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Abstract 
This paper proposes an alternative, dynamic framework for estimating time-varying values of 
travel time savings and values of schedule delay, in which time-preferences are represented 
as the time-varying excess willingness to pay (EWPT) to being in the one location, over being 
elsewhere. It is shown how the conventional linear model, with time-independent values of 
travel time savings and schedule delay costs, is a special case of our model, and that it is 
implausible particularly in that it implicitly assumes that the willingness to pay for spending a 
minute at home instead of being in the vehicle does not vary by time of day, even not for very 
early departures. The framework is applied to SP data representing the respondents’ 
departure time choices for the morning commute. The results suggest that individuals’ time-
related shadow prices indeed vary strongly over the morning peak, and values of travel time 
savings are consequently strongly time-dependent, following plausible and intuitive patterns.  
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1. Introduction 

The value of travel time savings (VTTS), often abbreviated as ‘value of time’ (VOT), is of 

central interest in transport research. The VTTS is often among the bigger benefit components 

in the assessment of transport investments. It is also an important parameter in the analysis of 

travel behaviour and in traffic assignment models. Becker (1965) was probably the first to 

introduce the allocation of time over various activities in the analysis of consumer behaviour, 

thus offering the micro-economic framework needed to establish the shadow price of time 

savings. Further contributions from Johnson (1966) who introduced work time in the utility 

function, Oort (1969) who did the same for travel time, and DeSerpa (1971) who added 

technical constraints, showed that the VOT at various activities does not need to be equal to 

the wage rate – justifying further research into the empirical estimation of VTTS. In such 

research, the VTTS is usually derived as the marginal rate of substitution between travel time 

and cost coefficients, typically as found in discrete choice models of stated preference data, 

revealed preference data, or a combination of these (e.g. Small, Winston and Yan, 2005). This 

ratio is exactly the VTTS in DeSerpa’s (1971) framework (Bates, 1987). 

An important addition to this framework was made by Small (1982), who explicitly 

included the scheduling of activities – the morning commute in particular – in the analysis. 

Inspired by the work of Vickrey (1969) on the dynamic equilibrium and optimum for queuing 

behind a bottleneck, Small allowed for disutility from early or late arrivals at work. With a 

simple linear utility specification, this leads to three relevant time-related shadow prices: a 

value of travel delay which is usually denoted α in the relevant literature (e.g., Arnott, De 

Palma and Lindsey, 1993), a shadow price of arriving early (β), and a shadow price of late 

arrivals (γ). Small’s (1982) model has become the workhorse model to incorporate within-the-

day dynamics in the valuation of travel time components. 

A particular aspect of Small’s basic linear model is that the inconvenience of an early 

trip is attributed to an early arrival at work. This implies, in terms of the notation just 

introduced, that a constraint β<α should be imposed – unless one is willing to accept that an 

individual may prefer to stay in the parked car when arriving early, over getting out of the car 

and into the office (or factory). Moreover, β>α also implies that for a deterministic dynamic 

equilibrium with homogeneous travellers, a person who arrives after another person should 

have departed before that other person for total trip cost to be constant by arrival time (which 

is the natural dynamic equilibrium condition for homogeneous travellers). But consistent 

overtaking as a structural equilibrium phenomenon is not plausible. 

Nevertheless, the inequality β<α need not always be satisfied in applied work, 

especially not for linear specifications. Indeed, the focus on deviations from desired arrival 

times, in combination with the constancy of shadow prices α, β and γ for a linear utility 

function, makes it impossible to capture the intuitive notion that rescheduling to earlier time 

slots becomes increasingly inconvenient as increasingly more valuable moments spent at 

home (possibly sleeping) are to be given up. Allowing for this by introducing a non-linear 

effect of schedule delay early upon utility is somewhat ad hoc: it can partly account for the 
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effect mentioned, but leads to the risk of β>α for early arrivals and may assign different 

penalties for early departures from home at the same moment when trip durations vary. 

Our purpose is to propose a variant of Small’s model that explicitly allows for non-

linear effects. We present a model that estimates two time-dependent utility components, 

namely the per-unit-of-time willingness to pay for being at home over being in the car H(t) (a 

negative value would imply a preference for the car), and the per-unit-of-time willingness to 

pay for being at work over being in the car W(t). We show how the implied two functions in 

fact define three time-dependent functions α(t), β(t) and γ(t), which are the time-varying 

equivalents of the conventional shadow prices α, β and γ. A recent study of Liu, He and 

Recker (2007) provides empirical evidence that the values of time and unreliability vary over 

the peak. Our approach differs from theirs in at least two respects: first, we explicitly include 

scheduling considerations in the model; and secondly, our approach allows an individual’s 

value of time to vary over time, whereas the empirical time-dependency of the value of time 

in the analysis of Liu et al. (2007) may equally well result from different departure time 

choices from different travellers with different values of time and unreliability. 

Section 2 present our framework and discusses how it has the conventional linearized 

version of Small’s (1982) model as a special, restricted case. Section 3 introduces the 

empirical application of our model, and Section 4 presents estimation results. Section 5 

concludes. 

2. Theoretical framework 

Consider an individual who has to decide whether or not to travel to work in the morning, and 

if so, at what time. We hypothesize that this individual’s utility over the full morning period 

(that is, a period between two instants tb (“begin”) and te (“end”), chosen such that it is long 

enough to encompass all possibly relevant departure times from home and arrival times at 

work) can be found by integrating, over the relevant periods, particular functions that 

represent the per-unit-of-time utility of being at a certain place. To simplify matters, let us 

assume that the individual considers three possible places where he can be: at home, in the 

vehicle, or at work (all other possible places are considered inferior to even the least 

preferable of these three at any relevant instant t). Let every unit of time spent at home 

produce a time-varying utility h(t), and define analogously the utility in the vehicle v(t), and at 

work w(t). Assume that each of these functions is continuous and smooth. 

We ignore complexities that may stem from the dependence of the marginal utility of 

income upon the scheduling decisions in the morning period, and assume it is constant. We 

can then choose units of utility such that differences between any pair from the triplet {h(t), 

v(t), w(t)} denote the individual’s willingness to pay to spend, at time t, one unit of time at the 

more preferred location rather than the less preferred one. 

Indeed, because we only consider three possible locations where the individual can be, 

behaviour will be determined entirely by differences in utility levels. We can therefore 

simplify notation by equating one of the three utility levels to 0 throughout the period [tb, te], 

which only means that calculated utility levels are reduced by a constant equal to the integral 
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of this reference utility function between tb and te. We choose v(t) as the reference, so that we 

are left with two functions that we define as follows: 

)()()(

)()()(

tvtwtW

tvthtH

−=
−=

. (1) 

H(t) therefore gives the willingness to pay to spend a unit of time at home rather than in the 

vehicle at time t, and W(t) does the same for work versus the vehicle. We will refer to the 

functions H(t) and W(t) as excess-willingness-to-pay functions, EWTP-functions in brief. 

Note that there is a priori reason for restricting either EWTP to be positive; a negative value 

would be consistent with findings reported by, inter alios, Redmond and Mokhtarian (2001), 

on how travellers may sometimes attach a positive utility to extra time spent in the car. 

 Figure 1 provides an example, where we made the plausible assumptions that the 

individual finds it especially at early hours attractive to spend time at home rather than in the 

vehicle, while the attractiveness of being at work increases rapidly within a relatively short 

time-span around the official work start time, and remains rather flat both before and after that 

moment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The EWTP-functions for being at home (H(T)) and at work (W(T)) 
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actually is most desirable only when travel would take no time. With a given trip duration T, 
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1 is an example of such an optimally timed trip, for which t2 is the desired arrival time.1 

Therefore, because t* is the desired arrival time only when travel time is zero, we will refer to 

t* as the “ideal arrival time”. 

 It seems natural to define the individual’s travel cost c(tD,tA) such that is zero for an 

optimally timed zero-duration trip: c(t*,t*) = 0. The willingness to pay for being able to make 

this trip, over the worst possible situation of being in the vehicle between instants tb and te, is 

given by the sum of all areas I – VIII in Figure 1. Travel cost c(·) for other trips can be 

identified graphically in Figure 1 as areas below the maximum of H(t) and W(t) when driving, 

and between H(t) and W(t) between moments tA and t* when arriving before t*, and between t* 

and tD when departing after t*. These areas together namely give the willingness to pay for 

making the ideal optimally timed zero-duration trip, over the trip under consideration. 

 Another way to identify the same areas for a given trip is to take the area below H(t) 

when driving (i.e., between tD and tA), and add to it the area between H(t) and W(t) between 

moments tA and t* when arriving before t*, or between t* and tA when departing after t*:2 
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This can be verified by checking the following travel costs for three different types of trips in 

Figure 1, namely one with both the departure and arrival before t*, one with a departure before  

t* and an arrival after t*, and one with departure and arrival both after t*: 
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It is now convenient to define the following functions: 

                                                
1 With time-varying travel times, equalization of H(tD) and W(tA) is of course no longer the appropriate necessary 
equilibrium condition. The optimality condition for such cases is straightforward to express after specifying a 
travel time function T(tD) and replacing tA by tD+T(tD). It next involves minimization of equation (2) below with 
respect to tD. This leads to the equilibrium condition: H(tD) = [1+dT(tD)/d tD]·W(tA). Note how it has the constant 
travel time case discussed in the main text as a special case, where the second term in the square bracket is zero. 
Otherwise, it corrects for changes in travel time where the departure time is marginally adjusted. With time-
varying travel times, an arrival before t*  or a departure after t* may occur in equilibrium.  
2 Equivalently, we could specify the model such that W(t) becomes the time-varying value of travel time. This 
involves schedule delay terms that are the integral of [H(t)–W(t)] between tD and t* for departures before t* , and 
the integral of [W(t)–H(t)] between t*and tD for departures after t*. The fact that we can do this is consistent with 
our model being symmetric between H(t) and W(t). The specification in the main text has the obvious advantage 
of being directly comparable to the conventional model. The alternative described in this footnote, which relates 
schedule delay costs to deviations from the ideal departure time, might be more intuitive to describe the 
afternoon peak.  
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We can then rewrite the cost function in (2) as:  
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The arrows in Figure 1 represent these functions α(t), β(t) and γ(t). These functions are 

helpful in understanding how the conventional linearized version of Small’s (1982) model is a 

special case of our model. The cost function in the conventional linear model can be written 

as follows:  

( ) ( )
( )
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This is of course a special case of the cost function in (5), with the functions α(t), β(t) and γ(t) 
all constant over time and equal to α, β and γ, respectively. Figure 2 depicts the associated 

variant of Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The EWTP-functions in the conventional linearized model 
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time otherwise spent home, perhaps sleeping, can therefore not be properly reflected. A 

minute spent at home, instead of in the vehicle, is constrained to be equally valuable at 5 a.m. 

as at 8 a.m. Introspection suggests that this is not plausible, and empirical evidence in the next 

section will confirm this. The other difference is that W(t) is piecewise constant in Figure 2. 

Although this is restrictive, too, it seems less so than the first difference, of imposing 

constancy of H(t) over time. 

Finally, it can be noted that the proposed framework is related to recent developments 

in activity-based modelling (e.g., Ettema and Timmermans, 2003; Ashiru, Polak and Noland, 

2004), which also involve the modelling of dynamic scheduling decisions. Our approach is 

different in that we characterize time-dependent utility functions entirely in terms of time-

varying shadow prices, the EWTP-functions, as a dynamic generalization of the conventional 

constant shadow prices α, β and γ. 

3. Empirical application 

3.1. Empirical specifications 

The conventional linearized model of equation (6) is easily operationalized for application in 

a random-utility discrete-choice model through the following specification of a linear 

systematic utility function: 

( )
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τββ , (7) 

with τ denoting a monetary attribute such as a toll. With the coefficients β estimated, one can 

immediately determine α = βα/βτ; β = ββ/βτ; and γ = βγ/βτ. With random utility for alternative 

j for individual n defined as:  

( ) jnjn VU ε+⋅= , (8) 

conventional multinomial logit or probit discrete-choice models arise under particular 

assumptions on the distribution of the random terms εjn.  

 The operationalization of the more flexible model of (2) and (4) is less 

straightforward. One option would be to impose functional forms for H(t) and W(t) as 

functions of time, and to estimate the relevant parameters. Another possibility, pursued below, 

could be characterized as ‘flexible’ and divides the morning peak period up in a number of 

smaller intervals, with H(t) and W(t) constant within an interval but free to vary between 

them. This has the advantage of not imposing any a priori assumption on the possible time 

patterns of these functions, but the obvious disadvantage of restricting H(t) and W(t) to be 

constant within an interval. Because we are interested primarily in detecting the pattern of 

time variation in α(t) over the peak, if any, we judged the advantage to outweigh the 

disadvantage. 

 The systematic utility function can be written after defining iT  as the amount of time 

spent driving during time interval i, E
iT  as the amount of time spent at work before the ideal 
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arrival time t* during time interval i, and L
iT  as the amount of time not (yet) spent at work 

after t* during time interval i. This leads to the following discrete-time version of equation (5):  

∑∑∑ ⋅+⋅+⋅=
i

A
L

ii
i
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ii
i

ADiiAD tTtTttTttc )()(),(),( γβα . (9) 

The accompanying systematic utility function for estimation purposes becomes:  
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After estimating the coefficients β, one can immediately determine αi = βα,i/βτ; βi = ββ,i/βτ; 

and γi = βγ,i/βτ. As a final step, one could next calculate Hi = αi, and Wi = αi + βi for early 

arrivals and Wi = αi + γi for late arrivals. Note that we assume intervals to be defined such that 

t* defines the boundary between two intervals. 

 

3.2. Data 

The data used were obtained in 2004 from an internet survey among Dutch commuters, who 

were selected on the criterion of experiencing at least 10 minutes of congestion, at least 3 

days per week. The first part of the survey collected the information on the respondents’ 

current commuting behaviour. The second part was a stated choice experiment, consisting of 

11 choice profiles. Rather than choosing one of four alternatives, the respondents were asked 

to indicate how often they would choose each alternative, when considering a total of 10 trips 

for their morning commute. The dataset contains 1105 respondents, yielding 12265 choice 

observations. 

The choice experiment was based on a fractional factorial design (orthogonal non-

linear main effects design), using 4 design levels for 13 of the attributes and 2 design levels 

for 2 of the attributes. To make the alternatives as realistic as possible, the actual values of 

attributes were based on each respondent’s current travel behaviour. Each choice profile 

contained four alternatives. The first three alternatives involved a car trip, and the fourth one 

public transport. An alternative was characterized by the mode of transport; the trip length; 

the travel cost (composed of fuel costs and a road charge for the car, and a ticket for public 

transport); a departure time; a travel time interval and an implied arrival time interval (both 

with a uniform distribution); and a division of total travel time over uncongested and 

congested driving.  

The dependent variable used in the present study is the choice proportion allocated to 

each of the four alternatives by individuals. Uncertainty in travel time is a separate attribute in 

this stated choice experiment, and we follow the ‘expected utility maximization’ approach of 

Noland and Small (1995) to incorporate the uncertainty variable. This means that we compute 

the ‘expected’ travel time and early/late arrival in different time intervals. In what follows, iT , 
E

iT  and L
iT  thus refer to expected numbers of minutes in time interval i. 

The choice experiment was not constructed specifically for estimating the above 

specified time-dependent model, which caused restrictions in the estimation of equation (10). 

A first restriction is that an individual’s preferred arrival time is available only for a trip with 
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a duration implied by the individual’s free-flow (uncongested) travel time. This preferred 

arrival time PAT, and the accompanying preferred departure time PDT, define an interval in 

which the ideal arrival time t* should be located; compare Figure 1. We will not attempt to 

actually estimate t*, but instead test a few specifications in which t* is defined as a weighted 

average, with weights equal across individuals, of PDT and PAT. We tested various weights 

between 0 and 1, and the results appeared to be robust for various weights. 

 

Table 1. The definition and descriptive statistics of the explanatory variables 

Variable 

notation 
Definition Mean Std. Min. Max. 

T–1 
The expected travel time spent during the interval 

between 0-15 minutes before t* 
10.19 6.28 0 15 

T–2 
The expected travel time spent during the interval 

between 15-30 minutes before t* 
12.20 4.57 0 15 

T–3 
The expected travel time spent during the interval 

between 30-60 minutes before t* 
24.12 10.34 0 30 

T–4 
The expected travel time spent during the interval 

between 60-90 minutes before t* 
16.03 13.41 0 30 

T–5 
The expected travel time spent during the interval 

between 90-120 minutes before t* 
8.18 12.09 0 30 

T–6 
The expected travel time spent during the interval 

between 120-150 minutes before t* 
3.62 8.96 0 30 

T–7 
The expected travel time during the interval 

between 150-180 minutes before t* 
1.52 6.07 0 30 

TE
–1 

The expected time spent at the destination during 

the interval between 0-15 minutes before t* 
4.57 6.24 0 15 

TE
–2 

The expected time spent at the destination during 

the interval between 15-30 minutes before t* 
1.95 3.81 0 14 

TL
1 

The expected time not spent at the destination 

during the interval between 0-15 minutes after t* 
7.56 7.30 0 15 

TL
2 

The expected time not spent at the destination 

during the interval between 15-30 minutes after t* 
4.45 6.46 0 15 

TL
3 

The expected time not spent at the destination 

during the interval between 30-60 minutes after t* 
1.85 3.70 0 27 

Cost Sum of fuel cost and toll (in Euros) 3.54 3.67 0 33.7 

Uncertainty 
The difference between maximum and minimum 

possible travel times (in minutes) 
15.93 16.43 0 168 

 

A second restriction is that the design of the experiment does not provide sufficient variation 

in arrival times at work to allow for unrestricted estimation of all coefficients β for all time 
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periods of interest. Since there are hardly any observations of a departure time after t*, there is 

a nearly perfect correlation between L
iT  and iT  in intervals after t*. We can therefore only 

estimate the sum of αi and γi for these late intervals. To assure that there are sufficient 

observations in each time interval, we choose 30 minutes as the typical interval size. Still, 

since most arrivals are less than 30 minutes from t*, we were able to use two smaller intervals 

of 15 minutes just before and after t*.  The notation, description and descriptive statistics of 

the variables are shown in Table 1. The utility function we actually estimate is then given by: 

( )∑∑∑
=

−

−=
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ii TTTV γαβατ ββββτβ . (11) 

4. Estimation results 

The choice models we estimate in this section are based on the specification of equation (11). 

The objective is to see if the estimated coefficients vary over the different time intervals, and 

more importantly, whether the variation of the estimates follows the pattern illustrated in 

Figure 1. Since the experiment involves mode choice, we specify an alternative-specific 

constant (ASCPT) for public transport, to capture the effect of respondents’ preference 

associated to that particular mode. Furthermore, we add the variable ‘uncertainty’ for car 

alternatives, defined as the width of the possible arrival time interval as shown to the 

respondents, to account for the additional disutility associated with travel time uncertainty 

(apart from the scheduling costs). The public transport alternative was presented as 

completely reliable in the experiment. 

As discussed in previous section, we should expect an individual’s t* to be somewhere 

between individual’s preferred departure time (PDT) and preferred arrival time (PAT) for a 

free-flow travel time trip. Because PDT and PAT were asked in the questionnaire and t* 

wasn’t, the latter should somehow be derived from the former two. We have estimated a 

series of models by varying the individuals’ locations of t*, relative to their PDT and PAT. 

The best model, pragmatically defined as the one yielding the highest log likelihood value, is 

the one with t*=0.2*PDT + 0.8*PAT. The choice models we summarize in Table 2 are based 

on that particular specification.  

The estimation results are summarized in Table 2. Two models are presented: (1) a 

conventional multinomial logit (MNL) model, and (2) an mixed logit (ML) model that 

accommodates the correlation amongst choice sets drawn from the same individual. For 

model stability, cost parameters were treated as non-random in our mixed logit models (see 

also Revelt and Train, 1998; Bhat and Sardesai, 2006). The random parameters in the mixed 

logit model are assumed to follow a normal distribution.3  

                                                
3 A number of mixed logit models with uniform and triangular distributions were also estimated, and the results 
were similar to the models with normal distribution. The models with normal distribution yield higher log-
likelihood values. We also estimated the models with log-normal distribution, but most of these hardly 
converged.   
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Table 2. Estimation results 
Model 1 

MNL 
Model 2 

ML 
Explanatory 

variable 
Refers to 
valuation 

Coeff.            t-stat. Coeff.           t-stat. 

Random parameter mean effects 

T–1 α–1 .0040             0.36 .0082             0.55 

T–2 α–2 .0002             0.05 .0145             2.01 

T–3 α–3 -.0107            -6.19 -.0172            -4.26 

T–4 α–4 -.0215          -11.63 -.0416          -10.89 

T–5 α–5 -.0269          -10.24 -.0471            -9.78 

T–6 α–6 -.0311            -7.03 -.0544            -6.28 

T–7 α–7 -.0414            -6.22 -.0592            -3.69 
TE

–1 β–1 .0063             0.53 .0137             0.81 

TE
–2 β–2 -.0370            -5.14 -.0244            -1.92 

TL
1 α1+γ1 -.0173            -4.42 -.0220            -3.51 

TL
2 α2+γ2 -.0370            -6.76 -.0456            -4.42 

TL
3 α3+γ3 -.0299            -3.88 -.0576            -3.91 

Uncertainty  -.0027            -2.00 -.0079            -2.32 

Random parameter standard deviation 

T–1   .0075             0.64 

T–2   .0086           13.91 

T–3   .0087           23.79 

T–4   .0064           19.45 

T–5   .0046           10.17 

T–6   .0048             7.35 

T–7   .0095             6.40 

TE
–1   .0032             0.35 

TE
–2   .0043             0.21 

TL
1   .0022             2.92 

TL
2   .0088           12.35 

TL
3   .0058             3.84 

Uncertainty   .0060           28.29 

    
Non-random parameters 
Cost  -.0989          -17.18 -.1957          -34.77 
ASC, PT  -.9496          -18.34 -1.487          -24.86 

    
Observations (N)  12265 12265 

Log likelihood  -15401.38 -13141.79 
R-sqrd Adjusted  0.0921 0.2265 

The main result is that the values of travel time savings αi indeed are not constant over time, 

and the values increase as the time interval move further away from t*. These results imply 

that individuals do have shadow prices that vary over time. The implied marginal rates of 

substitution between time attributes and money, i.e., the various shadow prices of interest, are 

shown in Table 3, and the patterns generally follow those hypothesized in Figure 1. 

The design of the underlying questionnaire in the first place allows us to provide 

estimates of αi, and hence the function H, for all intervals before t*. For example the MNL 

estimates of Model 1 depict how this value dramatically falls over time during the period 

prior to t*, with the time coefficient becoming insignificantly different from zero for 
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intervals –2 and –1, reflecting that the individuals are indifferent between spending those 

minutes at home or in the car. This pattern thus replicates the hypothesized pattern in Figure 1, 

and suggests that the usual assumption that α is constant over time may be rather restrictive. 

We can estimate βi only for intervals –1 and –2, and therefore the same holds for the 

determination of the function W before t*. For both models, the associated time coefficient is 

significantly different from zero only in interval –2. Because β–2 exceeds α–2, it appears that 

W–2 is negative: during that time interval, people prefer to be in the car over being already at 

the destination. For intervals after t*, we can only estimate the sum αi+γi, which is equal to Wi, 

and not the two components separately. (Because no separate estimate of αi can be made, also 

Hi can not be determined for intervals after t*.) The pattern clearly shows a sharp increase 

from interval 1 to interval 3, which again confirms our hypotheses illustrated in Figure 1. 

 

Table 3. Mean monetary values (Euro/hour) 

Monetary values 
Model 1 

MNL 

Model 2 

ML 

α–1 -2.43 -2.50  (2.31) 

α–2 -0.13 -4.46  (26.22) 

α–3 6.48 5.28  (26.54) 

α–4 13.03 12.75  (19.76) 

α–5 16.35 14.44  (14.17) 

α–6 18.87 16.69  (14.71) 

α–7 25.15 18.16  (29.05) 

β–1 -3.84 -4.21  (0.97) 

β–2 22.46 7.49  (1.31) 

α1+γ1 10.47 6.75  (6.72) 

α2+γ2 22.47 13.97  (26.97) 

α3+γ3 18.12 17.67  (17.93) 

VUNC (uncertainty) 1.65 2.43  (18.54) 

Notes: 1. The derived monetary values from the standard deviation of random parameters are shown in 
parenthesis; 
2. Values or standard deviations arising from insignificant (at 90% significance level) coefficients are in 
italics (and in red in colour prints) 

 

Model 2 is preferred to Model 1 since the former allows for taste heterogeneity across 

individuals as well as accommodating the correlations across choice sets that drawn from the 

same individuals (mixed logit with panel structure). The log-likelihood value also suggests 

that the model fit for Model 2 is much better than for Model 1. Although the mean monetary 

values differ somewhat between Models 1 and 2 (see Table 3), the two models seem to 

produce reasonable consistent results in terms of the qualitative patterns. It is interesting to 

note that the standard deviations of random parameters in Model 2 are mostly significant and 

large. It makes intuitive good sense that there is variation in parameters across individuals. 

Note that the negative ASCPT in both models suggests that our respondents have an inherent 
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preference for car over public transport. This is consistent with the fact that our sampled 

respondents are all frequent car users. 

Figure 3 summarizes the above findings graphically, by comparing the estimated time-

dependent patterns of H and W from the two time-dependent models (1 and 2) to the patterns 

that result from the conventional linear model estimated for the same data, for which we used 

estimates of α, β and γ as reported in Tseng et al. (2005) for their model 2. The horizontal 

axis depicts time, where the ideal arrival time t* is set at t=0 for the time-dependent model, 

and the preferred arrival time PAT for the linear model. The falling pattern of H for times 

before t* is, by construction, of course not found in the linear model, but the time-independent 

value of H seems to be reasonably close to the time average for the time-dependent models. 

The negative values for W in interval –2 in the time-dependent models are consistent with a 

consistently negative value of W before PAT in the linear model (β>α in that model). 

Apparently, there is a tendency among the respondents to be keen on avoiding spending time 

at work before the start time: time spent in the car is valued higher than time spent at work in 

our estimates. For times after t*, the linear model implies that H maintains its pre-t* value; 

there are insufficient observations to estimate the corresponding values for the time-

dependent model, but the last value estimated, not significantly different from zero, suggests 

that lower values would have resulted, just as hypothesized in Figure 1. Finally, W rises as the 

time interval moves forward, but stays below the value implied by the linear model. The 

biggest difference between the time-dependent models versus the linear model therefore 

seems to be that the latter cannot reproduce the falling pattern of H, corresponding to the 

conventional value of travel time savings α, over the period prior to the ideal arrival time t*. 

Comparing the two time-dependent models, the various estimates seem reasonably close, with 

the mixed logit model producing less extreme values and smoother patterns than its 

multinomial counterpart.  
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Figure 3. The empirical EWTP-functions for the time-dependent and the linear models 



Value of Time by Time of Day 13 

There is one final potential caveat to be addressed. Because the design of the stated choice 

experiment was such that arrival times were varied around the most desired arrival time, we 

have relatively many observations for respondents making longer trips in the earlier intervals. 

Now if for some reason these individuals have a higher value of travel time savings, the 

patterns depicted for H in Figure 3 might also be due to a different sampling of respondents 

along the time axis. We have therefore also estimated the same time-dependent models for the 

48% of respondents making the longest trips (>40 km). The results conveyed the same 

qualitative patterns as those shown in Figure 3.4  

We also verified whether the results vary by socio-economic characteristics. 

Estimation results, reworked into monetary values as in Table 3, are provided in the 

Appendix. A separation by income into two groups left the qualitative patterns, as shown in 

Figure 3, intact. It further revealed that the higher income group has higher α’s before t*, 

whereas the β’s for arrivals before t*, and α+γ for arrivals after t*, are higher for lower income 

groups. This confirms the expectation that higher income groups are willing to pay more to 

avoid travel time, whereas lower income groups have tighter scheduling constraints. A 

separation by gender produces somewhat less clear-cut results, partly because there are too 

few observations for female drivers in some time periods. But when they travel, women 

appear to usually have higher values than male drivers, for the shadow prices listed in Table 

3. And finally, we tested whether the inclusion of a lateness penalty (a probability in our 

model, because we have an uncertain travel time), also introduced by Small (1982), affects 

the results. The coefficient for this variable turned out to be statistically insignificant, both in 

MNL and in ML estimations, and the other coefficients are (not surprisingly) hardly affected. 

5. Conclusion 

We proposed an alternative, dynamic framework for estimating time-varying values of travel 

time savings and values of schedule delay. Our formulation represents time-preferences as the 

time-varying excess willingness to pay (EWPT) to being in the one location, over being 

elsewhere. We applied the framework to SP data representing the respondents’ departure time 

choices for the morning commute. We showed how the conventional linear model is a special 

case of our model, and that the conventional model is implausible particularly in that it 

implicitly assumes that the willingness to pay for spending a minute at home instead of being 

in the vehicle does not vary by time of day, even not for very early departures. It is especially 

in this respect that the estimates for the time-dependent model deviate substantially from 

those for the stationary model, estimated for the same data. The data thus support the case for 

our time-dependent framework rather convincingly. 

                                                
4 For this estimate, we had to merge the two 15 minutes intervals prior to t* to one 30 minute interval. For the 
MNL model, the values of H were as follows: H–1&2 = –7.0 (insign.); H–3 = 1.3 (insign.); H–4 = 15.4; H–5 = 20.0; 
H–6 = 20.5; H–7= 29.0; and the values for W were as follows: W1  = 5.6 (insign.); W2 = 25.3; W3 = 27.1. For the 
ML model, the values of H were as follows: H–1&2 = -1.8 (insign.); H–3 = -2.4 (insign.); H–4 = 12.9; H–5 = 20.0; H–

6 = 19.5; H–7= 23.3; and the values for W were as follows: W1  = 7.2; W2 = 11.1; W3 = 20.0.  
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Because the conventional linear model is a special, constrained case of the time-

dependent model that we propose, it seems that there is little point in discussing which model 

is preferable from a theoretical or a behavioural viewpoint. That is, if the data allow, it seems 

preferable to estimate the time-dependent model and deciding next whether imposing the 

conventional constraint of a constant value of travel time savings α seems justifiable. From a 

practical perspective, clearly, there may be other considerations. If anything, a proper 

estimation of the time-dependent model requires a rather rich data set, with wide ranges of 

departure and arrival times, in particular if the EWPT for being at work is to be estimated also 

for intervals before the ideal arrival time t*, and the EWPT for being at home is to be 

estimated also for intervals after t*. 

Our results suggest that individuals’ time-related shadow prices vary strongly over the 

morning peak, and values of travel time savings are consequently strongly time-dependent. A 

failure to incorporate such considerations may produce biased estimates of values of travel 

time savings, and errors in the prediction of behavioural responses to policies or other 

measures that affect the time pattern of congestion in the morning peak. This, in turn, may of 

course also affect the accuracy of cost-benefit calculations for such measures. It seems 

difficult to predict, in general, the relative size and sign of such biases. Studying this question 

in the context of a dynamic equilibrium model would be an interesting topic for further study. 
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Appendix Monetary values in Table 3 disaggregated by income and gender 
 

Monetary values by income and gender (MNL)  
Income Gender 

Monetary values Low 
MNL 

High 
MNL 

Male  
MNL 

Female 
MNL 

α–1 -9.29 4.46 -4.11 2.39 
α–2 -5.53 3.47 1.33 -3.46 
α–3 3.44 8.18 3.84 12.72 
α–4 12.63 13.16 13.10 13.95 
α–5 19.45 14.06 15.29 23.68 
α–6 17.94 21.73 19.65 16.38 
α–7 - 31.92 26.69 - 
β–1 -8.32 1.97 -5.71 0.15 
β–2 34.95 13.38 22.54 18.08 
α1+γ1 12.20 8.97 11.17 7.39 
α2+γ2 37.51 13.74 18.88 36.17 
α3+γ3 - 24.35 21.48 - 

VUNC (uncertainty) 2.25 1.11 2.69 -1.66 

 

Monetary values by income and gender (ML)  
Income Gender 

Monetary values Low 
ML 

High 
ML 

Male  
ML 

Female 
ML 

α–1 -8.36 4.37 -4.74 0.61 
α–2 -11.88 0.35 -4.25 -6.98 
α–3 2.35 8.22 2.06 9.64 
α–4 13.79 12.51 11.35 13.84 
α–5 15.23 13.98 14.41 21.23 
α–6 16.50 18.37 17.16 10.42 
α–7 - 32.76 33.43 - 
β–1 -9.35 2.00 -6.75 0.32 
β–2 14.61 3.69 8.02 5.54 
α1+γ1 6.18 -6.83 7.69 3.01 
α2+γ2 24.90 9.43 11.90 23.83 
α3+γ3 - 18.47 17.18 - 

VUNC (uncertainty) 4.51 1.00 2.98 2.64 

 

Note: Low incomes are defined as yearly gross household incomes of less than € 45 000. 




