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Abstract

This paper analyzes adjustments in the Dutch retail gasoline prices. We estimate an

error correction model on changes in the daily retail price for gasoline (taxes excluded)

for the period 1996-2004 taking care of volatility clustering by estimating an EGARCH

model. It turns out the volatility process is asymmetrical: an unexpected increase in

the producer price has a larger effect on the variance of the producer price than an

unexpected decrease.

We do not find strong evidence for amount asymmetry. However, there is a faster

reaction to upward changes in spot prices than to downward changes in spot prices.

This implies timing or pattern asymmetry. This asymmetry starts three days after

the change in the spot price and lasts for four days.
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1 Introduction

Starting by Bacon (1991), numerous studies have examined whether retail gasoline prices

respond more quickly to upstream price increases than to decreases; see the overview in

Bettendorf et al. (2003) or Eckert and West (2004). The findings on asymmetric price

adjustments have been mixed. Estimations in most of these studies are based on weekly

or even monthly data, whereas in reality gasoline prices are often adjusted more than

once a week.1 Recent contributions have started to use high frequency data, showing

that analyzing low frequency data might lead to an improper understanding of the pricing

process when upstream prices are volatile.

Bettendorf et al. (2003) demonstrate that the findings on asymmetric pricing depend on

the choice of the day for which weekly changes are calculated. Our paper extends their

analysis by exploring the linkage between daily retail gasoline prices and spot prices for the

Netherlands. Price changes on this highly concentrated retail market are initiated by the

market leader, which are normally followed by the other firms. Since calm and turbulent

periods of price changes seem to be clustered in time, Ordinary Least Squares (OLS)

estimation of an ECM results in loss of statistical efficiency. An asymmetrical EGARCH

model2 (Nelson, 1991) is therefore estimated to accommodate for volatility clustering and

for asymmetry in the volatility process. We find that retail prices respond more quickly

to cost increases than to decreases. Unlike some recent contributions, this paper does not

aim to identify the source of the asymmetry.

1For instance, the retail price in the Netherlands was adjusted two and three times a week during 22
and 3 weeks in 2004, respectively.

2EGARCH is short for Exponential Generalized AutoRegressive Conditional Heteroskedasticity. The
GARCH process is a popular stochastic process which has been fairly successful in modeling financial time
series (Engle, 2004).
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The paper is structured as follows. The next section summarizes the existing asymmetry

studies that use daily data. Section 3 describes the Dutch retail market for gasoline. After

the data are presented in Section 4, the model is introduced in Section 5. The estimation

results of the ECM are discussed in Section 6. Findings are summarized in the last section.

2 Literature

With the growing availability of detailed time series on gasoline markets and the advances

in high-frequency econometric analysis, several studies have recently tested the asymme-

try hypothesis with daily observations.3 First, Bachmeier and Griffin (2003) question the

robustness of the results of Borenstein et al. (1997). The latter study estimates a con-

ventional ECM with weekly US data and finds an asymmetric response of gasoline spot

prices to crude oil price changes. In contrast, Bachmeier and Griffin show that symmetry

cannot be rejected when a similar specification is estimated with daily data.

Davis and Hamilton (2004) investigate the linkage between daily spot and wholesale gaso-

line prices set by 9 firms active in Philadelphia. They compare three types of models in

estimating the probability of a price change. Following the Dixit menu-cost model, the

gap between the current and the target price should be the dominant determinant in the

pricing decision. Estimation of the derived specification results in implausible parameter

values. Besides, this model is not consistent with the asymmetric response to positive and

negative price gaps, found for 5 of the 9 firms with an atheoretical logit specification as

3Borenstein and Shepard (2002, section 3) provide an early example of the estimation with daily gasoline
prices. The change in the price of a gasoline future contract is explained by the change in the price of
a crude oil futures contract on the same day and on the two prior trading days. The pass through for
these competitive markets is found to be symmetric but incomplete. The latter finding is attributed to
production stickiness.
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well as with an autoregressive conditional duration model. In particular, when the actual

price is below or above the target price by a small amount, a price increase is more likely

found than a price decrease. In contrast, when the price gap is large (in absolute value), a

wholesaler is more reluctant to raise prices than to lower them. Davis and Hamilton con-

clude that pricing decisions are more driven by strategic considerations about customers’

and competitors’ reactions than by explicit menu costs.

For several Canadian, US and Australian cities, retail gasoline prices are documented

to exhibit a remarkable, saw-toothed pattern, even when wholesale prices are relatively

stable; see Castanias and Johnson (1993) and Eckert (2003). Long periods in which prices

decline gradually are succeeded by short periods with sharp price increases. These cycles

can be explained by the duopoly model of Maskin and Tirole (1988). On the downward

portion of the cycle, each firm undercuts prices to attract market share in the short run.

When the price reaches a lower bound, one of the firms eventually restores the high price,

which is quickly followed by its rivals and the cycle repeats.4 Eckert and West (2004)

test this model by constructing an unbalanced panel of daily station-specific prices for 8

regions in the Vancouver area. Simple linear regressions show that large price increases

occur almost exclusively on the days of the week for which demand is lowest. Furthermore,

prices increase at the same day, while prices decrease at different speeds in different regions.

Prices fall more rapidly when markets are less concentrated. They stress that these features

cannot be identified when using a weekly survey at a small sample of stations. Notice that

the finding that retail prices adjust differently over the cycle should not be confused with

asymmetric responses to cost changes. In this case, price asymmetry does not arise from

4Note that these price cycles are not observed in the highly concentrated retail gasoline market in the
Netherlands.
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collusive behaviour but, instead from relatively aggressive pricing.5

Finally, Lewis (2003) develops a theory that attributes asymmetric price adjustments to

searching consumers with myopic expectations. Although the reference price search model

is not yet tested on daily data, it might improve the understanding of price fluctuations.

The crucial assumption is that expectations are based on prices observed in the past. When

consumers observe a lower price than expected, a smaller fraction chooses to search. When

the cost rises much higher than last period’s price, firms have to set prices competitively to

remain profitable. In contrast, when the cost falls well below last period’s price, firms can

keep high margins by reducing prices just enough to prevent consumers from searching.

The model implies that prices do not react to cost changes during periods of high margin.

Lewis (2003) tests the implications by means of a panel of weekly, station-specific prices

from the San Diego area. An asymmetric ECM with one threshold is estimated, incorpo-

rating 4 sets of coefficients. Weeks for which the observed price exceeds the target price

are assigned to the high margin regime. The low margin regime is identified by negative

long run residuals. Next, the effects of cost increases and decreases are allowed to differ in

each regime. Evidence for asymmetric responses to cost changes is found but the size of

the margin seems a more important determinant of the adjustment speed. Lewis (2003)

also argues that the reference price search model seems more consistent with observed

patterns than two alternative explanations, suggested by Borenstein et al. (1997).6 These

alternatives are a collusion model and a standard search model.7

5Noel (2004) examines similar cycles found with a panel of twice-daily retail prices for 22 service stations
in Toronto. Results of a Markov switching regression with two regimes are consistent with predictions of
the Maskin and Tirole (1988) theory. Undercutting phases, lasting on average 6.4 days, are found to be
more likely triggered by small independents. Rounds of price increases take only half a day and are mostly
initiated by large firms.

6They propose production and inventory adjustment lags as a third alternative.
7This search model assumes that consumers search less when facing highly variable costs. With large
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3 The Dutch retail market for gasoline

The Dutch gasoline market can be characterized as a strong oligopoly (see Canoy and On-

derstal, 2003). Several features support this observation. First, the market is dominated

by five integrated oil companies: Shell, BP/Mobil, Exxon, Texaco and Total/Fina/Elf.

As can be seen in Figure 1, these companies sell approximately 80% of the gasoline sold,

with Shell having by far the largest market share (30%). The independent retailers only

account for 16% of the total volume. Along the highways the market is even more con-

centrated as branded filling stations are mainly located at these prime locations, whereas

non-branded filling stations almost never are located along the highways. Concentration

on the Dutch market is much higher than in other European countries.

Second, entry barriers are high. To enter the retail gasoline market a license is required

and new locations are scarce. As a result of restrictive planning, strict environmental

standards and a reserved permission policy by national and local governments only a very

few firms were able to enter the market. In particular along the highways the government

has rarely issued licenses to new players. New licenses (with an unlimited time period)

were mainly issued to incumbents who already had a strong position in the market.

Third, price formation is very transparent for petrol firms. Since the market leader Shell

publicly announces changes in its recommended retail price on its website, competing oil

companies can easily monitor and follow Shell’s pricing policy. Although there is no clear

evidence whether the oil companies do coordinate their prices, the Netherlands Competi-

fluctuations of wholesale prices, it is costly for a consumer to check whether an observed price change is
really due to a cost change, that is followed by the other suppliers. This gives the firms market power to
adjust prices more slowly after a cost decrease.
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Figure 1: Volume shares in 2000 (source Bettendorf et al., 2003)
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tion Authority (NMa) has concluded that the differences between the recommended prices

of the various firms are marginal (NMa, 2001). Fourth, the margin on gasoline prices is

higher than in other European countries. This higher margin is only partially explained

by higher costs in the Netherlands such as wage and environmental costs (see European

Commission, 1999).

Finally, it is argued that competition is restricted through a system of vertical agreements

between oil companies and filling station owners. Oil companies financially support an

affiliated filling station when faced with a price war in the neighbourhood, unless the

station itself has initiated a price reduction. As a result, a station owner has less incentive

to cut the price, knowing that price supports allow his rivals to follow the reduction

immediately. The NMa no longer intends to prohibit these support systems because the
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evidence on the implications for retail prices is insufficient (NMa, 2003).

Summarizing, characteristics of the Dutch gasoline market seem to limit price competition.

However, recently some favourable developments are observed. NMa (2004) concludes

that competition has increased on local and regional roads due to the increasing number

of unmanned and independent filling stations. Developments are going much more slowly

on the motorway network. To reduce market concentration on the primary roads, the

government has started to re-allocate 10 licenses each year over a period of 21 years using

auctions. The past two auctions have resulted in few changes, for example only one new

player (Samba Oil) has entered the market.

4 The data

Before analyzing the link between daily retail gasoline prices and spot prices we describe

the data we use. We analyze the data and indicate why we have to use ARCH models. In

the next section we test for stationarity and cointegration in order to arrive at the proper

specification of the model.

Daily data are collected for the period 2 January 1996 through 7 December 2004. Prices

are expressed in euros per litre.8

8This dataset differs from the one used in Bettendorf et al. (2003) in four ways. First, this dataset
contains daily data instead of weekly data. Second, variables are not expressed in guilders but in euros.
Third, we use the spot price for regular instead of premium gasoline. Finally, the dataset is extended with
the years 2002-2004. Only the first difference is fundamental for the findings of this study.
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Sources

Retail prices (RP ) of unleaded gasoline (Euro95) are taken from the website of Shell.9 This

is the price which market leader Shell recommends to its filling stations. Price changes are

decided by Shell’s pricing committee at 11.00 AM and implemented at 0.00 AM the next

day (Shell, 2001). On Sundays the retail price is never adjusted, probably because both

the Rotterdam spot market and the financial markets are closed during weekends. For

that reason Sundays are excluded from the dataset. Prices often do change on Saturdays

to incorporate Friday’s closing spot prices and exchange rates.

We use the Rotterdam spot price (WP ) for regular unleaded gasoline as the input cost of

Euro95.10 These spot prices are published on the website of the US Energy Information

Administration.11 Where observations are missing (in case of a holiday), the price of

the previous day is used. To convert the dollar price into euros per litre we use the

dollar/euro exchange rate as collected by Datastream. For the pre-euro years 1996-2001

we multiply the dollar/guilder exchange rate with the official exchange rate of 1 euro =

2.20371 guilders.

The retail price data include consumer taxes. In the sample period the value added tax

(V AT ) on gasoline has changed from 17.5% to 19.0% on 1 January 2001. Besides VAT,

excise taxes (EXC) are levied.12 Data on excise taxes are obtained from Statistics Nether-

9www.shell.nl
10The technical details of the regular unleaded gasoline are ARA barge, 91 RON, 82.5 MON, 50ppm

max sulfur. The prices quoted are the average of the “bid” and “offer” prices at the end of the trading
day.

11www.eia.doe.gov/oil-gas/petroleum/info-glance/gasoline.html
12VAT is also imposed on excise taxes.
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Figure 2: Changes in excises EXCt and changes in retail RPEt and spot prices WPt
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lands.13 In the sample period there have been only 13 changes in excise taxes on unleaded

gasoline (4 negative, 9 positive). The excises taxes underwent their most important change

on 1 July 1997: from 0.528 to 0.578 euros per litre. Between 1 October 2002 and 1 Jan-

uary 2003 there was a large short-lived drop in excises from 0.630 to 0.616 euros per litre.

Changes in excise taxes are usually passed on to the retail price immediately (see Fig-

ure 2), where RPEt is defined as RPEt = RPt/(1 + V ATt). As we do not want our tests

to be affected by the changes in excise taxes we from now on focus on producer price,

defined as PPt = RPEt − EXCt.

Descriptive statistics

The levels of the producer price and the spot price are highly correlated as the correlation

coefficient of both series equals 0.988 (see Table 1). First differences are however not

correlated.14 Figure 3 illustrates that both prices follow each other closely.

13statline.cbs.nl, Table “Heffingen (totaal) op energiedragers”.
14Prefix ∆ denotes the backward difference ∆Xt = Xt − Xt−1
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Table 1: Correlations

PPt WPt ∆PPt ∆WPt

PPt 1.000
WPt 0.988 1.000
∆PPt 0.025 0.035 1.000
∆WPt -0.039 0.029 0.021 1.000

Figure 3: Time series (daily data for the period 1996-2004) of producer prices PPt and
spot prices WPt
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Table 2: Number of adjustments of ∆PPt, categorized by values of ∆PPt 6= 0 and ∆WPt.
Listed are the mean and the number of observations in each category, respectively

∆WPt

[-0.02, 0) [0, 0.02) All

[-0.06, -0.04) NA -0.042 -0.042
0 1 1

[-0.04, -0.02) NA NA NA
0 0 0

[-0.02, 0) -0.008 -0.008 -0.008
∆PPt 87 146 233

(0, 0.02) 0.009 0.007 0.008
88 165 253

[0.02, 0.04) NA 0.029 0.029
0 1 1

All 0.000 0.000 0.000
175 313 488

Table 2 shows the number of producer price adjustments. There have been 488 changes

in the producer price. This implies that, on average, there is about one change in the

producer price per week. There have been 254 (52%) increases and 234 (48%)decreases.

In 88 (18%) cases the producer price rose while the spot price fell. On the other hand

there are 147 (30%) days in which producer price fell despite a rise in the spot price. In

only 87 (18%) cases both the producer price and the spot price decreased, whereas in 166

(34%) cases both prices rose.

Volatility clustering

Table 3 shows significant autocorrelations of ∆PPt and [∆PPt]
2 indicating volatility clus-

tering (autocorrelations larger than 0.038 in absolute values would be significant at a 5%

level). Volatility clustering is also indicated in Figures 4 and 5.
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Table 3: Autocorrelations of first differences and squared first differences in PPt

First differences Squared first differences

1 0.047 -0.033
2 0.096 0.062
3 0.075 0.030
4 0.057 0.053
5 0.029 0.011
6 0.019 0.022
7 -0.004 0.037
8 -0.003 0.022
9 -0.003 0.005

10 0.004 0.035

Two standard error bounds are computed

as ±2/
√

T = ±0.038 , with T=2797

Figure 4: Level and differences in producer price of gasoline PPt
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Figure 5: Level and differences in gasoline spot prices WPt
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In Figures 4 and 5 prices are shown on the left axis and daily changes of prices are

shown on the right axis. These figures show an increase in prices in the second halve

of the sample. Moreover, price changes are becoming more volatile and the amplitude

of the prices changes is changing as well. The magnitude of the price change is small

for extended periods and then low for extended periods. This is what has been called

volatility clustering and is the effect ARCH models are designed to measure.15

Assuming, as is done in OLS regressions, that the variance of the error term is constant

results in loss of statistical efficiency (Engle 1982, Bollerslev et al. 1994, for an overview

see Engle 2004).

15Volatility clustering is still present if we include time dummies in the model for the period 1999-2004.
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5 Model specification

Most models in this literature are error correction models (ECM). Before estimating an

ECM we have to test stationarity and cointegration. If producer prices and spot prices are

integrated of order one, and if these prices are cointegrated then an ECM is applicable.

Before presenting any estimation results we first describe the outcomes of the various

stationarity and cointegration tests.

Stationarity and cointegration

We use the Augmented Dickey-Fuller (ADF) unit root tests as well as the Phillips-Perron

(P-P) test to test for stationarity. The P-P test has been shown to be more powerful in the

presence of heteroscedasticity and serial correlation under a wide range of circumstances

(Phillips and Perron, 1988). Both tests in Table 4 clearly indicate that the producer

price PPt and the spot price WPt are I(1), i.e. the prices are stationary after taking

first differences. The null hypothesis that PPt has a unit root is not rejected (p-value is

0.211), whereas the null that ∆PPt has a unit root is rejected (p-value is 0.000). The same

conclusion holds for WPt. The null that WPt has a unit root is not rejected (p-value is

0.224). First differencing WPt clearly rejects the null of a unit root in ∆WPt (p-value is

0.000).

We assume that our prices share a uniform volatility process and that cointegration is

robust with respect to ARCH innovations.16 So, we use the familiar Johansen cointegration

16See Rahbek et al., 2002. There is some evidence for stock market indices sharing a uniform volatility
process (see Engle and Kozicki, 1993). An alternative cointegration test with GARCH effects is provided
by Gannon (1996).
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Table 4: Augmented Dickey-Fuller and Phillips-Perron unit root tests

PPt ∆PPt WPt ∆WPt

Augmented Dickey-Fuller test
Exogenous constant none constant none
Lag length (SIC) 3 2 1 0
ADF test statistic -2.187 -26.218 -2.153 -49.114
Critical values 5% level -2.862 -1.941 -2.862 -1.941
p-value* 0.211 0.000 0.224 0.000
Observations 2794 2794 2795 2795
Null of unit root not rejected rejected not rejected rejected

Phillips-Perron test
Exogenous constant none constant none
Bandwidth 17 16 11 9
P-P test statistic -2.183 -51.487 -2.236 -49.366
Critical values 5% level -2.862 -1.941 -2.862 -1.941
p-value* 0.213 0.000 0.193 0.000
Observations 2794 2794 2795 2795
Null of unit root not rejected rejected not rejected rejected

*MacKinnon (1996) one-sided p-values

Table 5: Johansen cointegration test

Series RPEt, EXCt WPt

Trend assumption no deterministic trend
Lags 4
Observations 2792
Unrestricted cointegration rank test (trace)
Hypothesized no. of CE(s) eigenvalue trace statistic 5% critical value p-value**
None * 0.073 224.500 35.193 0.000
At most 1 0.003 13.743 20.262 0.308
At most 2 0.002 4.558 9.165 0.335
Unrestricted cointegration rank test (maximum eigenvalue)
Hypothesized no. of CE(s) eigenvalue max-eigen statistic 5% critical value p-value**
None * 0.073 210.757 22.300 0.000
At most 1 0.003 9.186 15.892 0.414
At most 2 0.002 4.558 9.165 0.335

* Denotes rejection of the hypothesis at the 0.05 level
** MacKinnon-Haug-Michelis (1999) p-values
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test. The Johansen cointegration test in Table 5 indicates 1 cointegrating equation at the

0.05 level (both the Trace test and the Max-eigenvalue test yield consistent results). This

implies that the relationship between cointegrated series can be considered to be generated

by an error correction model (Granger and Weiss, 1983): a system not in equilibrium has

a tendency to converge to equilibrium in the long run. This implies that the retail price

RPEt, excises EXCt and the spot price WPt cannot drift apart in the long run.

Error correction model

The model consists of regressors that explain short run dynamics of gasoline retail prices

and the error correction part (OLS errors from the levels equation). The short run allows

for asymmetric adjustment.

The ECM is estimated in two rounds following Engle and Granger (1987). First, we

estimate the long-run equation using OLS:

RPEt = µ0 + µ1WPt + µ2EXCt + ηt (1)

The specification can be derived from the maximization of static profits by an oligopolist

(see Bettendorf et al., 2003). Under the assumption that marginal costs are independent of

the output level and that the mark-up ratio is constant, the parameters µ2 and µ1/µ2 are

interpreted as the mark-up ratio and the effect of spot price changes in costs, respectively.17

Second, we capture the short-run dynamics including asymmetries in first differences as:

17This price setting relation requires the model to be estimated in absolute price changes and not in rates
of growth. Moreover, this is the common procedure in the gasoline asymmetry literature which makes it
easier to compare the results.

17



∆(PPt) =
n

∑

i=0

λ+
i ∆WP+

t−i +
m

∑

j=0

λ−
j ∆WP−

t−j +

ω+RES+
t−1 + ω−RES−

t−1 + εt (2)

where RES are the residuals from Equation (1). The superscripts + and − refer to the

positive part and negative part of the time series, so that

X+
t =



















Xt if Xt > 0

0 if Xt < 0

(3)

and

X−
t =



















0 if Xt > 0

Xt if Xt < 0

(4)

The first two terms in Equation (2) are current and lagged spot price increases and de-

creases, respectively. The number of lags for decreases m and increases n is determined

by minimizing the Akaike Information Criterion. Also the adjustment process toward the

long run can be asymmetrical.

EGARCH specification

ARCH LM-tests of OLS estimates of Equation (2) (not reported here) indicate that

volatility is serially correlated over time (p-value is 0.024).18 Defining ε2
t as the vari-

ance of the error term εt in Equation (2), also known as the mean equation, one can

18This implies that OLS estimates are not efficient and that neglecting volatility clustering affects the
tests for asymmetry.
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test whether the conditional variance σ2
t , is affected by conditional variances p periods

in the past (σ2
t−j , j = 1, . . . , p) as well as by q lags of the unconditional variance terms

(ε2
t−i, i = 1, . . . , q). This is done by determining the significance of the parameters in a

GARCH model.

To allow for asymmetry in the volatility process we use the Exponential GARCH (EGARCH)

model (Nelson 1991):

lnσ2
t = α0 +

q
∑

i=1

αi

∣

∣

∣

∣

εt−i

σt−i

∣

∣

∣

∣

+
p

∑

j=1

βj lnσ2
t−j +

r
∑

k=1

γk

(

εt−k

σt−k

)

(5)

In EGARCH, the natural log of the conditional variance lnσ2
t , is affected by the natural

log of conditional variances p periods in the past (lnσ2
t−j , j = 1, . . . , p) as well as by q lags

of the unconditional normalized standard deviations in absolute values (|εt−i/σt−i| , i =

1, . . . , q). Asymmetry is introduced by including r lags of the unconditional normalized

standard deviations (εt−k/σt−k, k = 1, . . . , r). Unlike GARCH and threshold GARCH,

the log specification does not require non-negativity constraints on the parameters to

ensure positive conditional variances. However, restrictions on βj are required to ensure

stationarity. If the coefficients γk 6= 0, the response of volatility to shocks is asymmetrical.

For instance if p = q = r = 1: negative shocks have an impact of α1 − γ1 on the log

of the conditional variance and positive shocks have an effect of α1 + γ1. Stationarity of

EGARCH(1,1) requires |β1| < 1.19

Summarizing, GARCH models consist of a ”mean equation,” which in our case is the ECM

presented in Equation (2). The second equation describes the ”conditional variance” which

19It should be noted that threshold GARCH (TGARCH) models produce similar results.

19



Table 6: Long-run OLS results

RPEt = µ0 + µ1WPt + µ2EXCt + ηt

Coefficient (t-value)

µ0 0.081 (25.829)
µ1 1.045 (258.963)
µ2 1.093 (183.951)
Observations 2797
Adjusted R2 0.991
S.E. of regression 0.009
F -statistic (p-value) 146011.7 (0.000)
Durbin-Watson 0.360
Wald tests F -statistic (p-value)
H0 : µ2 = 1 (df=2794) 245.921 (0.000)
H0 : µ1/µ2 = 1 (df=2794) 29.523 (0.000)

in our case is an EGARCH(p, q) model.

We have to determine the number of ARCH and GARCH terms (using z-tests). In all

models presented below the EGARCH(1,1) model explains most of the variability of the

changes in producer prices. The z-test for significance and the Akaike Information Crite-

rion are used to determine the number of periods with rising and falling spot prices.

6 Estimation results

The ECM is estimated in two rounds. First, we estimate the Equation (1) using OLS.

These results are unaffected by volatility clustering (asymptotically). Table 6 indicates

that the mark-up (µ2 = 1.093) is significantly bigger than 1 (p=0.000) and the effect of

spot price changes in costs (µ1/µ2 = 0.956) is significantly smaller than 1 (p=0.000).

In the second round we include the lagged long-run residuals in the short-run equation. We
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estimate Equation (2) with and without asymmetry in the adjustment towards the long

run to find evidence for asymmetries. There are various types of asymmetries (see Geweke,

2004). If the retail price and the spot price are cointegrated, these variables will not drift

apart in the long run. Hence, there is no amount asymmetry in the long run, but perhaps

there is amount asymmetry in the short run. We define short-run amount asymmetry if

∑

λ+
i 6= ∑

λ−
j . Timing or pattern asymmetry refers to differences in estimates of λ+

j and

λ−
j at the same lags j. There is another type of asymmetry, which has to do with the

speed of adjustment towards the long run. Adjustment asymmetry is present if ω+ 6= ω−.

Finally, the effects of volatility to shocks can be asymmetrical. This shock asymmetry is

present if in the variance equation γk 6= 0.

Before discussing the results and testing the various types of asymmetry we note that

the model in Table 7 is an EGARCH(1,1) model with standard normal distributed errors.

The ARCH-LM test in Table 7 indicates that the EGARCH(1,1) model properly accounts

for heteroscedasticity and that the volatility process is stationary. The Durbin-Watson

statistic indicates that there is no autocorrelation.

Table 7 yields the following conclusions:

1. The volatility process is asymmetrical. Since α1 > γ1 > 0 and 0 < β1 < 1, shocks

increase volatility and positive shocks have a larger effect on volatility than negative

shocks of the same size. An unexpected increase in the producer price has a larger

effect on the variance of the producer price than an unexpected drop in the producer

price. This evidence of shock asymmetry might have a search cost explanation. Con-

sumers who observe a turbulent world oil market are more reluctant to start a costly
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Table 7: EGARCH(1,1) estimation results

∆PPt =
∑n

i=0 λ+
i ∆WP+

t−i +
∑m

j=0 λ−
j ∆WP−

t−j + ω+RES+
t−1 + ω−RES−

t−1 + εt

with lnσ2
t = α0 +

∑q
i=1 αi

∣

∣

∣

εt−i

σt−i

∣

∣

∣ +
∑p

j=1 βj lnσ2
t−j +

∑r
k=1 γk

(

εt−k

σt−k

)

Coefficient (z-value) Coefficient (z-value)

λ+
0 -0.008 (-0.348) -0.008 (-0.347)

λ+
1 -0.035 (-1.430) -0.035 (-1.487)

λ+
2 0.197 (8.991) 0.197 (9.593)

λ+
3 0.223 (10.651) 0.223 (10.901)

λ+
4 0.075 (3.461) 0.075 (3.531)

λ+
5 0.080 (3.113) 0.080 (3.213)

λ+
6 0.109 (4.452) 0.109 (4.450)

λ+
7 0.024 (0.869) 0.024 (0.869)

λ−
0 0.007 (0.283) 0.007 (0.284)

λ−
1 -0.052 (-2.126) -0.052 (-2.158)

λ−
2 0.176 (8.206) 0.176 (8.388)

λ−
3 0.125 (6.396) 0.125 (6.485)

λ−
4 0.093 (3.904) 0.093 (3.932)

λ−
5 0.079 (3.104) 0.079 (3.122)

λ−
6 0.060 (2.132) 0.060 (2.129)

λ−
7 0.079 (3.478) 0.079 (3.468)

λ−
8 0.042 (1.646) 0.042 (1.676)

ω+ -0.110 (-10.676)
ω− -0.110 (-9.625)
ω -0.110 (-17.809)
α0 -0.090 (-10.354) -0.090 (-10.345)
α1 0.078 (18.798) 0.079 (18.809)
β1 0.997 (1511.600) 0.997 (1504.503)
γ1 0.016 (4.119) 0.016 (5.420)
Observations 2788 2788
Adjusted R2 0.272 0.273
S.E. of regression 0.003 0.003
Durbin-Watson 2.282 2.281
ARCH LM-test (p-value) 0.341 (0.559) 0.339 (0.560)
Wald tests F -statistic (p-value) F -statistic (p-value)
H0 : β1 ≥ 1 v H1 : β1 < 1 26.142 (0.000) 26.179 (0.000)
H0 : α1 ≤ λ1 v H1 : α1 > λ1 110.571 (0.000) 134.585 (0.000)
H0 : λ+

i = λ−
i ∀i v H1 : λ+

i 6= λ−
i 1.750 (0.073) 2.336 (0.013)

H0 : λ+
Σ

= λ−
Σ

v H1 : λ+
Σ
6= λ−

Σ
0.667 (0.414) 2.373 (0.124)

H0 : ω+ = ω− v H1 : ω+ 6= ω− 0.001 (0.972)
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price comparison when faced with a price change. Firms can benefit from reduced

search incentives by adjusting retail prices more rapidly upwards than downwards

in periods with uncertain costs.

2. The adjustment parameter is about -0.11 and highly significant which implies that

it takes about 0.5/0.11=4.5 days to close half the gap between the current state and

the long-run equilibrium. The final test reported in Table 7 does not reject to null

of adjustment symmetry.

Because of the last conclusion, we focus on the second model in Table 7 in which

the adjustment speed is symmetrical. This leads to the following conclusions:

3. For most lags j spot price increases and spot price decreases affect the producer

price significantly. Contemporaneous spot prices changes are not significant. One-

day lagged spot price decreases increase the producer price (this is what is expected

from Table 2 above).

4. The number of lags for spot price increases and spot price decreases, 8 and 9 days

respectively, is determined by minimizing the Akaike Information Criterion. So there

is a faster reaction to upward changes in spot prices than to downward changes in

spot prices. Simultaneous testing equality of all parameters for the same lags (the

third reported Wald test in Table 7) rejects the null of equality. This implies that for

at least one lag the parameters differ significantly. The Wald test reveals that the

parameters for changes are significantly bigger for the third lag (the null of λ+
3 = λ−

3

is rejected at 5%). This implies timing or pattern asymmetry three days after the
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change in the spot price.

5. Already from Table 5 we concluded that there is no amount asymmetry in the long

run. From Table 7 we conclude that the sum of all upward price change parameters

is not significantly different from the sum of all downward price change parameters

(two-sided test) at 5%. The difference between the sum of upward and downward

parameters (λ+

Σ
− λ−

Σ
) equals 0.057. The table reports two-sided tests. However, for

a one-sided test, the appropriate probability is one-half that reported in the table.

So, if we would test H0 : λ+
Σ

≤ λ−
Σ

v H1 : λ+
Σ

> λ−
Σ
, the p-value is 0.062 and we

would reject the null at 10%. This implies that there is some evidence for short-run

amount asymmetry.

6. In the introduction we have indicated that OLS estimates are inefficient affecting

the asymmetry tests. To illustrate this we have re-estimated the ECM using OLS.

Again, adjustment symmetry is not rejected (the p-value drops from 0.972 to 0.906).

The tests for short-run asymmetry, however, give different results. Now, the null

of λ+
i = λ−

i ∀i is not rejected (p-value=0.312). Also the p-value of the test of H0 :

λ+

Σ
= λ−

Σ
v H1 : λ+

Σ
6= λ−

Σ
increases, from 0.124 to 0.744. Neglecting volatility

clustering turns the conclusions upside down: there is no evidence for timing or

pattern asymmetry and the probability of incorrectly rejecting the null of short-run

amount symmetry increases.

We characterize the adjustment path of the model by examining the cumulative adjustment

function. It should be noted that this function is non-linear in the parameters, as the
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Figure 6: Cumulative adjustment in PPt after changes in the spot price WPt
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adjustment in the i-th period after a change in the spot price will be the sum of the

estimated response parameters from Equation (2) and the error correction effects over

i-th period.20 Figure 6 presents the calculated producer price response (in eurocents per

litre) to a one-time one eurocent per litre increase or decrease in the spot price. To ease

comparison we give the absolute value of the price responses. Also the difference between

the two adjustment paths and its two standard error bounds are shown.21

The significant differences between the cumulative adjustment functions illustrate the

finding of pattern asymmetry by the Wald-test. A one eurocent increase in the spot price

leads to a 0.67 eurocents increase of the producer price after three days, whereas the

estimated response to a one eurocent decrease is only 0.55 eurocents. This difference in

the responses after three days is significant and remains (almost) significant for about four

days. After six days the difference is no longer significant and the long-run equilibrium

price is reached.

20The calculation of the cumulative adjustment function can be found in Borenstein et al. (1997, p.337).
21The standard errors are approximated using the Delta method (see Judge et al., 1985, p.205-207). In

the calculation we consider the long run effect µ1 as predetermined.
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7 Conclusions

Analyzing high frequency data leads to a better understanding of the pricing process when

upstream prices are volatile as others have argued. However, using high frequency data in

OLS regressions leads to a loss of statistical efficiency if volatility is serially correlated over

time. In this paper we take care of volatility clustering by estimating an EGARCH model.

As a by-product we introduce a new type of asymmetry in the literature on asymmetric

price adjustments, namely shock asymmetry: an unexpected increase in the producer price

has a larger effect on the variance of the producer price than an unexpected drop in the

producer price.

We conclude that an ECM is an appropriate way to model retail gasoline price changes.

Cointegration leads us to conclude that there is no amount asymmetry in the long run.

However, there is some evidence for short-run amount asymmetry. Also, there is a faster

reaction to upward changes in spot prices than to downward changes in spot prices: 8 and

9 days, respectively. The parameters for upward changes are also significantly larger for

the third lag. This implies timing or pattern asymmetry three days after the change in

the spot price.
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