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Abstract 
Mohring and Harwitz (1962) showed that, under certain conditions, an optimally designed 

and priced road would generate user toll revenues just sufficient to cover its capital costs. 

Several scholars subsequently explored the robustness of that finding. This paper briefly 

summarizes further research on the relationship between congestion-toll revenues and road 

costs. Despite its transparency, the self-financing theorem can lead to erroneous 

interpretations. The paper’s second part discusses three such possible fallacies. It uses a 

simple numerical model to investigate them. The model shows that the naïve interpretation of 

the Mohring-Harwitz rule may lead to substantial welfare losses. These losses are 

particularly prominent when the difference between capital and investment cost is confused 

and when balanced-budget constraints are imposed under second-best network conditions. In 

contrast, losses from imposing a balanced-budget constraint when economies or 

diseconomies of scale exist are surprisingly small. 

  
* The authors thank Robin Lindsey and two anonymous reviewers for helpful comments on an earlier version of 

this paper. Any remaining deficiencies are ours. 
**  Corresponding author. Affiliated to the Tinbergen Institute, Roetersstraat 31, 1018 WB  Amsterdam.  



 

  



1. Introduction 

That maximizing the benefits an economy provides to its members requires setting prices 

equal to marginal costs is a long accepted economic principle. One cost of a road’s use is the 

external congestion cost that each user imposes on all other users by adding to its level of 

congestion. Economists interested in transportation have long regarded incorporating 

congestion costs into road prices as essential to an efficient use of roads (e.g., Pigou, 1920; 

Walters, 1961). 

 In 1962, one of us participated in pointing out that, under certain technical conditions 

(to be spelled out below), an optimally designed and priced road would generate user tolls just 

sufficient to cover its capital costs in the long run (Mohring and Harwitz, 1962). A number of 

scholars have explored the robustness of that finding. They asked, “Would optimal toll 

revenues cover optimal capital costs under a variety of more realistic circumstances?” and, “If 

optimal toll revenues would not cover optimal capital costs but if roads must be self-

supporting, what adjustments in tolls and road design would be required to maximize road 

benefits given a break-even constraint?” 

 The first part of this paper briefly summarizes the results of research on the 

relationship between congestion-toll revenue and road costs. We present the self-financing 

result in its most basic form, and review some of the extensions that have been discussed in 

the literature. The self-financing theorem, despite its transparency, easily lends itself to 

erroneous interpretations. The second part of this paper discusses three such possible fallacies, 

and develops a simple numerical model to investigate the potential relative welfare losses that 

may result from them. The model shows that the naïve interpretation of the Mohring-Harwitz 

rule may lead to substantial welfare losses. These losses are particularly prominent when the 

difference between capital and investment cost is confused and when balanced-budget 

constraints are imposed under second-best network conditions (the example presented 

considers the rather common situation where an unpriced substitute exists). In contrast, losses 

from imposing a balanced-budget constraint when economies or diseconomies of scale exist 

are surprisingly small. 

 

2. Congestion tolls and road costs: the simplest case 
Household travel choice 

Consider a set of identical households that enjoy consuming trips on a given road. However, 

each household dislikes spending the time (t per trip) required to make the trip. Assume that 

we can characterize traffic conditions in our period of analysis by a simple travel time 

function t(F/K), where t is travel time, F (for flow) denotes  the number of trips per hour 

being taken on the road and K gives the road’s hourly capacity. Assume that besides travel 

time, there is only one other price component of trip making for a household, namely a toll τ 

(if levied). If we denote the value of time by α, the perceived generalized price or full price of 

the trip, p, can be written as the sum of the generalized cost c and the toll τ: 

τατ +⋅=+= )/()/( KFtKFcp . (1) 



Self-Financing Roads 2 

The equilibrium flow will then be such that the marginal benefit – the benefit attached to the 

final trip added – is equalized to the generalized price: if marginal benefit is higher, more trips 

will be taken; if it is lower, some trips will be suppressed. The marginal benefit function 

MB(F) therefore determines the equilibrium demand (measured in flow) as a function of 

generalized price p. MB(F) is therefore also referred to as the inverse demand, D(F): 

“inverse”, because quantity as a function of price, F(p), is expressed as price as a function of 

quantity, D(F). Aggregate household behaviour can thus be represented by the equilibrium 

condition: 

τ+= )/()( KFcFD . (2) 

 

Toll and capacity optimization 

A public highway-authority might wonder what the ‘best’ toll level is. The answer of course 

depends on the objective chosen. An (economic) efficiency-enhancing objective would be to 

maximize social surplus (or: net benefits): the difference between aggregate benefits of trip 

making and the social cost of making these trips possible. With D(F) representing marginal 

benefits, its integral between 0 and F gives total benefits (per unit of time). The social cost 

consists of two components. One is the total user cost, F·c(); being the product of flow and 

average cost. The other is total capacity cost, which we assume will depend on capacity K 

only and that will be written as CK(K). It is to be interpreted as a per-unit-of-time cost, so it 

should include capital and depreciation; it is not the investment cost. The highway-authority’s 

optimization problem thus reads: 

,
0

Max ( )d ( / ) ( )

s.t.:  ( ) ( / ) 0.

F

K
F K

S D x x F c F K C K

D F c F K τ

= − ⋅ −

− − =

∫  (3) 

The first-order condition with respect to flow F shows that it is optimal to equate marginal 

benefit D(F) to the marginal social cost of a trip, which is the sum of the private cost c(·) 

incurred by the individual, and the marginal external cost F·∂c(·)/∂F that a road user imposes 

on fellow road users due to congestion: 

F

c
F

F

c
FcFD

F

S

∂
⋅∂⋅=⇒=

∂
⋅∂⋅−⋅−=

∂
∂ )(

0
)(

)()( τ . (4) 

The second expression in (4) follows from substitution of the equilibrium constraint in (3), 

and shows that optimal road use requires imposition of the so-called Pigouvian toll, which is 

equal to the marginal external cost as just defined. The total toll revenues R are then:  

F

c
FR

∂
⋅∂⋅= )(2 . (5) 
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The first-order condition of (3) with respect to K tells us to expand capacity up to the point 

where the marginal benefits of doing so (i.e., the value of aggregate travel time saving) is 

equal to the marginal cost of capacity:  

0
d

d)( =−
∂

⋅∂⋅−=
∂
∂

K

C

K

c
F

K

S K . (6) 

Note that, because capacity only enters the two cost components of equation (3), cost 

minimization (by setting K for a given F) is directly implied by the maximization of social 

surplus. With the elasticity of capital cost with respect to capacity κ defined as follows: 

 
K

K

C

K

K

C
⋅=

d

dκ  (7) 

we can rewrite (6) as follows: 

K

C

K

c
F K⋅=

∂
⋅∂⋅− κ)(

. (8) 

As a brief side-step, we note that the quotient rule of differentiation tells us that for any 

function c(F/K), the following holds true (this is, in fact, an application of Euler’s Theorem): 

K

c
K

F

c
F

∂
⋅∂⋅−=

∂
⋅∂⋅ )()(

. (9) 

Bringing K to the left-hand side in (8) and substitution of (9) and then (5) finally produces the 

following equation:  

κφκ =≡⇒⋅=
K

K C

R
CR . (10) 

The first expression in equation (10) tells us that provided an optimal toll is charged (equation 

(4) applies) and capacity is optimized (equation (6) applies) the per-unit-of-time revenues 

from optimal pricing R are equal to the per-unit-of-time capacity cost CK, multiplied by the 

elasticity κ. Phrased differently, the second expression in (10) states that the degree of self-

financing, which we define as φ≡R/CK, is equal to the elasticity of capital cost with respect to 

capacity κ. This is the celebrated self-financing theorem of Mohring and Harwitz (1962, 

Chapter 2); the special case with neutral scale economies (κ=1) can be referred to as the 

“exact” self-financing theorem. 

 Thus, with neutral scale economies, an optimally priced road designed to minimize the 

sum of user and provider costs would generate toll revenues that would just cover its 

provider’s costs. Optimally designed and priced roads would thus exactly support themselves. 

When there are economies of scale in capacity provision (κ<1), there will be a deficit; with 

diseconomies (κ>1) a surplus results. These results are entirely consistent with basic micro 

economic insights that tell us that a firm that is forced to apply marginal cost pricing will face 

a deficit under economies of scale, a zero-surplus under neutral scale economies, and a 



Self-Financing Roads 4 

surplus under diseconomies of scale. Mohring and Harwitz’s contribution was to show that 

this remains true if part of the inputs in the production process (namely, the time invested to 

make a trip) are user-supplied under congested conditions. 

The theorem appears highly relevant for practical policy making. Its application in 

practice would in the first place imply that the road operator seeks to achieve an efficient road 

system, in terms of optimal capacity and optimal pricing. Second, application would firmly 

reduce the need to use tax revenues from other sources for the financing of roads. This may 

improve efficiency further, because these other taxes are often distortionary. Third, it may 

help in overcoming problems of public acceptability of road pricing. The resulting scheme is 

likely to be perceived as ‘fair’ (only the users of a road pay for its capacity) and ‘transparent’ 

(there are no ‘hidden’ transfers surrounding the financing of roads). Finally, it may lead to 

improved transparency in political decisions on infrastructure expansion. It is easily 

demonstrated that if the neutral-economies-of-scale assumption is fulfilled, and other external 

costs are optimally priced, road capacity should be expanded when short-run optimal 

congestion pricing yields revenues per unit of capacity that exceed the unit (capital) cost of 

capacity.1 The market would thus indicate whether or not expansion is socially warranted, 

which will generally help improving the transparency and credibility of cost-benefit analyses. 

 

Trouble 

But there are also problems. For example: roads are lumpy. They must have an integer 

number of lanes; π lanes won’t do. The capacity of lanes can be varied by changing their 

widths, altering curves and making them more or less steep, but lanes must be wide enough to 

allow vehicles to pass. Still, nothing guarantees that the traffic level which satisfies equations 

(4) and (6) would have the capacity that an integer number of lanes would provide. If not, (6) 

is not satisfied and the remainder of the analysis breaks down. How big a threat is this to the 

practical applicability of the theorem? As indicated, because road design affects the capacity 

per lane, the problem may be somewhat smaller than it seems at first sight (when only 

thinking of “numbers of lanes”), as long of course as we are beyond capacities of one lane. 

Moreover, when an operator can pool deficits from oversized roads with surpluses from 

undersized ones, the relative problem will be smaller for full networks than for individual 

roads. And, when demand grows steadily over time, one can anticipate alternating periods of 

deficits and surpluses for individual roads, so that also pooling ‘over time’ would reduce the 

relative size of the problem, compared to what might appear from an instantaneous analysis. 

Nevertheless, as indicated, especially for smaller roads economies of scale may often 

dominate, and exact self-financing would not be consistent with optimal road design and 

pricing. 

                                                
1 To see why, observe that for a given demand function, both the short-run optimal congestion price (i.e. for a 
given capacity) and the road use per unit of capacity are decreasing in capacity. Short-run optimal toll revenues 
per unit of capacity therefore exceed the unit cost of capacity with a below-optimal total capacity, and fall short 
of it with an above-optimal total capacity. 
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 Next, the assumption of neutral scale economies in road construction is essential to the 

conclusion that, on optimally designed and priced roads, toll revenues exactly cover capital 

costs. Sadly for the theorem, both rural and urban road construction may have increasing or 

decreasing returns to scale (e.g., Mohring, 1976; Keeler and Small, 1977; Kraus, 1981; Small, 

Winston and Evans, 1989), so that exact self-financing need not apply in reality – even if 

capacity were continuous. The consequences will be explored numerically in Section 3 below; 

here we briefly address the backgrounds. 

A rural road with one 12-foot lane in each direction is commonly regarded as having a 

capacity of about 2,000 vehicles an hour regardless of their directional division; on such 

roads, travelers in one lane must wait for both an adequate view of the other lane and a gap in 

its traffic. With four-lane roads, only a gap in one direction is necessary. Road expansion 

from two to four lanes therefore increases hourly capacity to about 2,000 vehicles per lane; 

doubling lanes quadruples road capacity. 

Rural and to a lesser extent, urban road geometry may also often involve scale 

economies. A normal rural expressway has two 12-foot lanes in each direction with wide 

paved shoulders on each side. The driving lanes themselves account for less than half of its 

right of way and of the costs of the earth moving required to create it. Three-lanes in each 

direction would add 50% to its capacity but considerably less than 50% to its capital cost. 

At the same time, urban expressways have many more interchanges and overpasses 

per mile than do their rural counterparts. Doubling the span of a bridge more than doubles its 

costs. Walls rather than earthen slopes form its boundaries. The excavation economies 

associated with increased lanes are, therefore, smaller for urban than rural roads and may even 

turn into diseconomies. Moreover, scale diseconomies could also arise from a rising supply 

price of urban land, especially in large cities where urban land is scarce (Small, 1999). For all 

of these reasons, scale economies are considerably smaller and may even turn to 

diseconomies for urban roads – where capacity expansion is often more relevant – than for 

rural roads. Small and Verhoef (2007) review a number of studies and conclude “Altogether, 

the evidence supports the likelihood of mild scale economies for the overall highway network 

in major cities. Scale economies are probably substantial in smaller cities in which one or two 

major expressways are important, and may disappear altogether in very large cities where 

expanding expressways is extraordinarily expensive due to high urban density” (p. 112). 

 And finally, for exact self-financing to hold, actually two neutral-scale-economies 

assumptions have to be fulfilled (Mohring and Harwitz, 1962, p. 85-86). One is what Small 

(1992) called “constant returns to scale in congestion technology”: the fact that the travel time 

function can be written as t(F/K). The other is “neutral scale economies in road construction”: 

κ=1. In reality, what matters is the combined effect of these two elements: decreasing 

economies in the one respect can be compensated for by increasing economies in the other. 

As a matter of fact, units of capacity can always be chosen such that κ=1 is satisfied, namely 

by defining a measure of capacity that is proportional to (minimized) capacity cost. But 
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whether the combined effect implies neutral scale economies is, as just discussed, an 

empirical question for which the answer seems to vary over place and probably time. 

 

3. Some extensions 
The self-financing result from our basic model suggests a very simple and clear relation 

between infrastructure charging and capacity costs: the degree of self-financing is equal to the 

elasticity of the capacity cost function. An important question is to what extent this result is a 

fluke, resulting from specific simplifying assumptions in the basic model, and to what extent 

it carries over to more elaborate settings. This section will consider a number of complications 

that were ignored above, but that will be relevant in practical applications. Our discussion will 

follow and sometimes draw from reviews as given by Lindsey and Verhoef (2000), De Palma 

and Lindsey (2005), and Small and Verhoef (2007). 

 

Growing traffic 

As economies grow and population increases, so, too, do the demands for road space. 

Continual infinitesimal expansion of a road would be intolerably expensive. Standard practice 

is to expand capacity to a level greater than that which would be optimal for a steady-state 

traffic level at the time expansion takes place. Traffic then grows to and then above the level 

which would be optimal for the expanded road’s capacity. At some point, further expansion 

becomes in order. Consider a road authority in a growing economy that wants to design and to 

price its network so as to maximize the present value of its future user benefits minus user and 

road-authority costs. Setting marginal-cost congestion tolls would be an essential part of this 

optimization process. An interesting question then arises: as with roads in a steady-state 

economy, would such congestion tolls exactly cover the network’s capital costs in a growing 

economy given constant returns to scale in road production? Arnott and Kraus (1998a) 

address this question. They find that the self-financing theorem remains valid in present value 

terms, provided the size of capacity additions is optimized conditional on the timing of 

investments. This is true whether or not capacity is added continuously or intermittently, and 

whether or not the timing of investments is optimal. 

 

Heterogeneous users 

The same authors address heterogeneity across users and find that, as long as every user faces 

an optimal charge, this does not undermine the self-financing theorem (Arnott and Kraus, 

1998b). The important pre-condition is that marginal cost pricing applies to all users: when 

not all users are charged or when charges deviate from marginal cost pricing for other reasons 

(so that (4) above does not apply), the self-financing result generally breaks down. 

 

Time-of-day dynamics 

One of the more disturbing simplifications of the basic model in Section 2 is that congestion 

is assumed to be a static, stationary-state phenomenon. This is helpful in keeping our 
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discussion transparent, but rather unrealistic when looking at real-world traffic congestion. It 

is therefore important to verify whether the self-financing result remains intact when taking 

the time patterns of congestion and optimal congestion tolls into account. Arnott and Kraus 

(1998a) have shown that this is indeed the case, provided tolls can be varied optimally over 

time. A specific example of this result has been given for the so-called bottleneck model, first 

introduced by Vickrey (1969), and later analyzed in greater depth by Arnott, de Palma and 

Lindsey (1993).2 

 

Network extensions 

The self-financing result also continues to hold when extending the analysis from a single 

road or bottleneck to a full network. Yang and Meng (2002) show that self-financing will hold 

for every individual link in an optimally priced network, and therefore also for the network at 

large. As we shall see in Section 4 below, network effects do lead to a breakdown of the self-

financing result if other parts of the network are not optimally priced.  

 

Further extensions 

Various other extensions have been considered in the literature. 

Newbery (1989) for example considered self-financing in the face of durability choice 

and maintenance cost, and concluded that “if there are constant returns to scale in roads 

construction (for roads of given strength), and if there are strictly constant returns to road use 

(in the sense that heavy vehicles distribute themselves uniformly over road width), then the 

optimal road user charge (congestion charge plus road damage charge) will recover all road 

costs (maintenance and interest on capital)” (Newbery, 1989, p. 167). 

Small (1999) considered variable input prices, relevant for urban land that may rise in 

price when demand for road construction increases. This matter makes explicit the distinction 

between “returns to scale” (a property of a production function) and “economies of scale” (a 

property of a cost function). Small shows that the sign of actual profits from highway 

operation under first-best marginal cost pricing will then still be determined by the degree of 

scale of the cost function (which differs from the degree of returns to scale of production with 

a rising supply curve for land). The critical condition for exact self-financing under marginal 

cost pricing thus involves the degree of economies of scale of the cost function, and not the 

degree of returns to scale of its underlying production function. 

 

Conclusion 

In general, we find that extensions to the simple model of Section 2 lead to important 

additional insights, but generally do not undermine the self-financing theorem as summarized 

in equation (10).  

                                                
2 Arnott and Kraus (1998a) consider growth in demand over calendar time. Arnott, de Palma and Lindsey (1993) 
consider systematic fluctuations in demand by time of day. Demand is intertemporally substitutable in Arnott, de 
Palma and Lindsey (1993), but not Arnott and Kraus (1998a). 
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4. Some fallacies in the interpretation of self-financing road infrastructure 
As the foregoing illustrated, the Mohring-Harwitz theorem is a strong result, with important 

policy implications, that extends to various more realistic instances than the case for which it 

is typically illustrated in textbooks. Practical application would not only result in the use of 

optimal investment and pricing rules, but – provided the appropriate technical conditions are 

approximately fulfilled – also to a balanced budget for road operations, which in turn might 

have political and social advantages related to transparency and perceived fairness. At the 

same time, the theorem lends itself to fallacious interpretation. In this section, we will 

highlight three plausible mistakes that a public operator can make in interpreting the theorem, 

and we will assess the potential (welfare) implications of such misinterpretation using a small 

numerical example. The analysis bears resemblance to studies into the use of naïve cost-

benefit investment rules for road infrastructure, as reviewed in, for example, Small and 

Verhoef (2007). We will study, in that order, (1) the case where the regulator mistakenly 

assumes the theorem to imply that under neutral scale economies all toll revenues should be 

reinvested in capacity (a mixing up of capital costs with investment costs); (2) the case where 

the regulator imposes a balanced-budget restriction when there are increasing or decreasing 

scale economies in capacity; and (3) the case where the regulator imposes a balanced-budget 

restriction when second-best pricing is appropriate due to unpriced congestion elsewhere in 

the network. We start with a brief discussion of the numerical model that we will be using. 

 

4.1 A numerical model 

We use a numerical model that considers static congestion for homogeneous travelers 

between a single origin-destination pair connected by a single road (at least in the first two 

applications of the model). Demand is iso-elastic, with the elasticity with respect to 

generalized price p equal to η, and the associated inverse demand function is: 

ηδ /1)( FFD ⋅= , (11) 

where D is marginal willingness-to-pay, F is traffic flow, and δ a parameter. 

The generalized price p is again the sum of average cost c and a toll τ, where c is now 

specified according to the widely used BPR (Bureau of Public Roads) function: 

τβατ
χ

+




















⋅+⋅⋅=+=
K

F
tcp f 1 , (12) 

where α is the value of time, tf the free-flow travel time, K the road’s capacity, and β and χ 

are parameters. Note that c only contains time costs.  

We ignore road maintenance and depreciation. The capital cost is also iso-elastic and 

is given by:  

( )
κ

κγ K
K

K
CK ⋅⋅=

0

0 , (13) 
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where κ is the elasticity of capital cost with respect to capacity, and γ  the average unit price 

of capacity evaluated at a base-level of capacity K0 (note that the middle term consists of 

parameters only and could therefore easily be avoided by redefining γ; it is included only for 

ease of calibration). 

Total benefit can be determined as the area below the inverse demand function, so that 

social surplus S, our measure for welfare, can be written as:  

( )
44 344 2144444 344444 2143421
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⋅+⋅⋅⋅−⋅= ∫ . (14) 

We choose the following parameters. The BPR parameters β and χ are set equal to 0.15 and 4, 

respectively; their conventional values. The free-flow travel time tf is set at 0.5, so we 

consider a 60 km road if the speed limit is 120 km/hr. The base capital cost elasticity κ is 1. 

We seek a representative unit price of capacity γ  for a three lane (one-directional) highway, 

which we assume to involve K0=4500, so that a conventional traffic lane would correspond to 

K=1500. This implies a doubling of travel times at a use level of around 2400 vehicles per 

lane per hour. This is roughly in accordance to the flow at which, empirically, travel times 

double for a single highway lane and the maximum flow on a lane is reached (e.g. Small, 

1992, Fig. 3.4, p. 66). A maximum flow, however, is not defined for BPR functions. The 

average unit price of capacity at capacity level K0, γ, is set equal to 7 (all monetary costs are 

in Euros). With a unit of time of one hour, this parameter ought to reflect the hourly capital 

costs. To derive a value from empirical construction cost estimates, an assumption has to be 

made on whether the model aims to represent stationary traffic conditions throughout a day, 

or during peak hours only. Our parameterization concerns the latter. The value of 7 was then 

derived by dividing the estimated average yearly capital cost of one highway lane kilometre in 

The Netherlands (€ 0.2 million)3 by 1100 (220 working days4 times 5 peak hours per working 

day; assuming two peaks) and next by 1500 (the number of units of capacity corresponding 

with a standard highway lane), and finally multiplying by 60 (the number of kilometres 

corresponding with a free-flow travel time of half an hour). We set the value of time α at 7.5, 

in line with the “official” Dutch value. On the demand side, we use an elasticity η of –0.35. 

To create a reasonable reference equilibrium, where demand F is such that the travel time is 

twice the free-flow travel time tf for the base capacity of K=4500, we finally set δ=7.97·1011. 

 

                                                
3 With an infinitely-lived highway without maintenance and an interest rate of 4%, this implies construction 
costs of € 5 mln per lane-km, or € 8 mln per lane-mile. This order of magnitude is well in line with figures 
presented in Litman (2006) for the US, who quotes widely diverging estimates that suggest that the median 
construction cost per lane mile would be in the range of $ 5 – 10 mln, while more than a third would exceed $ 10 
mln. 
4 A rule of thumb in The Netherlands is that there are some 220 regular work days per year (44 weeks) on which 
“normal” travel conditions occur. 8 weeks are much quieter because of holidays, Christmas breaks, etc. 
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 K τ F D (= p) c CK ω 

Equilibrium 4 500 0 7 231 7.5 7.5 31 500 0 

Optimum 5 085 5.58 6 380 10.72 5.14 35 593 1 

Table 1: Numerical model: base equilibrium and optimum 

For this parameterization, Table 1 shows the base equilibrium as well as optimal levels of the 

most relevant endogenous variables. Most of this table’s content is self-explanatory. The final 

column, though, gives the efficiency measure ω that we will use. It is for a certain equilibrium 

defined as the surplus gain in that equilibrium compared to the base equilibrium, divided by 

the surplus gain in the first-best optimum compared to the base equilibrium. The indicator is 

therefore naturally 0 in the base equilibrium, and 1 in the optimum. 

 

4.2 Naïve interpretation I: mixing up capital cost and investment cost 

The first fallacy we consider concerns the mixing up of capital cost (“To what extent do the 

yearly toll revenues cover yearly interest cost?”) with investment cost (“To what extent 

should we reinvest toll revenues in additional road capacity?”). This mistake may seem 

terribly naïve to the trained economist, but may in fact not be so far-fetched in the practice of 

policy making, where investments are financed from public funds that are raised through 

taxation, and no interest is paid (at least not directly) on capital invested in public 

infrastructure. In fact some current proposals for road pricing in The Netherlands contain the 

qualification that toll revenues be used for road investments. 

In a neutral-scale-economies environment, where optimal roads are exactly self-

financing, it would be harmless in our model for overall efficiency to impose the constraint 

that toll revenues should be used to finance the capital costs. However, it is certainly not 

harmless to impose that all revenues should be reinvested in additional capacity. The easiest 

way to see where and how the two principles would diverge is to imagine starting with an 

optimal road initially, in an otherwise stationary environment. Optimal policies then entail 

constancy of toll and capacity for all future periods, with revenues covering the constant 

interest on invested capacity. The naïve policy, in contrast, would use revenues to expand 

capacity in the next period, so that capacity will grow over time as long as road use and toll 

are positive. 

 Our first simulation illustrates the consequences. We assume that the regulator saves 

up all toll revenues during a year (with no interest revenues) t, and uses these to expand 

capacity at the beginning of the next year, t+1. We assume that the short-run toll is optimal at 

each moment, to avoid clouding of results by introducing further inefficiencies from non-

optimal pricing. In our calculations, we assume that the construction cost per unit of capacity 

is 25 times as high as the yearly capital cost, which under our assumptions corresponds with 

an interest rate of 4%. We start with an optimal road in year 1 and trace the development of 

key variables over the next 50 years. 
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 Figure 1 displays the results. As expected, capacity (upper-left panel) rises over time 

as toll revenues continue to be collected. Although the optimal short-run toll (upper-right 

panel) falls over time as expanding capacity reduces congestion, the BPR function will always 

produce positive optimal tolls for any flow larger than zero. With capacity set optimal in 

period 1, it is no surprise that ω equals 1 initially, but falls over time afterwards, as capacity 

deviates further from the optimal level. Before too long, in year 19, ω falls below zero, 

indicating that the untolled base equilibrium produces a higher social surplus than the tolled 

equilibrium with excess capacity. The further drop in ω illustrates how the negative impact of 

this naïve policy upon social surplus becomes worse, the longer the policy is maintained. 

Finally, the lower-right panel displays the “correctly” calculated profits, Π (i.e., that use 

capital cost, not investment cost). With a zero surplus in period 1, and rising capacity costs 

and falling toll levels afterwards, these profits fall over time, indicating deficits. This confirms 

the claim in Verhoef and Rouwendal (2004) that under short-run optimal pricing and under 

neutral scale economies, an above-optimal capacity will produce a deficit.5 All in all, there are 

good reasons, based on theory and simulation, to discourage regulators from pursuing this 

particular type of naïve investment policy. 
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Figure 1: Re-investing all toll revenues: time paths of capacity (upper-left), short-run optimal toll 

(upper-right), relative efficiency (lower-left) and profit (lower-right) 

 
                                                
5 A below-optimal capacity, not actually considered in Figure 1, produces a surplus. Footnote 1 explains why. 
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4.3 Naïve interpretation II: imposing self-financing under non-neutral scale economies 

A second type of naïve interpretation would start from the political and social advantages that 

a balanced-budget regime might bring in terms of transparency and perceived fairness, and 

would strive for balanced budgeting even when the capital cost elasticity κ is unequal to 

unity. It is a way to impose a hard budget constraint so that costs could be contained. Again 

this is not an unlikely situation. It may occur whenever the primary motivation for road tolling 

is the financing of infrastructure, as it seems to have been the case for example for the 

Norwegian toll rings and for various applications in the US (e.g., Small and Verhoef, 2007, 

Ch. 4.3). We investigate this situation by tracing the impacts of varying κ upon the model 

results of interest when a balanced budget is imposed as a constraint. 
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Figure 2: Ignoring capital cost elasticity: zero-profit contour for κ=1 (upper-left), optimal (solid) and 

second-best (dashed) capacity (upper-right), optimal (solid) and second-best (dashed) toll (lower-left), 

relative efficiency (solid) and degree of self financing under first-best policies (dashed) (lower-right) 

In doing this, we first deal with the question of which zero-profit capacity-toll combination 

the regulator chooses for a given κ. This combination is namely not uniquely defined. The 

upper-left panel of Figure 2 illustrates this for the (base) case of κ=1, by showing the zero-

profit contour in the K-τ space (the optimum shown in Table 1 is represented by the dot). 

Note that the iso-elastic demand function with η=–0.35 secures that any capacity can be 

financed fully as long as the toll is sufficiently high; hence the shape of the contour. We again 

aim to avoid further distortions from clouding the analysis and assume that, for every κ 
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unequal to 1, the regulator sets second-best levels for K and τ, so as to maximize social 

surplus under the constraint that the budget be balanced.  

For an elasticity κ<1, there are economies of scale and we expect a deficit for first-best 

policies; for an elasticity κ>1 we expect diseconomies of scale to produce a surplus. For κ<1, 

the second-best (zero-profit) capacity K is therefore below the first-best capacity (see the 

upper-right panel in Figure 2) and the second-best toll is above the first-best toll (lower-left 

panel). These patterns are reversed for κ>1, with first-best and second-best tolls and capacities 

naturally coinciding for neutral scale economies, at κ=1 in the centre of the diagrams. 

The Mohring-Harwitz theorem predicts the degree of self-financing φ, defined as the 

ratio of toll revenues over capacity cost under first-best toll and capacity setting, to be equal to 

the elasticity of capital cost with respect to capacity κ. The dashed line in the lower-right 

panel shows φ as a function of κ, and confirms that this result is indeed reproduced in our 

numerical model. A quite different question is how large the efficiency loss would be from 

imposing self-financing when κ is unequal to 1. The pattern of ω by κ, in the same panel, 

confirms the intuitive notion that the relative efficiency loss increases with the divergence of 

κ from 1. But the relative efficiency loss ω is found to be much smaller than the deviation of 

the degree of self-financing φ from 1, reaching values near 0.8 for the two extreme values of κ 

considered in Figure 2, 0.1 and 2. In other words, whereas the relative deficit or surplus from 

first-best optimal pricing and capacity setting depends relatively strongly on the capital cost 

elasticity κ, the relative social ‘loss’ of maintaining self-financing when κ is unequal to 1 is 

far less sensitive in our model – provided, of course, self-financing is achieved by setting the 

second-best toll and capacity, as assumed in Figure 2. Although exact self-financing under 

first-best policies thus breaks down for κ≠1, the social sacrifice to be made for maintaining 

exact self-financing, if desired for other reasons, may not be too large. 

This is a surprising result, and it is important to assess how sensitive it is to the key 

assumptions in our numerical model. Figure 3 shows that the pattern seems robust with 

respect to two parameters that warrant particular attention. These are the demand elasticity η, 

taking on a relatively low absolute level of 0.1 in the upper-left panel and a relatively high 

absolute value of 0.75 in the upper-right panel (see for example Goodwin, 1992, for a review 

of demand elasticity estimates); and the power coefficient of the travel time function χ, taking 

on a low level of 1 in the lower-left panel and a high value of 10 in the lower-right one.6 The 

dashed diagonals confirm that the self-financing theorem of equation (10) remains valid 

independent of the parameterization; the solid lines show that the relative social cost of 

imposing exact self-financing, provided it is achieved in a second-best way, appears to be 

limited quite generally. 

 

 
                                                
6 For the sensitivity analysis for η, the parameter δ was adjusted to obtain the same base-equilibrium (in terms of 
flow and travel time); for the sensitivity analysis for χ, this was done by adjusting β. 
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Figure 3: Ignoring capital cost elasticity: sensitivity analysis of relative efficiency (solid) and degree 

of self financing under first-best policies (dashed) for low demand elasticity (upper-left), high demand 

elasticity (upper-right), low convexity of travel time function (lower-left), and high convexity of travel 

time function (lower-right) 

 

4.4 Naïve interpretation III: imposing self-financing under second-best network conditions 

A final naïve interpretation we wish to highlight concerns the case where the regulator ignores 

that the Mohring-Harwitz theorem applies to full networks only when all its links are priced 

optimally. Actual applications of road pricing that are motivated to finance infrastructure 

invariably concern situations where not all links of the network are optimally priced, so also 

this case appears to be relevant in practice. We illustrate the implications for a simple 

extension of our single-road model, namely one where an unpriced parallel road (denoted U) 

is available, and a toll and capacity can be set only for a substitute tolled road (T). 

This is a modest extension of the classic two-route problem studied by, inter alios, 

Lévy-Lambert (1968), Verhoef et al. (1996), and Liu and McDonald (1998). Important 

conclusions from these studies are (1) that the second-best toll is below the marginal external 

cost on the tolled road T in order to optimally trade off the toll’s positive impact upon 

congestion on the tolled road T against its negative impact upon congestion on road U (see 

also equation (15a) below); and (2) that the efficiency gains from second-best tolling (as 

measured by ω) will generally be modest. 

 Verhoef (2007) derives that in the more general case, where both the toll and the 
capacity for road T  can be optimized, the second-best toll rule remains the same as in the 
classic problem (with a fixed capacity) just discussed, while the optimal investment rule 
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presented in (6) for first-best optimization remains valid for road T also when an unpriced 
congested alternative is available. Specifically, the second-best optimum requires:  



















−
∂
∂

−
⋅

∂
∂⋅−

∂
∂⋅=

F

D

F

c
F

D

F

c
F

F

c
F

U

UU

U
U

T

T
TT

d

d
d

d

τ , (15a) 

and: 

0
d

d
T

=−
∂
∂⋅−

K

C

K

c
F

T
K

T

T
T , (15b) 

where superscripts denote roads, F≡FU+FT, and dD/dF denotes the slope of the (single) 

inverse demand function. 

 Because the second-best toll for this particular problem is below the marginal external 

cost, whereas the optimal investment rule for the toll road is not affected in functional form, 

the existence of unpriced parallel (congested) capacity causes the self-financing rule to break 

down. The degree of self-financing will be below the elasticity of capital cost, implying that 

under neutral economies of scale, a deficit will result for second-best toll and capacity choice 

(e.g., Verhoef 2007). Imposing a balanced-budget constraint under such circumstances would 

reduce maximum achievable social surplus to a yet lower level. In our final analyses, we 

compare the associated second-best/zero-profit results to the “conventional” second-best 

results (i.e., without a zero-profit constraint) for varying levels of unpriced capacity KU and 

assuming, as we did before, that the government makes one naïve misinterpretation only: self-

financing is believed to be appropriate, but otherwise KT and τT are set so as to maximize 

social surplus. The main results are shown in Figure 4. 

 The lower-right panel shows that the second-best policy indeed produces a deficit 

when unpriced capacity KU is greater than zero. These deficits increase in KU up to the point 

where KU equals the second-best capacity that would be chosen in absence of pricing 

(KU=5891), a level we shall refer to as KU
* in what follows. For KU>KU

*, it is uneconomical to 

supply additional capacity when it is unpriced. When optimal capacity decreases in toll, as is 

true in our model but not necessarily in general,7 it is therefore also uneconomical to supply 

additional capacity when it is priced. The second-best optimal capacity KT is then zero, as 

shown also at KU=KU
*=5891 in the upper-left panel of Figure 4, so that the deficit also drops 

to zero. The upper-right panel of Figure 4 shows that the second-best optimal toll falls when 

KU rises (naturally starting at the first-best level for KU=0 and KT=5085, the first-best level of 

capacity), which reflects that spill-overs upon road U become increasingly important as its 

capacity rises. Relative efficiency, finally, falls from 1 at KU=0 to around 0.5 at KU
*, which is 

under our parameterization the relative efficiency gain that can be achieved from second-best 

optimal investment without pricing new capacity. The falling pattern between these two 

                                                
7 See also Wheaton (1978), Wilson (1983), and d’Ouville and McDonald (1990). 
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points reflects that efficiency rises monotonously with the size of priced capacity (and falls 

with the size of unpriced capacity). The continuation beyond KU
* reflects that efficiency of 

course falls when KU further exceeds KU
*. 
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Figure 4: Ignoring network spill-overs: capacity (upper-left), toll (upper-right), relative efficiency 

(lower-left) and profit (lower-right) for second-best (solid) and second-best/zero-profit (dashed) 

policies 

To meet the zero-profit constraint, the toll should exceed the second-best optimal level, 

causing second-best/zero-profit capacity to be below the second-best level, as illustrated by 

the two upper panels. This of course implies a lower level of use on the second-best/zero-

profit road than on the second-best road, which in turn causes the maximum level of KU for 

which a balanced budget alternative is feasible (KU
# in the sequel) to be smaller than KU

*, the 

maximum level for which it is efficient to supply additional capacity. The deviations of these 

capacity and toll levels from the second-best optimal values cause ω to be lower, with 

negative values certainly not impossible. The right segment of the dashed ω-curve in the 

lower-left panel considers KU exceeding KU
#, and therefore involves no road T being actually 

offered. The welfare effects underlying the pattern of ω over this range stem solely from the 

variation in the unpriced capacity KU. Not surprisingly, then, this segment reaches its 

maximum at KU
*, where it is in fact equal to ω for second-best regulation because both 

schemes involve an unpriced road of capacity KU
*. 

 Over a significant range of KU, therefore, the additional welfare loss from imposing 

self-financing – over the inherent welfare loss from second-best pricing compared to first-best 
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tolling – appears to be substantial. The reason is that self-financing requires a relatively high 

toll, which in turn aggravates the inherent inefficiency of congestion spill-overs upon the 

unpriced road. 

 

4.4 Conclusion 

The numerical model predicts that naïve interpretation of the Mohring-Harwitz rule may lead 

to substantial welfare losses. These were found in particular for the mixing-up of capital cost 

with investment cost, and for the imposition of a balanced-budget constraint under second-

best network conditions. The losses from the imposition of a balanced-budget constraint when 

the elasticity of capital cost with respect to capacity is unequal to unity were, in contrast, 

found to be surprisingly small. 

 

5. Conclusion 
After 45 years, the self-financing theorem of Mohring and Harwitz has become one of the 

landmark results in transport economics, and one that has potentially important implications 

for real policies – especially now that road pricing appears to become an increasingly realistic 

option at many locations. This paper reviewed some of the literature showing that the theorem 

remains valid in more general settings than how it was originally derived and presented. We 

also showed that a naïve interpretation of the result, unfortunately, may lead to considerable 

social welfare losses. The economists’ advice would therefore be to apply the theorem, but to 

do so with care. 
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