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Abstract 
This paper studies the efficiency impacts of private toll roads in initially untolled networks. 

The analysis allows for capacity and toll choice by private operators, and endogenizes entry 

and therewith the degree of competition, distinguishing and allowing for both parallel and 

serial competition. Two institutional arrangements are considered, namely one in which entry 

is free and one in which it is allowed only after winning an auction in which patronage is to 

be maximized. Both regimes have the second-best zero-profit equilibrium as the end-state of 

the equilibrium sequence of investments. But the auctions regime approaches this end-state 

more rapidly: tolls are set equal to their second-best zero-profit levels immediately, and 

capacity additions for the earlier investments are bigger. When discreteness of capacity is 

relevant and limits the number of investments that can practically be accommodated, the 

auctions regime may therefore still result in a more efficient end-state, with a higher social 

surplus, although the theoretical end-state is the same as under free entry. 
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1. Introduction 

Over the last decades, there has been an increasing interest in private involvement in road 

infrastructure supply. One important reason is that declining government budgets motivate the 

search for alternative funds for financing desired road capacity expansions. In addition, there 

is a rather wide-spread belief that the private sector would be inherently more efficient and 

innovative than their public counterparts, so that private roads may be built and operated at 

lower costs than public ones. Another consideration could be that the public at large may 

accept the imposition of tolls, generally believed to be important in curbing traffic congestion, 

more easily from private than from public operators. 

There are, however, also potential economic hazards in the private supply of road 

capacity. Particularly, private toll-road operators would typically be interested in maximizing 

profit rather than social surplus, and socially optimal first-best pricing cannot be expected 

from them – especially not because the control of a road (section) will usually imply a certain 

degree of market power. The impacts on the private operator’s price setting has been studied, 

for instance, by Edelson (1971); Mills (1981); Mohring (1985); Verhoef, Nijkamp and 

Rietveld (1996); Verhoef and Small (2004); and De Palma and Lindsey (2000). One recurring 

and probably not so surprising conclusion from such studies is that profit-maximizing private 

road operators typically set congestion tolls above the optimal level: the profit-maximizing 

toll not only internalizes marginal external congestion costs, like the efficient toll does, but 

adds to this a monopolistic demand-related mark-up that rises as demand becomes less elastic. 

In addition, even though a profit maximizer has an incentive to offer the socially optimal 

amount of capacity given the prevailing level of demand, overpricing reduces demand, and 

hence the private supply of capacity is generally below the optimal level (for some further 

discussion, see for example Small and Verhoef, 2007). 

Most studies of private road supply take the number of private suppliers as given. 

Usually only one operator is considered, sometimes a duopoly (e.g. as in De Palma and 

Lindsey, 2000), but only seldom more. This may lead to a somewhat pessimistic picture of the 

efficiency of private toll roads: DeVany and Saving (1980) and Engel, Fisher and Galetovic 

(2004) show how profit-maximizing tolls fall as the number of parallel competitors increases, 

approaching the optimal value as firms become infinitesimally small and competition 

becomes perfect. The limited attention for this theoretical benchmark result can probably be 

explained by the fact that perfect competition, with many parallel competitors, seems a rather 

theoretical option, due to the lumpiness of road infrastructure in practice. 

It is not only just the number of competing private road suppliers that determine 

overall efficiency; it is also their distribution over the network. Small and Verhoef (2007, Ch. 

6) illustrate this in a simple example, by studying how tolls and social surplus will vary if a 

road of a given capacity and length is split up and divided over an increasing number of 

symmetric private competitors in two contrasting cases: when they compete in parallel as 

substitutes versus when they compete in series as complements. In accordance with the two 

studies just mentioned, they find that the tolls approach the optimal level, which just 
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internalizes marginal external congestion costs, when the number of parallel competitors 

approaches infinity. Efficiency thus rises with the degree of competition. In contrast, when the 

number of serial competitors increases, so does a road user’s aggregate toll (for using all 

serial road segments), and efficiency then falls with the number of competitors. These 

findings are in accordance with insights that Economides and Salop (1992) provide into the 

efficiency effects of mergers between serial and parallel firms in network markets. When 

looking at competition in network markets, it is therefore important to explicitly consider the 

configuration of the network and the distribution of competitors over that network – and in 

particular to distinguish between serial and parallel competition; i.e., competition between 

substitutes and complements. 

Besides competition, also auctions for the right to operate a toll road can be designed 

so as to improve the overall economic efficiency from private toll roads. Engel, Fisher and 

Galetovic (1996) for example argue how a Net Present Value auction may be used to 

circumvent problems of renegotiation under demand uncertainty. Verhoef (2007) studies how 

the criterion used for selecting the winning bid in an auction can affect the efficiency of the 

resulting equilibrium. The classic criterion of the maximum bid pushes bidders towards the 

monopolistic profit-maximizing toll and capacity, with the associated negative impacts on 

efficiency, and therefore does not seem to be very attractive from the social viewpoint. 

Perhaps surprisingly, when the winning bid is defined as the one that maximizes the use or 

‘patronage’ of the new road, the result will correspond with the second-best zero-profit 

combination of toll and capacity for the new link. And that is the most efficient outcome that 

one could reasonably hope for when there is unpriced congestion elsewhere on the network 

(which is why it is second-best), and no subsidies are granted to private road operators 

bidding competitively (which is why a zero-profit constraint applies). 

Verhoef (2007) derives these results for a first tolled link at an exogenous location in 

an otherwise untolled network. A natural follow-up question, addressed in this paper, is 

whether this ‘patronage auction’ retains its attractive properties in a more generalized setting. 

A first generalization is that also the location of the link to be supplied will now be part of the 

auction, because the franchise will be granted to the bidder that can attract the largest number 

of users to a new link, irrespective of its location in the network. A second generalization is 

that we will now consider a sequence of auctions, each of which can be won by incumbents or 

entrants, so that entry into the network is introduced endogenously when new firms make the 

best bids. There are two natural benchmarks against which we can judge the performance of 

such a sequence of auctions. A first is a free-entry sequence, for which we assume that at each 

stage, a new link is added by the firm who realizes the highest profits from doing so, and who 

sets the profit-maximizing capacity and toll.1 A second one is the sequence where at each 

                                                
1 An anonymous reviewer remarked that this free-entry sequence could therefore also be interpreted as a 
sequence of ‘classic’ bid-maximizing auctions at each stage. It is true that at each stage, the resulting capacity 
addition and toll would be the same for both sequences. But a main difference would be that under competitive 
bid-based auctions, the payment of the bid immediately exhausts the profits, so that a firm would typically run 
into losses after additional parallel capacity is auctioned off at a later moment (this will in fact be illustrated later 
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stage, the socially most desirable link is added, with the second-best optimal capacity and toll. 

Both benchmarks will be considered in this paper. It brings us in the realm of sequential 

modelling of network evolution, a topic that has recently been addressed also by Levinson and 

Yerra (2006) and Zhang and Levinson (2006). 

This paper thus studies the efficiency impacts of private roads in initially unpriced 

(hence public) networks. We allow for capacity and toll choice by private operators, and 

endogenize entry and therewith the degree of competition, allowing for both parallel and 

serial competition. Two institutional arrangements are considered, namely one in which entry 

is free and one in which it is allowed only after winning an auction. A number of simplifying 

assumptions are made for the dual purposes of keeping the analysis manageable and keeping 

the model transparent, so that an economic interpretation of the results is more easily given. 

The main assumptions are the following. The congestion externality forms the only relevant 

market failure. We consider identical road users, and firms that are equipped with identical 

cost functions for providing road capacity. There are neutral economies of scale in road 

construction and the congestion technology exhibits constant returns to scale (i.e., the travel 

time functions are homogeneous of degree zero in traffic volume and capacity). Capacity is a 

continuous variable, but we will address qualitatively the question of how results might 

change when capacity would become discrete, as it is usually thought to be in reality. 

Auctions are perfectly competitive: there are no strategic interactions between bidders during 

the bidding phase and the winner will realize a zero profit from carrying out the bid. 

Evidently, each of these assumptions is debatable empirically, and may thus offer worthwhile 

extensions for further research. The present paper deliberately focuses on this simplified 

environment, in the hope to derive transparent results that are indicative of the main economic 

forces in this type of problem, which will remain relevant also in a more complex setting that 

allows for some of the complications just mentioned. 

The paper is organized as follows. Section 2 introduces the model and the main 

assumptions underlying it, and discusses some analytical backgrounds. Section 3 describes 

the numerical version to be used in this paper. Section 4 contains the simulation results, and 

Section 5 concludes.  

2. Model set-up 

2.1. Network configuration 

We will consider what is probably the simplest possible network configuration that allows us 

to incorporate interactions between both serial and parallel roads in a network. This 

configuration is portrayed in Figure 1. There is a single market for trips between one origin 

(A) and one destination (B). The road ‘corridor’ between these locations consists of two serial 

segments a and b, which are connected through an uncongested crossing X.  

 

                                                                                                                                                   
in Figures 6 and 7). For that reason, we will maintain the terminology and interpretation of a free-entry sequence 
versus a sequence of (patronage) auctions. 



Private roads: auctions and competition in networks 4

 

 

 

 

 

 

Figure 1. The initial network with untolled links on segment a and segment b (upper diagram), and a 

possible later configuration after some links have been added (lower diagram) 

 

Initially, there is only untolled capacity on both segments; these are the ‘initial links’ that will 

be denoted as links a0 and b0. We will study how new links are added to these on both 

segments, under different institutional ‘regimes’. Note that the initial capacities can be set to 

zero without problem, so that absence of initial untolled capacity is just a special case of the 

proposed model. 

Each new link covers either segment a or segment b, and is connected to the same 

crossing X. Because road users consider parallel links to be perfect substitutes, ‘Wardropian’ 

equilibrium conditions apply on both segments individually. This means that the generalized 

price faced by users, to be defined below, must be equalized on all links on a segment that 

carry traffic, and cannot be lower on unused links for that segment (Wardrop, 1952). The 

lower diagram shows a possible network configuration after three links have been added; two 

on segment a and one on b. The dashing in the drawing aims to reflect that one firm has 

become active on both segments, and a second firm only on segment a. The exclusion, by 

assumption, of possible direct roads between A and B serves to maintain the original network 

structure with substitute and complement roads; allowing for more structural changes in the 

network configuration is an interesting generalization for future study. 

 We consider stationary-state congestion and assume that road users are homogeneous. 

Their inverse demand for travelling between A and B is given by the inverse demand function 

D(N), in which N denotes the number of trips per unit of time (or traffic flow). 

The average user cost on a certain link l includes all variable costs incurred by the 

users, including travel time, and depends, through congestion, on the link flow Nl and the link 

capacity Kl. It is denoted cl(Nl,Kl). The generalized price faced by users of a link l, pl(Nl,Kl), is 

equal to the sum of cl(Nl,Kl) and a toll τl (if levied). Every possible route r uses two links, one 

on each segment, so that the number of possible routes is equal to the product of the numbers 

of links on segments a and b. Equilibrium is characterized by the following Wardropian 

conditions: 
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where N is the vector of route flows. Note that a certain link l may carry users from multiple 

routes, so that the generalized price for a link used by route r may depend on more route flows 

than just Nr (but of course not necessarily on all route flows). The composite superscript s,r 

denotes the specific link l that route r has on segment s. With (1) satisfied, the generalized 

prices for all used routes are equalized in equilibrium, and are equal to marginal benefits 

D(N). Because users can freely choose combinations of links from segments a and b, the 

equilibrium conditions (1) imply that on both segments the generalized prices for all used 

links must be equalized. 

 Assuming that the social objective is to maximize social surplus, defined as user 

benefits minus user cost minus capacity cost, we can next find the socially optimal or ‘first-

best’ values of Kl andτl by maximizing, subject to (1): 

∑∑∫ −⋅−=
l

llc

l

llll
N

KCKNcNnnDS )(),(d)( ,

0

 (2) 

where Cc,l is the capacity cost for link l . Because a link flow Nl is the sum of all route flows 

Nr for routes that use that link, and aggregate flow N is the sum of all route flows together, 

objective (2) can be maximized with respect to all route flows to find the short-run optimality 

conditions (these conditions also apply in the long-run optimum, in which capacity is also 

optimized). This produces first-order Kuhn-Tucker conditions that will not be written out, 

because they look very similar to conditions (1). The only difference is that ps,r is replaced by 

mcs,r: the (short-run) marginal user cost on link s,r. Observe that mcl, in turn, is the sum of the 

generalized average cost cl and the marginal external cost mecl = Nl
·∂cl/∂Nl:  
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Because pl = cl + τl, the following tolls will consequently achieve short-run optimality:2 
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These are conventional ‘Pigouvian’ toll expressions, equal to mec, as can be found in nearly 

every transport economics textbook (e.g. Small and Verhoef, 2007). 

 Optimal investment rules are found by optimizing (2) with respect to link capacities 

Kl, which gives: 
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2 Optimal toll vectors need not be unique; in the current network, a constant could for example be added to all 
tolls on segment a and subtracted from all tolls on segment b without changing the equilibrium, so that (4) does 
not hold for any link but the optimum is nevertheless achieved. When demand is not perfectly inelastic, all 
optimal toll schedules produce the same aggregate route tolls, so that the total toll paid (over the full trip) by any 
individual is the same irrespective of which among the possible optimal toll patterns is applied. The toll rule of 
(4) is, of course, the most natural and intuitive among these toll patterns. 
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The economic interpretation of (5) is straightforward: the marginal benefits of capacity 

expansion (the left-hand side), consisting of reduced aggregate user cost, should be equal to 

the marginal cost (the right-hand side). A few relatively straightforward manipulations are 

sufficient to confirm the well-known ‘self-financing’ result of Mohring and Harwitz (1962). 3 

This result implies that when (i) capacity is continuous, (ii) there are neutral economies of 

scale in road construction (i.e., the marginal cost on the right-hand side of (5) is constant), and 

(iii) the congestion technology exhibits constant returns to scale (i.e., the travel time functions 

are homogeneous of degree zero in traffic flow and capacity), the total toll revenues equals 

the total cost of capacity when (4) and (5) are both satisfied for all links. The optimal road 

network is then exactly self-financing: the profits πl on each link l are all zero. This result is 

especially significant in the context of the present paper, because it means that if free entry of 

firms, and competition between them, eventually leads to a zero-profit outcome, this need not 

be inherently inconsistent with a first-best equilibrium. The same holds for a sequence of 

competitive auctions that drives down profits to zero. Nevertheless, because there are many 

possible combinations of tolls and capacities that produce a zero profit, zero profits are of 

course not a sufficient condition for optimality.  

  Throughout this paper, it will be assumed that the above conditions (i)-(iii), 

underlying the exact self-financing result, are satisfied. However, because we will allow for 

the continuing existence of unpriced and congestible initial capacity, the first-best outcome 

will generally be unattainable. The existence of unpriced congestion will for a parallel tolled 

link cause a downward adjustment on second-best tolls compared to Pigouvian tolls, so as to 

reduce congestion spill-overs (e.g., Lévy-Lambert, 1968). In contrast, it typically creates an 

upward bias on the toll on a serial link, which is adjusted in an attempt to also (partially) 

internalize downstream or upstream congestion. As shown in Verhoef (2007), the existence of 

unpriced congestion on parallel or serial links does, however, not affect the second-best 

investment rules for newly added priced capacity. Consequently, the investment rule (5) 

remains valid for a tolled link with unpriced parallel or serial congestion, while the toll rule of 

(4) does not. 

The consequence is that second-best investments and pricing then do not generally 

result in exact self-financing of newly added tolled capacity, simply because this would 

require (4) and (5) to be both satisfied. Equivalently, when free entry or auctions cause long-

run profits on tolled roads to become zero, while unpriced initial capacity remains available, 

the resulting equilibrium cannot be second-best (which has a non-zero profit or loss). At best, 

it would correspond to the ‘second-best zero-profit’ configuration (‘second-best’ because 

there is unpriced congestion elsewhere in the network; ‘zero-profit’ because the new capacity 

                                                
3 The first step is to multiply both sides of (5) by Kl. Because, by Euler’s theorem, –Kl

·∂cl/∂Kl = Nl
·∂cl/∂Nl when 

c is homogenous of degree zero as we assume, the left-hand side of (5) is then equal to total toll revenues. And, 
after the said multiplication by Kl, the right-hand side of (5) gives total capacity cost when the marginal cost of 
capacity ∂Cc,l/∂Kl is constant. Exact self-financing thus applies. The Mohring-Harwitz result is in fact more 
general than this, and states that the degree of self-financing (the ratio of total revenues and total capacity cost) is 
equal to the elasticity of the capital cost function with respect to capacity (see also Small and Verhoef, 2007). 
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is restricted to produce a zero surplus). In our analysis below, we will therefore use both the 

‘first-best’ and the ‘second-best zero-profit’ configuration as benchmarks for assessing the 

performance of the free-entry regime and the auctions regime. 

 

2.2. Game-theoretic set-up in the ‘free-entry regime’ 

Let us next turn to the assumed game-theoretic set-up for the ‘free-entry regime’, for which it 

is assumed that operators are free to add capacity to the network, and are free in setting tolls. 

Before discussing various aspects of this regime in greater detail, it is useful to sketch the 

more general structure. A sequence of two-stage games is considered, where each two-stage 

game defines a ‘round’ in the sequence (the initial equilibrium is ‘round 0’). The second stage 

in such a game involves Bertrand toll competition between road operators. The first stage 

involves capacity choice for a single added link: it is assumed that in each round, only one 

link can be added to the network. Of course there are multiple candidate road operators and 

multiple candidate locations (i.e., segment a or b) for such an added link. For each candidate 

operator-link combination, the described two stage game will be solved, and it is assumed that 

the operator-link combination that implies the highest profit gain for the associated operator is 

the one that will materialize. We then move to the next round; i.e., the next two-stage game. 

Note that there is thus full rationality within each two-stage game, while we assume myopia 

between two-stage games. Let us now turn to the more detailed assumptions and, where 

needed, their justification. 

First, we assume that all firms have access to the same technology, and face the same 

user cost functions cl(Nl,Kl) and capacity cost functions Cc,l. 

Next, to account for the sequential character of network development in reality, we 

choose to consider a sequential game, with only one capacity addition in each round, instead 

of a game where all potential firms simultaneously decide how much capacity to add on 

which segment. The moments at which investments are made are exogenously determined in 

our model. We thus ignore the optimal timing of investments; we do this for simplicity and 

acknowledge it offers an important possible extension of the present model. Exogenous 

timing could be relevant in reality when the government would not allow multiple road 

construction projects to be carried out simultaneously. 

Between capacity additions, the network configuration is given and the firms then 

present play a Nash-Bertrand game when setting their tolls. This means that they set their tolls 

τ so as to maximize their profit π, treating as given any other operators’ tolls, as well as all 

link capacities. Note that this means that a firm operating more than one link sets all his tolls 

simultaneously, so as to maximize his aggregate profit, summed over all his links together. 

 Bertrand toll-setting behaviour of road operators, as assumed here, seems intuitively 

more plausible than a Cournot model, where players would assume that the flows on the 

competitors’ links are fixed. Bertrand competition is therefore common in network models of 

competing operators (e.g., De Palma and Lindsey, 2000; De Borger, Proost and Van Dender, 

2006). Furthermore, Nash behaviour seems a more neutral starting point than having a 

Stackelberg leader on the network, but this is another issue that may warrant further study (for 
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example, Ubbels and Verhoef, 2008, compare Nash versus Stackelberg behaviour in a two-

stage game-theoretic model of two competing governments supplying tolled infrastructure, 

and find that in their model the difference between the two types of competition is much more 

pronounced in the toll stage than in the capacity stage). 

 We now turn to the firm’s behaviour when considering whether or not to invest and 

add capacity to the network. In fact, it is not so straightforward to choose an appropriate 

specification. A strict adherence to Nash behaviour might lead to a model in which it is 

assumed that a firm would not expect other firms to change their tolls in response to its own 

investment – even though the addition will make a non-marginal change to the network. But 

this seems a rather naïve assumption, especially if it is commonly known from earlier 

investments that firms do adjust their tolls when the system moves from the one Nash 

equilibrium to the other. This is why we use the two-stage set-up in each round, which implies 

that a firm realizes that after it will have invested, a new Nash equilibrium in tolls will result. 

Each firm, incumbent or entrant, is assumed to calculate, for both segments of the 

network, for which level of investment the increase in its profits between the current and the 

new Nash equilibrium is maximized. If the firm invests in a certain round, it will then choose 

that segment and that capacity level that produces the highest profit gain. However, only one 

of these candidate investments will be made in each round and we assume that it is the one by 

the firm that has the highest profit gain from investing in that particular round. The motivation 

for this assumption could be that in absence of entry barriers, the firm expecting the largest 

profit would be the most likely one to invest when only one addition can be made. When 

deciding on capacity additions, firms are therefore ‘nearly-myopic’: when investing, they 

optimize by looking no further than the immediate post-investment Nash equilibrium – but 

they do predict this equilibrium correctly. 

 It is important to acknowledge that there is some inconsistency in assuming, on the 

one hand, that the firm realizes that, in the second stage, other forms will change their tolls 

after it has made an investment, and, on the other, assuming that the firm will nevertheless not 

set its toll and capacity on the new link as a Stackelberg leader. There are two reasons for 

accepting this inconsistency. One is that we prefer to leave the consideration of Stackelberg 

behaviour in investing and toll setting for later study, having Nash behaviour as the natural 

benchmark. The second is that it seems equally (or even more) inconsistent to assume that a 

firm behaves as a toll-leader when planning an investment, but next voluntarily moves to the 

role of follower when a next investment is made, by another firm. 

 Finally, note that the assumption of nearly-myopic behaviour, rather than forward 

looking behaviour, is again consistent with Nash behaviour, in the sense that it prevents firms 

in our model from setting capacities strategically – i.e., so as to also affect capacity choice by 

future entrants in the network. But it does leave open a question of ‘regret’. In particular, an 

undesirable property of a predicted equilibrium sequence of entries would be that at some 

moment along the sequence, one of the firms would regret earlier decisions, because it starts 

running into losses. We shall see that this does not occur in our model: profits will never fall 

below zero, which is due to our neutral-scale-economies assumptions. Therefore, although 
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profits will fall over time, there is never a reason to regret having entered the market. 

Moreover, we will see that in the long-run end-point equilibrium, all profits will have fallen to 

zero, so that all firms will have become indifferent with respect to the capacity they chose 

when making their investments. The assumption we make on the sequential process is 

therefore not too harmful, in the sense that it does not lead to persisting different profitability 

levels for individual firms. 

 

2.3. Auctions 

The second regime of interest is the ‘auctions regime’. For this regime, we assume that there 

is a sequence of auctions in which the right to build a single tolled link on either segment a or 

b is granted to the firm that makes the best offer. As in the ‘free-entry regime’, we thus have a 

sequence of equilibria, in successive ‘rounds’, at the beginning of which the network 

configuration is changed because a single link is added on either segment a or b. Following 

Verhoef (2007), we consider ‘patronage-maximizing’ auctions, which in his model reproduce 

the second-best zero-profit outcome. With this auction, the right to build and operate a new 

addition to the network is granted to the firm that offers to carry the highest traffic flow on 

that new piece of capacity. We assume that bidding firms commit to a particular combination 

of capacity and toll, and that these imply a level of patronage for the new capacity which the 

regulator can calculate correctly, and use to determine the winning bid. We also assume that 

neither the toll nor the capacity can be changed when further capacity additions are made to 

the network later on. There is, therefore, no direct toll competition between firms. 

 The patronage-maximizing auction is ‘profit-exhausting’, at least for firms who are not 

yet active in the network: under competitive auctioning, as we will assume to apply, it pushes 

newly entering firms to make an offer that produces a zero profit on the new capacity 

(Verhoef, 2007). It is important to realize that every traveller on the new link carries, as a 

‘generalized’ price, the sum of average user cost and, through zero-profit tolling, average 

capacity cost. When a bid successfully maximizes the use of the link, it must have minimized 

this sum of average user cost and average capacity cost. The auction therefore induces such 

newly entering operators to enter ‘according to the long-run cost function’ as we will call it. 

This means that the post-investment flow on the new link is served against minimized social 

cost. In other words, the first-best investment rule of (5) will apply. Because neutral scale 

economies apply, the accompanying toll that produces zero profits is also the first-best toll, 

given in (4), and its value is independent of the scale of operations. Therefore, the toll level is 

the same as it would be in the long-run first-best optimum, and the capacity is the one that 

minimizes social cost for the post-investment flow level on the link. 

 Because only one right is granted in each ‘round’, the set-up induces firms to again 

behave nearly-myopically, in the sense that they are asked to only maximize the immediate 

post-investment patronage of the new capacity. When further capacity additions follow later 

on, they should keep the toll to which they have committed unchanged, but the resulting 

changes in patronage are not considered to be a violation of their earlier bids. 
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 We again face the question of whether firms may run into losses at a later stage 

because of the capacities they chose and the and tolls they have committed to. Because new 

entrants will always enter according to the long-run cost function, and will do so only when 

demand is large enough to prevent losses from doing so, and because Wardrop equilibrium 

conditions imply that equal tolls on parallel links will lead to equal travel times and hence 

equal flow/capacity ratios on these parallel links, earlier investors need not fear losses as long 

as they have committed to the long-run first-best toll level. 

As explained, new entrants, with no capacity from earlier investments, will indeed 

choose that toll level. But what about a firm that already has capacity on the serial segment? 

Because the firm is committed to the toll set earlier on its serial – say, downstream – link, its 

profit on that downstream link increases when the use of that link increases after an 

investment on the upstream segment raises the equilibrium flow N. As a result, the firm’s 

aggregate profit, over both segments together, may be maximized at a patronage level for the 

new upstream link that exceeds the level consistent with entry according to the long-run cost 

function. This bid would then win from bids according to the long-run cost function, as new 

entrants would make. But it may involve a toll level below the long-run first-best level, and 

will then lead to negative profits after further additions on both segments, by other firms, 

would drive average cost and generalized prices to their long-run first-best levels on the links 

competing with those of the firm under consideration. The firm would then regret its earlier 

toll bid. We assume that firms will not make such bids, and apply a lower bound on the tolls 

they bid that prevent the investment from becoming loss-generating in the future.4 Effectively, 

this means that all capacity additions will be according to the long-run cost function. 

 

2.4. Second-best zero-profit entries 

Finally, we briefly characterize a sequence of link additions that we call the ‘second-best 

zero-profit entries’ sequence. This sequence is a relevant benchmark for judging the auctions 

regime. It involves a sequence of capacity additions that are chosen such that each addition 

has the maximum possible contribution to social surplus, under the constraint that the toll and 

capacity produce a zero profit on the added capacity – at least before any further capacity 

addition is made to the network. This sequence allows us to verify whether Verhoef’s (2007) 

finding that the patronage-maximizing auction produces the second-best zero-profit road for a 

                                                
4 In the numerical analysis below, this assumption is ‘binding’ but has only limited consequences. The lower 
limit becomes binding in round 4, but only if links a1 and a2 would be operated by the same firm. That firm 
would then offer a higher patronage for link b2 than implied by entry according to the long-run cost function, 
namely 132 versus 109, at a slightly lower toll level: 2.761 versus 2.789. In round 5, also an operator with only a 
single link, namely b1, would offer a higher patronage for a3 than implied by entry according to the long-run 
cost function: 77 versus 12, again at a slightly lower toll level: 2.712 versus, again, 2.789. These differences in 
tolls are conceptually significant, as they indicate that the auctions regime and the second-best zero-profit regime 
are not formally identical in terms of their results if we do not add the assumption that firms will not bid tolls 
that will imply losses in a later phase. But the size of the differences is negligible in the present model, especially 
because the auctions sequence is already very close to the end-state.in round 4. 
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first auctioned road, in an exogenously specified network, remains valid for a sequence of 

auctions in a network, which develops in an endogenous manner through these auctions. 

3. A numerical model5 

We will illustrate the relative performance of the three ‘regimes’ of interest by using the 

results from a numerical simulation model. The model is very similar to that used in Verhoef 

(2007), and the discussion in this section closely follows his exposition. The model is rather 

stylized, but still it is calibrated so as to be representative for peak-hour highway congestion. 

The average user cost function cl takes on the well-known BPR (Bureau of Public Roads) 

form (see, for example, Small and Verhoef, 2007): 
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The parameter α represents the value of time, and is set at 7.5 in our model, close to the value 

(in Euros) currently used for official Dutch policy evaluations. The parameter tf represents the 

free-flow travel time, and is set at 0.25 for both segments a and b, implying a total trip length 

of 60 km for a 120 km/hr highway. Finally, β and χ are parameters that are set at 0.15 and 4, 

respectively, which are conventional values for the BPR-function.  

 The units of capacity are chosen such that a conventional traffic lane corresponds to 

Kl=1500. This implies a doubling of travel times at a use level of around 2400 vehicles per 

lane per hour. This is roughly in accordance to the flow at which, empirically, travel times are 

twice their free-flow values for a single highway lane, and the maximum flow on a lane is 

reached (e.g. Small and Verhoef, 2007, Fig. 3.3, p. 74). A maximum flow as such, however, is 

not defined for BPR functions. Note that the BPR function exhibits constant returns to scale in 

congestion technology:  the underlying travel time function is homogeneous of degree zero in 

Nl and Kl. 

 Next, capacity cost is assumed to be proportional with capacity, so as to secure neutral 

scale economies in road construction:  

lllc KKC ⋅= γ)(,  (7) 

The unit price of capacity, γ, is set equal to 3.5 for both segments. Because our unit of time is 

one hour, this parameter reflects the hourly capital costs. To derive a value from empirical 

highway construction cost estimates, we have to make an assumption on whether the model 

aims to represent stationary traffic conditions throughout a day, or during peak hours only. 

Our parameterization concerns the latter. The value of 3.5 was derived by dividing the 

estimated average yearly capital cost of one highway lane kilometre in The Netherlands (€ 0.2 

million)6 by 1100 (220 working days times 5 peak hours per working day; assuming two 

                                                
5 The exposition in this section draws heavily from Verhoef (2007). 
6 With an infinitely-lived highway, without maintenance and an interest rate of 4%, this implies investment costs 
of € 5 mln per lane-km, or € 8 mln per lane-mile. This order of magnitude is reasonably in accordance with 
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peaks), and next by 1500 (the number of units of capacity corresponding with a standard 

highway lane), and finally multiplying by 30 (the number of kilometres corresponding with a 

free-flow travel time of 15 minutes). Only welfare effects in peak hours are therefore 

considered in our model, and it is assumed that off-peak travel is so modest that both the 

optimal off-peak toll and the marginal benefits of capacity expansion would be negligible. To 

maintain consistency, no relevant welfare effects are assumed to arise outside the peak, and 

therefore also no toll revenues are supposed to be raised. 

 Because firms are assumed to have access to the same technology, the cost functions 

of (6) and (7) apply, with equal parameters, to all firms – incumbents and entrants. 

 Finally, it is assumed that a linear inverse demand function applies:  

NND ⋅−= 10)( δδ  (8) 

We choose δ0 = 61.27 and δ1 = 0.01167, together with initial capacities Ka0 = Kb0 = 1500, to 

obtain a sufficiently congested benchmark equilibrium, that allows a reasonable number of 

further capacity additions in a sequence of investments. The initial equilibrium road use of N 

= 3500 causes equilibrium travel time t to be around 5.4 times the free-flow travel time tf, 

which is high but empirically not unreasonable (it corresponds to a speed of around 22 km/hr 

for a 120 km/hr road). The equilibrium demand elasticity ε is equal to –0.5 in the initial 

equilibrium, while it will be equal to –0.21 in the second-best zero-profit outcome. Averaging 

over the extremes of the range of use levels considered in our analysis, we therefore find a 

reasonable –0.35. 

 Table 1 provides the values of some of the model’s key variables in a few benchmark 

equilibria. First, as a matter of notation, note that in Table 1 we use a slightly different double 

index to distinguish links than before, the first character (a or b) still indicates the segment, 

but now the second character identifies the individual link on that segment. A single index a 

or b refers to aggregates for a segment, summed over all its links.  

 The ‘base equilibrium’, in the first column, is as described above. Because no tolls are 

charged, the operator’s profits π on both segments are negative, reflecting the capacity cost of 

the initial capacity. The generalized price in the ‘first-best’ optimum is nearly 50% lower, 

despite the imposition of a toll. This is a consequence of the capacity expansion, which is in 

relative terms substantially bigger than the increase in traffic flow. As anticipated, both 

segments have a zero profit in the first-best optimum. 

 Next, the ‘second-best’ equilibrium, in which the initial capacity remains unpriced but 

the new capacity is tolled, has a remarkably high social surplus. The relative efficiency 

indicator ω, defined as the increase in social surplus compared to the base equilibrium, 

relative to the increase obtained through first-best pricing and capacity, amounts to 0.97. This 

is due to the fact that the initial capacity is very low, so that the expansion of capacity brings 

                                                                                                                                                   
figures that Litman (2006) presents for the US. He quotes diverging estimates that suggest that the median 
investment cost per lane mile would be in the range of $ 5 – 10 mln; more than a third exceeds $ 10 mln. 
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substantial net benefits. Because the second-best toll is below the marginal external cost on 

the new capacity, a deficit now results. 

 

 

 

 Base 
equilibrium 

First-best Second-best Second-best 
zero-profits 

Maximum 
added 

capacity 
(zero-profits) 

S 60 983 109 466 108 204 98 966 92 133 

ω 0 1 0.974 0.783 0.643 

πa0, πb0 –5 250 0 –5 250 –5 250 –5 250 

πa1, πb1 – – –7 382 0 0 

πa, πb –5 250 0 –12 632 –5 250 –5 250 

Ka0, Kb0 1 500 3 452 1 500 1 500 1 500 

Ka1, Kb1 – – 2 234 1 209 1 456 

Ka, Kb 1 500 3 452 3 734 2 709 2 956 

τa0, τb0 0 2.789 0 0 0 

τa1, τb1 – – 0.156 2.789 4.145 

ca0, cb0 10.212 2.572 2.728 5.362 6.163 

ca1, cb1 – – 2.572 2.572 2.018 

D = p 20.424 10.723 5.456 10.723 12.326 

Na0, Nb0 3 500 4 331 1 979 2 815 2 964 

Na1, Nb1 – – 2 803 1 517 1 230 

Na, Nb, N 3 500 4 331 4 783 4 331 4 194 
Note: Due to the assumed symmetry, equilibrium values for segments a and b are equal for all relevant 

variables, and are therefore shown in a single row. 

Table 1. Key characteristics of some benchmark equilibria 

 

Imposing a zero-profit condition, as in the ‘second-best zero-profits’ policy,7 avoids such a 

deficit, but at the expense of a lower relative efficiency (ω = 0.783), and by setting a higher 

toll. In fact, the numerical value of the toll τ, as well as the flow/capacity ratio and therewith 

the average user cost c, are equal to their first-best counterparts. The intuition is that, under 

the constraint that the new capacity be self-financing, the best thing to do is to set capacity at 

a level that implies the minimization of average social cost (user cost and capacity cost 

combined). Equilibrium route choice behaviour implies that this also minimizes the average 

                                                
7 It is perhaps important to note the difference between the ‘second-best zero-profits entries’ regime introduced 
in the previous section, and the ‘second-best zero-profits’ benchmark discussed here. The former imposes a zero-
profit constraint on newly added capacity on one of the two segments a or b, keeping capacity at the other 
segment fixed. This leads to a sequence of capacity additions – alternately on segments a and b, as we will see 
shortly.  The ‘second-best zero-profits’ benchmark equilibrium in Table 1, in contrast, allows for a simultaneous 
optimization of newly added (tolled) capacities on both segments. After optimization, there is of course no scope 
for further zero-profit capacity additions, so this benchmark involves a single static equilibrium, not a sequence. 
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user cost on the initial capacity, given that new capacity should be self-financing. Therefore, 

the sum of the average costs that can be affected (all social cost components except capital 

cost of the initial capacity) is minimized, and because the generalized price faced by travellers 

is equal to the resulting average cost level, the social surplus is maximized. In this 

equilibrium, we are therefore adding new capacity according to the long-run cost function – 

using a social cost-minimizing ratio of traffic flow and capacity, and a toll and a generalized 

price that would also apply in the long-run first-best optimum. 

 The final benchmark involves ‘maximum added capacity (zero-profits)’, where again 

the initial capacity is assumed to remain untolled. This equilibrium is included because it 

identifies the maximum level of new capacity that one could expect when a zero-profit 

constraint applies, either because profit-exhausting auctions are used or because free entry of 

road operators continues until profits are exhausted. In this equilibrium, relative efficiency ω 

is, not surprisingly, below the level under ‘second-best zero-profits’: 0.643. The toll τ on the 

tolled capacity, as well as the generalized price, exceeds the first-best level because we are no 

longer operating along the long-run cost function. 

 The values presented in Table 1 are the relevant benchmarks against which to assess 

the values of key variables at various stages during the three regimes of interest, ‘free entry’, 

‘auctions’ and ‘second-best zero-profit entries’. This is what we will do in the next section. 

4. Simulation results 

4.1. Patterns of entry and network growth 

A first property of interest of the three regimes concerns the pattern of entries, which is 

characterized not only by the specific order of additions to segments a and b, respectively, but 

also by the identity of the firm that makes the investment. For the free-entry regime in our 

numerical model, we find a very regular pattern of entries, where in every odd ‘round’ a new 

firm enters on segment a, while in the even round that follows, an addition to segment b is 

made by that same firm (given the assumed symmetry in the network we can, without loss of 

generality, assign the label a to the segment to which the first firm makes the first addition). 

Although this pattern is not the only possible equilibrium sequence under free entry,8 

there is a good economic intuition for why it should be a plausible pattern. After the first 

investment on segment a, by a firm that we will refer to as firm I (firms will be numbered 

consecutively by roman numbers in order of entry), it is plausible that segment b is more 

attractive to enter for a new entrant (firm II) than segment a, because there will be less 

competition and a smaller aggregate capacity on segment b than on a. It is also immediately 

clear that segment b must be more attractive than segment a for firm I: we do not expect a 

possible profitable investment on segment a for firm I if it already optimized the toll and 

capacity of its added capacity on segment a in round 1. Finally, the incumbent firm I will 

enjoy a higher profit increase from adding capacity to segment b than a new entrant does, 

                                                
8 For a different parameterization of the numerical model, we for example found three successive entries by the 
first firm entering, on segments a, b and then again a. 
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because firm I can maximize the joint profits on both segments, while a new entrant II will 

end up in a situation of serial competition with the incumbent I. Therefore, in round 2, it is 

plausible that firm I should add capacity to segment b. 

Next, when firm I optimizes its link on segment b in round 2, the capacity on segment 

a is larger than was the capacity on segment b when that same firm I optimized its first 

investment, on segment a. As a result, it is likely that it chooses a larger capacity for its link 

on segment b in round 2, than for its link on segment a in round 1. A potential new entrant 

will, in round 3, therefore find segment a more attractive to enter than segment b. But also the 

incumbent firm I would prefer investing on segment a over segment b in round 3, as it has 

just optimized its link on segment b. The question therefore is this: will a new entrant II 

foresee greater profits from investing in segment a than the profit increase expected by the 

incumbent firm I? This cannot be said with certainty. The incumbent firm has the advantage 

that it can avoid competition between links on segment a, so it is likely to end up with higher 

tolls. But the incumbent firm has the disadvantage that new capacity will reduce demand for 

its earlier capacity on segment a. It imposes, as it were, a pecuniary externality upon the 

profitability of its own earlier capacity. The incumbent firm will take into account the implied 

fall in profits on its earlier capacity, a loss that a new entrant will not face. Depending on 

which of these two effects dominate, it may be the incumbent or a new entrant who invests on 

segment a in round 3. In our numerical model, it is the new entrant, whom we will refer to as 

firm II. 

Finally, in round 4, there are six possible entries to consider: the incumbent firms I and 

II and a new entrant may each add capacity to segments a or b. Because the aggregate 

capacity is now larger on segment a while the tolls are lower, each of these firms would prefer 

an investment on segment b. The comparison between the profit gains for firms I and II 

involves the same trade-off as just described for round 3, and also for round 4 it results in a 

net advantage for firm II in our numerical model. The comparison between firm II and a new 

entrant, firm III, involves the same trade-off as described above for round 2, and again it 

results in a net advantage for firm II. Firm II therefore invests in segment b in round 4. 

This pattern of new firms entering on segment a in an odd round and, after that, on 

segment b in the succeeding even round, is maintained in our numerical model as far as we 

have tested it (4 firms; 8 rounds). As stated, this pattern is not the only possible equilibrium 

sequence, but it is a likely pattern because of the considerations and trade-offs sketched 

above. Because it results in a configuration with parallel competition on both segments, it 

suggests that the inefficient pattern of serial monopolists studied by Small and Verhoef 

(2007), with a single monopolist on each serial segment, will not easily arise spontaneously, 

in its pure form, as the outcome of free entry of road providers. At the same time, because 

road users can switch between road providers at the intersection halfway the two segments in 

our model, an operator that sets its toll on the one segment is likely to consider the tolls on 

most of the links on the other segment as given. So it remains to be seen whether the resulting 

tolls tend towards the competitive level, as suggested by the degree of parallel competition on 
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both segments individually, or to a higher level, as suggested by the persisting pattern of 

serial competition between segments. We will, of course, turn to this question shortly. 

But first we will discuss the pattern of network formation under a sequence of 

auctions. This pattern appears to be identical to the one just described (although the capacities 

and tolls will be different): there are alternate additions to segments a and b (again, we can 

freely label the segment of the first addition as segment a). As discussed in Section 2.3, the 

patronage-maximizing auction forces bidders to operate with zero profits along the long-run 

cost function. After a winning bid has been implemented on, for example, segment a, it is 

therefore impossible to make a further expansion on that segment without running into losses. 

Hence, if a next bid is made, it must be on segment b. And because the expansion just made 

on segment a raises demand, it will generally be possible to make such a bid, involving a 

positive patronage and capacity. The sequence will thus have alternating additions to 

segments a and b. 

An important difference with the free-entry regime is that, under the auctions regime, 

the identity of the firms entering is immaterial. The reason is that the bidders set tolls 

according to the long-run cost function (at a level of 2.789 in our numerical model; see Table 

1), and are restricted to remain committed to these toll levels also after further additions are 

made to the network. 

 And, finally, the same pattern of entries and network formation will arise under the 

‘second-best zero-profit entries’ regime. The intuition is now even simpler. After having 

optimized the capacity and toll for a new addition on segment a, it is by definition not 

possible to have a further improvement in social surpluses by revising the capacity on 

segment a once more. So if there is scope for improvement, it must be on segment b. And 

exactly because the capacities and tolls for both segments are not optimized simultaneously, a 

sequence will be produced in which there is scope for improvement on the one segment after 

an increase in capacity on the other segment has induced an increase in demand over the full 

corridor.  

 

4.2. Development of capacities and tolls 

Although the pattern of network development is identical for the three regimes considered, the 

capacities and tolls involved may of course be different. This is illustrated in Figures 2 and 3, 

which show, for the various regimes and for the two segments a and b separately, the 

development over rounds of aggregate capacity (summed over a segment) and average toll 

(that is, averaged for tolled users only, so ignoring users on the untolled initial capacity). The 

diagrams use two benchmarks: the base equilibrium and the second-best zero-profit 

equilibrium, both described in Table 1 – where the latter is of course to be distinguished 

clearly from the sequence shown as the second-best zero-profit regime. 

 Figures 2 and 3 reveal a number of interesting properties of the different regimes. 

First, it can be noted that the auctions regime and the second-best zero-profits regime produce 

identical results. This is not too surprising once it is recognized that both induce entries with 

tolls set according to the long-run cost function, and the capacity maximized under a zero-
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profit constraint. We can thus confirm that Verhoef’s (2007) finding that the patronage-

maximizing auction produces the second-best zero-profit road for a first auctioned road, on an 

exogenously determined location in an exogenously specified network, remains valid for a 

sequence of auctions in a network, which develops in an endogenous manner through these 

auctions. (But it should be recalled that this would change, albeit in a numerically modest 

way, if we would allow firms to make toll bids that imply structural losses later on.) 
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Figure 2. The development of aggregate capacity per segment over time under various regimes 

 

 Second, both the auctions regime and the free-entry regime appear to approach the 

second-best zero-profits equilibrium more closely as the network develops further. For the 

auctions regime, this is less surprising as it induces a sequence of additions that are all 

according to the long-run cost function – which the second-best zero-profits equilibrium does 

in one shot for both segments jointly. For free entry, the beneficial impacts of increased 

parallel competition apparently outweigh the potential caveat that serial competition remains 

in existence. The reason is that new firms will remain entering a segment as long as the 

generalized price is above the long-run optimal level. A combination of capacity and toll that 

brings the flow capacity ratio on the new link equal to the optimal level, and the generalized 

price to the level provided by the parallel competitors, would then produce a profit – and 

would therefore induce entry – until the long-run optimal generalized price level is achieved. 

 Third, Figure 2 shows that although both sequences have investments that for both 

segments become smaller over successive rounds, the initial steps are bigger for the auctions 

regime. That regime also approaches the second-best zero-profit toll level much more rapidly; 
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that is, already from the first capacity addition onwards. For the free-entry regime, the average 

toll approaches that level only gradually. Note that this decline in tolls is not monotonous: the 

average toll drops on a segment in a round in which a new firm enters that segment, due to 

increased competition and to increased aggregate capacity, but it rises when an investment is 

made on the other segment, due to the induced increase in demand. 
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Note: data points for the second-best zero-profits regime and the auctions regime overlap perfectly 

Figure 3. The development of the weighted average toll (for tolled users) per segment over time under 

various regimes 

 

4.3. Development of social surplus 

Given that tolls take on the second-best zero-profit levels immediately, and capacities 

approach those levels more rapidly, it should be no surprise that social surplus rises more 

rapidly under the auctions regime than with free-entry. Figure 4 shows this by comparing the 

relative efficiency for both regimes. One possible conclusion from the diagram is that there is 

actually no need to interfere in entries into the market through the auctioning of concessions, 

because a process of free entry leads to the same final end-state, namely the second-best zero-

profit state. Quite a different conclusion would be that such auctioning in fact is desirable, 

since the free-entry regime gets sufficiently close to this second-best zero-profit equilibrium 

only after a sufficient number of competing firms have entered the market, each with 

relatively small capacities, which might be unrealistic in reality if discreteness of capacity is 

an issue. It is illustrative that the surplus level achieved already in round 2 with auctions, is 

under free entry not reached until three firms have entered on both segments in six rounds. 

Similarly, the welfare gains achieved after two rounds with free entry are only around half of 
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those realized through auctions. These results suggest that the equivalence in the theoretical 

end-states should not be over-emphasized, and that there may still be a convincing case for 

preferring auctions over free entry. 
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Figure 4. The development of the relative efficiencyω under various regimes 

 

One might wonder whether it is possible to speed up the increase in welfare in the free-entry 

regime by regulating entry, by assigning the right to enter in a round to a specific firm on a 

specific segment, leaving the capacity and toll at the discretion of the firm. This might offer a 

second-best instrument that could raise welfare during this regime. It turns out that in the 

present network, there is no scope for raising welfare this way. In every round studied it 

appeared that the specific investment that implies the highest possible profit gain for the 

investor (i.e., the highest gain among those from the 2·F+2 possible investments when F firms 

are present in the network) is also the investment that leads to the highest gain in social 

surplus – given that the potential investors themselves choose their tolls and capacities. This 

is illustrated in Figure 5, which shows for rounds 2 to 8 the 2·F+2 combinations of the change 

in profit for the potential investor (along the horizontal axis), and the implied change in social 

surplus. In each round shown, the combination with the highest profit gain also has the 

highest social surplus gain, and the rank correlation is nearly perfect.9 

 

                                                
9 It is striking how, in Figure 5, the relation between the gain in profits for the investor and the gain in social 
surplus appears to be rather stable across rounds. It is not hard to imagine the course of a well-fitted square root 
type of function for the pooled observations; it is less easy to come up with an explanation for this closeness. 
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Figure 5. Profit gain by social surplus gain in rounds 2 – 8 

 

Again there is a good economic intuition for this result. Investments are especially profitable 

on a segment that has a relatively limited number of competitors, and therefore relatively high 

tolls, and a relatively low aggregate capacity, and therefore a relatively high potential for 

further growth in demand. Both factors would cause another investment to be also desirable 

from the social perspective, because increased competition will drive down tolls towards 

socially more desirable levels, and because the investment implies extra capacity, which is 

socially desirable as long as profits are positive. Furthermore, each firm’s attempt to reduce 

serial competition by having capacity on both segments also contributes to social welfare in 

the sense that it avoids ‘pure’ serial competition as considered in the model of Small and 

Verhoef (2007), where each segment is controlled by a different single operator. 

 

4.4. Development of profitability 

Finally, we discuss how profitability of road operations evolves over time. It is instructive to 

distinguish between profitability at the level of segments, and at the level of firms. 

 Figure 6 shows the development of aggregate profitability for both segments under the 

various regimes (on added, tolled capacity only, so ignoring the cost of initial capacity). For 

the free-entry regime, the patterns show how, after the first firm I has invested, every 

following entry reduces aggregate profits for the segment on which the investment is made 

due to increased competition, while it raises profits on the other segment due to increased 

equilibrium demand. The trend towards zero profits on tolled capacity is clearly visible, 

although, in accordance with the toll levels depicted in Figure 3 above, profits are still 

positive with four firms present.  
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Figure 6. The development of aggregate profits per segment under various regimes 

 

Perhaps surprisingly, also under the auctions regime – which of course again coincides with 

the second-best zero-profit regime in Figure 6 – profits are temporarily made, although each 

investment yields zero profits in the round it is implemented. These profits result from the 

interactions between the two segments: a new investment in round i that produces zero profits 

upon completion will become profitable after the capacity on the other segment, and hence 

overall equilibrium demand, is increased in round i+1. 10 

 Figure 7 shows profits by firm in the free-entry regime. For each firm, aggregate 

profits increase with an own – voluntary – investment, and decrease as other firms add 

capacity. Not surprisingly, the earlier the firm enters, the higher will its temporary profits be. 

As the network expands, profits evaporate. The negative impact of later entries upon a firm’s 

profits creates another problem for more traditional bid-based auctions, where the concession 

is given to the firm that makes the highest bid. A myopic firm would bid the net present value 

of profits ignoring later entries, and would therefore suffer losses as soon as further additions 

to the network are made. But even if the firm is more forward-looking, the bid it can make 

will depend crucially on the assumptions it makes on the time lags between future auctions, 

something that may be hard to predict also for the regulator. This adds to the more 

                                                
10 It is exactly this mechanism that might induce a firm with capacity on the one segment to bid a toll below the 
long-run first-best level for capacity on the other segment: this may maximize the firm’s temporary joint profits 
over both segments together, at the expense of future losses. We discussed this possibility in Section 2.3, and 
explained it is numerically insignificant in the present network. 
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fundamental problem with bid-based auctions already identified in Verhoef (2007), namely 

that it urges a firm to choose the profit-maximizing combination of capacity and toll, rather 

then the welfare-maximizing levels. 
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Figure 7. The development of aggregate profits per firm in the free-entry regime 

5. Conclusions 
This paper studied the efficiency impacts of private toll roads in initially untolled networks. 

The analysis allowed for capacity and toll choice by private operators, and endogenized entry 

and therewith the degree of competition, distinguishing and allowing for both parallel and 

serial competition. Two institutional arrangements were considered, namely one in which 

entry is free and one in which it is allowed only after winning an auction. Investments were 

assumed to be made sequentially. With free entry, the firm expecting the highest profits 

enters, and with auctions a concession is granted to the firm that promises to carry the highest 

traffic flow. The following results stand out. 

 First, the existence of serial competition does not alter the conclusion obtained by 

DeVany and Saving (1980) and Engel, Fisher and Galetovic (2004) in the context of parallel 

competition, namely that entry of more firms drives tolls closer towards socially optimal 

levels. This is true despite the potentially negative effects that increased serial competition 

might have on the efficiency of pricing (Verhoef and Small, 2007). The reason is that, with 

endogenous entries, firms will be ordered over the network such that they occupy capacity on 

different (serial) segments, and this minimizes the excessive-pricing problem that may 

otherwise characterize network markets with serial competition, identified by Economides 

and Salop (1992). During the process of entries, neither the size of investments nor the tolls 
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are chosen optimally from the social perspective, but capacity ‘deficits’ will be filled up when 

later investments are made by other firms, and tolls will be driven down under increased 

competition. 

 Second, both sequences considered – the free-entry regime and the auctions regime – 

have the second-best zero-profit equilibrium as the end-state of the equilibrium sequence of 

investments. But the auctions regime approaches this end-state more rapidly: tolls are set 

equal to their second-best zero-profit levels immediately, and capacity additions in the earlier 

rounds are bigger. When discreteness of capacity is relevant and limits the number of 

investments that can practically be accommodated, the auctions regime may therefore result in 

a more efficient end-state, with a higher social surplus, although the theoretical end-state is 

the same as under free entry. Consistent with findings for the single patronage-maximizing 

auction in Verhoef (2007), in each round of the auctions sequence are firms pushed towards 

bids that imply investment and tolling according to the long-run cost function. 

 Obviously, the model is still rather abstract, and various important extensions can be 

envisaged. We name a few, and will also hypothesize whether relaxation of the associated 

assumption is likely to change this paper’s main conclusions. 

First, we considered a rather simple network structure, and also did not allow firms to 

make fundamental changes to this structure, e.g. by adding a direct link between the origin 

and destination. It would be interesting to consider more general networks in future work. 

Will this make any fundamental change to the results? The most fundamental change 

considered in this paper compared to earlier studies with free entry, namely the inclusion of 

serial competition besides parallel competition, did not undermine the efficiency of free entry 

– contrary to what one might have expected. And also the efficiency of auctions was not 

affected by having parallel and serial links auctioned. Of course, as also demonstrated in 

Verhoef (2007), when a bigger network allows us to develop a Braess paradox, things may 

change drastically. But besides such cases it is not clear why a bigger network would affect 

the conclusions fundamentally – although this question of course needs to be investigated 

formally. The main arguments underlying the efficiency of free entry and of auctions, as 

discussed above, seem to remain relevant also in bigger networks. 

Secondly, there is the issue of the timing of investments. Especially in the free-entry 

regime, this may lead to a complicated dynamic game, where firms not only decide on where 

to invest and by how much, but also on when to do so. Developing the analytical framework 

to describe this properly seems a big challenge, even when demand functions are assumed to 

be stable over time. But will it change the main conclusions? Perhaps not. The prospect of 

potential profits for new firms, that exists as long as equilibrium tolls exceed the second-best 

zero-profit level, will induce entry whether or not that entry is optimally timed or not. In other 

words, although the outcomes along the free-entry sequence are likely to be different with 

endogenous timing of investments, the endpoint is likely to be the same. The same can be 

expected for the auctions regime. 

Third, nearly-myopic behaviour when deciding on the size of investments could be 

replaced by a less naïve formation of expectations. Again it is likely that the outcomes along 
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the free-entry sequence will change, but questionable whether the endpoint will be different. 

A configuration with positive profits is unlikely to be a stable endpoint, so also then can one 

expect entry to make the system converge to the second-best zero-profit equilibrium. 

Fourth, we ignored that in reality, the government may be under pressure to add 

capacity itself at some point in a sequence of additions, particularly if either tolls seem 

excessive or congestion is severe. The paper did make clear, however, that a sufficiently 

patient government has a good reason not to do so, since these are the conditions under which 

also private investments are more likely. 

Fifth, the links in our model were identical in terms of length. For an asymmetric 

network, patronage may have to be weighted with link length in the auction. For free-entry, a 

relatively short link with a relatively large flow may be particularly attractive when capacity 

expansion costs are relatively low. Asymmetries therefore pose interesting questions for 

further development of the ideas presented above. 

Of course, it is not difficult to mention some further extensions that may affect the 

main conclusions. These include the consideration of heterogeneous users, making product 

differentiation between parallel operators a likely outcome; the consideration of demand 

uncertainty; the existence of strategic interactions and market power during auctions; and the 

replacement of Nash behaviour by Stackelberg leadership in the toll and/or capacity stages of 

the free-entry game. Future research should inform us of how strongly such changes would 

affect the model’s main conclusions. 
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