Abreu, Maria; de Groot, Henri L.F.; Florax, Raymond J.G.M.

Working Paper
Space and Growth

Tinbergen Institute Discussion Paper, No. 04-129/3

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Abreu, Maria; de Groot, Henri L.F.; Florax, Raymond J.G.M. (2004): Space and Growth, Tinbergen Institute Discussion Paper, No. 04-129/3, Tinbergen Institute, Amsterdam and Rotterdam

This Version is available at:
http://hdl.handle.net/10419/86205

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Space and Growth

M. Abreu1,2
H.L.F. de Groot1,2
R.J.G.M. Florax1,3

1 Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam,
2 Tinbergen Institute,
3 Purdue University, USA.
Tinbergen Institute
The Tinbergen Institute is the institute for economic research of the Erasmus Universiteit Rotterdam, Universiteit van Amsterdam, and Vrije Universiteit Amsterdam.

Tinbergen Institute Amsterdam
Roetersstraat 31
1018 WB Amsterdam
The Netherlands
Tel.: +31(0)20 551 3500
Fax: +31(0)20 551 3555

Tinbergen Institute Rotterdam
Burg. Oudlaan 50
3062 PA Amsterdam
The Netherlands
Tel.: +31(0)10 408 8900
Fax: +31(0)10 408 9031

Please send questions and/or remarks of non-scientific nature to driessen@tinbergen.nl.
Most TI discussion papers can be downloaded at http://www.tinbergen.nl.
SPACE AND GROWTH:

A SURVEY OF EMPIRICAL EVIDENCE AND METHODS

Maria ABREU¹, Henri L.F. DE GROOT¹,*

and Raymond J.G.M. FLORAX²

¹ Department of Spatial Economics, Vrije Universiteit, Amsterdam, The Netherlands, and Tinbergen Institute, Amsterdam-Rotterdam (The Netherlands)

² Department of Spatial Economics, Vrije Universiteit, Amsterdam, The Netherlands, and Department of Agricultural Economics, Purdue University (USA)

Abstract
This paper reviews the empirical literature on growth and convergence that has addressed the importance of spatial factors. An important distinction in this literature is the one between absolute and relative location. The literature on absolute location predominantly uses non-spatial econometric techniques, and is strongly linked to the economic growth literature. In contrast, studies on relative location tend to be weakly linked to theory, but apply relatively sophisticated econometric techniques to account for spatial effects. Most studies of the latter type are regional in nature, although there is a growing interest in extending the analysis to a cross-country setting. Both regional and cross-country studies typically make use of so-called spatial process models. Rather than modelling the impediments of space and distance directly, spatial process models start from exogenously provided information about the spatial structure. Our review shows that the usage of simple spatial autoregressive lag and error models abounds in the spatial econometrics literature. We assess the appropriateness of such models, and identify areas of potential concern. The rather weak linkage between theory and operational models, the dominance of “global” over “local” spatial association patterns, and the implicit restrictions on spatial interaction induced by many of the habitual specifications of the spatial weights matrix concurrently constitute areas where improvements can be made.

Keywords: economic growth, geography, natural resources, spillovers, spatial econometrics.

JEL: O11, O13, O57, R11, R12.

* Corresponding Author: Henri L.F. de Groot, Department of Spatial Economics, Vrije Universiteit, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands. Email: hgroot@feweb.vu.nl. Tel: +31 20 444 6168. Fax: +31 20 4446004.
1. Introduction

The possibility that space is a determinant of economic growth has been considered in several empirical studies, mostly in the context of geographical variables such as latitude, climate and topology (e.g., Gallup et al., 1999). Recently, the possibility has also been explored in the spatial econometrics literature, a sub-field of econometrics dedicated to the study of spatial interaction and spatial structure (Anselin, 2001). Our aim in this article is to review the empirical literature on growth and space, starting with studies that incorporate geography into standard models of growth, and moving on to more complex models of spatial interaction. We critically assess the contribution of spatial econometrics to the study of growth in light of the broader empirical literature, and suggest directions for further research.

Previous surveys of the empirical growth literature have tended to avoid the topic of space, with some exceptions. Durlauf and Quah (1999) and De la Fuente (1997) discuss it in the context of human capital spillovers and technology diffusion. However, in these models countries differ only in their levels of human capital vis-à-vis the world average, and location plays no role in determining the extent of spillovers. It is acknowledged that space must influence the channels through which countries interact, but these channels are not modelled explicitly. Durlauf and Quah (1999) also mention a number of geography studies as part of a list of recent empirical contributions, but do not discuss them in detail.

Temple (1999) briefly discusses the possibility that disturbances in growth regressions may be correlated over space, due to omitted variables with a spatial dimension such as climate, institutions and technology. As a possible solution he suggests including country dummies as proxies for these variables. Islam (2003), focusing mainly on convergence studies, also discusses the consequences of omitting variables from the standard growth regression, and proposes using a panel data model with country fixed effects. He also considers the possibility that other parameters might vary across countries, and refers to Lee et al. (1997) in connection with this problem. These are all examples of approaches addressing spatial heterogeneity, the notion that parameters in growth models may vary across space.

Most of the research on growth in the spatial econometric literature has been carried out using regional data, possibly because spatial econometrics has traditionally been used in regional science applications, and many regional scientists are familiar with the techniques. This familiarity is also reflected in surveys of regional growth, where spatial econometrics is mentioned explicitly. Rey and Janikas (2003) review the literature on regional convergence, with a focus on spatial econometric techniques. However, most of their survey is dedicated to
studies of regional income inequality, and the techniques discussed are mainly exploratory spatial data analysis and Markov transition matrices. Our focus in this survey is on regression techniques applied to growth processes in general, and not particularly to studies of convergence. Also on a regional note, Magrini (2004) presents an overview of the empirical literature on convergence, including studies from both the broader and the spatial econometric literatures. The author argues that regions and countries are not interchangeable concepts, and regional convergence studies should be based on different empirical methods from the ones developed to study cross-country convergence. He concludes by noting that convergence is often confined to groups of geographically contiguous regions. We discuss some of these issues in Section 3 below.

In order to structure our discussion, we make a distinction between models of absolute and relative location. Absolute location refers to the impact of being located at a particular point in space, for instance in a certain continent, climate zone or at a certain latitude. Relative location refers to the effect of being located closer or further away from other specific countries or regions. We will classify the empirical literature into several categories, according to the channel through which space affects growth, and according to whether the model is of absolute or relative location.

The distinction between models of absolute and relative location can be related to a similar classification used in spatial econometrics, that of spatial heterogeneity and spatial dependence. Spatial heterogeneity occurs when parameters in growth models vary across countries or regions depending on their location. For instance, the effects of tariffs on growth may be greater for countries located in coastal areas when compared to landlocked countries. This type of model falls into the absolute location category, since what matters is the location of a particular country in space, and not in relation to other countries.

Spatial dependence, on the other hand, occurs when the observations at one location depend on the values of observations at other locations. For example, the growth rate of a country surrounded by politically-unstable countries may be lower due to negative spillovers in the form of refugees, lower foreign direct investment and disruption to trade routes. In this case the concept of location is clearly that of relative location, since what matters is the position of a country relative to other countries.

We argue that while the spatial econometrics literature has concentrated on models of relative location (or spatial dependence), the non-spatial econometrics literature has focused on models of absolute location (or spatial heterogeneity). These two approaches are complementary. The spatial econometrics literature would benefit from considering more
carefully the underlying reasons for the spatial dependence observed in the data. It may be
due to the omission of variables with a spatial dimension such as climate, latitude and
topology. Moreover, the spatial econometrics literature might gain from delving more deeply
into the policy and theoretical implications of their results. On the other hand, the non-spatial
econometrics literature would do well to adopt the more rigorous approach to testing,
modelling and visualisation of the results developed in spatial econometrics. The residuals of
mainstream models should be tested for spatial dependence, since ignoring it could result in
serious model misspecification.

The rest of our article is organised as follows. In Section 2 we review the treatment of
space in the non-spatial econometric and the spatial econometric literatures, and discuss the
distinction between models of absolute and relative location. In Section 3 we discuss several
unresolved issues in the application of spatial econometrics to the study of economic growth.
In Section 4 we discuss directions for further research and conclude.

2. An overview of the literature
This section provides a global overview of the empirical literature that has investigated the
role of space in explaining variation in economic growth. In order to facilitate the discussion,
we divide the literature into studies that explicitly apply spatial econometric techniques and
those that do not. The former are predominantly concerned with relative location, while the
latter focus on absolute location. A more detailed classification with brief descriptions and
examples can be found in Table 1.

2.1 Space in the non-spatial econometrics literature
The non-spatial econometrics literature has largely focused on models of absolute location,
and the studies therefore (implicitly) focus on spatial heterogeneity. The notion of spatial
heterogeneity that we consider here is broader than the one typically used in the spatial
econometrics literature, which is tightly linked to the concept of spatial regimes. 1 In models
that apply spatial regimes, the parameters are allowed to vary across groups of countries or
regions (the regimes), and oftentimes groupwise heteroscedasticity is also allowed. Our
argument is that while spatial regimes is an extreme form of spatial heterogeneity,

1 By spatial regimes we mean models in which the sample is divided into groups according to the values taken
by a variable with a spatial dimension, for example North and South (according to latitude), or tropical,
subtropical and temperate (according to climate zone).
incorporating spatial variables directly into the regression also takes account of spatial heterogeneity, albeit on a more gradual and refined scale.

Although the bulk of this section will be concerned with models of absolute location, there are a few studies in the non-spatial econometrics literature that deal with relative location, notably studies of spillovers and technology diffusion. We conclude this section by discussing their significance, and how they relate to the spatial dependence models typically estimated in the spatial econometrics literature that will be reviewed in Section 2.2.

Within the literature using models of absolute location there are some studies that incorporate geographical variables directly into the analysis, so that growth is a function of variables that are invariant over time and therefore exogenous (since they precede economic growth and development). Typical examples are Hall and Jones (1996), Sachs and Warner (1997) and Lee et al. (1997), who find that latitude is a negative determinant of growth, after controlling for other social, political and economic factors.

Another part of the literature deals with the indirect effects of geography through different channels. The idea is that geographical variables can be used as instruments for other variables that have a direct effect on growth. One hypothesis linking absolute location with growth emphasizes the higher incidence of infectious diseases in the tropics. Among them, malaria is unique in that it is not a consequence of poverty, and the feasibility of eradicating it is mainly determined by climate and ecology. This allows the authors to either treat it as exogenous, or to instrument it using geographical variables. Bloom and Sachs (1998) and Gallup and Sachs (2001) find that the incidence of malaria has a negative effect on economic growth, after controlling for other variables related to policy, human capital and general health.

A related channel through which geography can have an impact on growth is agriculture. Agricultural productivity in the tropics is low because tropical soils are poor in nutrients (winter frost is essential for creating a rich topsoil) and susceptible to erosion, rainfall is variable, and pests and diseases are widespread (again due to the lack of winter frost). In addition, only a small amount of agricultural research is carried out with tropical agriculture in mind, and while machines and other equipment can be used across climate zones, new crop varieties need to be adapted to tropical climates. Gallup and Sachs (2000) find that agricultural productivity growth is substantially lower in the tropics, while Masters and McMillan (2001) show that growth increases sharply with the number of days of winter frost, particularly at low levels of frost.

The relationships found in the literature on geography and growth have led to a debate
on the relative merits of geography, policy and institutions in explaining long run growth. It has been argued that the quality of institutions and policy may be affected by geographical and climatic conditions. For example, Acemoglu et al. (2001) argue that settler mortality rates in the European colonies determined whether or not the colony became an extractive state with weak institutions, which persisted to this day and affect economic performance. They find that property rights, instrumented using settler mortality rates, have a positive effect on current GDP per capita. The result holds after controlling for the current disease burden, and adding other geographical and social variables. Diamond (1997) also argues that geography and natural endowments can have long-term effects on growth rates and income levels. Using his model, Hibbs and Olsson (2004) show that the variety of native plants and animals, the size of the land mass, and the orientation with respect to the Earth’s axis can explain differences in current GDP per capita.

Regarding the relative merits of geography and institutions, Hall and Jones (1999), Easterly and Levine (2003) and Rodrik et al. (2002) find that geography has no effect on income per capita after controlling for its effect through institutions. Easterly and Levine (2003) also find that policy variables have no impact on development after geography and institutions have been accounted for. This finding contradicts Gallup et al. (1999) and Wei (2000) who argue that geography can affect policy by altering the trade-offs faced by the government, particularly when it comes to trade policy. On a similar note, Frankel and Romer (1999) show that trade, instrumented using geography variables, has a positive effect on income per capita.

The relationships reviewed so far correspond to a weak form of spatial heterogeneity, where variables with a spatial dimension have been included directly in the regression. A stricter concept of spatial heterogeneity is that used in spatial econometrics, where it refers to parameter instability in growth models. A simple example is the inclusion of continent dummies into a standard growth regression to control for differences in omitted variables. The idea is that countries within continents are similar to each other in terms of variables such as climate, culture and technology. Barro (1991) includes Africa and Latin America dummies as explanatory variables in a growth regression, and finds that both variables have a negative coefficient. Similarly, Armstrong (1995) finds that country dummies are jointly significant in a conditional convergence model for the regions of the European Union. Allowing the intercept to differ across countries or regions is another way of accounting for omitted variables, which would otherwise be part of the error term. For example, Islam (1995) and Caselli et al. (1996) estimate fixed effects models in order to avoid the possibility of omitted
variable bias resulting from unobservable differences in technology levels across countries. Similarly, Durlauf and Johnson (1995) allow groups of countries to follow different linear growth models, depending on their initial conditions.

We now come to the studies within the non-spatial econometrics literature that focus on relative location. As we have mentioned before, they are in the minority, and mostly deal with technology diffusion and cross-country spillovers. The technology diffusion literature starts with Coe and Helpman (1995), who argue that productivity is a function of both domestic and foreign R&D, with the latter spilling over through trade. Focusing on the 22 OECD countries that conduct the bulk of the World’s R&D, the authors construct measures of the domestic R&D stock using accumulated R&D expenditures, and measures of foreign R&D stock using trade-weighted measures of the R&D stocks of each country’s trade partners. In this way the authors give more weight to R&D spillovers from countries that are located relatively close in terms of bilateral trade (and indirectly in terms of physical distance, since trade is a function of physical distance). The results indicate that R&D spillovers are substantial. In a follow up to this paper, Coe et al. (1997) extend the analysis to study R&D spillovers from the OECD countries to a large number of less-developed countries. The results indicate that R&D spillovers from industrialised countries to less-developed countries are substantial. Keller (2002) also examines the effect of foreign R&D on domestic productivity, using data disaggregated by industry for a sample of OECD countries. In order to test whether technology diffusion is local or global in scope, the foreign R&D term in the model is weighted by an exponential distance decay function. Estimation results confirm that technology spillovers are declining with physical distance. The results also indicate that sharing a common language facilitates technology diffusion, and that technology spillovers are becoming less localised over time.

Other studies of spillovers within the non-spatial econometrics literature have mostly focused on the effects of political instability in neighbouring countries. Ades and Chua (1997) find that regional instability (defined as the average number of coups and revolutions in neighbouring countries) has a negative effect on growth. Murdoch and Sandler (2004) find that a civil war within a distance of 800 km can have a negative effect on growth.

One advantage of using spatial econometrics to estimate models of technology diffusion and spillovers is that spatial relationships are summarised in a spatial weights matrix. This allows the estimation of more complex models of spatial heterogeneity and spatial dependence. However, there is also a related disadvantage, which is that the spatial weights matrix (and by extension the relationships between countries) must be exogenous and
in cross-section models it should be invariant over time. This precludes using trade, foreign
direct investment or measures of cultural distance as spatial weights. One possible solution
could be the use of geostatistical models (discussed in Section 3), but most studies of growth
using spatial econometrics have focused on physical distance as a measure of the strength of
bilateral ties. Interestingly, Keller (2002) uses physical distance to capture bilateral ties in
order to avoid focusing on one channel of technology diffusion. Trade, foreign direct
investment, and contacts between researchers have all been shown to be a function of physical
distance in the empirical literature. There may thus be an additional methodological reason for
focusing on bilateral relationships measured in terms of physical distance.

2.2 Spatial econometrics and growth

We now turn to the literature within spatial econometrics that has studied the impact of space
on economic growth. In order to analyse the type of methods and techniques that have been
used within this literature, we have compiled a list of all the spatial econometrics studies on
growth (both published and unpublished) that could be found using search engines and
publication databases (EconLit, SSRN, Econpapers, IDEAS). The studies are listed in
chronological order in Table 2. We have included each study only once; if a study has been
published we no longer consider the original working paper.

Figure 1 shows the chronological distribution of studies. Over time, the number of
published and unpublished papers increases exponentially, indicating a rising interest in
applying spatial econometric techniques to the study of growth. It is also interesting to see the
geographical scope of the studies. In terms of the countries or regions covered by the data,
68% of all studies use European data (at various levels of aggregation). The second largest
category is comprised by studies that use country data from all continents, 11%. The
geographical origin of the remaining studies is the US and Canada (8%), Latin America (6%),
Asia (5%), and a combination of the above (2%).

A classification of the studies according to the channel through which location affects
growth reveals that the vast majority of the studies (63%) fall into the standard spatial
econometrics category (viz., they follow standard spatial econometric procedures, and the
emphasis is on methodology rather than on theory or policy considerations). Of these studies,
11% use spatial data analysis techniques, 6% use a spatial lag model, 29% estimate a
combination of the spatial error, spatial lag, spatial cross-regressive and spatial regimes
models, 11% look at Markov transition matrices, and 6% use other more unusual types of
models. The distribution of the remaining studies by type of channel is almost evenly split
among four categories: 8% of the studies have focused on spatial heterogeneity, 11% on technology diffusion, 10% on spatial spillovers and 8% on spatial convergence clubs. The statistics also indicate that 8% of the studies are based on models of absolute location, and 92% on models of relative location. Only 11% of all studies derive their empirical models explicitly from theory.

All of the studies based on absolute location use a spatial regimes model to investigate spatial heterogeneity. Most of them also touch on spatial dependence, either by using exploratory spatial data techniques to identify clusters, testing the residuals for autocorrelation, or estimating a spatial regimes model that also allows for spatial dependence. One of the advantages of using spatial econometrics to estimate models of spatial heterogeneity resides in the possibility of testing for any remaining spatial autocorrelation, since ignoring it could result in biased coefficients. Another advantage of using spatial econometrics is that exploratory spatial data techniques can help with the identification of the spatial regimes. For example, Roberts (2004) estimates an absolute convergence model using county-level data for the United Kingdom. He finds no evidence of convergence, and a test for parameter stability across the traditional North-South divide is inconclusive. An exploratory spatial data analysis reveals a cluster of counties in the South West with low initial levels of GDP per capita. A spatial regimes model based on a structural break between the South West counties and the rest of the UK shows that while the rest of the UK is converging in terms of per-capita income, the South West is diverging.

Similarly, Baumont et al. (2003) use a Moran scatterplot (a diagram showing the relationship between per-capita GDP, and the average per-capita GDP in neighbouring regions) to detect two clusters of regions in the European Union (North and South). A spatial regimes model indicates there is absolute convergence in the South, and absolute divergence in the North. However, spatial diagnostic tests reveal that the residuals are spatially autocorrelated, and that a spatial error model would be more appropriate. The authors estimate a spatial regimes model with spatial autocorrelated error terms, and the new results indicate convergence in both the North and the South.

While exploratory spatial data techniques can help guide the choice of spatial regimes, there is a tendency in the spatial econometrics literature to rely solely on these methods when constructing the model. We would argue that while the non-spatial econometrics literature can gain insights from conducting these analyses, the spatial econometrics literature would benefit from linking the choice of regimes more closely to theory, for example by basing the choice of regimes on variables with a spatial dimension such as latitude and climate. This is
particularly important in view of the fact that there are no tests to distinguish between spatial dependence and spatial heterogeneity. In fact, the two can be observationally equivalent in single cross-section models (Anselin, 2001). Suppose we find a cluster of low-growth regions while conducting an exploratory spatial data analysis. The cluster could be a result of spillovers from one region to another, or it could be due to similarities between regions in the variables that affect growth (e.g., climate, technology, institutions). Note that in a panel data setting it is easier to distinguish between the two effects, since omitted variables with a spatial dimension can be picked up by region or country fixed effects. Given the difficulties involved in estimating a panel data model using spatial econometrics (see below), it is often advisable to consider the possibility of spatial heterogeneity before proceeding to estimate a model of spatial dependence.

The remainder of this section will be devoted to models of relative location. As we have mentioned before, the spatial econometrics literature on growth has tended to focus on methodological issues, and has frequently overlooked theoretical and policy considerations. Exceptions to this rule are a number of studies on technology diffusion and spillovers. López-Bazo et al. (2004) is an example of a spatial econometric study of technology diffusion, applied to the regions of the European Union. The level of technology in each region is assumed to depend on the technology of its neighbours, which is in turn related to neighbours’ stocks of human and physical capital. The empirical model is thus linked directly to theory, and the conclusions can give insights into the appropriateness of the theoretical model. The authors find that technology diffusion is mostly restricted to within country borders, or may be significantly bounded by distance. Interestingly, the non-spatial econometric papers we discussed in the previous section arrived at similar conclusions. An example of a spatial econometric study of spillovers is Lall and Yilmaz (2001), who estimate a conditional convergence model with human capital spillovers using data for the United States. The choice of model is based both on theoretical considerations, and on the results of an exploratory spatial data analysis that suggests that human capital levels are spatially correlated. The results indicate that human capital spillovers are important in explaining income differences and convergence among the states of the US. Another example is Easterly and Levine (1998), who include a spillover effect in the form of a spatially lagged dependent variable (the average growth rate of the neighbours is included directly as an explanatory variable). While

2 There are unidirectional tests for spatial heterogeneity and spatial dependence. The alternative hypothesis deals with either spatial heterogeneity or spatial dependence, and in order to distinguish between the two we would need a nested model.
This study does not make explicit use of spatial econometrics, the method of estimation is consistent with it.\(^3\) This paper is also interesting because it discusses the policy implications of the spatial multiplier effect. If one country acts to improve a variable such as human capital all countries benefit from the spillovers. However, if all countries in the region were to simultaneously raise human capital, then the effect would be greater still, and significantly larger than what a single country can achieve on its own. This kind of policy discussion is absent from most of the spatial econometrics literature, which tends to interpret the results in an abstract manner.

An important contribution of spatial econometrics to the empirics of growth is on the topic of spatial convergence clubs. This is the notion that groups of countries share the same steady state characteristics, and are therefore converging to the same long-run growth path. While the broader empirical growth literature has focused on the issue of club convergence among countries with similar initial values for some variables of interest, e.g., per-capita income or human capital (Durlauf and Johnson, 1995), the spatial econometrics literature has focused on the effects of location in determining club convergence.

We have classified this topic under the heading of relative location, since the notion of clubs implies that several countries must share the same spatial characteristics, but it is also related to absolute location, since these characteristics could be geographical (e.g., climate, latitude). There are several reasons to expect convergence clubs to have a spatial dimension. First, technology diffusion encourages convergence, and is also a function of relative location (physical distance, travel time). Second, the initial level of technology may have a spatial dimension. For example, we have seen that institutions and technology can be a function of climate and geography. Third, we have seen that other types of spillovers tend to have a localised effect, contributing to convergence among countries or regions located close to each other.

The concept of club convergence is related to that of spatial heterogeneity, and several studies use spatial regimes to model it. One example is Dall’erba and Le Gallo (2004) who study club convergence among regions in the core and periphery of the European Union. They find convergence among the regions of the periphery but not among the regions of the core. Ramajo et al. (2003) consider the possibility that regions in the EU cohesion fund countries

\(^3\) Including a spatially lagged dependent variable causes a simultaneity problem, which in spatial econometrics is typically solved by estimating a reduced form of the model using Maximum Likelihood. The authors solve it by instrumenting the spatial lag with the explanatory variables of the neighbours. See also Anselin (1988) and Kelejian and Robinson (1993) for a discussion on the use of Instrumental Variables to estimate spatial lag models.
(Ireland, Greece, Portugal and Spain) are converging separately from the rest of the European Union. The results show that convergence is greater among the cohesion regions. Other methods used in spatial econometrics to study club convergence include stochastic kernels (Carrington, 2003b), Markov chain modelling (Rey, 2001), and Bayesian econometrics (Ertur et al., 2003).

We now come to the 62% of spatial econometric studies of growth that focus mainly on methodological issues. In general, these studies follow a standard procedure whereby the data is first tested for spatial autocorrelation, and the results are presented visually on a map or a Moran scatterplot. Local statistics of spatial autocorrelation can also be computed; they indicate the degree of spatial autocorrelation centered around a specific observation.

A simple model is then estimated using Ordinary Least Squares, and spatial diagnostics are computed. These indicate whether there is spatial autocorrelation in the residuals. Lagrange Multiplier tests also indicate whether a spatial lag or a spatial error model of spatial dependence is the most appropriate (following the decision rule suggested by Anselin and Florax, 1995). In a spatial lag model the growth rate of per-capita income in one country depends on the growth rate of per-capita income in its neighbours. We discuss the implications of this model in more detail in Section 3. In a spatial error model the spatial dependence is restricted to the error term. While there is sometimes a discussion on the possible causes of the observed type of spatial dependence (e.g., common shocks, climate, institutions), the empirical model is chosen on the basis of diagnostics tests carried out on the data, and not derived from a theory.

A typical example of a standard spatial econometrics study (and one of the first to apply spatial econometrics to growth) is Rey and Montouri (1999). In order to detect spatial patterns in income and growth rates across the states of the US, the authors first calculate global spatial autocorrelation statistics, and find that incomes are correlated with those of neighbouring states, and that the degree of spatial autocorrelation varies over time (it has decreased between 1930–1995). Local spatial autocorrelation statistics reveal the presence of a cluster of high income states in the Northeast Mid-Atlantic, and a cluster of low income states in the Southeast (these results are presented visually using Moran scatterplots and maps). The authors then estimate a simple OLS regression of growth of per-capita income on initial per-capita income, and find that the residuals are spatially autocorrelated, indicating model misspecification. The tests also indicate that there is no evidence of heteroscedasticity,

4 See Rey and Janikas (2003) for an in-depth review of these techniques and their use in spatial econometrics.
and that a spatial error model is preferable to a spatial lag model. The absence of heteroscedasticity leads the authors to discard spatial heterogeneity, and concentrate on spatial dependence. The estimation of a spatial error model results in lower estimates of the speed of convergence (relative to the OLS estimates, see also our discussion on interpretation in Section 3.2.1).

Recently several studies have looked at ways of extending the analysis to a panel data setting, although there are important methodological issues involved. For example, Rey (2001) and Le Gallo (2004) develop exploratory spatial data techniques to study the evolution of regional income disparities over time. Badinger et al. (2004) estimate a dynamic panel data model, using a two step procedure. The variables are first filtered to remove spatial autocorrelation, and a standard GMM estimator is then applied to the filtered data. We would argue that while this procedure allows the estimation of more complex models, it also removes some of the variation that could potentially explain differences in growth rates. Arbia and Piras (2004) estimate a fixed effects panel data model that allows for spatial autocorrelation in the error term using data for the European regions, and find significant evidence of spatial clustering. The development of spatial econometric models for panel data is an area of great interest, that will undoubtedly develop further in the coming years.

3. Unresolved issues

Having discussed the advantages of applying spatial econometrics to the study of growth, we now turn to some of the weak points. A few general remarks have already been made, they concern the focus of the literature on methodological issues, and its tendency to ignore absolute location (in particular, geographical factors). We discuss a number of further issues related to the specification of spatial process models, the choice of spatial weights, and the interpretation of the coefficients. We also mention some common misconceptions that are prevalent in the literature, and suggest areas where improvements can be made.

5 See Elhorst (2003) and Baltagi et al. (2003) for a discussion on the difficulties involved in estimating panel data models using spatial econometrics.

6 There is an additional methodological issue to be considered. The two-step procedure used in this paper implies that the coefficient of the spatial filtering and the other coefficients in the model are not determined jointly but sequentially. The properties of such a sequential estimator are not known.
3.1 Operationalisation

3.1.1 Lattice and geostatistical approaches

There are two alternative approaches for spatial statistical analysis. The lattice or spatial process approach assumes that the unit of analysis is a discrete entity or object. Objects are linked by a spatial pattern, expressed in terms of a spatial weights matrix. Inference is based on “expanding domain” asymptotics, that is, adding more and more objects to the sample. Prediction is by extrapolation, that is, for a different set of spatial units, or for another time period (Anselin, 2002). The variance-covariance matrix is indirectly determined by the model and by the exogenous spatial weights matrix (discussed in the next section). The spatial error and spatial lag models are examples of the spatial process approach, as are most of the models used in the spatial econometrics literature within economics. The reason is that most economic models are based on discrete objects: individuals, firms, sectors, countries. A problem with this approach is that it is difficult to deal with missing observations, since every object in the model must be connected to every other via the spatial weights matrix.

In contrast, the geostatistical or direct representation approach takes as the unit of analysis data points on a continuous field or surface. Examples of a field in this sense are land prices, or average yearly rainfall. Geostatistical models do not use spatial weights matrices to summarise the spatial relationship. The variance-covariance matrix must be modelled directly, typically as a function of the distance between observations. There is no equivalent of the spatial lag model with this approach; geostatistical models apply only to the error term. One advantage of this method is that it allows “interpolation”, that is, making predictions for missing values (known as kriging).

Some studies have used the average value of proximate observations as an explanatory variable, with the degree of proximity modelled as a distance decay function (e.g., Keller, 2002). The resulting model is non-linear, but can be estimated if the data is available as a panel, or at the sectoral level.\footnote{It should be noted that growth studies that include a physical distance function on the right-hand-side of the regression are not generally considered to be examples of the geostatistical approach unless they also model the spatial autocorrelation in the error term directly by making the variance-covariance matrix a function of distance.}

3.1.2 Choice of the spatial weights matrix

The specification of the spatial weights matrix is a major point of contention in the literature, because the choice of spatial weights can have a substantive impact on the results. The
specification of a spatial weights matrix is necessary because the variance-covariance matrix (in the presence of spatial autocorrelation) contains too many parameters to be estimated using only cross-sectional data. Two approaches have been used to deal with this identification problem. In the geostatistical (direct representation) approach, the terms in the variance-covariance matrix are expressed as a direct function of the distance between the pairs of observations. In the lattice (spatial process models) approach, the variance-covariance matrix follows indirectly from the specification of the spatial process, and the choice of spatial weights matrix. One important caveat is that for identification reasons the spatial weights matrix must be exogenous to the model, i.e., it must not contain any of the exogenous or endogenous variables used in the growth regression, otherwise the empirical model becomes highly non-linear. For this reason, most spatial weights matrices are based on distance or contiguity, since these are geography-based measures that are unambiguously exogenous (Anselin and Bera, 1998).

Another important consideration is that there must be a limit to the range of spatial dependence allowed by the spatial weights matrix, this is due to the asymptotics required to obtain consistent estimates for the parameters of the model. Intuitively, there must be a limit on the extent to which new data points change the connectedness structure for existing data points (Anselin, 2001, 2002). In practice this is not a problem for simple contiguity and distance-band contiguity matrices, since the number of neighbours does not grow with each additional observation. It may be a problem for distance-based matrices, but can be prevented by using a critical distance cut-off, above which all interactions are assumed to be negligible. Florax and Rey (1995) show that both overspecification and underspecification of the spatial weights matrix can affect the performance of spatial dependence tests and estimators of spatial process models, although the effects of overspecification are more pronounced.

In the empirical growth studies that we surveyed, a simple contiguity matrix is the most common choice (38%), followed by distance-based weights (29%), a combination of contiguity and distance (14%), other non-binary types (11%), and other binary types such as the k nearest neighbours (8%).

Among the other non-binary types of weights there are several cases where contiguity or distance weights were modified to take into account the economic weight of the neighbours, e.g., Panama’s growth rate benefits more from its proximity to the US than from

8 For a sample size of n observations (countries, regions), there are n potentially different variance terms, and n(n−1)/2 covariance terms (the matrix is symmetric).
its proximity to Peru, even if both countries fall within the same distance band. Examples are Cannon et al. (2000), Carrington (2003), Fingleton (2001) and Vayá et al. (2004).

The choice of spatial weights should ideally be based on theoretical considerations. For example, it is reasonable to expect that spillovers due to war or instability affect primarily the neighbouring countries, so that a contiguity matrix (perhaps weighted by length of the common border) is appropriate. On the other hand, spillovers due to technology diffusion may have a wider reach, so a distance-based matrix is more appropriate. One might also consider travel time, trade flows and cultural distance, although these measures require careful consideration to ensure exogeneity.

A related issue concerns the choice of critical values for distance-based matrices. Whenever possible the choice should be based on theoretical considerations, such as the expected extent of the spatial spillovers, for instance. If there is a great deal of heterogeneity in the size and spatial distribution of the countries or regions under consideration, it may be difficult to choose a critical distance based on empirical considerations such as the number of unconnected observations, the number of neighbours per observation, or the value of Moran’s I statistic or goodness of fit of the regression. The critical distance is too often chosen by mechanical considerations such as the value of Moran’s I.

Note also that conceptually it is possible to think of spatial weights matrices that contain parameters to be estimated within the model. However, the resulting model will be non-linear, and the parameters are not necessarily identified.

3.2 Interpretation

3.2.1 Interpretation of the spatial lag coefficients
An important issue of interpretation arises when comparing the coefficients of the spatial lag model with the corresponding coefficients of an OLS regression. Consider the following simple model:

$$ y = \alpha + \beta x + \varepsilon, $$

where ε is a random error term. The marginal effect of x on y is:

$$ \frac{\partial y}{\partial x} = \beta. $$
The interpretation of β in the spatial lag model is different. To see this consider the following spatial lag model:

$$y = \rho Wy + \alpha + \beta x + \epsilon,$$

where x is an explanatory variable, and ρ is a parameter indicating the extent of the spatial interaction between observations with non-zero entries in W, the spatial weights matrix. The model can be rewritten in reduced form:

$$y = (I - \rho W)^{-1} [\alpha + \beta x + \epsilon].$$

The marginal effect of an increase in x on y is:

$$\frac{\partial y}{\partial x} = \frac{\partial}{\partial \lambda} (I - \rho W)^{-1} \beta = [I - \rho W]^{-1} \beta,$$

where $(1 - \rho W)^{-1}$ is the spatial multiplier (see Anselin, 2002). This is equivalent to:

$$\frac{\partial y}{\partial x} = (1 - \rho W)^{-1} \beta.$$

The correct interpretation of the spatial lag model and the conceptual distinction between the various effects caused by the spatial multiplier can be seen by decomposing the spatial multiplier using the formula for a sum to infinity (since $|\rho| < 1$):

$$\frac{\partial y}{\partial x} = (I + \rho W + \rho^2 W^2 + \rho^3 W^3 + ...) \beta \approx 1\beta + \rho W \beta + \rho^2 W^2 \beta + \rho^3 W^3 \beta...$$

The first term on the right hand side is a matrix with the direct effects on the diagonal (the effects on y_i of a marginal change in x_i, where i refers to a spatial unit), and zeros in off-diagonal positions. The second term is a matrix with zeros on the diagonal, and indirect effects in the off-diagonal positions for the regions j, defined as the neighbours of i in the
spatial weights matrix. These indirect effects are spillovers of the direct effects, and both effects are local in the sense that only the regions in which there has been an exogenous shock and their neighbours are affected. The third and higher order terms refer to spatial spillovers induced by the direct and indirect changes in the first and second terms, and can therefore be referred to as *induced effects*. Note that these induced effects comprise impacts on the higher order neighbours (the neighbours of the neighbours of \(i \)) as well as feed-back effects on regions which are already experiencing direct and indirect effects. The latter has two important implications. First, this implies the spatial lag model links all the regions in the system, so that the spatial effects in the model are global in nature. Second, the induced effects cause the diagonal elements of the matrix \((1 - \rho W)^{-1} \beta\) to be unequal to \(\beta \).

The total effect of an increase in \(x \) is the sum of the direct, indirect and induced effects. The direct effects are not region-specific and are represented by the estimated coefficient \(\beta \). The indirect effects depend on the spatial ordering implied by the weights matrix and are typically region-specific. The induced effects are region specific as well. It is therefore incorrect to compare the coefficient \(\beta \) of the spatial lag model with the coefficient \(\beta \) in an OLS model, since the first represents only the direct marginal effect of an increase in \(x \), while the second represents the total marginal effect.

The column sum of the elements of the spatial multiplier matrix for region \(i \) represents the total effect in all regions \(j \) of an exogenous shock in region \(i \), while the row sum for region \(i \) represents the total effect on region \(i \) of a simultaneous shock in all regions \(j \). Typically the former are region-specific, whereas the latter are not. Hence the magnitude of the impact of the shock depends on where it occurs.

This heterogeneity in the total effects can be exploited when constructing the model. For example, we may be interested in the impact that improving property rights in one country has on other countries in the region. The spatial econometrics literature has tended to focus on a rather technical interpretation of the results, while it could be providing interesting policy implications.\(^9\)

3.2.2 Distinction between global and local effects

The spatial econometrics literature has tended to focus on the structural form of the spatial lag and spatial error models, in which the spatial lag terms \((Wy, Wx, W\varepsilon)\) appear directly on the

\(^9\) See also Easterly and Levine (1998) for a non-technical discussion on the spatial multiplier, from a non-spatial econometrics point of view.
right hand side of the model. As we have seen in the previous section, failure to consider the model in its reduced form can lead to problems in interpreting the estimated coefficients. As with the spatial lag model, the spatial effects captured by the spatial error model are *global* in the sense that a shock at any location will be transmitted to all other locations following the spatial multiplier process (Anselin, 2002).

The over-reliance of the literature on the spatial error and spatial lag models has tended to obscure other models available to capture spatial effects. One possibility is the spatial cross-regressive model, which consists of including the spatial lag of one or more explanatory variables on the right hand side. An example is Lall and Yilmaz (2001), who include the spatial lag of human capital to measure the effects of human capital spillovers. This approach has the advantage of confining the spatial effects to the neighbours of each observation (as defined by the spatial weights matrix), and of maintaining a strong link to theory. It often makes no sense (from a theoretical point of view) to consider a spatial lag model, which implies that growth in country \(i \) is a function of all the explanatory variables in all other countries \(j \) in the system. The cross-regressive model is an example of a model which is *local* in scope.

Another possibility is the spatial moving average model, where the error term for each region \(i \) is a function of a random error term for \(i \), and the average of the error term for the neighbours of \(i \):

\[
y = \alpha + \beta x + \epsilon \\
\epsilon = \gamma W \mu + \mu,
\]

where \(\gamma \) is the spatial moving average parameter. This model is also *local* in scope (Anselin, 2003).

We conclude this section by stressing the need for spatial econometrics to move away from a purely mechanical approach to modeling, and towards a more flexible approach that will apply a given model with local or global spillovers selectively depending on the theoretical question being considered.

3.3 Aggregation

3.3.1 Ecological fallacy and modifiable areal unit problem

Ecological fallacy is a situation that occurs when inference about an individual is made using
aggregate data for a group. In general we would expect this problem to apply when individuals are clustered in groups, and the model for each individual depends on both individual and group characteristics. For example, it may not apply to macroeconomic models where all the variables that matter are at the aggregate level, but it might apply when studying sectors within countries, when the productivity of each sector depends on both sectoral and aggregate characteristics. The problem manifests itself in two ways: it becomes impossible to disentangle individual from contextual effects, and when groups contain different numbers of members the error term becomes heteroscedastic. This last issue is a common problem in spatial econometrics, since the irregular spatial distribution of countries and regions implies that each observation has a different number of neighbours. One solution is to restrict the number of neighbours to a certain number \(k \), although the problem then becomes how to choose \(k \) so that the model continues to make theoretical sense, since a high number would result in isolated countries having a lot of interaction with other countries, while a low number would force well-connected countries to discard many of their neighbours.

Another solution regarding the problem of disentangling individual and contextual effects would be to use a hierarchical or multilevel model. This is an interesting possibility that has been explored using spatial econometrics, although not in connection with growth.

The modifiable areal unit problem occurs when there are several ways of drawing up boundaries for the objects under consideration. For example, regional data can often be aggregated in several ways (e.g., according to political, administrative, cultural, or labour market boundaries). The problem is that the variation in a variable of interest can be lost when changing the level of aggregation, or the boundaries of the data set. The level of aggregation should be chosen according to the theoretical model under consideration. For instance, since macroeconomic policy is made at the national level, studies of policy and growth should focus on cross-country data. Technology diffusion, on the other hand, may occur primarily within specific sectors of the economy (Keller, 2002), while EU agricultural funds are provided to regions (Ramajo et al., 2003). These considerations should be taken into account when constructing the model and defining the scope for the analysis.

3.3.2 Choice of scale and scope of the analysis

A related problem is the disparity in the size of spatial units that comprise the dataset used in the analysis. For example, in cross-country studies a small country like Jamaica has the same weight as China, one of the largest. Similarly the states of the US are equivalent in size and economic output to some middle-sized countries, and the European NUTS classification
system sometimes includes regions of different sizes together in the same category. The problem is the disaggregated nature of the data collection system, which is often done at the national level using political and administrative boundaries that differ in size across countries. Aggregating several smaller units into larger ones often makes matters worse, since it averages out the variation in the variables of interest (the modifiable areal unit problem discussed above). One solution may be to redefine the boundaries of the spatial units from scratch, using highly disaggregated data and Geographical Information Systems (see, for example, Cheshire et al., 1995, Masters and McMillan, 2001 and Kosfeld and Lauridsen, 2004).

Another aggregation problem occurs when the spillovers of interest are at a lower level of aggregation than is typically considered, for instance, technology spillovers are likely to occur across countries but within the same sector. This issue has not been explored in spatial econometrics, and it would be interesting to see an application using for example multilevel models.

4. Conclusion
We have reviewed the spatial econometrics literature on growth, and related it to the treatment of space in the broader empirical literature. In order to structure the discussion, we have made a distinction between models of absolute and relative location, where the former refers to the impact of being located at a particular point in space, while the latter refers to the effect of being located closer or further away from other specific countries or regions. This distinction is also strongly related to a classification made in spatial econometrics between spatial heterogeneity and spatial dependence. While spatial heterogeneity is generally a function of absolute location, spatial dependence is always a function of relative location.

We have argued that while the spatial econometrics literature has concentrated on models of relative location (or spatial dependence), the non-spatial econometrics literature has focused on models of absolute location (or spatial heterogeneity). These two approaches are complementary, and the spatial econometrics literature would benefit from considering more carefully the underlying reasons for spatial dependence, while the non-spatial econometrics literature would benefit from testing for spatial dependence, since ignoring it could result in biased coefficients. Moreover, we believe that the spatial econometrics literature has unduly concentrated on methodological issues, and should link its models and results more closely to theory.
We have also considered several unresolved issues related to the spatial econometric estimation of economic growth models. Regarding the specification of spatial econometric models, we have discussed the difficulties inherent in spatial process models, and the alternative approaches that are available. Using direct representation models would dispense with some of the problems related to the construction of the spatial weights matrix. We have also discussed the tendency in spatial econometrics to focus almost entirely on the spatial lag and spatial error models, while avoiding other models that make the link to theory somewhat more explicit. The literature would benefit from exploring these models, since they provide new tools for modelling spatial effects in the context of growth. Finally, we have discussed several problems resulting from aggregation of the data used in most empirical growth analyses, and suggested possible solutions and directions for further research.

References

Bivand, R. and R. Brunstad (2002): Regional Growth in Western Europe: An Empirical Exploration of Interactions with Agriculture and Agricultural Policy, Norwegian School of Economics, Department of Economics Discussion Paper, no. 01/02, Bergen.

A. TABLES AND FIGURES

TABLE 1: CLASSIFICATION OF STUDIES

<table>
<thead>
<tr>
<th>Channel</th>
<th>Effect on growth</th>
<th>Measures</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institutions</td>
<td>Long-run view. Institutions are a result of initial conditions (climate, location, natural resource abundance).</td>
<td>Climate zone, ecological diversity, latitude, landlocked dummy, natural obstacles, land mass.</td>
<td>Diamond (1997), Hall and Jones (1999), Acemoglu et al. (2001), Rodrik et al. (2002), Easterly and Levine (2003).</td>
</tr>
<tr>
<td>Trade</td>
<td>Natural openness encourages trade, lowers corruption and allows access to foreign technology.</td>
<td>Landlocked dummy, distance to the coast, navigable rivers, natural obstacles, land mass.</td>
<td>Sachs and Warner (1997), Frankel and Romer (1999).</td>
</tr>
</tbody>
</table>
TABLE 1: CONTINUED

Relative location

<table>
<thead>
<tr>
<th>Channel</th>
<th>Effect on growth</th>
<th>Measures</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial convergence clubs</td>
<td>Countries and regions are converging within groups.</td>
<td>Contiguity, geographical distance, cultural distance.</td>
<td>Baumont et al. (2003), Carrington (2003), Ramajo et al. (2003).</td>
</tr>
</tbody>
</table>
Table 2: Spatial Econometric Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Channels</th>
<th>Theoretical background</th>
<th>Geographical scope</th>
<th>Spatial weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armstrong (1995)</td>
<td>5</td>
<td>CO</td>
<td>B</td>
<td>W1</td>
</tr>
<tr>
<td>Ades and Chua (1997)</td>
<td>3</td>
<td>S</td>
<td>A</td>
<td>W1</td>
</tr>
<tr>
<td>Moreno and Trehan (1997)</td>
<td>5</td>
<td>S</td>
<td>A</td>
<td>W3</td>
</tr>
<tr>
<td>Easterly and Levine (1998)</td>
<td>3</td>
<td>S</td>
<td>A</td>
<td>W1</td>
</tr>
<tr>
<td>Fingleton et al. (1998)</td>
<td>2</td>
<td>O</td>
<td>B</td>
<td>W3</td>
</tr>
<tr>
<td>Vayá et al. (1998)</td>
<td>5</td>
<td>C-P</td>
<td>B</td>
<td>W1</td>
</tr>
<tr>
<td>Fingleton (1999)</td>
<td>5</td>
<td>CO</td>
<td>B</td>
<td>W3</td>
</tr>
<tr>
<td>López-Bazo et al. (1999)</td>
<td>5</td>
<td>NN</td>
<td>B</td>
<td>W1</td>
</tr>
<tr>
<td>Rey and Montouri (1999)</td>
<td>5</td>
<td>U</td>
<td>C</td>
<td>W1</td>
</tr>
<tr>
<td>Aroca and Bosch (2000)</td>
<td>5</td>
<td>U</td>
<td>D</td>
<td>W1</td>
</tr>
<tr>
<td>Attfield et al. (2000)</td>
<td>5</td>
<td>U</td>
<td>B</td>
<td>W4</td>
</tr>
<tr>
<td>Cannon et al. (2000)</td>
<td>1</td>
<td>O</td>
<td>B</td>
<td>W5</td>
</tr>
<tr>
<td>Fingleton (2000)*</td>
<td>2</td>
<td>O</td>
<td>A</td>
<td>W3</td>
</tr>
<tr>
<td>Vayá et al. (2000)*</td>
<td>2</td>
<td>S</td>
<td>B</td>
<td>W5</td>
</tr>
<tr>
<td>Ying (2000)</td>
<td>5</td>
<td>C-P</td>
<td>E</td>
<td>W3</td>
</tr>
<tr>
<td>Bode (2001)</td>
<td>2</td>
<td>S</td>
<td>B</td>
<td>W4</td>
</tr>
<tr>
<td>Fingleton (2001)*</td>
<td>1</td>
<td>O</td>
<td>B</td>
<td>W5</td>
</tr>
<tr>
<td>Lall and Yilmaz (2001)</td>
<td>3</td>
<td>CO</td>
<td>C</td>
<td>W1</td>
</tr>
<tr>
<td>Mauroseth (2001)</td>
<td>2</td>
<td>CO</td>
<td>B</td>
<td>W3</td>
</tr>
<tr>
<td>Niebuhr (2001)</td>
<td>5</td>
<td>U</td>
<td>B</td>
<td>W3</td>
</tr>
<tr>
<td>Rey (2001)</td>
<td>5</td>
<td>NN</td>
<td>C</td>
<td>W1</td>
</tr>
<tr>
<td>Arbia et al. (2002)</td>
<td>5</td>
<td>U</td>
<td>B</td>
<td>W1</td>
</tr>
<tr>
<td>Bivand and Brunstad (2002)</td>
<td>1</td>
<td>C-P</td>
<td>B</td>
<td>W5</td>
</tr>
<tr>
<td>Bode (2002)</td>
<td>5</td>
<td>CO</td>
<td>B</td>
<td>W4</td>
</tr>
<tr>
<td>Kosfeld et al. (2002)</td>
<td>5</td>
<td>CO</td>
<td>B</td>
<td>W1</td>
</tr>
<tr>
<td>Paci and Pigiariu (2002)</td>
<td>5</td>
<td>O</td>
<td>B</td>
<td>W1</td>
</tr>
<tr>
<td>Ramírez et al. (2002)*</td>
<td>5</td>
<td>S</td>
<td>A</td>
<td>W1</td>
</tr>
<tr>
<td>Sandberg (2002)</td>
<td>5</td>
<td>CO</td>
<td>E</td>
<td>W4</td>
</tr>
<tr>
<td>Arbia et al. (2003)</td>
<td>4</td>
<td>O</td>
<td>B</td>
<td>W1</td>
</tr>
<tr>
<td>Arbia and Paelinck (2003)*</td>
<td>5</td>
<td>CC</td>
<td>B</td>
<td>W1</td>
</tr>
<tr>
<td>Badinger and Tondl (2003)</td>
<td>5</td>
<td>S</td>
<td>B</td>
<td>W3</td>
</tr>
<tr>
<td>Baumont et al. (2003)</td>
<td>4</td>
<td>CC</td>
<td>B</td>
<td>W2</td>
</tr>
<tr>
<td>Bickenbach and Bode (2003)</td>
<td>5</td>
<td>NN</td>
<td>C</td>
<td>W1</td>
</tr>
<tr>
<td>Bosch Mossi et al. (2003)</td>
<td>5</td>
<td>NN</td>
<td>D</td>
<td>W1</td>
</tr>
<tr>
<td>Carrington (2003a)*</td>
<td>4</td>
<td>CC</td>
<td>B</td>
<td>W5</td>
</tr>
<tr>
<td>Ertur and Le Gallo (2003)</td>
<td>5</td>
<td>NN</td>
<td>B</td>
<td>W4</td>
</tr>
<tr>
<td>Ertur et al. (2003)</td>
<td>1</td>
<td>CO</td>
<td>B</td>
<td>W2</td>
</tr>
<tr>
<td>Gustavsson et al. (2003)</td>
<td>5</td>
<td>CO</td>
<td>B</td>
<td>W1</td>
</tr>
<tr>
<td>Lall and Shalizi (2003)</td>
<td>5</td>
<td>CO</td>
<td>D</td>
<td>W1</td>
</tr>
<tr>
<td>Le Gallo and Dall’erba (2003)</td>
<td>5</td>
<td>U</td>
<td>B</td>
<td>W3</td>
</tr>
<tr>
<td>Le Gallo and Ertur (2003)</td>
<td>5</td>
<td>NN</td>
<td>B</td>
<td>W2</td>
</tr>
<tr>
<td>Le Gallo et al. (2003)</td>
<td>5</td>
<td>U</td>
<td>B</td>
<td>W2</td>
</tr>
<tr>
<td>Lundberg (2003a)</td>
<td>5</td>
<td>NN</td>
<td>B</td>
<td>W5</td>
</tr>
<tr>
<td>Lundberg (2003b)</td>
<td>3</td>
<td>S</td>
<td>B</td>
<td>W1</td>
</tr>
<tr>
<td>Ramajo et al. (2003)</td>
<td>4</td>
<td>CC</td>
<td>B</td>
<td>W3</td>
</tr>
<tr>
<td>Tondl and Vuksic (2003)</td>
<td>5</td>
<td>S</td>
<td>B</td>
<td>W1</td>
</tr>
<tr>
<td>Ying (2003)</td>
<td>5</td>
<td>C-P</td>
<td>E</td>
<td>W4</td>
</tr>
<tr>
<td>Arbia and Piras (2004)</td>
<td>5</td>
<td>U</td>
<td>B</td>
<td>W3</td>
</tr>
<tr>
<td>Badinger et al. (2004)</td>
<td>5</td>
<td>CO</td>
<td>B</td>
<td>W3</td>
</tr>
<tr>
<td>Authors and Year</td>
<td>Channels</td>
<td>Theoretical background</td>
<td>Geographical scope</td>
<td>Spatial weights</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>------------------------</td>
<td>--------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Bode (2004)</td>
<td>2</td>
<td>S</td>
<td>B</td>
<td>W4</td>
</tr>
<tr>
<td>Dall’erba and Le Gallo (2004)</td>
<td>3</td>
<td>C-P</td>
<td>B</td>
<td>W3</td>
</tr>
<tr>
<td>Ertur et al. (2004)</td>
<td>4</td>
<td>CC</td>
<td>B</td>
<td>W3</td>
</tr>
<tr>
<td>Fisher and Stirböck (2004)</td>
<td>5</td>
<td>CC</td>
<td>B</td>
<td>W1</td>
</tr>
<tr>
<td>Florax and Nijkamp (2004)</td>
<td>5</td>
<td>CO</td>
<td>A</td>
<td>W3</td>
</tr>
<tr>
<td>Kosfeld and Lauridsen (2004)</td>
<td>5</td>
<td>CO</td>
<td>B</td>
<td>W1</td>
</tr>
<tr>
<td>Le Gallo (2004)</td>
<td>5</td>
<td>NN</td>
<td>B</td>
<td>W3</td>
</tr>
<tr>
<td>López-Bazo et al. (2004)*</td>
<td>2</td>
<td>S</td>
<td>B</td>
<td>W4</td>
</tr>
<tr>
<td>Murdoch and Sandler (2004)</td>
<td>3</td>
<td>S</td>
<td>A</td>
<td>W5</td>
</tr>
<tr>
<td>Rey (2004)</td>
<td>5</td>
<td>NN</td>
<td>C</td>
<td>W1</td>
</tr>
<tr>
<td>Roberts (2004)</td>
<td>1</td>
<td>CO</td>
<td>B</td>
<td>W4</td>
</tr>
<tr>
<td>Verner and Tebaldi (2004)</td>
<td>5</td>
<td>U</td>
<td>D</td>
<td>W1</td>
</tr>
</tbody>
</table>

* Empirical model is derived from theory.

Channels: 1 = Spatial heterogeneity, 2 = Technology diffusion, 3 = Spillovers, 4 = Spatial convergence clubs, 5 = Standard analysis.
Theoretical background: N = None, U = Unconditional convergence, CO = Conditional convergence, S = Spillovers, C-P = Core-periphery models, CC = Convergence clubs, O = Other.
Spatial weights: W1 = Contiguity, W2 = Other binary, W3 = Distance, W4 = A combination, W5 = Other.
FIGURE 1: CHRONOLOGICAL DISTRIBUTION OF STUDIES