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Abstract

The asymptotic efficiency of OLS and IV estimators is examined in a simple dy-
namic structural model with a constant and two explanatory variables: the lagged
dependent variable and another autoregressive variable, which may also include
lagged or instantaneous feedbacks from the dependent variable. The parameter
values are such that all variables are stationary. The asymptotic efficiency of OLS
and various IV estimators is expressed via the moments of the data series in the
model parameters. Various computational and graphical aids are employed to ex-
amine and illustrate the relationships between parameter values, instrument weak-
ness, and estimator efficiency. Symbolic computer algebra and image sequences are
used in animations to identify regions in the parameter space where consistent IV
estimators may be less efficient than inconsistent OLS estimators, upon comparing
the asymptotic approximation to their mean squared errors.

1. Introduction

Recent attention has been paid to the effects of the correlation between endogenous
explanatory variables and the instruments on instrumental-variable estimation. When
this correlation is weak, the Þnite-sample bias of consistent instrumental-variable (IV)
estimators may be as serious as the Þnite-sample bias of inconsistent ordinary least
squares (OLS) estimators. Particular forms of instrument weakness may even jeopardize
the standard results on the limiting distribution of IV estimators and their associated test
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statistics. Renewed attention to these problems has been triggered especially by Bound
et al. (1995). An overview of many recent contributions to this research is given in
Dufour (2003). While this literature applies mostly to simple linear static simultaneous
models, we examine here particular aspects in the context of stable dynamic and possibly
simultaneous models for stationary variables. Although such models, and non-stationary
generalizations, are widely applied in econometrics, the kind of knowledge on the relative
efficiency of OLS and method of moments (MM) estimators as provided here is not
available.
In a classic static simultaneous-equations model, one can distinguish parametric iden-

tiÞcation, which is completely determined by the speciÞcation of the model irrespective
of the actual sample observations, and the effective identiÞcation (see Belsley, 1992). For
the coefficients of a particular equation, the effective identiÞcation is not only determined
by the actual values of the parameters, including the relative magnitude of the distur-
bance variances in the reduced form, but also by the data. Especially the collinearity
of the instruments, i.e. both the included and the excluded exogenous variables, is very
important. In a static model, the degree of instrument collinearity is not related to the
actual values of the structural parameters. However, in the context of the dynamic model
under study in this paper, it is quite common that instruments are, or are dependent
on, lagged endogenous variables. Collinearity and Þt in the reduced form, and hence
weakness or strength of the instruments, are then directly determined by the structure
and actual parameter values of the full dynamic system. Hence, in dynamic simultaneous
models all aspects of effective identiÞcation are very much intertwined, which complicates
their analysis. We shall use modern computational techniques, such as symbolic alge-
bra and graphical animations, to produce a view on the regions in the parameter space
where weak instrument and identiÞcation problems appear to occur in simple variants of
a particular dynamic simultaneous model. We do that by exploiting and comparing the
computational, graphical, and symbolic algebra powers of various widely used software
packages, such as ScientiÞc Work Place, Gauss, and Mathematica.
To obtain efficiency measures for OLS and MM estimators, we focus here exclusively

on asymptotic results, although in the literature on weak instruments various efforts have
been made to develop measures on instrument adequacy that are supposed to be infor-
mative of bias and efficiency of IV estimators in Þnite samples. These include alternative
(partial) R2 measures in reduced-form regressions and the concentration parameter, see
for instance, Bound et al. (1995), Shea (1997), Godfrey (1999) and Poskitt and Skeels
(2002). Of course, in the end it is the actual behavior of the estimators and tests in
Þnite samples that matters. Therefore, we do not focus here primarily on possible causes
of poor efficiency such as instrument weakness, ineffective identiÞcation and collinearity,
but examine directly the location and dispersion of the estimators. Due to the dynamics
in our basic model, the instrumental variables are generally not strongly, but only weakly,
exogenous. Therefore their complex stochastic nature makes it very difficult to derive
exact Þnite-sample results or approximations of greater accuracy than those obtained by
the present Þrst-order large-sample asymptotic analysis.
When samples are not too small, Þrst-order asymptotic results usually convey very

useful general information on properties of estimators. In particular, estimators with
relatively poor asymptotic efficiency probably behave poorly in Þnite samples too. Hence,
the present analysis of asymptotic efficiency allows initial screening of various estimation
methods for particular types of models. This may provide clues on how to design more
sophisticated asymptotic approaches for dynamic models, such as those developed for
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static simultaneous models by the local-to-zero approach of Staiger and Stock (1997)
and Wang and Zivot (1998). By assuming stationarity, the asymptotic distributions
of the estimators are relatively simple and, additionally, the initial conditions (start-up
values) do not affect the asymptotic efficiency of the estimators. Since in a fully speciÞed
dynamic system estimator efficiency can � in principle � fully be expressed in the model
parameters, its evaluation straightforwardly discloses the regions in the parameter space
that yield poor inference. In future work we will perform a similar analysis for Þnite
samples using simulation methods to check the inaccuracies of the present asymptotic
analysis in relation to actual sample size.
The structure of this study is as follows. In Section 2 we review some well-known re-

sults on the asymptotic efficiency of consistent method of moment estimators. Moreover,
we develop a Þrst-order asymptotic approximation to the mean squared error (AMSE)
of possibly inconsistent estimators. Next in Section 3 the general form of the particu-
lar dynamic system to be examined is introduced. The efficiency of its estimators will
be determined by six parameters, and we discuss some empirically relevant constraints
on the parameter space. Section 4 produces results for relatively simple reduced-form
type equations. In a series of subsections, we consider simple autoregressive models,
autoregressive models with an additional strongly exogenous regressor, and a dynamic
reduced-form equation with weakly exogenous regressors. Here the complexity is such
that results on the loss in efficiency when IV estimators are used instead of the optimal
OLS estimator can still be obtained by combining simple algebraic analytical derivations
with traditional numerical computation. In Section 5, we consider the estimation of an
equation from a stylized system involving both instantaneous feedbacks (simultaneity)
and lagged feedbacks (dynamics). Now comparisons of the AMSE of consistent IV and
inconsistent OLS can only be obtained by using computer algebra, and for interpreting
the high-dimensional numerical results, animated graphics proves to be very effective.
Section 6 concludes.

2. Asymptotic efficiency of LS and MM estimators

We consider the efficiency of various method of moments estimators of the parameters
of interest φ in the linear model for the T × 1 dependent variable y given by

y = Wφ+ ε, (2.1)

where εt ∼ iid(0, σ2ε) and the T ×K matrix W = (w1, ..., wT )
0 contains the explanatory

variables. The OLS estimator of φ is �φOLS = (W
0W )−1W 0y. Assuming that

plim
T→∞

1

T
W 0W = ΣWW (2.2)

exists (the variables are stationary) with rank(ΣWW ) = K, and also assuming E(wtεt) = 0
for t = 1, ..., T , estimator �φOLS is consistent, and under mild regularity

√
T (�φOLS − φ)

has a limiting normal distribution with asymptotic variance

AV(�φOLS) = σ
2
εΣ

−1
WW . (2.3)

If E(wtεt) 6= 0 then �φOLS is inconsistent and (2.3) invalid.
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Suppose Z = (z1, ..., zT )
0 is a T × L matrix of valid instrumental variables, i.e.,

E(ztεt) = 0 for all t, and when

plim
T→∞

1

T
Z 0W = ΣZW , plim

T→∞

1

T
Z 0Z = ΣZZ (2.4)

exist with rank(ΣZW ) = K and rank(ΣZZ) = L, then consistent and asymptotically
normal MM estimators of φ are as follows: if L = K, �φIV = (Z

0W )−1Z 0y with asymptotic
variance

AV(�φIV) = σ
2
εΣ

−1
ZWΣZZ(Σ

−1
ZW )

0, (2.5)

and if L > K, �φGIV = [W
0Z(Z 0Z)−1Z 0W ]−1W 0Z(Z 0Z)−1Z 0y with asymptotic variance

AV(�φGIV) = σ
2
ε(Σ

0
ZWΣ

−1
ZZΣZW )

−1. (2.6)

If E(ztεt) 6= 0 some of the instruments are invalid, consequently �φIV and �φGIV are in-
consistent and (2.5) and (2.6) invalid. If rank (Z 0W ) < K then the instrument set is
deÞcient and �φIV and �φGIV do not exist.

2.1. Efficiency comparisons of consistent estimators

When the instruments are all valid and rank (Z 0W ) = K some of the instruments may
nevertheless be very weak. As a consequence, some of the diagonal elements of AV(�φIV)
or AV(�φGIV) may become relatively large. In what follows, we examine and compare
these diagonal elements for particular models and, provided �φOLS is consistent, also make
comparisons with AV(�φOLS).
Occasionally it will be useful to depict the intrinsic efficiency of a particular estimator.

A scale-free measure of variability is the coefficient of variation, which equals the ratio
of the standard deviation to the actual coefficient. In the same vein, we consider such a
ratio here. Let �θ be some estimator of a scalar parameter θ. Upon replacing its standard

deviation by
q
AV(�θ)/T , i.e., the asymptotic approximation to its standard error, we

obtain the asymptotic variation coefficient

τ−1T (�θ) =
1

θ

s
AV(�θ)

T
. (2.7)

Note that τ−1T (�θ) is the inverse of the asymptotic t-ratio for testing θ = 0 evaluated at
the true value θ, with omission of a degrees of freedom correction. When

¯̄̄
τ−1T (�θ)

¯̄̄
> 1

the inefficiency is so serious that the approximated standard deviation is larger than the
actual coefficient value. When

¯̄̄
τ−1T (�θ)

¯̄̄
< 0.5 the absolute value of the true parameter

value is larger than twice its standard deviation. Self-evidently, τ−1T (�θ) will be large for θ
close to zero, and estimator inefficiency is more serious for smaller sample sizes, although
note that in this analysis we neglect (again) any possible deviations of the actual variance
V(�θ) in Þnite sample from its Þrst-order asymptotic approximation AV(�θ)/T. For models
where V(�θ) can be derived in Þnite sample and θ 6= 0 Belsley (1982) develops a test for
the parameter τT (�θ) = θ/V(�θ) in order to detect �data weakness�, which hinges upon
both collinearity and high disturbance variance. In Belsley (1992) a generalization of
such a test is discussed for static simultaneous models to assess �the degree of effective
identiÞcation�.
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2.2. Efficiency of inconsistent OLS

The Þrst-order asymptotic efficiency of inconsistent OLS can be expressed as follows. Let

W = W̄ + εψ0, (2.8)

with
E(W̄ 0ε) = 0 (2.9)

and ψ a K-vector which parameterizes the joint-dependence of regressors and distur-
bances, since

E(W 0ε) = E(ψε0ε) = σ2εTψ. (2.10)

We deÞne
ΣWε ≡ plimT→∞ 1

T
W 0ε = σ2εψ

ΣW̄W̄ ≡ plimT→∞ 1
T
W̄ 0W̄

ΣWW ≡ plimT→∞ 1
T
W 0W = ΣW̄W̄ + σ

2
εψψ

0.


(2.11)

Upon assuming that the skewness coefficient of the disturbances is zero and that the
kurtosis is three (as it is under normality), i.e.

E(ε3t ) = 0 and E(ε4t ) = 3σ
4
ε , t = 1, ..., T (2.12)

we obtain for the variance of W 0ε

V(W 0ε) = E(W 0εε0W )− E(W 0ε)[E(W 0ε)]0 (2.13)

= E(W̄ 0εε0W̄ ) + E(ψε0εε0εψ0)− σ4εT 2ψψ0
= σ2εE(W̄

0W̄ ) + 2σ4εTψψ
0,

so that we have
1√
T
[W 0ε− E(W 0ε)]→ N(0, σ2εΣW̄W̄ + 2σ

4
εψψ

0).

Note that the variance of this limiting distribution can be written as σ2εΣWW + σ
4
εψψ

0.
Thus,

√
T (W 0W )−1[W 0ε− E(W 0ε)]→ N(0,σ2εΣ

−1
WW + σ

4
εΣ

−1
WWψψ

0Σ−1WW ), (2.14)

which we will employ as follows: For the inconsistency of the OLS estimator we have

plim
T→∞

(�φOLS − φ) = plim
T→∞

[(W 0W )−1W 0y − φ] (2.15)

= plim
T→∞

[(W 0W )−1W 0ε]

= Σ−1WWΣW ε

= σ2εΣ
−1
WWψ.

Denoting this inconsistency by φ∗, deÞned as

φ∗ ≡ σ2εΣ−1WWψ, (2.16)
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we have

√
T (�φOLS − φ− φ∗) =

√
T [(W 0W )−1W 0y − φ− φ∗]

= (
1

T
W 0W )−1

1√
T

h
W 0ε− σ2εTψ

i
= (

1

T
W 0W )−1

1√
T
[W 0ε− E(W 0ε)].

Thus √
T (�φOLS − φ− φ∗)→ N(0, σ2εΣ

−1
WW + σ

4
εΣ

−1
WWψψ

0Σ−1WW ). (2.17)

Assuming that it is possible to remove the inconsistency of the OLS estimator, which we
will call COLS (Consistent or Corrected OLS), i.e., �φCOLS ≡ �φOLS − φ∗, this would yield
asymptotic variance

AV(�φCOLS) = σ2εΣ
−1
WW + σ

4
εΣ

−1
WWψψ

0Σ−1WW (2.18)

= σ2εΣ
−1
WW + φ

∗φ∗0.

We can use AV(�φCOLS) as a yardstick to measure the relative (in)efficiency of IV esti-
mators, although a drawback is that �φCOLS is not an operational estimator. However, the
above analysis can also be used to obtain an efficiency measure for the inconsistent OLS
estimator. Above, the asymptotic variance of an estimator was taken to be the variance
of its limiting distribution. Let us now also consider the usual Þrst-order asymptotic
approximation of the variance in Þnite samples, denoted here as AAV. We have

AAV(�φIV) = T
−1σ2εΣ

−1
ZWΣZZ(Σ

−1
ZW )

0, (2.19)

and
AAV(�φCOLS) = T

−1(σ2εΣ
−1
WW + φ

∗φ∗0). (2.20)

Then, following the usual concept of mean-squared-error (MSE), which is variance plus
outer-product of bias, we may deÞne the Þrst-order asymptotic approximation to the
efficiency (denoted here as AMSE) of the inconsistent OLS estimator in a sample of size
T as the sum of the Þrst-order approximation of its variance, equal to AAV(�φCOLS), plus
the outer-product of the Þrst-order asymptotic approximation to its bias. The latter is
given by the inconsistency φ∗. This yields

AMSE(�φOLS) = T−1(σ2εΣ
−1
WW + φ

∗φ∗0) + φ∗φ∗0 (2.21)

= T−1σ2εΣ
−1
WW +

T + 1

T
φ∗φ∗0.

Note that for a consistent estimator AAV equals AMSE. Also note that for comparing
the efficiencies of IV and COLS, which are both consistent, it does not matter whether
we compare the respective AV or AAV expressions. However, when a comparison is made
involving the inconsistent OLS estimator, then the sample size T matters and we should
use the ratio of diagonal elements of AAV(�φIV) = AMSE(�φIV) and AMSE(�φOLS). Note that
AMSE(�φIV) = O(T−1) and AMSE(�φOLS) = O(1), provided φ∗ 6= 0. Therefore, for large
enough T inconsistent OLS cannot be more efficient than consistent IV .
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3. A simple model with lagged and instantaneous feedbacks

The particular model we focus on is, in its most general form, given by

yt = α+ βxt + γyt−1 + εt, (3.1)

where
xt = δ + κxt−1 + λyt−1 + ξt, (3.2)

with
E(εt) = 0, E(ξt) = 0,

V(εt) = σ
2
ε , V(ξt) = σ

2
ξ , E(εtξt) = ρσεσξ,

E(εtεs) = 0, E(ξtξs) = 0, E(εtξs) = 0.


t 6= s = 1, ..., T. (3.3)

We have two observed time-series yt and xt, which are serially interdependent and also
jointly dependent when ρ 6= 0. The two parameters of primary interest are β and γ, but
there are nine parameters in total.
To ensure stationarity we examine the VAR representation of the model, which isÃ

yt
xt

!
=

Ã
α+ βδ
δ

!
+

Ã
γ + βλ βκ
λ κ

!Ã
yt−1
xt−1

!
+

Ã
βξt + εt
ξt

!
. (3.4)

From this, and upon denoting the lag-operator as L, we establish the Þnal form

[1− (γ + κ+ βλ)L+ κγL2]
Ã
yt
xt

!
=

Ã
(1− κ)α+ βδ
λα+ (1− γ)δ

!
+

Ã
1− κL β
λL 1− γL

!Ã
εt
ξt

!
.

(3.5)
Stationarity of the AR(2) parameters implies the restrictions

|κγ| < 1,

|γ + κ+ βλ| < 1 + κγ.

 (3.6)

The domain of the nine parameters can be constrained further, since:

1) Obvious restrictions on the parameter space are σ2ε > 0, σ2ξ > 0 and |ρ| < 1. In
fact, we can make σε the numeraire, and take σε = 1;
2) The values of α and δ are of no concern, because all efficiency measures of the

estimators for β and γ are found to be invariant with respect to them;
3) Limiting the examination to models where the series {yt} and {xt} are of the same

order of integration and, in the present paper, stationary, yields (3.6). Moreover, when
λ = 0 we have |γ| < 1 and |κ| < 1;
4) The parameterβ is unbounded in principle; without loss of generality, though, we

can restrict ourselves to β ≥ 0, because we will Þnd that only the sign of βλ matters. In
practice yt and xt are often measured in logs of levels (or perhaps of Þrst differences) and
then β and β/(1− γ) are the impact multiplier and the long run elasticity, respectively,
and will, for most empirically relevant situations, not exceed one digit numbers.

Hence, we have to deal with the six constrained parameters γ, β, κ, λ, ρ and σ2ξ .
However, not all feasible combinations of parameter values are equally relevant. There-
fore, we shall often impose further restrictions. From an empirical point of view it seems
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reasonable to restrict our attention to parametrizations such that model (3.1) Þts rea-
sonably well. In practice, a time-series regression like (3.1) will usually yield an R2 of
0.9 or higher. Therefore, we shall often focus on parameter combinations which yield a
population coefficient of determination (<2) equal to values in the range, say 0.7 through
0.99, where

<2 = V(βxt + γyt−1)
V(yt)

. (3.7)

Interesting special cases of the above model from an econometric-theory point of view
are (combinations of) ρ = 0 (no instantaneous feedback of εt on xt), λ = 0 (no lagged
feedback of yt−1 on xt), β = 0 (yt is a pure autoregression). If ρ = 0, (3.1) and (3.2)
establish a two-dimensional triangular system in which simultaneity of yt and xt is ruled
out. In that situation, xt is weakly-exogenous for inference on β and γ and in fact
strongly-exogenous if λ = 0. Hence, when ρ = 0, efficient inference on β and γ obtains
from applying OLS to (3.1). But, if ρ 6= 0, yt and xt are jointly dependent and OLS
estimates of (3.1) are inconsistent. However, because E(yt−iεt) = 0 and E(xt−iεt) = 0
for i > 0, irrespective of the value of ρ, valid instrumental variables in the form of
lagged variables are available. Thus, consistent estimators can be obtained by using
MM estimators. Their efficiency will depend on the collinearity of xt and yt−1 and on
the quality of the instruments. When using (xt−1, yt−1) as instruments for model (3.1)
the instrument quality is determined by their explanatory power for xt. From (3.4) it is
obvious that γ and κ both close to zero will lead to a weak instrument problem. In this
study, we will not just focus on instrument weakness, but on the absolute and relative
efficiency of various estimators.
Using only current exogenous and lagged endogenous and exogenous variables as

instruments implies that the asymptotic efficiency is fully determined by the structure
and actual parameters of the full dynamic system under study. A similar situation,
where only �internal� instruments are exploited, occurs in the estimation by GMM of
dynamic panel-data models with unobserved individual effects. Blundell and Bond (1998)
discusses the incidence of instrument weakness for certain numerical parameter values
of a particular dynamic panel data model. In a pure time-series context there does not
seem to be general knowledge about the relative efficiency of least-squares and method-
of-moments estimators for models of the partial-adjustment type given above expressed
in terms of their parameter values, not, for instance, in Bowden and Turkington (1984)
or in more recent monographs or textbooks (see also West and Wilcox, 1996), although
generalizations of this type of speciÞcation are widely applied in econometrics. Many
macroeconomic systems are of this type, see for instance Hendry (1995) and Favero
(2001). Also Þnancial econometrics applications often require speciÞcations of this type,
see for instance Ferson and Foerster (1994) and Evans and Lyons (2002). In the latter
application, parameter values of γ, β and κ seem relevant that differ widely from those
of, say, a macro consumption or wage equation.
Below we make comparisons between asymptotic efficiency of OLS and IV in a series

of models of increasing complexity. As will become clear, to obtain results on the critical
parameter value combinations that lead to efficiency problems, computational aids of
increasing sophistication are called for.
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4. Models with lagged but no instantaneous feedbacks

In this section we consider variants of model (3.1) with (3.2) where ρ = 0. In the various
subsections we focus on the cases β = 0, λ = 0, and the unrestricted case, respectively.

4.1. The simple AR(1) model

When β is known to be zero the relationship (3.1) is a simple AR(1) model. Under full
stationarity, which requires |γ| < 1, we have

E(yt) =
α
1−γ ,

V(yt) =
1

1−γ2σ
2
ε ,

C(yt, ys) = E{[(yt − E(yt)][(ys − E(ys)]} = γ|t−s|
1−γ2 σ

2
ε .


(4.1)

Hence, in this particular case, we Þnd for (2.2)

ΣWW =

Ã
1 E(yt)
E(yt) V(yt) + [E(yt)]

2

!
, (4.2)

and, since E(yt−1εt) = 0, it follows from (2.3) that

AV(�γOLS) =
σ2ε
V(yt)

(4.3)

= 1− γ2.
This indicates that the OLS efficiency improves for γ further away from zero.
If this model is estimated using not yt−1 itself (as in OLS) but yt−2 as an instrumental

variable (next to the constant) then ΣZZ equals (4.2), whereas

ΣZW =

Ã
1 E(yt)
E(yt) C(yt, yt−1) + [E(yt)]2

!
. (4.4)

It follows from (2.5) that

AV(�γIV) = σ2ε
V(yt)

[C(yt, yt−1)]2
(4.5)

=
1− γ2
γ2

.

This indicates an estimation problem at γ = 0 caused by lack of correlation between
regressor and instrument. For an AR(1) model with γ = 0, we have C(yt, yt−1) = 0; then
the matrix ΣZW of (4.4) does not have full rank. Although the instrument is still valid,
since E(yt−2εt) = 0, it is unÞt when γ = 0 and weak for γ close to zero.
Note that for any |γ| < 1, this IV estimator suffers an efficiency loss with respect

to OLS, because AV(�γIV) > AV(�γOLS). For both OLS and IV, we Þnd that the absolute
efficiency improves for γ further away from zero and in fact becomes the same for |γ| ↑ 1.
Note that the efficiencies of both �γOLS and �γIV in the AR(1) model are invariant with
respect to the intercept α and the error variance σ2ε . These results are all apparent from
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Figure 4.1, which clearly shows that, in this model, the efficiency of IV is relatively poor
over a large portion of the parameter space (a portion much wider than just the point
γ = 0 where the instrument is unÞt).

Figure 4.1: Asymptotic variance in AR(1) model
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The relative difference in asymptotic efficiency between these two estimators is best
characterized by the ratio

AV(�γIV)

AV(�γOLS)
= γ−2. (4.6)

This is also shown in Figure 4.1. For this model the asymptotic variance of IV is 100γ−2

per cent of the asymptotic variance of OLS . Hence, the IV asymptotic variance is at
least double that of OLS if |γ| ≤ 0.707. If we instrument yt−1 not by yt−2 but by yt−3,
efficiency deteriorates by another factor γ−2.When generalized instrumental variables are
used (more instruments than regressors) in the AR(1) model, for instance instrumenting
yt−1 by both yt−2 and yt−3, we Þnd no improvement of AV(�γGIV) upon AV(�γIV). This is
intuitively obvious, because in Þtting the regressor yt−1 by the instruments yt−2 and yt−3,
the latter is a redundant variable in the AR(1) model.

Figure 4.2: Asymptotic variation coefficient in AR(1) model
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Figure 4.2 shows τ−1T (�γIV) and τ
−1
T (�γIV) , deÞned in (2.7), in the AR(1) model. Note

that estimator inefficiency is more serious for smaller sample sizes. At T = 100 the
asymptotic variation coefficient is larger than one for OLS at |γ| < 0.101 and for IV
when |γ| < 0.308. It is smaller than 0.5 for OLS when 0.204 < |γ| < 1 and for IV when
0.425 < |γ| < 1.
Figures 4.1.and 4.2 depict a function for which we have an explicit analytical expres-

sion available. The formulas enable to exploit directly the graphics facilities of ScientiÞc
Work Place for producing the 2-D and 3-D diagrams.
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4.2. ARX(1) models with strong exogeneity

The situation gets more interesting but also more complicated when β is unknown. Let us
Þrst consider the ARX(1) model yt = α+βxt+γyt−1+εt, where xt is strongly-exogenous
because λ = 0. Thus xt = δ + κxt−1 + ξt is AR(1), and E(εtξt) = 0 because ρ = 0. We
now have the four relationships

V(yt) = β
2V(xt) + γ

2V(yt−1) + 2βγC(xt, yt−1) + σ2ε ,

V(xt) = (1− κ2)−1σ2ξ ,

C(xt, yt−1) = κC(xt, yt)

C(xt, yt) = βV(xt) + γC(xt, yt−1).


(4.7)

From the latter two we Þnd

C(xt, yt−1) =
βκ

1− γκV(xt), (4.8)

which, when substituted into the Þrst (and exploiting again the assumed stationarity)
gives

(1− γ2)V(yt) = β21 + γκ
1− γκV(xt) + σ

2
ε .

With the variance of the AR(1) process xt this yields

V(yt) =
1

1− γ2
1 + γκ

1− γκ
β2

1− κ2σ
2
ξ +

1

1− γ2σ
2
ε . (4.9)

4.2.1. OLS inference in the simple ARX(1) model

We can now Þnd expressions for the asymptotic variance of the OLS estimators of model
(3.1). We obtain from (2.3) and the above

AV(�γOLS) = σ2ε
V(xt)

V(xt)V(yt−1)− [C(xt, yt−1)]2 (4.10)

=
1− γ2

1 + β2

(1−γκ)2
σ2
ξ

σ2ε

.

Note that if β = 0, i.e., xt is a redundant exogenous regressor, the asymptotic efficiency
(4.10) is similar to that of the estimator in the parsimonious AR(1) model. When β 6= 0
the presence of the exogenous regressor xt in the model increases the efficiency of �γOLS
compared to the AR(1) efficiency (2.3). The asymptotic variance (4.10) depends on
the three coefficients γ, β, and κ and on the ratio σ2ξ/σ

2
ε ; in fact AV(�γOLS) has only

three independent determining factors: γ, κ, and β2σ2ξ/σ
2
ε , because model (3.1) remains

observationally equivalent when β and σξ are rescaled inversely.
To make 3-D pictures of the asymptotic variance (4.10), we have to Þx one of these

three determining factors, preferably one that characterizes a particularly interesting class
of model. For this purpose, we Þnd neither γ nor κ or β2σ2ξ/σ

2
ε very suitable, and would

rather Þx an empirically more relevant characteristic. For that we chose the population
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coefficient of determination <2 as deÞned in (3.7). Note that because C(xt, εt) = 0 we
simply have

<2 = 1− σ2ε
V(yt)

. (4.11)

Substituting (4.9), we Þnd

β2σ2ξ
σ2ε

=
(1− κ2)(1− γκ)(<2 − γ2)

(1 + γκ)(1−<2) , (4.12)

which can only be meaningful when

0 ≤ γ2 ≤ <2 < 1. (4.13)

Hence, Þxing <2 constrains the domain of γ. Substituting (4.12) in (4.10) yields

AV(�γOLS) = (1− γ2κ2) 1−<
2

1− κ2<2 . (4.14)

This formula shows how AV(�γOLS) depends on γ and κ for Þxed <2 over (4.13) and |κ| < 1.
Note that for Þxed <2, the asymptotic efficiency of �γOLS is invariant with respect to the
signs of γ and κ, so we have to examine positive values of these only.
The efficiency of �γOLS is depicted in Figure 4.3 for <2 = 0.9025, which implies |γ| ≤

0.95. Note that the minimal variance is 1− <2, and, keeping <2 constant, the efficiency
is minimal and invariant with respect to γ if κ = 0, and minimal and invariant with
respect to κ if γ2 = <2; otherwise the asymptotic variance deteriorates for γ2 closer to
zero and for κ2 closer to one. Whether the efficiency is reasonable in an absolute sense
can be examined again by the asymptotic variation coefficient at particular sample sizes.
Figure 4.3 also shows the behaviour of this characteristic for <2 = 0.9025 and T = 100,
and it roughly indicates that useful inference on γ can be obtained if |γ| > 0.2.

Figure 4.3: ARX(1) model for <2 = 0.9025, |γ| ≤ 0.95, λ = 0
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From Figure 4.4, where <2 = 0.64, which seems very low for this kind of model, we
see that in this type of partial adjustment model accurate inference on γ seems possible
for almost all empirically relevant cases, if γ is not too small, irrespective of the value of
κ.
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Figure 4.4: ARX(1) model for <2 = 0.64, |γ| ≤ 0.8, λ = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
 gamma 

0
0.2

0.4
0.6

0.8
1

 kappa
0

0.2

0.4

0.6

0.8

1

AV(�γOLS)

0
0.2

0.4
0.6

0.8

 gamma 

0
0.2

0.4
0.6

0.8
1

kappa

0

0.2

0.4

0.6

0.8

1

τ−1100(�γOLS)

For �βOLS in the simple ARX(1) model we Þnd

AV( �βOLS) = σ2ε
V(yt)

V(xt)V(yt−1)− [C(xt, yt−1)]2 (4.15)

=
σ2ε
σ2ξ

1− κ2 + 1+γκ
1−γκ

β2σ2
ξ

σ2ε

1 + 1
(1−γκ)2

β2σ2
ξ

σ2ε

= β2
(1 + γκ)2

<2 − γ2
1− <2
1− κ2<2 .

The sign of γκ is relevant now, and there are not three but four determining factors,
though again only three for τ−1T ( �βOLS). Figure 4.5 shows for relevant values of <2 that
the characteristic τ−1100( �βOLS) has very moderate values in general, although poor efficiency
occurs for γ2 very close to <2, which implies β close to zero and that clariÞes that the
asymptotic variation coefficient is close to zero here.

Figure 4.5: τ−1100(�βOLS) in ARX(1) model with λ = 0
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Thus, we Þnd that the asymptotic efficiency of OLS in this model seems pretty good
over the relevant part of the parameter space. It is only natural that inference on γ will
not be sharp when γ is close to zero (and similarly for β).

4.2.2. IV inference in the simple ARX(1) model using xt, xt−1 as instruments

Next we examine IV estimators in this model. Although we know that the IV efficiency
does not exceed that of OLS, because (Σ0ZWΣ

−1
ZZΣZW )

−1−Σ−1WW is semi positive deÞnite,
we want to examine the magnitude of this efficiency loss. There are various options for
constructing an instrument set for model (3.1). First we examine using xt and xt−1 as
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instruments and denote the resulting estimators by IVX . From (2.5) we have

AV(�γIVX ) = σ2ε
[V(xt)]

3 − V(xt)[C(xt, xt−1)]2
[V(xt)C(xt, yt)− C(xt, xt−1)C(xt, yt−1)]2 (4.16)

= σ2ε
(1− γκ)2
β2σ2ξ

=
1− γ2κ2
1− κ2

1−<2
<2 − γ2 .

When the regressor xt is redundant, β = 0 which implies <2 = γ2. Then ΣZW does not
have full rank, and the instruments, though individually valid, are unÞt as a set. Thus,
the instruments are weak when β is close to zero.
The (asymptotic) variance inßation factor with respect to OLS due to using the

instruments xt and xt−1 is

AV(�γIVX )

AV(�γOLS)
=

1

1− κ2
1− <2κ2
<2 − γ2 . (4.17)

This is invariant with respect to the signs of γ and κ. From formula (4.17) and Figure
4.6 we see that, for given <2, the efficiency loss may be very large for κ2 very close to one
and when <2−γ2 is small. The former leads to an xt series which, due to its stationarity,
tends to a constant, which in the limit would reduce the column rank of the instrument
matrix. The latter happens when β2 is small. This is the weak-instrument situation
already indicated, where the processes yt and xt tend to independent AR(1) series, and
hence xt−1 is a valid, but not a very effective, instrument for yt−1. The Þgures show that
a substantial loss of efficiency occurs in models where <2 is substantial, not due to the
explanatory power of xt, but primarily due to a high value of γ

2, say, |γ| > 0.8.

Figure 4.6: AV(�γIVX )/AV(�γOLS) in ARX(1) model with λ = 0
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With respect to β, we obtain (assuming β 6= 0)

AV( �βIVX ) = σ2ε
V(xt) [C(xt, yt)]

2 − 2C(xt, xt−1)C(xt, yt−1)C(xt, yt) + V(xt)[C(xt, yt−1)]2
[V(xt)C(xt, yt)− C(xt, xt−1)C(xt, yt−1)]2

=
σ2ε
σ2ξ

(4.18)

=
β2

1− κ2
1 + γκ

1− γκ
1− <2
<2 − γ2 .

In general, this is invariant with respect to γ, β and κ. The intuition behind this at Þrst
sight surprising result is as follows: Exploiting results for the inverse of a partitioned
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matrix, and taking all variables in deviation from their mean, this asymptotic variance
equals the inverse of the sum of squared residuals of the regression of variable �xt on �yt−1,
multiplied by σ2ε and divided by T. The variables �xt and �yt−1 are obtained by Þtting the
original variables to the instruments xt and xt−1. Hence, �xt ≡ xt and, due to the AR(1)
nature of xt, �yt−1 is just a multiple of xt−1, asymptotically. Thus, the required residual
sum of squares equals simply σ2ξT.

However, AV( �βIVX ) is no longer invariant with respect to γ, β and κ when we Þx <2.
We obtain

AV( �βIVX )

AV( �βOLS)
=

1

1− κ2
1−<2κ2
1− γ2κ2 , (4.19)

which immediately shows that there is no efficiency loss for β with respect to OLS when
κ = 0. From Figure 4.7 we see that the loss seems moderate as long as |κ| < 0.8, provided
that the value of |γ| is moderate for large |κ|.

Figure 4.7: AV( �βIVX )/AV(
�βOLS) in ARX(1) model with λ = 0
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We conclude that IVX can lead to substantial efficiency loss with respect to OLS . This
happens for inference on either γ or β when κ2 is large. Inference on γ also suffers when
β2 is small, which implies γ2 so large that it is close to <2. However, in sharp contrast to
the situation found for AR(1) models, in the ARX(1) with strongly exogenous xt variable
the efficiency loss of IVX with respect to OLS is moderate for moderate values of γ and
κ. Note, though, that IVX uses instruments of a completely different nature than we used
in the AR(1).

4.2.3. IV inference in the simple ARX(1) model using xt−1, yt−1 as instruments

Next we examine IV estimation when only the lagged variables yt−1 and xt−1 are used as
instruments. We indicate this as IVL . This is the most obvious choice when ρ 6= 0. We
Þrst examine the efficiency loss when OLS still remains consistent, because ρ = 0. We
Þnd

AV(�γIVL) = σ2ε
V(xt)[C(xt, yt−1)]2 − 2C(xt, xt−1)C(xt, yt−1)C(xt, yt) + V(yt)[C(xt, xt−1)]2

[V(yt)C(xt, xt−1)− C(xt, yt)C(xt, yt−1)]2

=
1− γ2

1 +
β2σ2

ξ

σ2ε

γ2

(1−γκ)2
(4.20)

=
1− γ2κ2
1 + γ2 1−κ2

1−<2
.
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In the Þrst line we have assumed that the denominator is strictly positive, which requires
both β 6= 0 and κ 6= 0. The ratio

AV(�γIVL)

AV(�γOLS)
=

1−<2κ2
1−<2 + γ2 (1− κ2) (4.21)

has a maximum of (1− <2)−1 at γ = κ = 0, which can be seen from Figure 4.8, but note
that AV(�γIVL) is not deÞned for κ = 0.

Figure 4.8: AV(�γIVL)/AV(�γOLS) in ARX(1), κ 6= 0, λ = 0
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Especially when γ2 is large, the efficiency loss with respect to OLS seems only
marginal, although, for both <2 values the IVL asymptotic variance is already about
twice the OLS variance at γ = 0.7 for κ not too close to unity. For smaller values of γ
the efficiency loss with respect to OLS is very substantial, as was found in the AR(1)
model, although the loss is still Þnite for AV(�γIVL) when γ = 0 and κ 6= 0.
With respect to β we Þnd (β 6= 0 and κ 6= 0)

AV( �βIVL) = σ2ε
V(xt)[V(yt)]

2 − V(yt)[C(xt, yt)]2
[V(yt)C(xt, xt−1)− C(xt, yt)C(xt, yt−1)]2 (4.22)

=
σ2ε
σ2ξ

1

κ2

1− κ2 + 1+γκ
1−γκ

β2σ2ξ
σ2ε

1 + γ2

(1−γκ)2
β2σ2

ξ

σ2ε

=
β2

κ2
1− <2
<2 − γ2

(1 + γκ)2

1−<2 + γ2 (1− κ2) ,

giving the ratio
AV( �βIVL)

AV( �βOLS)
=
1

κ2
1− κ2<2

1− <2 + γ2 (1− κ2) . (4.23)

This yields Figure 4.9, which diagnoses a very serious efficiency loss, especially for low
κ2 values but also for low γ2 values (if κ2 is not very close to 1). Irrespective of the value
of γ, the IVL variance is here more than double that of OLS for any |κ| < 0.8.
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Figure 4.9: AV( �βIVL)/AV(
�βOLS) in ARX(1), κ 6= 0, λ = 0
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We conclude that the efficiency loss of IVL is much more serious over relevant parts
of the parameter space than for IVX . Inference on γ by IVL is affected if γ

2 is not very
close to <2 (except when κ2 → 1) and inference on β by IVL is affected if κ

2 is not very
close to 1, whereas there is obviously a weak-instrument problem here when κ is close to
zero. So, we Þnd that estimator efficiency for IVL is generally much lower than for OLS .
Whether this implies that the actual magnitude of the asymptotic variance precludes
sharp inference in areas other than those where γ or β are small can be examined again
from τ−1T . Figure 4.10 shows that for T = 100 and <2 = 0.9025 useful inference by
IVL on γ is possible for |γ| > 0.2. This conclusion is similar to that for OLS, although
we Þnd that the τ−1T values for OLS at <2 = 0.64 correspond more or less to those of
IVL at a much higher <2; so here the only effect of using these instruments is loss of
efficiency. Figure 4.10 also shows that IVL inference on β is not only hampered when β
is small (which implies γ large, due to the Þxed <2), but also when κ is small, which,
self-evidently, makes xt−1 a poor instrument for xt.

Figure 4.10: Results for ARX(1); <2 = 0.9025, |γ| < 0.95, κ 6= 0, λ = 0
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4.3. ARX(1) models with weak exogeneity

Now we relax the assumption that λ = 0, but maintain ρ = 0. Here we have weak exo-
geneity, because there is Granger causality from y to x. Under the stationarity conditions
(3.6), the OLS estimators for the parameters γ and β are known to be consistent and
asymptotically efficient even if λ 6= 0.
Regarding the second moments of the variables, we Þnd from the expressions in (4.7)

that only the one for V(yt) is not affected by the introduction of the feedback of yt−1 in
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xt. We now have

V(yt) = β
2V(xt) + γ

2V(yt−1) + 2βγC(xt, yt−1) + σ2ε ,

V(xt) = κ
2V(xt) + λ

2V(yt) + 2κλC(xt, yt) + σ
2
ξ ,

C(xt, yt−1) = κC(xt, yt) + λV(yt)

C(xt, yt) = βV(xt) + γC(xt, yt−1)

C(xt, xt−1) = κV(xt) + λC(xt, yt).



(4.24)

These yield

V(xt) =
(1 + γκ)λ2σ2ε + [(1− γ2)(1− γκ)− 2γλβ]σ2ξ
(1− γκ)[(1− γ2)(1− κ2)− 2(γ + κ)λβ − λ2β2] , (4.25)

V(yt) =
[(1− γκ)(1− κ2)− 2κλβ]σ2ε + (1 + γκ)β2σ2ξ
(1− γκ)[(1− γ2)(1− κ2)− 2(γ + κ)λβ − λ2β2] , (4.26)

C(xt, yt−1) =
(1− κ2 − κλβ)λσ2ε + [(1− γ2)κ+ λβ]βσ2ξ

(1− γκ)[(1− γ2)(1− κ2)− 2(γ + κ)λβ − λ2β2] , (4.27)

from which AV(�γOLS) and AV( �βOLS) can be established using the earlier expressions in
moments of the data. This results in expressions in β, γ, κ, λ, σ2ξ and σ

2
ε that are much

too complex to be useful for further direct interpretation or manipulation. Therefore,
we can no longer use the SWP facilities to produce 3-D diagrams from explicit analytic
expressions.
However, we can proceed by evaluating the data moments and the asymptotic variance

expressions numerically over a relevant grid of parameter values, and use these to produce
3-D diagrams. We did so employing Gauss code for the data moments and for the diagonal
elements of the relevant Σ−1WW and Σ−1ZWΣZZ(Σ

−1
ZW )

−1 matrices. To Þx <2 we use (4.11)
again, which now yields

β2
σ2ξ
σ2ε
=
(1− γκ)[(1− κ2)(<2 − γ2)− 2γλβ − λ2β2] + 2κ(γκ−<2)λβ

(1 + γκ)(1− <2) . (4.28)

Note that this simpliÞes to (4.12) for λ = 0 indeed. Substitution of (4.28) into (4.24)
through (4.27) leads to expressions for AV(�γOLS)/γ

2 and AV( �βOLS)/β
2 in terms of γ, κ, <2

and λβ. The �extra� determining factor λβ complicates designing informative diagrams,
because next to Þxing the value of <2, we have to impose other restrictions. For instance,
θ = β/(1− γ) = 1 (i.e., the long-run multiplier is unity or any other relevant value) and
λ ∈ {−0.1, 0,+0.1} (i.e., the feedback parameter is zero or relatively mild). Note that
for positive γ, κ and β, which are cases of great interest in practice, the second of the
inequalities (3.6) would not always be met when λ is positive as well. It can be inferred
from (3.5) that we may conÞne ourselves to examination of positive values of β or θ only,
provided that we examine both positive and negative values of λ, in case εt and ξt are
symmetrically distributed around zero.
We present a few results here focussing on <2 = 0.9025 and θ = 1, examining 0.01 ≤

γ ≤ 0.9 and 0.01 ≤ κ ≤ 0.85. Then the stationarity conditions are fulÞlled for |λ| ≤ 0.1.

18



For λ = 0, the restriction θ = 1, i.e., β = 1 − γ, becomes inconsequential, because the
formulas simplify to those of the former subsection when λβ = 0. We did Þnd that for
λ = 0 our Gauss program produces similar graphs as the Maple Þgures obtained in the
foregoing subsection using SWP. Figure 4.11 gives the efficiency ratio�s for λ = −0.1. For
technical reasons in graphs produced by Gauss programs, we have set any data points
beyond the range of the vertical axes at the maximum (minimum) value of the plot.
Compared to the results in Figures 4.8 and 4.9, respectively, where the same ratio�s can
be found under strong exogeneity (i.e., for λ = 0), we see that the efficiency loss of �γIVL
with respect to OLS is more moderate here, although we also note more severe problems
for κ very close to zero. For �βIVL we Þnd that the results for λ = 0 and λ = −0.1 do
not differ very much. GIVL employing xt−1, yt−1, xt−2, yt−2, does not yield an efficiency
improvement asymptotically.

Figure 4.11: Results for ARX(1) with <2 = 0.9025, λ = −0.1, θ = 1

AV(�γIVL)/AV(�γOLS) AV( �βIVL)/AV(
�βOLS)

Figure 4.12: Results for ARX(1) with <2 = 0.9025, λ = +0.1, θ = 1

AV(�γIVL)/AV(�γOLS) AV( �βIVL)/AV(
�βOLS)

In Figure 4.12 we present results for λ = 0.1 and establish a large region of moderate
γ and κ values where substantial efficiency losses occur for �γIVL - which must be due to

weak instruments. Again we notice little difference regarding �βIVL . We conclude that it
is very important to know whether or not there are instantaneous feedbacks, because the
efficiency losses of IV with respect to OLS are moderate only over a very small region
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in the (γ,κ) space. Especially the location of the region of great inefficiency of �γIVL is
heavily dependent on the occurrence and actual magnitude of any lagged feedbacks.

5. Models with lagged and instantaneous feedbacks

Next we consider the situation where E(εtξt) = ρσεσξ may be different from zero. If
ρ 6= 0, the regressor xt and the disturbance term εt are correlated and hence yt and xt
are jointly dependent (irrespective of the values of κ and β). Note that in a simultaneous
model it is not obvious what we mean by the population <2. Because C(xt, εt) 6= 0, our
deÞnition (3.7) no longer implies (4.11). From

<2 = V(βxt + γyt−1)
V(yt)

=
β2V(xt) + γ

2V(yt) + 2βγC(xt, yt−1)
V(yt)

, (5.1)

this is seen to be smaller than 1− σ2ε/V(yt) if ρ > 0 and greater otherwise.
The simultaneity also affects some of the data moments of (4.24). The expressions

for V(xt) and C(xt, yt−1) remain the same, but we have to replace V(yt) and C(xt, yt) by

V(yt) = β
2V(xt) + γ

2V(yt) + 2βγC(xt, yt−1) + σ2ε + 2βC(xt, εt), (5.2)

and
C(xt, yt) = βV(xt) + γC(xt, yt−1) + C(xt, εt), (5.3)

where
C(xt, εt) = ρσεσξ. (5.4)

These extensions have a profound effect on the complexity of the analytic expressions
for the asymptotic efficiency of the estimators, and also explicit expressions for the data
moments in parameter values are unruly. This complicates the creation of Gauss code for
Þnding numerical results for the efficiency measures. Another complication for designing
graphical results is that the efficiency measures depend on six parameters now, apart
from the numeraire σε. The dimensionality can be reduced in a sensible way again by
Þxing <2, the long run multiplier θ = β/(1−γ), and perhaps either the simultaneity ρ or
the lagged feedback λ. However, that leaves another three free parameters, whereas we
can only handle two of them in a standard 3-D plot. It seems a challenge now to exploit
capabilities of Mathematica, by which we can both solve through symbolic algebra the
asymptotic efficiencies in terms of the transformed model parameters (γ,κ, ρ,λ, θ,<2),
make sure that the stationarity restrictions (3.6) are imposed, and then make anima-
tions of 3-D plots, so that we can actually see how the (relative) asymptotic efficiency
changes over the γ and κ domain when either ρ, λ, θ or <2 varies. We could even make
animations where all the latter four parameters vary jointly in a controlled way. At
http://www1.fee.uva.nl/ke/Joseph Kiviet.htm a web-site is available where some of
the animated versions of graphs from this study can be seen in action. From Mathe-
matica�s symbolic manipulations it appeared that, upon Þxing <2, there are positive and
negative roots for σξ. Naturally we examine positive values only.

5.1. ARX(1) models with and without simultaneity

We present some standard 3-D graphs here in which we Þx θ = 1 and <2 = 0.9025, so that
γ, κ, λ and ρ are the remaining free parameters. To examine how much efficiency is lost
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due to a non-zero value of ρ, we examine the efficiency ratio�s of AV(�γIVL) and AV(
�βIVL)

for ρ = 0.4 and for ρ = 0, respectively. This gives the inßation factor of the efficiency
due to simultaneity. Figure 5.1 shows results for λ = 0. We Þnd that simultaneity may
both increase or decrease the efficiency of IV, but the effect is limited (although it may
be about ±50%). Figure 5.2 shows for λ = −0.1 how IVL efficiency changes over the
domain of γ and κ when ρ jumps from 0 to ρ = 0.4. This seems to mitigate the effects
slightly.

Figure 5.1: Results for ARX(1) with <2 = 0.9025, θ = 1, λ = 0
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Figure 5.2: Results for ARX(1) with <2 = 0.9025, θ = 1, λ = −0.1

0

0.2

0.4

0.6
0.8

κ

0
0.2

0.4
0.6

0.8

γ

0

0.5

1

1.5

0

0.5

1

1.5

AV(�γIVL; ρ = 0.4)/AV(�γIVL; ρ = 0)

0

0.2

0.4

0.6
0.8

κ

0
0.2

0.4
0.6

0.8

γ

0

0.5

1

1.5

0

0.5

1

1.5

AV( �βIVL ; ρ = 0.4)/AV(
�βIVL; ρ = 0)

5.2. IV versus OLS in ARX(1) models with simultaneity

Next to the above comparisons of the same technique for different ρ values, we would
like to produce comparisons for different estimators, given a particular value of ρ. We
compare IV with COLS and inconsistent OLS, making use of the theoretical analysis of
Section 2 which require that the disturbances εt are (close to) normally distributed. First
we compare the efficiency of two consistent estimators. In Figure 5.3 we examine the
ratio of AV(�γIVL) and the non-operational AV(�γCOLS), both at ρ = 0.4, θ = 1, for λ = 0
and -0.1. We Þnd that �γIVL is much less efficient, especially for γ moderate or small.
When λ 6= 0 this has substantial impact at particular κ values.
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Figure 5.3: AV(�γIVL)/AV(�γCOLS) for ARX(1) with <2 = 0.9025, θ = 1, ρ = 0.4
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Figure 5.4 shows that �βIVL is much less efficient than
�βCOLS, except when κ and γ

are both very large. Note that the efficiency difference between these two estimators
is often much more substantial than the change in IV efficiency due to the presence of
simultaneity as established in the Figures 5.1 and 5.2.

Figure 5.4: AV( �βIVL)/AV(
�βCOLS) for ARX(1) with <2 = 0.9025, θ = 1, ρ = 0.4
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λ = −0.1
Figures 5.5 through 5.8 show that the difference in efficiency between IVL and OLS

can be substantial too at T = 100 (assuming that the asymptotic approximations are
reasonably accurate at such a sample size). We have taken the natural logarithm of the
efficiency ratio now, so that positive values indicate the superiority of OLS. From Figure
5.5 we Þnd for inference on γ that, when λ = 0, IVL is preferable only when ρ, γ and κ
are all large. Over a large region, also when ρ = 0.4, OLS has a smaller asymptotic mean
squared error, despite its bias and inconsistency. For moderate values of γ and κ, the
relative OLS efficiency improves with increasing ρ. Hence, its inconsistency seems less of
a worry than is the weakness of the instruments for IV. Of course, this evidence is only
indicative, because we should check whether, at a sample size of 100, the asymptotic
approximations are sufficiently accurate. Additionally, it is not obvious how to exploit
the OLS estimator for inference purposes, because of its inconsistency. Its proper use
would require an assessment of its bias. Such an assessment, though, if at all possible,
would enable to make the (even more efficient) COLS estimator operational.
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Figure 5.5: ln[AMSE(�γIVL)/AMSE(�γOLS)] for <2 = 0.9025, θ = 1, T = 100, λ = 0
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Figure 5.6: ln[AMSE( �βIVL)/AMSE(
�βOLS)] for <2 = 0.9025, θ = 1, T = 100, λ = 0
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Figure 5.6 shows that γ has little effect on this IVL over OLS efficiency ratio regarding
estimation of β. When ρ 6= 0 IV can beat inconsistent OLS for large |κ| only.
When λ 6= 0 the patterns change drastically with respect to estimating γ (Figure 5.7),

but less so for β (Figure 5.8). However, there still exist large regions where OLS is much
more efficient than IV.

Figure 5.7: ln[AMSE(�γIVL)/AMSE(�γOLS)] for <2 = 0.9025, θ = 1, T = 100, ρ = 0.4
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Figure 5.8: ln[AMSE( �βIVL)/AMSE(
�βOLS)] for <2 = 0.9025, θ = 1, T = 100, ρ = 0.4
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6. Conclusions

We examine the asymptotic efficiency of various estimators for simple but commonly
employed speciÞcations of dynamic regression models with iid disturbances. These spec-
iÞcations incorporate both dynamic adjustments and simultaneity, and they may also
entail weak or strong exogeneity. We focus primarily on OLS and IV implementations
that exploit lagged values of the variables occurring in the model under study as instru-
ments. Therefore, the asymptotic estimator efficiency is completely characterized by the
parameter values of the system, since we assume stationarity, and hence initial conditions
do not affect the asymptotic efficiency.
Obviously, if OLS is consistent its asymptotic efficiency makes it preferable to IV.

If there is simultaneity in the model OLS yields inconsistent estimators, whereas the
IV estimator is consistent provided that the instruments are valid. However, if the
instruments employed are weak then problems with respect to scale (i.e., a large second
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moment) occur, and, especially in Þnite samples, also with respect to location (i.e., bias),
whereas ultimately, due to either invalid instruments or non-identiÞcation, the location
problems constitute inconsistent or even totally uninterpretable estimators.
After expressing for the vraious types of models examined the asymptotic second mo-

ments of estimators in the model parameters, it is generally rather easy to detect and to
rationalize some extremely hazardous situations, usually occurring when particular coef-
Þcients approach zero or their boundary values. By scanning the whole parameter space
of a model with six parameters, however, we Þnd more areas in the relevant parameter
space with serious efficiency problems. We also examine whether and where efficiency
problems of consistent estimators originating from instrument weakness turn out to be
more detrimental than the efficiency problems of inconsistent estimators caused by in-
strument invalidity. This is all achieved in close interplay between analytical derivations,
graphical methods, computer algebra and animated computerized visualizations.
Comparing the relative efficiency of a particular consistent estimator, when either

lagged feedbacks (weak exogeneity) or instantaneous feedbacks (simultaneity) are present
(while keeping the respective models comparable otherwise by controlling their signal-to-
noise ratio by the coefficient of determination), we Þnd that the effects of these feedbacks
are relatively moderate in comparison to efficiency differences due to using alternative es-
timation techniques. For cases where OLS is consistent, we illustrate that efficiency losses
are not marginal but very substantial over large regions of the parameter space when IV
is used with lagged variables as valid (but often weak) instruments. That phenomenon
also helps to explain why we Þnd that inconsistent OLS is often much more efficient than
consistent IV estimation. Upon comparing a particular Þnite-sample approximation to
their mean squared errors (which presupposes that the disturbances are close to normally
distributed), we show that enormous gains in efficiency can be achieved by employing
invalid but non-weak instruments (as OLS does in the simultaneous model) instead of
valid but weak instruments in implementations yielding consistent IV estimators. The
reason is that often IV is severely dispersed around a correct location, whereas OLS is
surprisingly concentrated around a moderately incorrect location.
To what degree the present Þndings are relevant for inference in actual Þnite sam-

ples remains to be veriÞed either by Monte Carlo experiments or by more sophisticated
possibly higher-order or local-to-zero asymptotic analytical derivations.
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