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1. Introduction 

Misalignments between observed human behavior and predictions of rational choice theory 

have become a fertile ground for behavioral economics and new theories of bounded 

rationality.  In accordance with these theories, a decision-maker follows a process of reasonable 

deliberation, often called a procedure, by which he chooses a single alternative from a given 

set.  Economic literature offers many selection procedures, and in this paper we analyze which 

procedure is the best.  Our goal is two-fold: to determine which procedure a utility maximizing 

decision-maker will choose, and to analyze the resulting choice function. 

If the decision-maker is able to evaluate his utility function, then the optimal procedure is 

to evaluate all alternatives and to select the alternative with the highest level of utility.  The 

behavior of such an individual conforms to rational choice theory and is called rational.  One 

possible explanation why observed human behavior is in conflict with rational choices is that 

individuals do not have objective functions.  However, this assumption would make individual 

choices completely unpredictable.  Alternatively, it might be that individuals do have objective 

functions but they either cannot evaluate them or cannot compare the levels of utilities that 

each alternative yields.  Since the evaluation of objective functions seems to be a much more 

complex task than the comparison of the resulting values, we assume in this paper that a 

decision-maker does have an objective function but, at the same time, cannot evaluate it. 

Existing economic literature provides different arguments why individuals might not be 

able to evaluate objective functions.  It could be the complexity of the environment that 

clarifies why individuals do not have a full understanding of the consequences of their 

decisions.  Alternatively, individuals’ cognitive limitations might prevent them from taking 

those consequences into account in a precise quantitative manner.  For example, a choice of 

education has a large impact on future (career-)opportunities and well-being.  However, the 

complexity of the environment makes it difficult to foresee all consequences of such a choice.  
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In addition, individuals’ cognitive limitations make it difficult to take all these consequences 

simultaneously into account in a precise, quantitative, manner.  In order to illustrate how 

environmental complexities and cognitive limitations affect individuals’ ability to evaluate 

objective functions, let us consider the following casino game. 

A croupier has three visibly identical coins on the table.  Two coins are normal and show 

head and tail with equal probability.  The other coin is a winning coin and shows head more 

often than tail.  The croupier tosses the coins, and the player can select one or more coins for 

further play.  The selected coins are tossed again, and the game repeats itself: the player selects 

some coins for the next round.  The game ends when only a single coin remains, and the player 

wins if this coin is the winning coin. 

Let us take a fully rational individual to play this game, and call him John.  If the casino 

does not take any countermeasures, John can win the game almost surely.  By continuously 

passing all coins for further play, he can count the number of heads that each coin shows.  

Then, by selecting the coin that showed the largest number of heads, he will select the coin 

with the highest likelihood of being a winning coin.  As a preventive measure, whenever he 

faces John, the croupier tosses coins from a single tumble.  This makes the game for John much 

more complex.  Since coins are tossed from a single tumble, they loose their identities every 

time the croupier puts them back into the tumble.  As a result, John cannot count the number of 

heads that each coin shows anymore.  In other words, the complexity of the environment 

prevents him from evaluating his objective function for each alternative. 

Now let us take a boundedly rational individual to play this game, and call him Bill.  Bill 

has imperfect recall.  He also wants to win the game, but when he plays he does not remember 

the results of previous tosses.  Imperfect recall prevents Bill from counting the number of heads 

that each coin shows.  Hence, Bill cannot evaluate his objective function, just like John. 

As such, the casino game represents a decision problem in which the decision-maker 

cannot evaluate his objective functions.  The complexity of the environment and cognitive 
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limitations make it impossible to combine several pieces of information into a scalar 

performance measure for each alternative.  This inability to evaluate objective functions urges 

the decision-maker to use another procedure in order to maximize his objective function.  Let 

us focus on Bill.  As he does not remember what happened before, Bill can only use the toss 

results of the current round as a basis for selecting one or more coins for the next round.  More 

precisely, depending on how many coins show head and how many coins show tail in the 

current round, he decides how many of such heads and tails he selects for further play.  All 

these selection decisions represent a selection procedure, and, in case of tree coins only, Bill 

has a total of ( )( )( ) 2700111
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knk  different selection procedures to choose from.  

Among those is Tversky’s ‘Elimination By Aspects’, EBA hereafter, in which all coins that 

show tail are eliminated, and only coins that show head are selected.  Another possible 

procedure is Simon’s ‘Satisficing’, SAT hereafter, in which the very first coin that shows head 

is selected.  If we now shift our focus to John, then we can observe that John has even more 

selection procedures to choose from than Bill.  The number of heads and tails that John selects 

at a certain round not only depends on how many coins show head and how many coins show 

tail in that round, but also on the whole history of previous tosses and eliminations.  Since so 

many procedures are feasible, our primary goal is to identify which procedure is optimal to 

follow. 

In this paper, we study a decision-maker who chooses one alternative (a coin) from a set of 

N available alternatives (N coins).  Each alternative comes in two types, high (winning coin) 

and low (normal coin).  The decision-maker does not observe the true types of alternatives but 

views each alternative as a set of aspects.  Each aspect represents one of his perceptions of how 

alternatives may affect his objective function.  Hence, an aspect imprecisely reveals true types 

of the alternatives.  If an alternative has a certain aspect (if a coin shows head) then it is good 

news about the quality of this alternative.  If on the other hand, an alternative does not have this 
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aspect (if a coin shows tail), then it is bad news.  We assume that the decision-maker can use 

infinitely many different, but equally informative, aspects.  Due to his inability to evaluate 

objective functions, the decision-maker cannot aggregate several aspects of an alternative into a 

single performance measure.  Each aspect corresponds to a single selection stage (round of the 

game).  In each stage, the decision-maker selects a non-empty sub-sample of alternatives that 

he will pass to the next stage.  The selection procedure ends when only one alternative remains.  

The decision-maker maximizes the probability that this remaining alternative is of high type. 

Our main finding is that a unique selection procedure exists that dominates all other 

selection procedures.  This dominance holds irrespective of the source of the inability to 

evaluate objective function (environmental complexity or a cognitive limitation), and for all 

generic values of the parameters of the model (the size of the initial sample of alternatives, the 

number of high-type alternatives within this sample, and the degree in which aspects are 

informative about the true types).  We call this procedure ‘Single Worst Elimination’, SWE 

hereafter, because an alternative must be eliminated at a particular stage if, and only if, it is a 

unique alternative at that stage that does not have the corresponding aspect.  Applying this 

result to John and Bill implies that both players must select all coins for further play until they 

observe a single tail, in which case they eliminate the corresponding coin. 

The optimal selection procedure SWE dominates both SAT and EBA if aspects do not 

fully reveal true types of alternatives.  However, if an aspect does fully reveal that an 

alternative is of high type, then SAT is the optimal procedure.  Similarly, if the absence of an 

aspect fully reveals that an alternative is of low type, then EBA is the optimal selection 

procedure.  Therefore, SAT and EBA are only optimal in special limiting cases of the model. 

Our secondary goal is to analyze the choice function of an individual who follows SWE.  

Our main finding here is that choices induced by SWE are always transitive but generally 

violate the Weak Axiom.  Consequently, the optimal procedure may result in seemingly 

irrational behavior.  In accordance with the existing literature on bounded rationality, it is not 
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surprising that Bill behaves non-rationally due to his cognitive limitation.  More interesting is 

the fact that John, who is a fully rational individual, exhibits the same behavior as Bill.  On the 

basis of revealed preferences it is impossible to distinguish a fully rational individual from a 

boundedly rational individual.  Moreover, even if we ask them how they arrived at their 

choices, they will give us the very same answer - SWE. 

The rest of the paper is organized as follows.  Section 2 provides motivation for our 

modeling assumptions and reviews the related literature. Section 3 states the model which is 

analyzed in section 4.  Section 5 discusses SAT and EBA as special limiting cases of the 

optimal selection procedure SWE.  Section 6 derives the properties of choice induced by SWE 

and section 7 concludes the paper.  An appendix contains some proofs. 

2. Relation to existing literature 

Simon (1955) suggested that economists should take into account human’s cognitive 

limitations as well as the complexity of the environment in analyzing individual decision-

making.  The paper follows this suggestion.  Due to inability to evaluate objective functions, 

humans need a procedure that results in the selection of a single alternative.  Any such a 

procedure can be characterized by the elimination of all available alternatives, except one.  That 

is why we model decision-making as a ‘Choice By Elimination’ (Tversky, 1972), hereafter 

referred to as CBE-model.  Following Tversky, each alternative is represented by a set of 

aspects, and the choice is made by successive elimination of alternatives.  A decision-maker in 

the original CBE-model is unable to integrate multiple aspects into a single performance 

measure for each alternative, which makes him unable to establish and evaluate objective 

functions. 

Although the set-up of our model is similar to the CBE-model, there is a significant 

difference.  In the CBE-model the decision-maker does not optimize but follows a prescribed 

selection procedure, namely EBA.  Consequently, there is no need to explicitly relate an 
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alternative to the level of the objective function that this alternative yields.  In the original 

CBE-model, aspects can simply be considered as good-characteristics (Lancaster, 1966) that a 

decision-maker likes.  In our model, aspects provide information on how alternatives translate 

into utility.  In the spirit of Milgrom (1981), each aspect can be seen as news about the type of 

an alternative.  Another difference with the original CBE-model is that, due to the ignorance of 

the decision-maker about the impact of a particular aspect on his objective function, all aspects 

are assumed to be equally important. 

Similar to the CBE-model, we make the following assumptions.  First, no costs are 

involved in using aspects during the selection procedure.  Humans accumulate an infinite 

number of aspects through experience and learning so that these aspects can be assumed readily 

available.  Second, the implementation of the selection procedure is costless.  We will see that 

the optimal selection procedure is rather simple and does not require any computations.  

Finally, there is no discounting.  The objective function only depends on the selected 

alternative and does not depend on how it has been selected. 

This paper can be positioned in literature on bounded rationality.  This literature offers 

several approaches to explain seemingly irrational human behavior.  One approach is to assume 

that individuals do not have a state-independent utility function.  Economists propose several 

state-dependent functions that individuals maximize.  A well-known example is the prospect 

theory of Kahneman and Tversky (1979).  In Kalai et al. (2002) humans do not have a single 

preference relation, but several incomplete ones.  Another example is Easley and Rustichini 

(2005) who consider an individual with preferences that evolve by learning from past 

experience. 

Another approach is to assume that individuals do have an objective function but do not 

evaluate it, because either they cannot do that or it is prohibitively costly.  Based on 

psychological evidences and experimental studies, literature offers many different selection 

procedures.  Rubinstein (1988) analyzes behavior of an individual who simplifies alternatives 
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by eliminating aspects that are similar for all alternatives.  De Palma, Myers and Papageorgiou 

(1994) analyze an individual who myopically adjusts his current behavior in order to increase 

his utility.  Gilboa and Schmeidler (1995) study an individual who maximizes the weighted 

average of the utility levels that resulted from using the same alternative in the past.  The same 

authors (1997) offer another procedure in which an individual calculates the so-called 

cumulative index of satisfaction and selects an alternative that maximizes this index.  These are 

just a few examples, and Bettman et al. (1998) provide an extensive overview.  The focus of 

this literature is on the resulting choices and on the circumstances under which these revealed 

preferences are rational. 

A third approach is to assume that individuals are able to evaluate objective functions, but 

comparisons of its values for different alternatives are costly.  An example of this approach is 

Radner (1993) who assumes that individuals can only make pair-wise comparisons. 

In this paper, we follow the second approach and assume that decision-makers cannot 

evaluate their objective function.  However, rather than proposing a specific selection 

procedure and analyze resulting choices, we allow the decision-maker to use any selection 

procedure.  The question that we address, and that, according to our knowledge, has not been 

addressed before, is what selection procedure a decision-maker will follow if he chooses it 

optimally.  In order to answer this question, we introduce the optimality criterion in a 

procedural approach to decision-making, which allows us to compare different selection 

procedures. 

3. The Model 

A decision-maker has to choose a single alternative from a set of N alternatives { }ix .  Each 

alternative is either a high type θH or a low type θL.  The decision-maker does not observe the 

true types of alternatives but views each alternative as a set of aspects.  Whether an alternative 
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has a certain aspect or not provides imprecise information about its true type.  In particular, the 

decision-maker believes that a high type alternative has an aspect with probability qH and that a 

low type alternative has an aspect with probability qL, where qL < qH. 

The number of alternatives at the beginning of stage t is denoted by Nt.  Having observed 

Ht alternatives with the corresponding aspect at stage t, called good alternatives hereafter, and 

Lt = Nt - Ht alternatives without the aspect, called bad alternatives hereafter, the decision maker 

selects a sub-sample of alternatives to be passed to the next stage (t + 1).  This sub-sample will 

consist of [ ]tt Hh ,0∈  good alternatives and [ ]tt Ll ,0∈  bad alternatives.  At least one alternative 

must be selected, i.e., 1≥+ tt lh .  The number of alternatives at the beginning of stage (t + 1) 

then becomes Nt+1 = ht + lt.  The selection procedure ends when Nt = 1. 

We model the decision-maker as Bill and assume that he is not able to evaluate his 

objective function due to imperfect recall.  As we will see in section 4, the problem of John can 

be solved in the very same way as that of Bill, although it is formally different.  Due to his 

imperfect recall, the decision-maker does not remember what happened before.  He only 

observes whether alternatives have an aspect for one aspect at a time.  Therefore, in every stage 

t, the decision-maker has to choose the numbers of good and bad alternatives ht and lt based 

only on Ht and Lt, and any selection procedure S can be written as a mapping 

( ) ( )lhLHS ,,: → . 

The goal of the decision-maker is to maximize his (expected) utility and his pay-off is 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )LLHHLLHH uuuxuxuxUtility θθθθθθθθ +−===+== ˆPrˆPrˆPr , 

where x̂  is the finally selected alternative and ( )Hx θ=ˆPr  is the probability that it is a high 

type alternative θH.  The utility levels ( )Hu θ  and ( )Lu θ  are exogenously given, and the 

decision-maker knows that ( ) ( )LH uu θθ > .  Therefore, maximization of the expected utility U is 

equivalent to the maximization of the likelihood ( )Hx θ=ˆPr .  This probability of selecting θH 
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depends on the implemented selection procedure S, on the total number of alternatives N, and 

on the number of high type alternatives NH in the sample.  Hence, it can be written as 

( ) ( )HH NNSUx ,,ˆPr ==θ , 

where the function ( )HNNSU ,,  becomes the objective function that the decision-maker must 

maximize over all feasible selection procedures. 

4. Analysis of the model 

Before choosing an alternative, the decision-maker needs to choose a selection procedure.  

Since the decision-maker does not know the number of high type alternatives NH in the sample, 

he is unable to evaluate ( )HNNSU ,,  for all feasible selection procedures.  In the following 

proposition, some properties of ( )HNNSU ,,  are used in order to derive conditions that any 

optimal selection procedure must satisfy. 

Proposition 1.  For any values of qH and qL (0 < qL < qH < 1), for any number N of alternatives 

in the initial sample, and for any nontrivial distribution of the number NH of high type 

alternatives θH in the initial sample, any optimal selection procedure ( ) ( )*** ,,: lhLHS →  is 

such that: 

a) ( ) ttt HLHh =,* , i.e., all good alternatives must be selected in each stage. 

b) Either ( ) 0,* =tt LHl  or ( ) ttt LLHl =,* , i.e., either all bad alternatives or none of them must 

be selected. 

c) ( ) ttt LLHl =,*  for 2≥tL , i.e., if there are at least two bad alternative in stage t, then all bad 

alternatives must be selected. 

d) If a selection procedure S* satisfies conditions (a)-(c) of the proposition, then 

( )HNNSU ,,*  strictly increases in NH. 
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The proof of Proposition 1 is in the appendix and is made by induction.  If the decision-maker 

only had one alternative to choose from, i.e., N = 1, then the only feasible selection procedure 

(ht,lt) = (Ht,Lt) is trivially optimal and satisfies the required properties.  In addition, it is easy to 

see that for N = 1 the probability of selecting a high type alternative ( )HNSU ,1,*  coincides with 

NH, i.e., ( ) HH NNSU =,1,* .  Thus, ( )HNSU ,1,*  strictly increases in NH. 

Now, suppose that we have already proven (induction assumption) that if the number of 

alternatives does not exceed N then the properties (a)-(d) from Proposition 1 hold.  The proof 

then shows that in the case of N + 1 alternatives, properties (a)-(d) continue to hold. 

This result is proven as follows.  Let the decision-maker face Nt = N + 1 alternatives in a 

stage t.  Then, depending on the number of high types NH among them, each selection 

procedure S induces a corresponding posterior distribution of the number of high type 

alternatives H
tN 1+  in the resulting set of Nt + 1 selected alternatives.  The probability of selecting 

a high type alternative ( )H
tt NNSU ,,  is, by definition, the expectation of ( )H

tt NNSU 11
* ,, ++  with 

respect to this posterior distribution of H
tN 1+ .  By the induction assumptions, ( )H

tt NNSU 11
* ,, ++  

monotonically increases with H
tN 1+  for all NNt ≤+1 .  Hence, if a selection procedure S induces a 

posterior distribution that stochastically (first-order) dominates the posterior distribution 

induced by another selection procedure Ŝ, then S yields a strictly higher pay-off than Ŝ.  This 

first-order stochastic dominance criterion makes it possible to compare different selection 

procedures without evaluations of the function ( )HNNSU ,,  for different S and to derive the 

properties that each optimal selection procedure must satisfy. 

The following two peculiarities are worth mentioning here.  First, it is not true that 

( )HNNSU ,,  strictly increases with NH for all selection procedures S, as the following example 

demonstrates. 
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Example 1.  Let us take N = 3, qL = 0.5 and the selection procedure S  such that (ht,lt) = (1,0) if 

(Ht,Lt) = (1,2), (ht,lt) = (0,1) if (Ht,Lt) = (2,1), and (ht,lt) = (Ht,Lt) otherwise.  In other words, the 

decision-maker selects either a unique good alternative or a unique bad alternative in each 

selection stage and selects all alternatives otherwise.  It is easy to get the following expressions 

for the objective function ( )HNSU ,3, : 

( ) ( ) ( ) ( )
( ) ( ) ( ) 13,3,,

12
142,3,,

3
11,3,,00,3, 22 =

−−−

−
=== SU

qq
qqSUSUSU

HH

HH

. 

It follows that ( ) ( )1,3,2,3, SUSU <  if ( ) 1.01 <− HH qq , so that the decision-maker is better-off 

when the initial sample has one high type alternative rather than two high type alternatives. // 

This example stresses the fact that it is not the objective function ( )HNNSU ,,  itself, but its 

maximum across all possible selected procedures, i.e., ( )HNNSU ,,* , that monotonically 

increases with the number of high type alternatives NH.  This observation leads us to the second 

peculiarity that we want to point out.  It is not generally true that the decision-maker must 

select all good alternatives at a stage.  It is the monotonicity of ( )HNNSU ,,*  that gives him 

incentives to do so.  On the other hand, if the decision-maker always selects all good 

alternatives later on, the proof shows that ( )HNNSU ,,  is monotonically increasing.  Therefore, 

both properties are interconnected, non-trivial and have to be proven simultaneously. 

There are two selection procedures that satisfy properties (a)-(c) from Proposition 1.  The 

first procedure is the ‘Always Pass’ procedure with ( ) ( )LHLHS ,,* = , i.e., all alternatives, 

whether they are good or bad, are passed to the next selection stage.  Obviously, this procedure 

never ends and, therefore, is not feasible.  The other optimal selection procedure is such that in 

each stage all alternatives must be selected unless only one alternative in the sample is bad.  In 

this case, all good alternatives must be selected, and the single bad alternative must be 

eliminated.  Formally: 
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( ) ( ) ( )
( )⎩
⎨
⎧ =≥

==
otherwise ,,

1 and 1 if ,0,
,, ***

LH
LHH

lhLHS  

In accordance with its properties, we call this selection procedure ‘Single Worst Elimination’, 

abbreviated as SWE and denoted as SSWE.  SWE prescribes only to eliminate an alternative if it 

is the single worst (without the aspect) alternative at a certain selection stage.  Thus, we have 

proven the following proposition. 

Proposition 2.  For any values of qH and qL (0 < qL < qH < 1), for any number N of alternatives 

in the initial sample, and for any nontrivial distribution of the number NH of high type 

alternatives in the initial sample, SWE is the unique optimal selection procedure. 

In accordance with Proposition 2, it is optimal for any decision-maker who is subject to 

imperfect recall to follow SWE.  In accordance with Proposition 1, the pay-off that he gets 

from implementing SWE strictly increases with the number of high type alternatives within the 

initial sample. 

Let us compare SWE with SAT and EBA.  In accordance with SAT, a decision-maker tries 

to identify the alternative that yields the highest perceived level of utility and chooses this 

alternative as his final choice.  SAT is a mirror image of SWE.  In accordance with SWE, a 

decision-maker tries to identify the alternative that yields the lowest perceived level of utility 

and eliminates this alternative to make sure that it will never be his final choice.  It is well-

known that a risk-averse individual behaves in a similar fashion by putting higher weights on 

lower levels of utility.  In this way, SWE might provide us with an explanation why individuals 

are often risk averse.  Similar to SWE, EBA selects all good alternatives.  The difference is that 

EBA eliminates all bad alternatives whereas SWE only eliminates a bad alternative if it is a 

unique bad alternative at a stage.  Hence, SWE uses more selection stages than EBA, and, 

consequently, results in more accurate choices than EBA. 
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The number of selection stages at which alternatives are eliminated allows for another 

characterization of selection procedures.  Each selection procedure guarantees that the finally 

selected alternative has at least a certain number of aspects.  SWE maximizes the minimum 

number of aspects that the finally selected alternative has.  SWE selects an alternative with at 

least (N - 1) aspects.  All other (N - 1) alternatives were eliminate in (N - 1) selection stages in 

which the finally selected alternative had the corresponding aspects.  In contrast, SAT and EBA 

guarantee that the selected alternative has far fewer aspects.  SAT selects an alternative that has 

at least one aspect, because this alternative is the very first alternative with an aspect.  EBA 

might select an alternative that does not have an aspect at all, because it requires that one 

alternative must be selected even if all alternatives in the first stage do not have the 

corresponding aspect. 

However, SWE is not the only procedure that satisfies this ‘max-min’-property.  For 

example, a procedure which specifies that in each stage a single randomly chosen alternative 

must be eliminated if, and only if, all alternatives have the aspect, also guarantees that the 

finally selected alternative has at least (N - 1) aspects.  Since such a procedure is equivalent to 

random choice, it is clearly not optimal.  Hence, the ‘max-min’-property is a necessary but not 

a sufficient condition for the optimality of a selection procedure. 

So far we have analyzed the optimal play of Bill.  His optimal strategy is to select all coins 

for further play until he observes a single coin that shows tail.  When this happens, he 

eliminates this coin.  Contrary to Bill, John has perfect memory so that he remembers the 

numbers of heads and tails that he observed in all previous rounds of the game.  Due to the 

single tumble, and this is how we model the complexity of the environment, he is not able to 

keep track of tossing results for each coin.  Therefore, the results of previous tosses only 

provide him aggregated information about the overall quality of the sample.  This information 

can be used for updating his prior beliefs about the number of winning coins in the current 

sample.  However, since SWE strictly dominates all the other selection procedures for any prior 
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beliefs, SWE remains the unique optimal selection procedure.  Hence, John, who is fully 

rational, will follow the same playing strategy as boundedly rational Bill.  Consequently, 

Proposition 2 holds for any individual who is not able to evaluate his objective function. 

5. Optimality of SAT and EBA 

In the previous section it has been shown that SWE is the unique optimal selection 

procedure for 0 < qL < qH < 1.  In this section we show that if low type alternatives never have 

aspects, i.e., qL = 0, then SAT is optimal.  Alternatively, if high type alternatives always have 

aspects, i.e., qH = 1, then EBA is optimal.  In order to show this, we first need to modify the 

model.  If qL = 0 and the initial sample of alternatives has only low types, then no alternative 

will ever show an aspect.  Since no alternative is satisfactory, it is optimal to pass all of them to 

the next stage and screen them again.  Hence, if the number of aspects is infinite, an optimal 

selection procedure never ends.  The same problem occurs for qH = 1 if there are multiple high 

type alternatives in the sample.  In this case, there will be multiple alternatives with an aspect in 

every selection stage.  Since it is optimal to pass all these good alternatives to the next stage, 

the optimal selection procedure never ends.  In order to avoid this problem, we assume that the 

number of aspects is arbitrary large but finite and equals to T.  Then, if the decision-maker 

selects more than one alternative in the last stage T, one of these alternatives will be selected at 

random. 

If qL = 0, a low type alternative never has an aspect.  Therefore, if an alternative has an 

aspect, it is a high type alternative.  Selecting any number of such alternatives is optimal.  If no 

alternative in the sample has an aspect, it is optimal to select all alternatives.  Hence, if qL = 0, 

there are multiple optimal selection procedures: 

( ) ( ) ( )
( )⎩
⎨
⎧

=
≥

==
0 if ,,0
1 if ,0,

,, **SAT

HL
Hh

lhLHS  for an arbitrary [ ]Hh ,1∈ . 
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All these selection procedures are essentially SAT because, if feasible, they select only good 

alternatives. 

If qH = 1, a high type alternative always has an aspect.  Therefore, if an alternative does 

not have an aspect, it is a low type alternative.  In the presence of one or more alternatives with 

an aspect, removing all alternatives without the aspect is optimal.  However, if no alternative in 

the sample has an aspect, then all alternatives are of low type, and all selection procedures are 

pay-off equivalent.  Hence, if qH = 1, there are multiple optimal selection procedures: 

( ) ( ) ( )
( )⎩

⎨
⎧

=
≥

==
0 if ,,0
1 if ,0,

,, **EBA

Hl
HH

lhLHS  for an arbitrary [ ]Ll ,1∈ . 

All these selection procedures are essentially EBA because, if feasible, they eliminate in every 

stage all bad alternatives. 

Applying these results to our casino game implies that if normal coins have tails on both 

sides, both John and Bill play SAT.  On the other hand, if the winning coin has head on both 

sides, they play EBA. 

6. Properties of the choice induced by SWE 

One of the pivotal questions in the literature on bounded rationality and behavioral economics 

is whether a particular procedure induces a rational choice of alternatives.  In this section, we 

analyze the choice induced by SWE.  Surprisingly, despite it is the unique optimal selection 

procedure, SWE induces choice that violates the rationality criterion. 

Proposition 3.  Choices induced by the SWE selection procedure 

a) are always transitive; 

b) generally violate the Weak Axiom. 
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Proof. 

a) Let us take any three alternatives x1, x2 and x3.  Let the first stage where exactly one or 

exactly two alternatives have the corresponding aspect be denoted by t.  Given infinitely 

many aspects and ( )1,0, ∈HL qq , there will be such a stage with probability one.  At this 

stage t either a single alternative, let’s say x1, has the aspect and x2 and x3 do not, or two 

alternatives, let’s say x1 and x2, have the aspect and x3 does not.  In the former case, it is 

easy to see that { }( ) { }121, xxxC = .  SWE passes x1 and x2 up to stage t because they have 

identical aspects in all previous stages.  Then, in stage t, SWE eliminates x2 as the single 

worst alternative.  Similarly, { }( ) { }131, xxxC = .  Hence, intransitivity does not arise 

irrespective of the value of { }( )32 , xxC .  In the latter case, SWE results in { }( ) { }131, xxxC =  

and { }( ) { }232 , xxxC = .  Also here, intransitivity does not arise irrespective of the choice 

{ }( )21, xxC .  Therefore, for any three alternatives x1, x2 and x3, choices { }( ) { }121, xxxC =  

and { }( ) { }232 , xxxC =  imply { }( ) { }131, xxxC = .  Consequently, SWE always leads to 

transitive choices. 

b) Suppose that a decision-maker faces three alternatives with the following first three 

aspects. 

 

Here ‘1’ denotes the presence of an aspect and ‘0’ denotes its absence.  Applying SWE to 

the subsets { }21, xx  and { }321 ,, xxx  leads to { }( ) { }121, xxxC =  and { }( ) { }2321 ,, xxxxC = .  In 

the former case, SWE eliminates x2 as the single worst alternative in stage one.  In the 

latter case, SWE selects all three alternatives in stage one, eliminates x1 in stage two, and 

 Aspect 1 Aspect 2 Aspect 3 … 

x1 1 0 0 … 

x2 0 1 1 … 

x3 0 1 0 … 
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finally eliminates x3 in stage three.  This choice structure clearly violates the weak axiom 

of revealed preferences. ■ 

Proposition 3 shows that the optimal choice of a selection procedure guarantees the transitivity 

of the resulting choices of alternatives, but not the fulfillment of the Weak Axiom.  Although 

SWE is the optimal procedure, it leads to a non-rational choice of alternatives.  As an 

illustration, let us go back to the casino game once more.  Fully rational John plays SWE.  

SWE, in turn, may result in choices that violate the Weak Axiom.  Hence, the revealed 

preferences of John might be non-rational.  This seemingly irrational behavior arises because 

John does not directly choose a coin, but a particular selection procedure.  Consequently, if a 

decision-maker, who is unable to evaluate objective functions, optimally chooses a selection 

procedure, then the rationality of his revealed preferences cannot be used as criterion for 

individual rationality. 

In the previous section we have shown that the decision-maker follows SAT in case qL = 0 

and that he follows EBA in case qH = 1.  In both cases, the resulting CBE-model is a random 

utility model (see Tversky, 1972), and the revealed preferences are always rational.  Thus, 

individual rationality only coincides with a rational choice of alternatives for extreme values of 

the revealing probabilities.  In contrast, had the decision-maker been able to evaluate his 

objective function for each alternative, his revealed preferences would have been always 

rational. 

7. Conclusion 

In this paper we took a procedural approach to decision-making by assuming that humans 

cannot evaluate objective functions and have to base their decisions on partial information 

provided by aspects.  In the resulting CBE-model, we found a unique selection procedure that 

strictly dominates all the other selection procedures.  This dominance is independent of sample 
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sizes, prior distributions of the number of high type alternatives within the initial sample, and 

the degree in which aspects are informative about the true types.  We call this optimal selection 

procedure ‘Single Worst Elimination’, SWE in short, because it eliminates an alternative if, and 

only if, it is the single worst alternative in the sample.  Interestingly, when aspects become fully 

informative about either high type or low type alternatives, either SAT or EBA become 

optimal. 

Choices induced by SWE are always transitive, but generally violate the Weak Axiom.  

Usually utility maximizing behavior is considered to be rational.  However, a utility 

maximizing decision-maker who is unable to evaluate his utility function fails to exhibit 

rational revealed preferences.  This seemingly irrational behavior arises because the decision-

maker does not select an alternative, but a procedure.  In our model, the choice of a selection 

procedure is rational, whereas the choice of alternatives is not a conscious choice but just an 

outcome of a selection procedure.  Consequently, whether choice conforms to the Weak Axiom 

or not is irrelevant for assessing the rationality of the decision-maker who must choose a 

specific selection procedure due to his inability to evaluate his objective function. 

We have shown that the procedure that maximizes the chances of selecting the best 

alternative can be found without the necessity of evaluating this objective function.  In this 

way, the rationality of choice of a selection procedure appears to be a natural ground for 

defining procedural rationality.  As a result, the distinction between substantive rationality and 

procedural rationality can be consistently redefined as a distinction between the ability and the 

inability of a decision-maker to evaluate objective functions. 

The optimality of SWE has been derived under the following three assumptions.  First, 

alternatives and aspects come in binary types; second, all aspects are equally informative; and 

lastly, individuals have infinitely many aspects.  Relaxing these assumptions will become next 

steps in analyzing optimal selection procedures and, consequently, procedural rationality.  



 19

Finally, the properties of SWE make this procedure very attractive in explaining individuals’ 

risk aversion from a procedural point of view. 
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Appendix 

Proof of Proposition 1.  The proof is done by induction in six steps. 

In step one, we assume that in stage t the decision-maker faces a set of 2≥tN  alternatives 

and that by applying a selection procedure (ht,lt), he selects 1−≤+ ttt Nlh  alternatives.  It is 

also assumed that for all 1−≤ tNN  the properties (a)-(d) of (h*,l*) stated in the proposition 

hold.  The (unknown) prior distribution of the number of high type alternatives H
tN  at this 

stage t is denoted by ( ) ( )zNzp H
tt =≡ Pr .  Under these assumptions, implementation of a 

selection procedure (ht,lt) at stage t induces the following posterior distribution of the number 

of high type alternatives H
tN 1+  at stage (t + 1): 

( ) ( )∑
=

+++ =≡=
N

N
ttt

H
tt

H
ttttt

H
tt

H
tt

H
t

lhHNNzNplhHNNzNp
0

111 ,,,,Pr,,,, . 

Let us denote by ( )tt lhS ,ˆ  the selection procedure (ht,lt) at stage t followed by an optimal 

selection procedure *S  thereafter.  The pay-off from ( )tt lhS ,ˆ  for any given H
tN  reads as 

( )( ) ( ) ( )

( ) ( ) ( )( )∑

∑
−+=

=
+

+=

=
++

+−++−=

+==

1

0

**
1

0
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11

,,,1,,,,,,1

,,,,,,,,,ˆ

tt lhz
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ttttttt
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ttt

lhz

z
ttttt

H
tt

H
tt

H
tttt

zlhSUzlhSUlhHNNzF

zlhSUlhHNNzNpNNlhSU
 

where ( ) ( )∑
≤

+++ =≡
wz

ttt
H
tt

H
ttttt

H
ttt lhHNNzNplhHNNwF ,,,,,,,, 111  is the corresponding 

cumulative distribution function.  By the induction assumption, 

( ) ( ) 0,,1,, ** >+−++ zlhSUzlhSU tttt .  Therefore, if a distribution ( )ttt
H
ttt lhHNNwF ,,,,1+  
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induced by ( )tt lh ,  first-order stochastically dominates a distribution ( )ttt
H
ttt lhHNNwF ′′+ ,,,,1  

induced by ( )tt lh ′′, , then the selection procedure ( )tt lh ,  yields a strictly higher pay-off than the 

pay-off from the selection procedure ( )tt lh ′′, . 

In steps two, three and four, using the first-order stochastic dominance criterion, we 

compare different selection procedures (ht,lt) and derive properties (a)-(c) of the proposition for 

N = Nt.  In particular, in step two it is established that h* = Ht for lt = 0, whereas in step three it 

is shown that h* = Ht also for lt > 0.  Finally, in step four it is shown that it is either l* = 0 or 

l* = Lt, and also that l* = Lt for 2≥tL .  Thus, steps two, three and four, under assumptions made 

in step one, prove that any optimal selection procedure S* must satisfy properties (a)-(c) also for 

N = Nt as it maximizes ( ) ( )( )∑
=

=

tNz

z

H
ttttt NNlhSUzp

0

,,,ˆ  for all prior distributions ( )zpt . 

In step five, part (d) of the proposition is proven for N = Nt, which ends the induction 

arguments.  Finally, in step six, it is shown that the induction assumptions from step one are 

valid for Nt = 1, which ends the whole induction. 

The following notations are used throughout the proof: 

( )
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where, here and after, all summation indices implicitly take all integer values, and the binomial 

coefficients are assumed to be zero if they are not defined for given values of its entries. 

Step one.  In order to derive the distribution ( )ttt
H
tt

H
tt lhHNNzNp ,,,,11 =++ , let assume that in 

stage t exactly y out of Ht good alternatives are of high type, and the remaining (Ht - y) good 

alternatives are of low type.  Selecting a sample (ht,lt) yields the following probability of 

having exactly z high type alternatives among selected (ht + lt) alternatives 
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Taking expectations of the above probability with respect to y, which follows a distribution 
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yields the following expression for ( )ttt
H
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H
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and for ( )ttt
H
ttt lhHNNwF ,,,,1+ : 
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Step two (derivation of h* = Ht for lt = 0).  Suppose that the decision-maker does not select bad 

alternatives in stage t, i.e., lt = 0, and selects 1−≤ tt Hh , i.e., not all, good alternatives.  The 

corresponding type’s distribution in stage (t + 1) is, by definition, ( )0,,,,1 tt
H
ttt hHNNwF + .  

However, he could get a better distribution (here and after, in terms of the first-order stochastic 

dominance) if he uses the following modified selection procedure S~ .  Let the decision-maker 

select (ht + 1) good alternatives, i.e., one good alternative more.  This will induce the 

distribution ( )0,1,,,11 +=++ tt
H
tt

H
tt hHNNzNp .  Then, let him wait until at a certain stage (t + m) 

there are exactly ht good alternatives and exactly one bad alternative.  In that stage, let the 

decision-maker select only ht good alternatives.  This modified selection procedure S~ , 

provided H
mt

H
t NN ++ =1 , induces the distribution ( )0,,,,1 111 tt

H
tt

H
mtmt hhNhzNp +++++ += .  Taking 
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expectations of the latter probability with respect to H
tN 1+ , which is distributed in accordance 

with ( )0,1,,,11 +=++ tt
H
tt

H
tt hHNNzNp , yields the following distribution ( )wF mt 1

~
++  of the 

number of high type alternatives H
mtN 1++  among ht alternatives in stage (t + m + 1): 

( ) ( ) ( )

( ) ( )
( )

( )
( )

( )
( )

( ) .
1
1

1
1

1
1

1
~

,0,1,,,0,,,,1~

1
1

1
1

11

1
1

1
111

1

11

1
1

1

11111

∑ ∑

∑ ∑∑

∑∑ ∑

∑∑

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−++

+
+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−++

+
+

−++

−+
=

−++
=

+=+=≡

−−
−−

+
+

≤

−
−−+

−
−

≤

−−
−−

+
+

≤

−
−−+−

−

≤

+

=

−
−

−
−−+

−+−
−+

++

≤
++++++++

y t

wy
hH

w
h

wz

zy
hH

z
h

yyN
HNt

y wz t

zy
hH

z
h

wz t

zy
hH

z
htyyN

HNt

wz

z

z y

yyN
HN

y
hHh

t

zzh
h

z

tmt

wz
tt

H
tt

H
ttttt

H
mtmtmt

whw
CCw

CCCQ

zhz
CCz

zhz
CCzh

CQ

CCC
h

CC
QwF

hHNNNphhhzNpwF

ttt

ttt

H
t

tt

tttttt
H
t

tt

H
t

ttttt

t

t

α
α

αα
α

α

α
αμμ

α

μμ

μ

μμ
μ

μμ

μ

 

It can be seen now that distribution ( )wF mt 1
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++  dominates ( )0,,,,1 tt
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for all 1−≤ thw .  Thus, if lt = 0, an optimal selection procedure requires h* = Ht. 

Step three (derivation of h* = Ht for lt > 0).  Suppose next that the decision-maker does select 

bad alternatives in stage t, i.e., lt > 0, and also selects 1−≤ tt Hh , i.e., not all, good alternatives.  

This induces the distribution ( )ttt
H
ttt lhHNNwF ,,,,1+  in stage (t + 1).  However, he could get a 

better distribution if he replaces one bad alternative with one good alternative.  Defining 

( ) ( ) ( )( )1,1,,,,,,,1
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tttttt
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yields: 
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Thus, an optimal selection procedure requires h* = Ht for all 0≥tl . 

Step four (derivation of l*).  Suppose that the decision-maker, in addition to all good 

alternatives, also selects 1−−≤ ttt HNl , i.e., not all, bad alternatives.  This induces the 

distribution ( )ttt
H
ttt lHHNNwF ,,,,1+  in stage (t + 1).  Let us consider the following deviation 

S
~~  from this selection procedure.  Let the decision-maker select (lt + 1) bad alternatives, i.e., 

one bad alternative more.  This will induce the distribution ( )1,,,,11 +=++ ttt
H
tt

H
tt lHHNNzNp .  

Then, let him wait until at a certain stage (t + m) there are exactly (Ht + lt) good alternatives and 

exactly one bad alternative.  In that stage, let the decision-maker select only (Ht + lt) good 

alternatives.  This modified selection procedure S
~~ , provided on H

mt
H
t NN ++ =1 , induces the 

distribution ( )0,,,,1 11 tttt
H
ttt

H
mtmt lHlHNlHzNp ++++= ++++  at stage (t + m + 1).  Taking 

expectations of the latter probability with respect to H
tN 1+  distributed in accordance with 

( )0,,,,1 111 tttt
H
ttt

H
mtmt lHlHNlHzNp ++++= +++++  yields the following distribution ( )wF mt 1

~~
++  of 

the number of high type alternatives H
mtN 1++  among (Ht + lt) alternatives in stage (t + m + 1): 

( ) ( ) ( )∑∑
≤

++++++++ +=++++=≡
wz

ttt
H
tt

H
tttttttt

H
mtmtmt lHHNNNplHlHlHzNpwF

μ

μμ 1,,,,0,,,,1
~~

11111
, 
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In order to compare distributions ( )ttt
H
ttt lHHNNwF ,,,,1+  and ( )wF mt 1

~~
++ , we define 

( ) ( ) ( ) ( )( )wFplHHNNwF
CQ

wlHwlHwD mtttt
H
tttwN

lHNt

tt
tth H

t

ttt

111
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≡
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It is easily seen that ( ) ( ) ( ) ( ) 011,0, 1
1 >−=+−−= −

+ αα w
lt

w
l

w
ltth ttt

ClCwCwllwD  for all 

11≥+≥ wlt , and that ( ) 00,0, =wDh .  In addition, ( )tth lHwD ,,  can be written recursively as 

( ) ( ) ( )tthtthtth lHwDlHwDlHwD ,,1,,,1, −+=+ α . 

Therefore, ( ) 00,, =th HwD  and ( ) 0,, >tth lHwD  for all 1≥tl  by induction. 

This implies that in stage t, any selection procedure ( )tt lH ,  with [ ]1,1 −−∈ ttt HNl  is 

strictly dominated by the selection procedure S
~~ .  Hence, if some bad alternatives are 

eliminated, then all the other bad alternatives must also be eliminated, or, stated differently, if 

some bad alternatives are selected, then all the other bad alternatives must also be selected.  In 

other words, all bad alternatives must be treated equivalently, i.e., either ( ) 0,* =tt LHl  or 

( ) ttt LLHl =,* . 
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Suppose now, that 2−≤ tt NH , i.e., at least two bad alternatives are available.  Then, 

selecting (Ht,0) is not better than selecting (Ht,1), whereas selecting (Ht,1) is strictly dominated 

by selecting (Ht,2).  Hence, selecting only good alternatives is also strictly dominated by 

passing all alternatives provided 2−≤ tt NH , i.e., ( ) ttt LLHl =,*  if 2≥tL . 

Step five (monotonicity of ( )HNNSU ,,* ).  From steps 2, 3 and 4 it follows that it is only 

optimal to eliminate an alternative if it is a unique bad alternative at a stage.  Suppose that the 

decision-maker eliminates such a unique bad alternative, i.e., ( ) ( )1,1, −= ttt NLH  and 

( ) ( )0,1, −= ttt Nlh .  Evaluating ( )0,1,1,,1 −−+ tt
H
ttt NNNNwF  yields: 
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It is easy to see that ( ) ( )0,1,1,,0,1,1,1, 11 −−≤−−+ ++ tt
H
ttttt

H
ttt NNNNwFNNNNwF  so that 

the distribution ( )0,1,1,1,1 −−++ tt
H
ttt NNNNwF  stochastically dominates the distribution 

( )0,1,1,,1 −−+ tt
H
ttt NNNNwF  and, therefore, ( ) ( )HH NNSUNNSU ,,1,, ** >+  for all tNN ≤ .  

This ends the induction arguments. 

Step six (proof of the assumptions from step one for Nt = 1).  In case Nt = 1, it is either 

( ) ( )1,0, =tt LH  or ( ) ( )0,1, =tt LH  such that the only feasible selection procedure ( ) ( )tttt LHlh ,, =  

is trivially optimal and satisfies the required properties.  In this case, the pay-off function is 

( ) HH NNSU =,1,  which strictly increases in NH.  Thus, the assumptions from step one are 

confirmed.  This ends the proof of Proposition 1. ■ 


