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Abstract

This paper proposes an alternative, dynamic fram&i@r estimating time-varying values of
travel time savings and values of schedule detayyhich time-preferences are represented
as the time-varying excess willingness to pay (EYW®being in the one location, over being
elsewhere. It is shown how the conventional lineadel, with time-independent values of
travel time savings and schedule delay costs, spexial case of our model, and that it is
implausible particularly in that it implicitly assoes that the willingness to pay for spending a
minute at home instead of being in the vehicle dotvary by time of day, even not for very
early departures. The framework is applied to SRadeepresenting the respondents’
departure time choices for the morning commute. fEiselts suggest that individuals’ time-
related shadow prices indeed vary strongly overrtteening peak, and values of travel time
savings are consequently strongly time-dependelitwing plausible and intuitive patterns.
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1. I ntroduction

The value of travel time savings (VTTS), often awmted as ‘value of time’ (VOT), is of
central interest in transport research. The VTT&tsn among the bigger benefit components
in the assessment of transport investments. Issan important parameter in the analysis of
travel behaviour and in traffic assignment mod8lecker (1965) was probably the first to
introduce the allocation of time over various atts in the analysis of consumer behaviour,
thus offering the micro-economic framework needecdstablish the shadow price of time
savings. Further contributions from Johnson (196869 introduced work time in the utility
function, Oort (1969) who did the same for traviehe, and DeSerpa (1971) who added
technical constraints, showed that the VOT at weviactivities does not need to be equal to
the wage rate — justifying further research inte #mpirical estimation of VTTS. In such
research, the VTTS is usually derived as the malgate of substitution between travel time
and cost coefficients, typically as found in diserehoice models of stated preference data,
revealed preference data, or a combination of tfeegeSmall, Winston and Yan, 2005). This
ratio is exactly the VTTS in DeSerpa’s (1971) fravoek (Bates, 1987).

An important addition to this framework was made Sipall (1982), who explicitly
included the scheduling of activities — the morng@mmute in particular — in the analysis.
Inspired by the work of Vickrey (1969) on the dyniaraquilibrium and optimum for queuing
behind a bottleneck, Small allowed for disutilityprin early or late arrivals at work. With a
simple linear utility specification, this leads tlfaree relevant time-related shadow prices: a
value of travel delay which is usually denotedn the relevant literaturee(g, Arnott, De
Palma and Lindsey, 1993), a shadow price of amgiwarly (3), and a shadow price of late
arrivals (). Small's (1982) model has become the workhorsdehtm incorporate within-the-
day dynamics in the valuation of travel time comgats.

A particular aspect of Small’'s basic linear modgethat the inconvenience of an early
trip is attributed to an early arrival at work. $himplies, in terms of the notation just
introduced, that a constraif&a should be imposed — unless one is willing to actegt an
individual may prefer to stay in the parked car wheriving early, over getting out of the car
and into the office (or factory). Moreovef>a also implies that for a deterministic dynamic
equilibrium with homogeneous travellers, a persdroarrives after another person should
have departed before that other person for taactst to be constant by arrival time (which
is the natural dynamic equilibrium condition forrhogeneous travellers). But consistent
overtaking as a structural equilibrium phenomersomat plausible.

Nevertheless, the inequalitgy<a need not always be satisfied in applied work,
especially not for linear specifications. Indeduk focus on deviations from desired arrival
times, in combination with the constancy of shadmces a, S and y for a linear utility
function, makes it impossible to capture the imtaithotion that rescheduling to earlier time
slots becomes increasingly inconvenient as inanghsimore valuable moments spent at
home (possibly sleeping) are to be given up. Alfayfor this by introducing a non-linear
effect of schedule delay early upon utility is sevhat ad hoc: it can partly account for the
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effect mentioned, but leads to the risk ®fa for early arrivals and may assign different
penalties for early departures from home at theesasoment when trip durations vary.

Our purpose is to propose a variant of Small’s madldgt explicitly allows for non-
linear effects. We present a model that estimatas ttme-dependent utility components,
namely the per-unit-of-time willingness to pay t®ing at home over being in the ¢4t) (a
negative value would imply a preference for the),cand the per-unit-of-time willingness to
pay for being at work over being in the &&lt). We show how the implied two functions in
fact define three time-dependent functiam@), At) and Kt), which are the time-varying
equivalents of the conventional shadow prices8 and ). A recent study of Liu, He and
Recker (2007) provides empirical evidence thatvdlees of time and unreliability vary over
the peak. Our approach differs from theirs in asteéwo respects: first, we explicitly include
scheduling considerations in the model; and segomailr approach allows an individual’'s
value of time to vary over time, whereas the eroplrtime-dependency of the value of time
in the analysis of Liwet al. (2007) may equally well result from different dejp@e time
choices from different travellers with differentiwas of time and unreliability.

Section 2 present our framework and discusses hbasithe conventional linearized
version of Small's (1982) model as a special, i&si case. Section 3 introduces the
empirical application of our model, and Section égents estimation results. Section 5
concludes.

2. Theoretical framewor k

Consider an individual who has to decide whetheratrto travel to work in the morning, and
if so, at what time. We hypothesize that this imdlinal’s utility over the full morning period
(that is, a period between two instatit¢‘begin”) andte (“end”), chosen such that it is long
enough to encompass all possibly relevant depatiores from home and arrival times at
work) can be found by integrating, over the relévameriods, particular functions that
represent the per-unit-of-time utility of beingafcertain place. To simplify matters, let us
assume that the individual considers three posgilalees where he can be: at home, in the
vehicle, or at work (all other possible places ammsidered inferior to even the least
preferable of these three at any relevant instantet every unit of time spent at home
produce a time-varying utilitii(t), and define analogously the utility in the vebieft), and at
work w(t). Assume that each of these functions is contisumd smooth.

We ignore complexities that may stem from the depeane of the marginal utility of
income upon the scheduling decisions in the morpegod, and assume it is constant. We
can then choose units of utility such that differesbetween any pair from the triplei(t),
v(t), w(t)} denote the individual's willingness to pay toesyl, at time, one unit of time at the
more preferred location rather than the less predeone.

Indeed, because we only consider three possibiitos where the individual can be,
behaviour will be determined entirely by differeacm utility levels. We can therefore
simplify notation by equating one of the threeitytilevels to 0 throughout the periotd, [tg],
which only means that calculated utility levels egduced by a constant equal to the integral
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of this reference utility function betwedpandt.. We choose(t) as the reference, so that we
are left with two functions that we define as folk

H (t) = h(t) - v(t)

WD) = w(t) (1) @)

H(t) therefore gives the willingness to pay to spendid of time at home rather than in the
vehicle at timet, andW(t) does the same for work versus the vehicle. We refer to the
functions H(t) and W(t) as excess-willingness-to-pay functions, EWTP-fioms in brief.
Note that there ia priori reason for restricting either EWTP to be posit@eajegative value
would be consistent with findings reported byter alios Redmond and Mokhtarian (2001),
on how travellers may sometimes attach a positilgyLto extra time spent in the car.

Figure 1 provides an example, where we made thasfille assumptions that the
individual finds it especially at early hours attiige to spend time at home rather than in the
vehicle, while the attractiveness of being at winreases rapidly within a relatively short
time-span around the official work start time, aachains rather flat both before and after that
moment.

W(t)

Figure 1. The EWTP-functions for being at homérjHand at work (\WT))

Let us now defindgp andta as the moments of departure and arrival. If theftom home to
work would require no travel time, so that= tp, the individual would travel at the instant
that H(t) and W(t) intersect, at . It is tempting to calt’ the “desired arrival time”, but it
actually is most desirable only when travel wowlet no time. With giventrip durationT,
the individual would otherwise prefer to depart ardve at moments, andt, such that
H(tp) andW(t») are equalized whiley —tp = T is satisfied. The trip betwednandt, in Figure
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1 is an example of such an optimally timed tripr, ¥ehich t, is the desired arrival tine.
Therefore, becaugeis the desired arrival time only when travel timeero, we will refer to
t as the “ideal arrival time”.

It seems natural to define the individual’'s tragestc(tp,ta) such that is zero for an
optimally timed zero-duration trig(t',t') = 0. The willingness to pay for being able to mak
this trip, over the worst possible situation ofriggin the vehicle between instamjsandt,, is
given by the sum of all areas | — VIII in Figure Travel costc(:) for other trips can be
identified graphically in Figure 1 as areas belbe maximum oH(t) andW(t) when driving,
and betweer(t) andW(t) between moments andt” when arriving beforé¢ , and betweet
andtp when departing after. These areas together namely give the willingnessay for
making the ideal optimally timed zero-duration tgwer the trip under consideration.

Another way to identify the same areas for a gitrgnis to take the area belaw(t)
when driving {.e., betweertp andt,), and add to it the area betwed(t) and\W(t) between
moments, andt” when arriving beforé, or between’ andta when departing after:?

¢
5 j (Ht) -w(t))dt if t, <t
ct,,t,) = JH(t)dt + . )
to [ -H®) i t, =t
t*
This can be verified by checking the following te&eosts for three different types of trips in
Figure 1, namely one with both the departure aridaeforet , one with a departure before
t and an arrival after, and one with departure and arrival both after

c(t, t) =1+ +1Il
Ct,t,) =l +1V +V +VI . 3)
c(t,,t,) =V + VIl +VIII

It is now convenient to define the following furmis:

! with time-varying travel times, equalizationtdtp) andW(t,) is of course no longer the appropriate necessary
equilibrium condition. The optimality condition f@uch cases is straightforward to express aftecifypeg a
travel time functionl(tp) and replacinda by to+T(tp). It next involves minimization of equation (2)lbe with
respect tdp. This leads to the equilibrium conditiof(tp) = [1+dT(tp)/d tp]-W(ta). Note how it has the constant
travel time case discussed in the main text a®eiapcase, where the second term in the squackdires zero.
Otherwise, it corrects for changes in travel timeeve the departure time is marginally adjusted.hWiihe-
varying travel times, an arrival befareor a departure aftér may occur in equilibrium.

2 Equivalently, we could specify the model such tt) becomes the time- varylng value of travel timeisTh
involves schedule delay terms that are the mterg;‘r{alH(t)—W(t)] betweent, andt” for departures before, and
the integral of [W{)—H(t)] betweert andtp for departures aftdr. The fact that we can do this is consistent with
our model being symmetric betwekit) andW(t). The specification in the main text has the obsiadvantage
of being directly comparable to the conventionabdeloThe alternative described in this footnoteijchitrelates
schedule delay costs to deviations from the idégarture time might be more intuitive to describe the
afternoon peak.
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a(t) =H(t)
BH) =H O -W(). (4)
y(©) =W -H(®)

We can then rewrite the cost function in (2) as:

.
5 jﬁ(t)dt it t, <t
cty,t,) = j a(t)dt+{% . (5)
to j ytydt if t, >t
J

The arrows in Figure 1 represent these functia(ty, At) and t). These functions are
helpful in understanding how the conventional Inszd version of Small’'s (1982) model is a
special case of our model. The cost function indbieventional linear model can be written
as follows:

C(tp ta) = a[th _tD)+{Ii§:* _tA; 'if ; ! ' (6)

AU)if 2t

This is of course a special case of the cost fandti (5), with the functiong(t), S(t) and i t)
all constant over time and equal do 8 and y; respectively. Figure 2 depicts the associated
variant of Figure 1.

y N W(t)

A1)

H()

a(t)T I A
W(t) l

v H(t)

a(t)

P I g

—

Figure 2. The EWTP-functions in the conventionadirized model

The most striking difference between Figure 1 ansl thatH(t) is constrained to be constant
in the latter, because(t) is. The inconvenience of an early schedule insataaffecting the
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time otherwise spent home, perhaps sleeping, careftre not be properly reflected. A
minute spent at home, instead of in the vehiclepisstrained to be equally valuable at 5 a.m.
as at 8 a.m. Introspection suggests that thistiplaoasible, and empirical evidence in the next
section will confirm this. The other differencetigat W(t) is piecewise constant in Figure 2.
Although this is restrictive, too, it seems less than the first difference, of imposing
constancy ofH(t) over time.

Finally, it can be noted that the proposed framéwsrelated to recent developments
in activity-based modellinge(g, Ettema and Timmermans, 2003; Ashiru, Polak anthmb
2004), which also involve the modelling of dynamsiheduling decisions. Our approach is
different in that we characterize time-dependeiiityufunctions entirely in terms of time-
varying shadow prices, the EWTP-functions, as aadyin generalization of the conventional
constant shadow prices [ andy.

3. Empirical application
3.1. Empirical specifications

The conventional linearized model of equation &gasily operationalized for application in
a random-utility discrete-choice model through twdlowing specification of a linear
systematic utility function:

ﬂﬂ mt* _tA) If tA <t (7)
B, A—F)ﬁ t,>t"’

*

with 7 denoting a monetary attribute such as a toll. Whthcoefficients3 estimated, one can
immediately determine = B, 5;, B = B4 andy= B/ With random utility for alternative
j for individualn defined as:

U, =V()+e,, (8)

conventional multinomial logit or probit discretbeice models arise under particular
assumptions on the distribution of the random tegms

The operationalization of the more flexible modef (2) and (4) is less
straightforward. One option would be to impose fiomal forms for H(t) and W(t) as
functions of time, and to estimate the relevanapaaters. Another possibility, pursued below,
could be characterized as ‘flexible’ and divides thorning peak period up in a number of
smaller intervals, wittH(t) and W(t) constant within an interval but free to vary betm
them. This has the advantage of not imposing ampyiori assumption on the possible time
patterns of these functions, but the obvious digathge of restrictingd(t) andW(t) to be
constant within an interval. Because we are intetceprimarily in detecting the pattern of
time variation ina(t) over the peak, if any, we judged the advantageoutweigh the
disadvantage.

The systematic utility function can be writteneaftlefiningT, as the amount of time
spent driving during time interva) T.5 as the amount of time spent at work before thalide
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arrival timet” during time intervai, andT" as the amount of time not (yet) spent at work
aftert” during time interval. This leads to the following discrete-time versafrequation (5):

C(ty ta) = D 0 Mty ta) + DB TE(ta) + 2 1 T (L) - 9)

The accompanying systematic utility function fotirsition purposes becomes:

V=5 B""Z,Ba,i i +Zlgﬁ,i " +Z,3y,i " (10)

After estimating the coefficient§, one can immediately determime = B,i/5r B = Bgil Br;
and i = B,ilBr. As a final step, one could next calculéte= a;, andW = a; + 3 for early
arrivals and\ = a; + ) for late arrivals. Note that we assume intervalbe defined such that
t" defines the boundary between two intervals.

3.2. Data

The data used were obtained in 2004 from an intesmeyey among Dutch commuters, who
were selected on the criterion of experiencingeasi 10 minutes of congestion, at least 3
days per week. The first part of the survey co#ldcthe information on the respondents’
current commuting behaviour. The second part wsisi@d choice experiment, consisting of
11 choice profiles. Rather than choosing one of &ternatives, the respondents were asked
to indicate how often they would choose each adtiera, when considering a total of 10 trips
for their morning commute. The dataset containsslfdspondents, yielding 12265 choice
observations.

The choice experiment was based on a fractiondbriat design (orthogonal non-
linear main effects design), using 4 design lefeisl3 of the attributes and 2 design levels
for 2 of the attributes. To make the alternativesealistic as possible, the actual values of
attributes were based on each respondent’s cutram| behaviour. Each choice profile
contained four alternatives. The first three akéirres involved a car trip, and the fourth one
public transport. An alternative was characteribgdthe mode of transport; the trip length;
the travel cost (composed of fuel costs and a obelge for the car, and a ticket for public
transport); a departure time; a travel time inteevad an implied arrival time interval (both
with a uniform distribution); and a division of &bttravel time over uncongested and
congested driving.

The dependent variable used in the present stutheishoice proportion allocated to
each of the four alternatives by individuals. Utagty in travel time is a separate attribute in
this stated choice experiment, and we follow thegéxted utility maximization’ approach of
Noland and Small (1995) to incorporate the uncetyarariable. This means that we compute
the ‘expected’ travel time and early/late arrivabifferent time intervals. In what follows, ,

T.5 andT," thus refer to expected numbers of minutes in timtervali.

The choice experiment was not constructed speliifidar estimating the above
specified time-dependent model, which caused otistinis in the estimation of equation (10).
A first restriction is that an individual's prefed arrival time is available only for a trip with
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arrival timePAT, and the accompanying preferred departure #Dd&, define an interval in
which the ideal arrival timé& should be located; compare Figure 1. We will ritérapt to
actually estimaté’, but instead test a few specifications in whicks defined as a weighted

average, with weights equal across individuald?DBT andPAT. We tested various weights

between 0 and 1, and the results appeared to bstrfuy various weights.

Table 1. The definition and descriptive statist€she explanatory variables

Variable o )
) Definition Mean Std. Min. Max.
notation
The expectetravel timespent during the intervaj
T, ) 10.19 6.28 0 15
betweerD-15 minutes before t*
The expectetravel timespent during the intervaj
T ) 12.20 4.57 0 15
betweenl5-30 minutes before t*
The expectetravel timespent during the intervaj
T3 ) 24.12 10.34 0 30
betweerB0-60 minutes before t*
The expectetravel timespent during the interval
T ) 16.03 13.41 0 30
betweer60-90 minutes before t*
The expectedravel timespent during the intervaj
Ts ) 8.18 12.09 0 30
betweerB0-120 minutes before t*
The expectedravel timespent during the intervaj
Te 3.62 8.96 0 30
betweeril20-150 minutes before t*
The expectedtravel timeduring the interval
T, 1.52 6.07 0 30
betweeril50-180 minutes before t*
E The expectetime spent at the destinatialuring
T . . 4.57 6.24 0 15
the interval betwee@-15 minutes before t*
E The expectetime spent at the destinatialuring
T, . ) 1.95 3.81 0 14
the interval betweeh5-30 minutes before t*
L The expectetime not spent at the destination
T, ] ) ) 7.56 7.30 0 15
during the interval betweel15 minutes after t*
L The expectetime not spent at the destination
T . ) ) 4.45 6.46 0 15
during the interval betweetb-30 minutes after t*
L The expectetime not spent at the destination
T3 ] ) ) 1.85 3.70 0 27
during the interval betwee30-60 minutes after t*
Cost Sum of fuel cost and toll (in Euros) 3.54 3.67 .733
) The difference between maximum and minimym
Uncertainty 15.93 16.43 0 168

possible travel times (in minutes)

A second restriction is that the design of the expent does not provide sufficient variation

in arrival times at work to allow for unrestrictedtimation of all coefficient® for all time
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periods of interest. Since there are hardly angwolagions of a departure time afterthere is

a nearly perfect correlation betwe®h andT, in intervals aftert’. We can therefore only
estimate the sum ofr, and y for these late intervals. To assure that theresafécient
observations in each time interval, we choose 30utes as the typical interval size. Still,
since most arrivals are less than 30 minutes ffonve were able to use two smaller intervals
of 15 minutes just before and after t*. The naotatidescription and descriptive statistics of

the variables are shown in Table 1. The utilitydtion we actually estimate is then given by:

= - 3

V=B T+ B T4 Y By T+ (B + B, )T (11)
i=-7 i=-2 i=1

4, Estimation results

The choice models we estimate in this section asedb on the specification of equation (11).
The objective is to see if the estimated coeffitsarary over the different time intervals, and
more importantly, whether the variation of the msgties follows the pattern illustrated in
Figure 1. Since the experiment involves mode choiee specify an alternative-specific

constant (AS@r) for public transport, to capture the effect ospendents’ preference

associated to that particular mode. Furthermore,ade@ the variable ‘uncertainty’ for car

alternatives, defined as the width of the possénlgval time interval as shown to the
respondents, to account for the additional disutdissociated with travel time uncertainty
(apart from the scheduling costs). The public fpans alternative was presented as
completely reliable in the experiment.

As discussed in previous section, we should expedndividual’'st’ to be somewhere
between individual's preferred departure tinRD{) and preferred arrival timeP@AT) for a
free-flow travel time trip. BecausBDT and PAT were asked in the questionnaire and
wasn'’t, the latter should somehow be derived fréva former two. We have estimated a
series of models by varying the individuals’ locas oft’, relative to theiPDT and PAT.
The best model, pragmatically defined as the oakliyig the highest log likelihood value, is
the one witht' =0.2*PDT + 0.8*PAT. The choice models we summarize in Table 2 arecbas
on that particular specification.

The estimation results are summarized in Tablevio Thodels are presented: (1) a
conventional multinomial logit (MNL) model, and (Zn mixed logit (ML) model that
accommodates the correlation amongst choice setsndfrom the same individual. For
model stability, cost parameters were treated asrandom in our mixed logit models (see
also Revelt and Train, 1998; Bhat and SardesaiR0he random parameters in the mixed
logit model are assumed to follow a normal distitm®

A number of mixed logit models with uniform anéhtrgular distributions were also estimated, andréselts
were similar to the models with normal distributiofhe models with normal distribution yield highleg-
likelihood values. We also estimated the modelshwig-normal distribution, but most of these hardly
converged.
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Table 2. Estimation results

Model 1 Model 2
Explanatory Refers to
. . MNL ML
variable valuation
Coeff. t-stat. Coeff. t-stat.
Random parameter mean effects
T op .0040 0.36 .0082 0.55
T, o .0002 0.05 .0145 2.01
T3 o3 -.0107 -6.19 -.0172 -4.26
T oy -.0215 -11.63 -.0416 -10.89
T os -.0269 -10.24 -.0471 -9.78
Ts Og -.0311 -7.03 -.0544 -6.28
T o7 -.0414 -6.22 -.0592 -3.69
T, By .0063 0.53 .0137 0.81
T, Bz -.0370 -5.14 -.0244 -1.92
™ aty; -.0173 -4.42 -.0220 -3.51
™ axty; -.0370 -6.76 -.0456 -4.42
T 05ty3 -.0299 -3.88 -.0576 -3.91
Uncertainty -.0027 -2.00 -.0079 -2.32
Random parameter standard deviation
T, .0075 0.64
T, .0086 13.91
T, .0087 23.79
T4 .0064 19.45
T .0046 10.17
T .0048 7.35
T .0095 6.40
T, .0032 0.35
TE, .0043 0.21
™ .0022 2.92
T .0088 12.35
T .0058 3.84
Uncertainty .0060 28.29
Non-random parameters
Cost -.0989 -17.18 -.1957 -34.77
ASC, PT -.9496 -18.34 -1.487 -24.86
Observations (N) 12265 12265
Log likelihood -15401.38 -13141.79
R-sqgrd Adjusted 0.0921 0.2265

The main result is that the values of travel tiraeirsgs a; indeed are not constant over time,
and the values increase as the time interval mosedr away front. These results imply
that individuals do have shadow prices that vargraime. The implied marginal rates of
substitution between time attributes and momey;, the various shadow prices of interest, are
shown in Table 3, and the patterns generally folloase hypothesized in Figure 1.

The design of the underlying questionnaire in thst fplace allows us to provide
estimates ofx, and hence the functidd, for all intervals before¢”. For example the MNL
estimates of Model 1 depict how this value dranadiiicfalls over time during the period
prior to t, with the time coefficient becoming insignificantdifferent from zero for
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intervals —2 and -1, reflecting that the individualre indifferent between spending those
minutes at home or in the car. This pattern thpaates the hypothesized pattern in Figure 1,
and suggests that the usual assumptiondtiatconstant over time may be rather restrictive.
We can estimatej only for intervals —1 and -2, and therefore thenesaholds for the
determination of the functiow beforet’. For both models, the associated time coefficient
significantly different from zero only in interval. Becaus¢d , exceedsr_,, it appears that
W._, is negative: during that time interval, peoplefprdo be in the car over being already at
the destination. For intervals afterwe can only estimate the sum+), which is equal ta\,

and not the two components separately. (Becauseparate estimate of can be made, also
Hi can not be determined for intervals aftey The pattern clearly shows a sharp increase
from interval 1 to interval 3, which again confirrogr hypotheses illustrated in Figure 1.

Table 3. Mean monetary values (Euro/hour)

Model 1 Model 2
Monetary values
MNL ML

o_q -2.43 -2.50 (2.31)

oy -0.13 -4.46 (26.22)

o3 6.48 5.28 (26.54)

Oy 13.03 12.75 (19.76)

o_s 16.35 14.44 (14.17)

Og 18.87 16.69 (14.71)

o7 25.15 18.16 (29.05)

B_1 -3.84 -4.21 (0.97)

B2 22.46 7.49 (1.31)

a+y, 10.47 6.75 (6.72)

oo Hy2 22.47 13.97 (26.97)

aztys 18.12 17.67 (17.93)

VUNC (uncertainty) 1.65 2.43 (18.54)

Notes: 1. The derived monetary values from the dgteth deviation of random parameters are shown in

parenthesis;

2. Values or standard deviations arising from ingigant (at 90% significance level) coefficientgan
italics (and in red in colour prints)

Model 2 is preferred to Model 1 since the formedows for taste heterogeneity across
individuals as well as accommodating the corretetiacross choice sets that drawn from the
same individuals (mixed logit with panel structur&éhe log-likelihood value also suggests

that the model fit for Model 2 is much better tHanModel 1. Although the mean monetary

values differ somewhat between Models 1 and 2 {sdae 3), the two models seem to

produce reasonable consistent results in termbeofjtialitative patterns. It is interesting to

note that the standard deviations of random paens@ Model 2 are mostly significant and

large. It makes intuitive good sense that thereaigation in parameters across individuals.
Note that the negativASGr in both models suggests that our respondents &aveherent
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preference for car over public transport. This amsistent with the fact that our sampled
respondents are all frequent car users.

Figure 3 summarizes the above findings graphicalycomparing the estimated time-
dependent patterns bf andW from the two time-dependent models (1 and 2) éopthtterns
that result from the conventional linear modelraated for the same data, for which we used
estimates ofx, S and y as reported in Tsengt al. (2005) for their model 2. The horizontal
axis depicts time, where the ideal arrival timés set at=0 for the time-dependent model,
and the preferred arrival timAT for the linear model. The falling pattern df for times
beforet” is, by construction, of course not found in teeéir model, but the time-independent
value ofH seems to be reasonably close to the time avemaghd time-dependent models.
The negative values foW in interval —2 in the time-dependent models aneststent with a
consistently negative value & before PAT in the linear model f/>a in that model).
Apparently, there is a tendency among the respdaderbe keen on avoiding spending time
at work before the start time: time spent in theisavalued higher than time spent at work in
our estimates. For times after the linear model implies that maintains its pré- value;
there are insufficient observations to estimate tloeresponding values for the time-
dependent model, but the last value estimatedsigaificantly different from zero, suggests
that lower values would have resulted, just as thgmized in Figure 1. Finallyy rises as the
time interval moves forward, but stays below théugaimplied by the linear model. The
biggest difference between the time-dependent msodefsus the linear model therefore
seems to be that the latter cannot reproduce thiagfgattern ofH, corresponding to the
conventional value of travel time savingsover the period prior to the ideal arrival time
Comparing the two time-dependent models, the vargsiimates seem reasonably close, with
the mixed logit model producing less extreme valaesl smoother patterns than its
multinomial counterpart.

A H Time-dependent (MNL)
W Time-dependent (MNL)
—&—H Time-dependent (ML)
—#— W Time-dependent (ML)
= A= H Linear
= £= W Linear

N}
j=J
s}

Values (EWTP in Euros)

-20 A

w
D

Time

Figure 3. The empirical EWTP-functions for the tidependent and the linear models
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There is one final potential caveat to be addresBedause the design of the stated choice
experiment was such that arrival times were vaaiedind the most desired arrival time, we
have relatively many observations for responderaking longer trips in the earlier intervals.
Now if for some reason these individuals have ehérigvalue of travel time savings, the
patterns depicted fdf in Figure 3 might also be due to a different sangpbf respondents
along the time axis. We have therefore also estithtite same time-dependent models for the
48% of respondents making the longest trips (>4Q.Khme results conveyed the same
qualitative patterns as those shown in Figufe 3.

We also verified whether the results vary by satonomic characteristics.
Estimation results, reworked into monetary valussira Table 3, are provided in the
Appendix. A separation by income into two group$ flee qualitative patterns, as shown in
Figure 3, intact. It further revealed that the liglincome group has highers beforet’,
whereas thg8s for arrivals before', anda+yfor arrivals aftet’, are higher for lower income
groups. This confirms the expectation that higimeome groups are willing to pay more to
avoid travel time, whereas lower income groups haghter scheduling constraints. A
separation by gender produces somewhat less akkaesults, partly because there are too
few observations for female drivers in some timeiqus. But when they travel, women
appear to usually have higher values than maledrjfor the shadow prices listed in Table
3. And finally, we tested whether the inclusionaiateness penalty (a probability in our
model, because we have an uncertain travel tintg), iatroduced by Small (1982), affects
the results. The coefficient for this variable ®anout to be statistically insignificant, both in
MNL and in ML estimations, and the other coeffideare (not surprisingly) hardly affected.

5. Conclusion

We proposed an alternative, dynamic framework &tingating time-varying values of travel
time savings and values of schedule delay. Our ditation represents time-preferences as the
time-varying excess willingness to pay (EWPT) tanbein the one location, over being
elsewhere. We applied the framework to SP dataesepting the respondents’ departure time
choices for the morning commute. We showed howctimesentional linear model is a special
case of our model, and that the conventional masleimplausible particularly in that it
implicitly assumes that the willingness to pay $pending a minute at home instead of being
in the vehicle does not vary by time of day, evenfor very early departures. It is especially
in this respect that the estimates for the timeeddpnt model deviate substantially from
those for the stationary model, estimated for Hraesdata. The data thus support the case for
our time-dependent framework rather convincingly.

* For this estimate, we had to merge the two 15 tamintervals prior t& to one 30 minute interval. For the
MNL model, the values dfi were as followsH_;g,= —7.0 (insign.)H_s= 1.3 (insign.);H_4= 15.4;H_s= 20.0;
H_¢= 20.5;H_,= 29.0; and the values foW were as followsW,; = 5.6 (insign.);W, = 25.3;W; = 27.1. For the
ML model, the values dfl were as followsH_;¢,= -1.8 (insign.);H_z= -2.4 (insign.);H_s= 12.9;H_s= 20.0;H_
6= 19.5;H_,= 23.3; and the values fov¥ were as followsW, = 7.2; W, = 11.1;W;= 20.0.
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Because the conventional linear model is a specw@strained case of the time-
dependent model that we propose, it seems tha thdittle point in discussing which model
is preferable from a theoretical or a behaviourawpoint. That is, if the data allow, it seems
preferable to estimate the time-dependent model dewiding next whether imposing the
conventional constraint of a constant value ofdfawne savingsr seems justifiable. From a
practical perspective, clearly, there may be otbensiderations. If anything, a proper
estimation of the time-dependent model requireather rich data set, with wide ranges of
departure and arrival times, in particular if th& ET for being at work is to be estimated also
for intervals before the ideal arrival tinte and the EWPT for being at home is to be
estimated also for intervals after

Our results suggest that individuals’ time-relasbddow prices vary strongly over the
morning peak, and values of travel time savingscaresequently strongly time-dependent. A
failure to incorporate such considerations may peedbiased estimates of values of travel
time savings, and errors in the prediction of béhaal responses to policies or other
measures that affect the time pattern of congestidhe morning peak. This, in turn, may of
course also affect the accuracy of cost-benefitutations for such measures. It seems
difficult to predict, in general, the relative siaad sign of such biases. Studying this question
in the context of a dynamic equilibrium model woblel an interesting topic for further study.
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Appendix Monetary valuesin Table 3 disaggr egated by income and gender

Monetary values by income and gender (MNL)

Value of Time by Time of Day

Income Gender
Monetary values Low High Male Female

MNL MNL MNL MNL
o1 -9.29 4.46 -4.11 2.39
o -5.53 3.47 1.33 -3.46
03 3.44 8.18 3.84 12.72
Oy 12.63 13.16 13.10 13.95
o 19.45 14.06 15.29 23.68
O 17.94 21.73 19.65 16.38

a7 - 31.92 26.69 -
B_1 -8.32 1.97 -5.71 0.15
Bz 34.95 13.38 22.54 18.08
a+yg 12.20 8.97 11.17 7.39
opt+yo 37.51 13.74 18.88 36.17

aztys - 24.35 21.48 -
VUNC (uncertainty) 2.25 1.11 2.69 -1.66

Monetary values by income and gender (ML)

Income Gender
Monetary values Low High Male Female
ML ML ML ML

o1 -8.36 4.37 -4.74 0.61
o -11.88 0.35 -4.25 -6.98
o3 2.35 8.22 2.06 9.64
Og 13.79 12.51 11.35 13.84
O 15.23 13.98 14.41 21.23
O_g 16.50 18.37 17.16 10.42

a7 - 32.76 33.43 -
B -9.35 2.00 -6.75 0.32
B 14.61 3.69 8.02 5.54
atyy 6.18 -6.83 7.69 3.01
axty, 24.90 9.43 11.90 23.83

oztys - 18.47 17.18 -
VUNC (uncertainty) 451 1.00 2.98 2.64
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Note: Low incomes are defined as yearly gross Hmlddéncomes of less than € 45 000.





