗ = ∞ are of similar magnitude as

in panel A. It is also clear from the table that the true model s∗ = 5 is the only

one that keeps the biases in the forecast below 2%. Still, the biases for the 2-state

model for the highest quantile computed (−12.45%) are only a fraction of those for

the continuous state model. It is also interesting to see that the model with three

regimes already performs much better than the 2-regime model. This illustrates that

for the empirical data, adding a third regime forms an important improvement for

the empirical validity of the model.

Figure 4 plots the unconditional and conditional quantile forecasts over 4, 8,

and 12 quarter horizons. We again concentrate on the true model s∗ = s = 5.

The general picture is markedly different from that of the 2-regime model, see Fig-
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ure 2. Whereas the bias for the model with two regimes was more or less symmetric

around the median forecast, the 5-regime model shows a clear asymmetry. The un-

conditional quantile’s bias appears to reach its maximum positive value between the

median and the 60th percentile. These biases can only be due to the uncertainty

in the parameter estimation, as the model is correctly specified in the number of

regimes. At the high quantiles, the biases are even larger in absolute terms. This

is especially worrying given the importance of these quantiles for risk management

and capital buffer determination.

If we now turn to the results for the conditional quantile forecasts in the right-

hand column of graphs in Figure 4, we again notice some differences with the previous

results. The resemblance between the unconditional and conditional forecast biases

is less clear than for the model with two regimes. For a horizon of one year (h = 4),

the bias is again more or less (anti)-symmetric around the median. For more than

one-year ahead (h = 8, 12), however, the asymmetry in the bias again becomes

apparent. For h = 8, the confidence band around the forecast of the median includes

zero. For h = 12, this is no longer the case. As expected, all biases increase with

the length of the forecasting horizon h. Also, the main conclusion that the absolute

bias is largest at the high quantiles, remains robust.

The current experiment yields three conclusions. First, empirically congruent

discrete HMM models on average under-estimate high credit risk quantiles. If the

number of regimes is smaller than that of the true DGP, this is caused by an unwar-

ranted averaging of high default rate regimes. If the number of regimes is specified

correctly, the average bias is limited. Only the parameter uncertainty in these mod-

els for typically available sample sizes still causes some difficulties in capturing the

location of high credit quantiles accurately. This problem worsens if we go further

out of sample. Second, the increase in forecast accuracy of adding a regime can be

substantial. In our empirically congruent simulation set-up, for example, the model

with three regimes has much better properties than that with two regimes. Finally,
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the continuous state model still vastly over-estimates high credit risk quantiles, even

if the true DGP has five regimes. To investigate this issue further, we check whether

discrete state models have similar difficulties in approximating a continuous state

model.

4.3 Continuous versus discrete

We now examine how well a discrete HMM model can approximate a continuous

state HMM model. As a benchmark, we estimate the continuous state model (1b)

and (3b) on the empirical data. We obtain the parameter estimates1 a = −5.89,

b = 0.72, Φ = 0.92, and V = 1 − Φ2. These parameters are used to simulate paths

for s = ∞. Each path is used to estimate models of s∗ = 2, 3, 4,∞.

Figure 5 presents the results for the high quantiles [0.90, 1). The recovered quan-

tile function for the true model (s∗ = s = ∞) is quite close to its DGP counterpart,

both for the conditional and unconditinal forecasts. All the discrete models un-

derestimate the high quantiles, though the bias in the unconditional forecasts for

models with 3 or 4 regimes remain negligible up the the 95th percentile. The model

with only two regimes, by contrast, shows a significant negative bias throughout the

range of quantiles displayed.

<INSERT FIGURE 5 AROUND HERE>

The biases in the conditional forecasts are substantially larger than in the un-

conditional ones. The continuous state model can try to adapt to the realized state

variable WT arbitrarily closely if the signal is strong enough. The discrete state

models, however, have to pick their estimate for WT from a discrete set of different

values. Though this discrete set with associated probabilities might provide a rea-

sonable approximation to the unconditional distribution of the continuous state, it

might be much less adequate for fitting a particular realization of WT .

1
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Panel C in Table 1 summarizes the absolute and relative biases. The bias at

the median is smallest for the true model (s∗ = ∞). The models with 3 and 4

regimes have a comparable performance with biases below 3%, followed by the 2-

regime model with a bias at the median of more than 5%. The interesting difference

arises at the higher quantiles. Whereas the biases in the conditional forecasts for

the correctly specified model (s∗ = ∞) remain below 9%, those for the discrete state

models are substantially higher. The 2-state model has biases of 40% up to almost

60%. More important, however, is the performance of the models with 3 and 4

regimes. Their bias ranges from roughly 25% at the 95th percentile, to around 35%

for the 99th percentile. Though these values are substantial, they appear far from

the huge percentage (and absolute) biases of the continuous state model (s∗ = ∞) in

case the true DGP has discrete states, see panels A and B in Table 1. This suggests

that the discrete state models are more robust than the continuous state model for

quantile forecasting. The biases, however, may still be large.

5 Empirical application: U.S. corporate defaults

We now illustrate the different forecasting methods for an empirical data set. The

data for our study come from the CreditPro 7.0. database of Standard & Poor’s.

The time series of interest consist of U.S. corporate defaults between January 1981

and July 2005. We use quarterly observations. The sample period encompasses both

expansions and contractions. This is important, as part of our interest concerns the

difference of conditional default probabilities between economic regimes. In line

with previous empirical work in this area, we define the number of exposures Nt for

each sector as the number of active companies at the start of each quarter minus

the number of withdrawals over the subsequent quarter. A withdrawal is defined as

a company leaving the database for other reasons than default. If a company first

withdraws and later defaults, this is recorded in the database. In such cases, we
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skip the withdrawal event and only account for the default event. In this way, we

mitigate any biases due to strategic default behavior.

We do a recursive out-of-sample forecasting exercise for the last 6 years of our

sample. First, we drop the last 6 years of the sample and estimate a discrete and

a continuous state HMM. The models are used to construct out-of-sample forecasts

of the quantile functions. Next, we add a quarter to the sample and re-iterate the

whole procedure. We use forecast horizons of 1 up to 4 quarters. We do not use the

longer forecast horizons of 8 and 12 quarters as in the simulation section because of

the limited data set.

In order to benchmark our forecasts, we also compute the semi-annual and annual

default rates. Let pt denote the quarterly default rate over quarter t. The the realized

default rate ph
T over period [T, T + h] is computed as

ph
T = 1 −

h
∏

i=1

(1 − pT+i).

The first issue we need to decide on is the dimension of the hidden state space.

Based on the results from Table 3, we pick s = 3 and compare its performance

to that of the continuous state model. We provide no parameter estimates of the

model, as all models are estimated recursively in our forecasting procedure.

<INSERT TABLE 3 AROUND HERE>

The results are reported in Figure 6. We plot the realized default rate, and the

forecasts of the median default rate and the 5th and 95th percentiles. We do so for

the 3-regime and the continuous state model and for horizons h = 1, 2, 4.

<INSERT FIGURE 6 AROUND HERE>

By dropping the last 6 years of the sample, we start the forecasting exercise at a

historically interesting period, namely end of the 1990s. The early 2000s have shown

a historically large and partially unexpected increase in corporate default rates. By
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beginning the recursive forecasting procedure at this point, we are able to see how

quickly the different models pick up with the increase of default rates over the years

2000 and 2001.

For the one-quarter-ahead forecasts, the median forecast appears to follow the

realized default rate quite accurately. It only appears to miss the real surge in

default rates around mid 2001. This appears from the realized default rate bumping

into the 95% quantile around that time. The decrease in default rates around the

end of the sample is also picked up by the 95% quantile, but not as much by the

5% quantile. As a result, the realized default rate (almost) crosses the 5% quantile

here. Overall, the quantile bands remain pretty tight around the median forecast.

They also capture long upward and downward trends in the default rate dynamics,

but are incapable of reproducing short and sudden surges very accurately (spikes

like these get “averaged” out).

Once we move beyond a one step ahead forecast, the accuracy of the discrete

state model worsens. In particular, the forecast starts to lag the realization. This

is a rather common phenomenon in time series forecasting, as the lag between the

forecast and the realized value reflects the smaller amount of data that is at our

disposal at the time the forecast is calculated. Especially during the peak years of

the default crisis (2000, 2001), the model underpredicts the level of default rates.

The 5% and 95 % quantiles vary over time along with the realized rate, although they

are somewhat tight, which results in failure to capture the default rate surge in mid-

2001. The median, on the other hand, picks up only a rough tendency of the realized

process, but does not vary over time the way it should (while the realized default

rate shows a clear dynamic pattern). These phenomena, showing deterioration of

the forecast quality, are visible for h = 2 and become quite prominent for h = 4.

The continuous model reveals a different behavior, both in qualitative and quan-

titative terms. For the h = 1, the dynamics of the forecast closely follow those

of the realizations. The 95% quantile, however, is much larger than that for the
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3-regime model. This is in line with the results from the simulation section. If we

move further out, the mismatch between the forecasts and the realizations increases.

Again, the forecast starts to lag the realization – as mentioned before, this is to be

expected for h-step-ahead forecasts with h > 1. The 95% quantile forecast remains

very large. Moreover, because it also lags the default rate realizations, it results in

quantile forecasts (and therefore credit risk capital requirements) that still increase

considerably, whereas default rates realizations are already decreasing. This clearly

appears undesirable from an applied perspective.

6 Conclusions

In this paper we examine the performance of the Hidden Markov Model of Crowder,

Davis, and Giampieri (2005) applied to predicting a quantile function of the future

default rate. We address the issue of misspecification of the latent state dimension

and show, that the impact on quantile forecasts is economically important. High

quantiles are generally underestimated, and the problem becomes more pronounced

if one uses too low a dimension for the forecasting model compared to the dimension

of the true HMM. The quantile forecast biases also increase with the forecasting

horizon.

We also compare the discrete state HMMs with a continuous state HMM model

as proposed in the recent credit risk literature. The results show that if one uses

the continuous state model to approximate a discrete state HMM, the resulting

quantiles are vastly over-estimated. This obstructs the use of such models in practice,

if in reality we would only have a few different default regimes. Vice versa, the

discrete state models under-estimate high default rate quantiles if the true DGP has

a continuous state. The biases in this latter case, however, are only 20% to 30%

of the reverse bias, i.e., using a continuous state model for a discrete state DGP.

The discrete stae models, therefore, appear to be somewhat more robust. The bias
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of 20% to 30%, however, still seems considerable for practical applications in risk

management.

Our application to the empirical data corroborated our simulation results. The

quantiles of the continuous state models were much larger than those of their discrete

state counterparts. The discrete state models, on the other hand, reveal much more

problems in picking up the dynamic behavior of default rates and produce fairly

constant quantile forecasts, even if default rates vary substantially. The continuous

state model does somewhat better in this respect, but only picks up the dynamics

with a lag. Though this is quite usual in time series analysis, it casts doubts on the

usefulness of these models for practical credit risk management. More research has

to be put into ways to combine the best of both these approaches.
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A Appendix

A.1 EM algorithm

As usual, we start with writing the down the likelihood of an observed sequence of defaults

D = {D1, . . . , DT } along with an associated hidden state sequence W = {W1, . . . , WT }

and macro process X = {X1, . . . , XT }. Define W̃it as an indicator variable taking the

value 1 if Wt = i and 0 otherwise. Sticking to the notation of Section 2, we have the
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log-likelihood

ln pθ(D, W |X) =
s
∑

i=1

W̃it lnπi +
T
∑

t=2

s
∑

i=1

s
∑

j=1

W̃i,t−1W̃j,t ln qij,t−1 (10)

+
T
∑

t=1

[

ln

(

Nt

Dt

)

+
s
∑

i=1

W̃it [Dj lnαi + (Nj − Dj) ln(1 − α + i)]

]

.

Assume that we have obtained some initial estimate θ0 of the model’s parameters. Given

θ0, we can compute so called forward and backward variables (see Rabiner (1989)). In our

case, define

• the probability of a particular number of defaults, given a state of the Markov Chain

and the model parameters,

bj(dt) = P (Dt = dt|Wt = j, X) =

(

Nt

dt

)

αdt

j (1 − αj)
Nt−dt ;

• the probability of the partial observation sequence d1, . . . , dt and state i at time t,

given the model parameters θ,

ᾱj(1) = πjbj(d1) , j = 1, . . . , s ,

ᾱj(t) =

[

s
∑

i=1

ᾱi(t − 1)qij,t

]

bj(dt) , j = 1, . . . , s t = 2, . . . , T ;

• the probability of a partial observation sequence from t + 1 to the end, given state

i at time t and the model parameters,

β̄j(T ) = 1 j = 1, . . . , s ,

β̄i(t) =
s
∑

i=1

qij,tbj(dt+1)β̄t+1(j) , t = T − 1, . . . , 1 i = 1, . . . , s;

• the probability of being in state i at time t, given the observed sequence and model

parameters,

γj(t) =
ᾱj(t)β̄j(t)

∑s
i=1 ᾱi(t)β̄i(t)

, j = 1, . . . , s t = 1, . . . , T ;
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• the probability of the Markov chain being in state i at time t and state j at t + 1,

given the model parameters and the observation sequence,

ξt(i, j) =
ᾱt(i)qij,tbj(dt+1)β̄t+1(j)

∑s
i=1

∑s
j=1 ᾱi(t)qij,tbj(dt+1)β̄j(t + 1)

, i, j = 1, . . . , s t = 1, . . . , T − 1 .

γj(t) =
ᾱt(j)β̄t(j)

ᾱt(1)β̄t(1) + ᾱt(2)β̄t(2)
, j = 1, 2 t = 1,

Let S denote the space of all possible sample paths of the latent process. The E-step

of the algorithm requires computing the expectation

Eθ0
[ln pθ(D, W )|D, X] =

∑

w∈S

ln pθ(D, w|X)pθ0
(D, w|D, X) .

For a fixed sequence of states (sample path) w, we have

pθ(D, w|X) = πw0

T
∏

t=2

qwt−1wt,tbwt
(dt) ,

such that

Eθ0
[ln pθ(D, W )|D, X] =

∑

w∈S

(lnπw0
)pθ0

(D, w|D, X) (11)

+
∑

w∈S

(

T
∑

t=2

ln p(wt−1|wt)

)

pθ0
(D, w|D, X) +

∑

w∈S

(

T
∑

t=2

ln bwt
(dt)

)

pθ0
(D, w|D, X) .

Our objective is to maximize (11) with respect to θ. Since the parameters appear in groups,

we can seek the maximum of each of the three sums in the above display separately. Update

formulas for initial distribution vector are given by π∗
i = γi(1). The second component of

the likelihood contains the time-dependent probabilities Qt,ij . Those are described by the

coefficients Φij and ηij . As the maximum likelihood estimators do not have a closed form

expression, we resort to numerical maximization for this part of the likelihood. If we can

assume, that Qt,ij ≡ Qij (i.e., transition probabilities are constant over time), than the
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update formulas are given by

Q∗
ij =

∑T−1
t=1 ξt(i, j)
∑T−1

t=1 γt(i)
.

Finally, the updates for αi’s are given by:

α∗
i =

∑T
t=2 dtγi(t)

∑T
t=2 Ntγi(t)

.

Hamilton algorithm

Define iteratively for t = 1, . . . , T vectors of prediction probabilities

ξt|t−1 =













Pθ(Wt = 1|Ft−1)

. . .

Pθ(Wt = s|Ft−1)













, where ξ1|0 =













π1

. . .

πs













.

For t = 1, . . . , T it holds that

ξt+1|t =
Q′

t(ξt|t−1 ◦ ηt)

1‘(ξt|t−1 ◦ ηt)
, with ηt =













Pθ(Dt = dt|Wt = 1,Ft−1)

. . .

Pθ(Dt = dt|Wt = s,Ft−1)













,

with 1 denoting a vector of ones, and ◦ denoting an element-by-element multiplication.

As a by-product we obtain filtered probabilities, representing the distribution of the latent

process at time t based on the information available at that time,

ξt|t =
ξt|t−1 ◦ ηt

1′(ξt|t−1 ◦ ηt)
.

Furthermore, we can compute smoothed probabilities, useful for reproducing the evolution

of the hidden state process,

ξt|T =













Pθ(Wt = 1|FT )

. . .

Pθ(Wt = s|FT )













,
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with ξT |T obviously equal to the most recent filtered probability. The probabilities ξt|T

are obtained through a backward recursion

ξt|T = ξt|t ◦
{

Qt

(

ξt+1|T + ξt+1|t

)}

, t = T − 1, . . . , 1 , (12)

where + denotes element-by-element division.
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Figure 1: Bias in quantile functions for a 2-state HMM

This figure plots the average bias in estimated quantiles over 1,000 simulated samples. The DGP
is a bivariate (s = 2) HMM with parameters as given in Table 2. The focus is on the right-tail
of the default rate distribution, i.e., quantiles 90%. . . 100%. The left-hand graph plots the average
(over 1,000 simulated samples) of 100 · (Q̂unc

s∗,h − Qunc
s,h ) for h = 4 quarters ahead as a function

of the quantile. For each simulated sample, Qunc
s∗,h as defined in (9) gives the quantile (based on

2,500 out-of-sample simulations) of the h-step-ahead forecast of the default rate from the HMM
model of dimension s∗. The distribution of the hidden state WT at the time of the forecast is
the unconditional distribution given the true (Q) or estimated (Q̂) parameters. The right-hand

panel plots 100 · (Q̂cond
s∗,h −Qdeg

s,h ). The initial distribution of WT for Q̂cond
s∗,h is given by the smoothed

distribution given the estimated parameters under an s∗-state HMM model. For Qdeg
s,h the true

parameters are used and WT is started from its simulated value.
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Figure 2: Bias in quantile functions for different forecast horizons h

This figure plots the average bias in estimated quantiles over 1,000 simulated samples as a function
of the quantile (horizontal axis). The DGP is a 2-regime HMM. Quantile biases are estimated as
described in the note to Figure 1. The first, second, and third line of plots gives the results for 4, 8,
and 12 quarters ahead, respectively. The left column of graphs plots the bias in the unconditional
quantile functions, whereas the right-hand column gives the results for the conditional quantiles,
where conditional is conditional on the state of the hidden Markov chain. The bands around the
average are obtained by increasing or decreasing the average by 1.96 times the pointwise standard
deviation over the simulations.
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Figure 3: Bias in quantile functions for a 5-state HMM

This figure plots the average bias in estimated quantiles over 1,000 simulated samples. The DGP
is a quinti-variate (s = 5) HMM with parameters as given in Table 2. The focus is on the right-tail
of the default rate distribution. Biases are computes as described in the note to Figure 1.
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Figure 4: Bias in quantile functions for different forecast horizons h

This figure plots the average bias in estimated quantiles over 1,000 simulated samples as a function
of the quantile (horizontal axis). The DGP is a 5-regime HMM. Quantile biases are estimated as
described in the note to Figure 1. The first, second, and third line of plots gives the results for 4, 8,
and 12 quarters ahead, respectively. The left column of graphs plots the bias in the unconditional
quantile functions, whereas the right-hand column gives the results for the conditional quantiles,
where conditional is conditional on the state of the hidden Markov chain. The bands around the
average are obtained by increasing or decreasing the average by 1.96 times the pointwise standard
deviation over the simulations.
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Figure 5: Bias in quantile functions for a continous state HMM

This figure plots the average bias in estimated quantiles over 1,000 simulated samples. The DGP is
a continuous state HMM with parameters as given in Table 2. The focus is on the right-tail of the
default rate distribution, i.e., quantiles 90%. . . 100%. Quantile biases are estimated as described
in the note to Figure 1.
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Figure 6: Empirical forecasts for S&P corporate default data h = 1, 2, 4

This figure plots the h = 1 (top line), h = 2 (middle line), and h = 4 (bottom line) quarter ahead
forecasts of the corporate default rates based on a 3 regime (left column) and a continuous state
(right column) HMM model. We plot the empirical, realized h-quarter default rate, the model
median forecast, and the model forecast of the 5th and 95th percentile.
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Table 1: Absolute and relative biases of conditional quantile forecasts

This table gives the absolute and relative bias of unconditional quantile fore-
casts for a 4-quarters-ahead forecasting horizon. The DGP is an s-regime HMM
with parameters as given in Table 2, where s = ∞ denotes the continuous state
model. Quantile biases are estimated as described in the note to Figure 1. The
numbers are expressed as percentages.

s∗ Absolute bias Relative bias

(100 · (Q̂cond
s∗,4 − Qdeg

s,4 )) (100 · (Q̂cond
s∗,4 /Qdeg

s,4 − 1))
quantile quantile

0.50 0.95 0.97 0.99 0.50 0.95 0.97 0.99

Panel A: s = 2
2 0.00 -0.04 -0.04 -0.03 0.24 -1.74 -1.58 -1.36
3 0.00 -0.05 -0.04 -0.03 0.19 -1.75 -1.53 -1.36
4 0.00 -0.02 -0.02 0.01 0.23 -0.60 -0.07 0.58
∞ 0.55 1.97 2.62 4.18 3.63 76.54 98.46 149.44

Panel B: s = 5
2 -0.04 -0.16 -0.23 -0.37 -2.42 -6.30 -8.53 -12.45
3 -0.01 -0.06 -0.07 -0.12 -0.52 -2.40 -2.71 -4.06
5 -0.01 -0.03 -0.03 -0.04 -0.34 -1.51 -1.37 -1.16
∞ 0.14 2.13 2.71 4.11 9.11 82.25 98.52 135.40

Panel C: s = ∞
2 0.03 -0.64 -0.84 -1.34 5.36 -40.38 -46.16 -56.01
3 0.01 -0.34 -0.46 -0.82 2.47 -21.84 -25.61 -34.61
4 0.01 -0.41 -0.53 -0.89 2.31 -25.76 -29.32 -37.35
∞ 0.11 0.14 0.13 0.09 1.99 8.92 7.46 3.79
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Table 2: Estimates for the Discrete state models, S&P data

This table gives the estimates of the transition matrix P of the hidden Markov chain Wt for the
discrete state model of dimension s∗ = 2, 3, 5 using the S&P database for 1981–2005. The smoothed
probabilities of WT over the different states are in the vector πT . The default probabilities in the
different regimes Wt are denoted by αWt

. All numbers are denoted as percentages. States are
denoted as from state i to state j.

s∗ = 2 s∗ = 3 s∗ = 5
i j = 1 j = 2 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 4 j = 5
1 90.21 9.79 83.38 16.62 0.00 0.12 62.98 36.56 0.35 0.00
2 15.99 84.01 25.47 58.80 15.74 6.32 73.37 20.29 0.02 0.00

Pij 3 0.09 19.27 80.65 1.16 20.77 61.83 16.24 0.00
4 0.06 2.49 25.02 53.68 18.75
5 0.00 0.00 0.00 16.59 83.41

πT 100.00 0.00 100.00 0.00 0.00 0.55 99.45 0.00 0.00 0.00
αWt

0.22 0.69 0.18 0.43 0.82 0.14 0.19 0.31 0.53 0.86

Table 3: Information criteria for empirical data
s∗ lnL AIC BIC
2 -304.81 619.63 632.55
3 -284.97 591.95 620.38
4 -279.63 597.27 646.38
5 -279.30 616.60 691.56
∞ -149.13 304.26 321.18
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