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Abstract

A new empirical reduced-form model for credit rating transitions is introduced. It is a
parametric intensity-based duration model with multiple states and driven by exogenous
covariates and latent dynamic factors. The model has a generalized semi-Markov structure
designed to accommodate many of the stylized facts of credit rating migrations. Parameter
estimation is based on Monte Carlo maximum likelihood methods for which the details are
discussed in this paper. A simulation experiment is carried out to show the effectiveness
of the estimation procedure. An empirical application is presented for transitions in a
7 grade rating system. The model includes a common dynamic component that can be
interpreted as the credit cycle. Asymmetric effects of this cycle across rating grades and
additional semi-Markov dynamics are found to be statistically significant. Finally, we
investigate whether the common factor model suffices to capture systematic risk in rating
transition data by introducing multiple factors in the model.
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1 Introduction

Ratings play a prominent role in the credit industry. Their key purpose is to provide a simple

qualitative classification of the solidity, solvency and prospects of a debt issuer. The impor-

tance of credit ratings has increased significantly with the introduction of the new regulatory

framework known as Basel II (BCBS, 2004). In this framework, ratings can be used directly to

determine the size of a bank’s capital buffer. As capital constitutes a relatively costly source

of funding for a bank, ratings and rating changes directly affect the banks’ willingness to grant

credit to individual firms. Moreover, if ratings and thus capital requirements co-vary with

the business cycle, economic fluctuations may be exacerbated by capital becoming increasingly

scarce in adverse economic conditions, precisely when it is needed most. It is clear that a good

understanding of the dynamic behavior of ratings and rating changes is therefore important

from both a regulatory and financial industry perspective.

In this paper we introduce a new model for rating transitions. The main novelty of our model

is that rating transitions are modeled continuously in event time rather than calendar time and

are subject to common dynamic latent factors. Although the model is relatively complex, we

show that it can be estimated efficiently using modern importance sampling techniques for

non-Gaussian models in state space form.

The literature on modeling credit events such as defaults and rating changes has grown

rapidly over the past 10 years. Wilson (1997a,b) modeled default rates using logistic regressions

with macroeconomic explanatory variables. Nickell, Perraudin and Varotto (2000) and Bangia

et al. (2002) show that upgrade, downgrade, and default probabilities differ over different

economic regimes, whether characterized by NBER business cycle classifications or by GDP

growth rates. Default and downgrade intensities are higher during recessions. In the same

spirit, Kavvathas (2001), Carling, Jacobson, Lindé and Roszbach (2002), Couderc and Renault

(2004), and Duffie, Saita, and Wang (2006a) use a duration approach conditional on observed

macroeconomic and firm characteristics and show that average times-to-default decrease if

economic activity decreases. Koopman and Lucas (2005) and Koopman, Lucas and Klaassen

(2005) have adopted a direct time series approach and identified the time-varying cyclical

nature of default rates over a long historical period. Also Fledelius, Lando and Nielsen (2004)

corroborate the existence of time-fluctuations for credit rating migration rates.

Whereas some of the contributions in the literature introduce observed macro-variables to

capture co-variation in default intensities between firms and industries, an alternative approach

is to estimate the common components of default risk directly from the data. An advantage of

such an approach is that one is less prone to misspecification caused by the use of an incorrect
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macroeconomic proxy for the credit cycle. Couderc and Renault (2004) tested a large number

of macroeconomic variables for their predictive ability and found five significant factors. Still,

a large part of the fluctuations in systematic default probabilities could not be accounted for.

Second, by estimating the default dynamics directly from the data, one obtains an integrated

framework for capital determination and risk management, see Koopman, Lucas and Klaassen

(2005). By contrast, if observed macroeconomic variables are used, one needs an auxiliary

forecasting model for such variables, see for example Duffie et al. (2006a,b).

Suggestions for dynamic models with latent components are Gagliardini and Gourieroux

(2004), McNeil and Wendin (2006), and Koopman, Lucas and Daniels (2005). These models,

however, are all set in a calendar time framework: rating transitions are observed empirically

over discrete time slots, e.g., years or quarters. The observed frequencies are subsequently

modeled by non-Gaussian time series processes. By contrast, in this paper we use a duration

model with unobserved components. The duration (continuous time) approach is the more

natural approach in the current context, where durations to transitions are endogenous rather

than exogenous. In this way, we are able to use all the information in the data-set Lando and

Skødeberg (2002) provide a further detailed discussion of the advantages of the continuous-time

approach. Our model can be regarded as a multi-state extension of the Latent Factor Intensity

(LFI) model of Bauwens and Hautsch (2003). The LFI model is a point process model for

stock transactions in tick-time. Durations in the LFI model are the time to the next trade. By

contrast, in our model it is not only the time to the next rating event that is unknown, but also

the type of event that is going to occur, e.g., upgrade, downgrade, or default. In that sense, our

model is set in the so-called competing risks framework. Given a firm’s initial rating, there are

multiple states for the firm’s next rating. Each of these states has its own duration process and

we observe only the minimum of those. This leads to a more complicated likelihood structure

than considered by Bauwens and Hautsch (2003).

The likelihood function of our model contains a high dimensional integral involving the

latent common risk factor. In this way, our parameter driven model differs from well-known

observation driven counterparts like the Autoregressive Conditional Duration model (ACD) of

Engle and Russell (1998), or the Autoregressive Conditional Intensity model (ACI) of Russell

(1999). We evaluate the likelihood using a multivariate extension of the Monte Carlo techniques

that are developed by Durbin and Koopman (1997, 2001). We demonstrate the effectiveness of

the method by means of a simulation experiment.

The model is estimated for the CreditPro7.0 data set from Standard & Poor’s, containing

all issuer ratings over the period 1981 – 2005. We classify firms into 7 standard rating cate-

gories and specify a dynamic model for upgrades, downgrades, and defaults using all available
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data. This yields a data set including almost 7000 firms and almost 14000 informative rating

events (more than 25000 if we also count sample extension and attrition). We obtain some

interesting empirical findings. First, there is significant evidence of a persistent common com-

ponent in rating transitions. We further show that the impact of this common component with

respect to downgrade and upgrade probabilities is asymmetric. Upgrades are idiosyncratic to

a large extent, whereas downgrades and defaults tend to cluster together in time. Further,

experiments with multiple (latent) factor models cast doubt on the suitability of (widespread)

single factor models for risk management and capital buffer determination. Finally, we find

statistically significant evidence of semi-Markov effects in transitions and defaults. Investment

grade transition intensities tend to increase over the first few years and become more stable

thereafter. Sub-investment grade companies, by contrast, show increased transition activity at

short durations, probably due to momentum effects, and at longer durations, possibly due to

debt roll-over.

The paper is organized as follows. In Section 2, the model is presented. In Section 3 we

develop the estimation methodology for this model. Section 4 discusses how to obtain default

probabilities over finite time periods from the event time specification. Section 5 contains the

results of a Monte Carlo study. Section 6 presents the results of our empirical study. We

conclude in Section 7.

2 The Multi-State Latent Factor Intensity model

The multi-state latent factor intensity (MLFI) model is a multi-state generalization for mul-

tivariate point processes of the latent factor intensity (LFI) model of Bauwens and Hautsch

(2003). Consider a set of K units (or firms) whose event-histories can be adequately described

by the history of transitions between a finite set of states. The states in our empirical appli-

cation will be the set of credit ratings for issuers as assigned by Standard and Poor’s (S&P).

The data set has a clear panel structure and consists of the exact dates and the correspond-

ing type of the rating changes recorded for each firm in the sample. In order to account for

unobserved dependence between the transition histories in a parsimonious way, we introduce a

common factor ψ(t). We assume that conditional on ψ(t), rating events are independent across

firms (i.e., along the cross section dimension). This assumption is standard in the credit risk

literature and is used to prevent the model’s corresponding joint state-space becoming quickly

unmanageable due to its size. Gagliardini and Gourieroux (2004) provide a short discussion of

this curse of dimensionality problem.

The multi-state feature of the model is represented as a set S of transition types, S =
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{1, 2, . . . , S}. For example, in the case of three rating classes (AAA,AA,A), s = 1 denotes a

downgrade from AAA to AA, s = 2 from AAA to A, s = 3 an upgrade from AA to AAA,

. . ., up to s = S = 6 an upgrade from A to AA. Next, define the right-continuous counting

processes Nk(t) and N(t). The process N(t) makes a jump of unit size at each time there is a

rating event for one of the K units.1 Similarly, Nk(t) jumps at the times there is a credit event

for unit k such that

N(t) =
K∑

k=1

Nk(t).

These point processes are marked because at each event time we also observe the transition

type of the unit, i.e., the specific type of upgrade or downgrade. In fact, the counting process

Nk(t) can be expressed as the sum of S counting processes Nsk(t) that keep track of the total

number of transitions of type s for firm k. It follows that

Nk(t) =
S∑

s=1

Nsk(t), N(t) =
K∑

k=1

Nk(t) =
S∑

s=1

K∑

k=1

Nsk(t).

Corresponding to each of these point processes Nsk(t) we assume there is a finite stochastic

intensity λsk(t). In practical terms this intensity describes the instantaneous probability of unit

k experiencing a type s rating transition at time t conditional on the information available just

before time t. Naturally, such transition intensities are only defined at time t if the unit actually

is ‘at risk’ for transition type s at t− < t, where t − t− is arbitrarily small. For example, the

downgrade intensity from AAA to AA for firm k at time t is only defined if firm k actually has

an AAA rating just prior to t. The intensity for each point process2 λsk(t) can be (informally)

defined by

λsk(t) = lim
∆↓0

P [Nsk((t+ ∆)−) −Nsk(t
−) > 0 | Ft− ]

∆
,

see for example Andersen et al. (1993, p. 51). The conditional information up to (but not

including) time t is represented by Ft− = ∪τ<tFτ for an appropriate filtration Fτ .

Define Rsk(t) as a dummy variable that takes the value one if unit k is ‘at risk’ for transition

type s ∈ S at time t−, and zero otherwise. Note that unit k can be at risk for multiple transition

types at the same time. For example, both the AAA to AA and the AAA to A transitions may

be at risk simultaneously. Obvious reasons for a transition type not to be at risk for firm k at

1We assume there are no simultaneous rating transitions. In practice the S&P’s database is recorded at a

daily frequency. This means multiple rating actions can be observed on a single day (for distinct firms). Our

likelihood specification in Section 3 incorporates this phenomenon.
2We assume Nsk(t) to be a conditionally orderly process, i.e., it satisfies

P [Nsk((t+ ∆)−) −Nsk(t−) > 1 | Ft− ] = o (∆)P [Nsk((t+ ∆)−) −Nsk(t−) = 1 | Ft− ], such that we can dis-

card the probability of a jump larger than 1 in Nsk(t).
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time t are that unit k has the incorrect current initial rating, has defaulted, or dropped out of

the sample earlier for other reasons.

We adopt a proportional hazards specification. The model specification for the conditional

hazards is given by

λsk(t) = exp [ηs + γ′swk(t) + αsψ(t)] ·Hsk(t), (1)

with s = 1, . . . , S and k = 1, . . . , K, where (i) scalar ηs, m×1 vector γs, and scalar αs are fixed

unknown coefficients, (ii) m × 1 vector wk(t) contains explanatory variables (covariates), (iii)

scalar ψ(t) represents a latent dynamic factor, and (iv) scalar function Hsk(t) represents the

generalized baseline hazard function, which can be used to model duration dependence of the

multivariate type. This specification encompasses for example the homogeneous continuous-

time Markov chain model that is frequently used in the empirical credit risk literature, see, for

example, Kavvathas (2001) and Lando and Skødeberg (2002). Note we assume λsk(t) to be

only defined if the corresponding Rsk(t) = 1.

A more detailed discussion of the intensity specification (1) follows below. The parameter

ηs represents the reference-level log-intensity of transition type s. It is independent of time

and common across all units k = 1, . . . , K. The parameter vector γs and scalar αs measure

the sensitivity of unit k’s log-intensity for transition type s with respect to observed covariates

wk(t) and the unobserved process ψ(t), respectively. The m-dimensional vector of covariates

wk(t) can contain unit-specific information such as leverage and profitability ratios, industry

dummies, stock volatilities or statistics depending on the rating process.3 Further, wk(t) can

include macroeconomic information such as economic growth rates, interest rate levels and

term structure variables. In this case subscript k can be dropped from the notation. Note that

phenomena like rating momentum can also be included in wk(t) such that past downgrades and

upgrades make subsequent downgrades and upgrades more likely, respectively.

The coefficients αs depend on the transition type s ∈ S. This implies that αs can depend

on both the origin and the destination state. In the empirical literature it is common practice

to let αs parameters depend on the origin state, i.e., the initial rating, only. Here, however,

the impact of the common risk factor ψ(t) depends on the type of transition, and therefore

on the destination state as well. For example, upgrades might be less subject to common risk

factors than downgrades, see Gagliardini and Gourieroux (2005). Restrictions on αs can be

tested explicitly using the maximum likelihood based procedure of Section 3.

Following the empirical work in the credit risk literature, we assume all intensities are subject

3The possible endogenous nature of a selection of (time-varying) covariates leads to an inference procedure

that can no longer be interpreted as full (conditional) maximum likelihood. Instead, we then have a partial

likelihood inference framework, see Lancaster (1990).
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to the same unobserved dynamic common factor ψ(t). Relaxing this assumption by making

ψ(t), for example, rating or industry specific is conceptually straightforward in our modeling

framework. The latent process might even be unit specific as in Bauwens and Hautsch (2003).

In the case of rating transition data, however, specifying unit-specific processes is not really

feasible. The number of rating events for an individual firm is usually too small, even over a

prolonged period of time. This is a direct consequence of the rating agencies’ policy to provide

stable ratings to the investment community.

Assume that ψ(t) only changes at observed event times ti for i = 1, . . . , N(T ) where T

denotes the time index of the last observation (right-censoring of type I). The specification of

ψ(t) as a stochastic process with piecewise constant (left-continuous) sample paths is intuitive

since the intensity of the pooled process (pooled over firms and transition types) is not identified

between two consecutive events. Moreover, in the context of credit rating transitions, ψ(t) is

intended to capture low-frequency co-movements in the vector of migration intensities. In

the empirical illustration of Section 6, the average duration of the pooled process is 1.2 days.

Therefore, no serious bias will arise from disregarding possible changes in the macroeconomic

variables over the almost bi-daily spells of the pooled process.

Let ψi = ψ(ti) denote the value of the common risk factor ψ(t) over the interval t ∈ (ti−1, ti].

In order to capture serial correlation in the intensity of the pooled process, the dynamic process

for ψi can be specified, for example, by a first order autoregressive (AR) equation

ψi = ρti−ti−1
s ψi−1 + σiεi, (2)

where εi is a set of i.i.d. N(0, 1) innovations, the AR parameter ρ ∈ [−1, 1], and where σi may

depend on the length of the spell (ti − ti−1). The specification in (2) has small changes in ψ(t)

over short spells. This is in line with our interpretation of ψ(t) as an economy wide risk factor,

which one would not expect to vary wildly at high frequencies. As not all αs parameters from

(1) and σi can be identified simultaneously, we normalize σi to

σ2
i =





(1 − ρ2(ti−ti−1)/D)/(1 − ρ2/D) for −1 < ρ < 1,

ti − ti−1 for ρ = 1,
(3)

in our empirical work, with ti measured in days of aD = 260 day business year. This brings ψ(t)

close to an Ornstein-Uhlenbeck (for |ρ| < 1) or Brownian Motion (for ρ = 1) process observed

at the event days ti. More general dynamic specifications for ψi can be easily incorporated in

the state space framework of the next subsection. For example, different AR processes can be

considered for specific rating transitions. See also the empirical application in Section 6.

The baseline hazard Hsk(t) is specified by the deterministic function

Hsk(t) = Hs(t− t0k , t− t1k , . . . , t− tNk(t),k), (4)
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where t − tik denotes the backward-recurrence time of unit k with respect to its past ith

transition moment. The function Hsk(·) can be any non-negative function of its arguments.

The inclusion of Hsk(t) introduces duration dependence into the model and, therefore, relaxes

the Markov assumption. More precisely, if Hsk(t) is allowed to depend only on t − tNk(t),k,

then each unit follows a semi-Markov process. In the general case a generalized semi-Markov

process is obtained, see Glynn (1988). Possible choices for Hsk(t) include the hazard function

of a multivariate Weibull distribution, given by

Hs(x0, . . . , xN) =
N∑

i=0

asix
bs−1
i , (5)

with xi ≥ 0 and fixed coefficients asi > 0 and bs > 0 for i = 0, 1, . . . , N . Another valid

alternative is the self-excitation mechanism introduced by Hawkes (1971) and also considered

for the LFI model by Bauwens and Hautsch (2003).

We note that k’s observed duration or spell tNk(t),k − tNk(t)−1,k is the minimum of
∑

sRsk(t)

latent durations corresponding to the set of feasible transitions ‘at risk’ for unit k at time t.

We adopt the standard practice of assuming that the latent duration processes are mutually

independent conditional on the common factor ψ(t).4 See van den Berg (2001) for a detailed

discussion on identification problems in this setting.

To complete the model specification, an additional set of identifying assumptions for the

parameters is required. The global identification of intensity specification (1) requires a sign

restriction for αs. Changing the sign simultaneously for all αs’s and for the complete path of

ψ(t) clearly yields the same path for intensity λsk(t). We therefore set αs < 0 for s = S.

For a vector of unknown parameters θ, the likelihood function conditional on the initial

ratings, pre-sample event histories,5 and on the complete path of the unobserved process, as

defined by ΨN(T ) = {ψi}
N(T )
i=0 , can be written as

L
(
θ | FT ,ΨN(T )

)
=

N(T )∏

i=1

K∏

k=1

S∏

s=1

exp

(
Ysk(ti) ln{λsk(ti)} −Rsk(ti)

∫ ti

ti−1

λsk(t)dt

)
, (6)

where dummy variable Ysk(t) is one if unit k at time t experiences a rating event of type s, and

zero otherwise, and FT denotes the relevant observable filtration. The likelihood function (6)

has an intuitive interpretation. Unit k only contributes to the (conditional) likelihood if it is

at risk, that is if Rsk(ti) = 1. In this case, the likelihood contains the probability of survival

of unit k in its current state over each spell of the pooled point process if there was no rating

4If no exogenous covariates are included, as in the empirical illustration of Section 6, this is an innocuous

assumption, see Tsiatis (1975, Theorem 2).
5A discussion of the initial conditions problem in event-history models is provided by van den Berg (2001).
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event for this unit at risk. When rating event i takes place at the end of the spell of the pooled

process for firm k, that is if Ysk(ti) = 1, the survival probability is multiplied by the hazard

rate to yield the probability density of the rating event.

The likelihood in (6) can be decomposed in a likelihood of a spell length in the pooled point

process, and a likelihood of the associated mark. The spell length follows from the cumulated

(over all s and k) intensities at risk, Rsk(t)λsk(t). The mark then follows from the multinomial

distribution with probabilities Rsk(t)λsk(t)/
∑

s,k Rsk(t)λsk(t) for firm k experiencing rating

event type s. See also Section 5. This is the most general specification.6 More restrictive

specifications can of course be accommodated as well. For example, one might take the ordered

nature of ratings into account by restricting the αs parameters to depend on the initial/input

rating only, and not on the output rating. In this paper, however, we stick to the more general

specification.

In order to estimate the parameter vector θ, the conditional likelihood function must be

integrated with respect to the complete path ΨN(T ) of the unobserved process ψ(t). The

maximum likelihood problem becomes

max
θ
L(θ | FT ), (7)

where

L(θ | FT ) =

∫
L
(
θ | FT ,ΨN(T )

)
p(ΨN(T ))dΨN(T ), (8)

and p(ΨN(T )) denotes the density function of ΨN(T ).

3 Monte Carlo Maximum Likelihood Estimation

The main difficulty with maximum likelihood estimation in (8) is the computation of the high-

dimensional integral. In a typical application such as the one in the next section, this integral

is much more than 4000 dimensional. McNeil and Wendin (2006) address a similar problem

by adopting a Bayesian perspective, albeit in a lower dimensional space (around 50). Bauwens

and Hautsch (2003) adopt the simulated maximum likelihood method of Liesenfeld and Richard

(2003) for the estimation of a single-state LFI model.

6Given the close resemblence of the process for the marks with qualitative response models, well-known

problems for those classes of models like (in)dependence of irrelevant alternatives (IIR), will be an issue here

as well, at least for the general multinomial specification. Though not the issue of this paper, the current

methodology is also applicable in more general classes of point process models that are less subject to such

problems. Moreover, in our specific application to credit risk modeling within a 7 grade ratings system, IIR is

not a key issue.
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By contrast, in this paper, we adopt the general method of Monte Carlo maximum likelihood

for a multi-state LFI (MLFI) model. To overcome the inefficiency problem of direct Monte Carlo

estimation of the high-dimensional integral in (8) we use a combination of importance sampling

and the Kalman filter and smoother as described in Durbin and Koopman (Part II, 2001). It

is shown that the methodology can be made applicable for high-dimensional problems. In

this section, the model is formulated in state space form in Subsection 3.1. The Monte Carlo

simulation method for likelihood evaluation is discussed in Subsection 3.2.

3.1 Statistical model specification

The MLFI model considers the following three sources of stochastic variation: (i) the duration

between events in the pooled process, denoted by τi = ti − ti−1; (ii) the transition types s being

at risk at t−i for unit k, denoted by Rsk(ti); (iii) the specific transition type s at time ti for unit

k, denoted by Ysk(ti). These stochastic variables are collected in the vector zi for i = 1, . . . , N

with N = N(T ), where zi is defined as

zi = {τi , R11(ti) , . . . , RSK(ti) , Y11(ti) , . . . , YSK(ti)}
′ .

The vector zi can be constructed (or observed) at each event i = 1, . . . , N . The analogue of

the observation equation for zi is implied by the non-Gaussian conditional likelihood in (6). In

particular, for the ith event time of the pooled process, we have the conditional log-density

ln p(zi|ψi,Ft−i
) =

S∑

s=1

K∑

k=1

Ysk(ti) ln{λsk(ti)} −Rsk(ti)

∫ ti

ti−1

λsk(t)dt, (9)

for i = 1, . . . , N .

The intensity specification (1) can be formulated more generally via vector νi that contains

latent processes and fixed effects. We have

λsk(t) = exp (Zskiνi) ·Hsk(t), for ti−1 < t ≤ ti, (10)

where Zski is a fixed and known ‘selection’ vector, for s = 1, . . . , S, k = 1, . . . , K, and i =

1, . . . , N . In case Hsk(t) = 1, intensity λsk(t) is constant for ti−1 < t ≤ ti. To show that

specifications (1) and (10) can be equivalent, we take

νi = {η1 , . . . , ηS , γ
′
1 , . . . , γ

′
S , ψ(ti)}

′
,

Zski = {e′s , e
′
s ⊗ wk(ti)

′ , αs} ,

where es is the s-th column of IS. It follows that Zskiνi = ηs + γ′swk(ti) + αsψi. If another

specification for λsk(t) is considered, the specifications for Zski and νi need to be adjusted

accordingly.
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The vector νi can contain both fixed unknown coefficients and dynamic latent processes.

We therefore model νi by the general Markovian process

νi = Fiνi−1 + R̃iηi, ηi ∼ NIID(0, Qi), i = 1, . . . , N, (11)

with initial condition ν0 ∼ N(a, P ). The vector a and the matrices Fi, R̃i, Qi and P are fixed

matrices that may depend on the parameter vector θ. If the vector νi only consists of fixed

unknown coefficients, we set a = 0, Fi = R̃i = I, Qi = 0 and P = κI, where κ is the so-called

diffuse prior constant. Usually, κ is set to some large value in numerical software, see Harvey

(1989, pp. 367-8). Exact solutions for κ → ∞ are available as well, see Durbin and Koopman

(2001, Ch. 4). If the vector νi only contains the latent autoregressive process (2), that is νi = ψi,

we set a = 0, Fi = ρti−ti−1 , R̃i = 1, Qi = σ2
i and P = (1 − ρ2)−1. A combination of unknown

coefficients and latent time series processes can be incorporated in (11) in a straightforward

way. For example, in the case of (1) with wk(t) = 0, we have νi = (η1 , . . . , ηS , ψi)
′ with

a = 0,

Fi =



IS 0

0 ρti−ti−1



 , R̃i =



0

1



 , Qi = σ2
i , P =



κIS 0

0 (1 − ρ2)−1



 .

In case multiple latent factors or higher order dynamics of the latent factors are part of the

model, the state vector νi can be extended in a natural way. The state space matrices need to

be adjusted accordingly. A general framework for the MLFI model can be summarized by the

observation log-density for zi conditional on the state νi. This is given by (9) where λsk(t) is

given by (10) for ti−1 < t ≤ ti, and where νi is modeled by (11) with i = 1, . . . , N . This set

of equations makes up a nonlinear non-Gaussian state space model as considered by Shephard

and Pitt (1997) and Durbin and Koopman (1997, 2001). Importance sampling methods enable

the evaluation of the likelihood function but also the estimation of νi and the computation of

the corresponding standard errors for i = 1, . . . , N . The details of these methods are given in

Subsection 3.2.

We notice the high dimension of the state vector νi since it includes the scalars η1, . . . , ηS,

where S can be as large as 49 = 72 in a 7 ratings system. However, our state space analysis

can accommodate this aspect of the model in a feasible way since it relies on computationally

efficient methods such as the Kalman filter and associated algorithms. Furthermore, it leads

to a significant reduction of the size of the parameter vector θ. Since θ needs to be estimated

via the numerical optimization of the likelihood, computation time is also reduced as a result.

The remaining parameters in θ are ρ and αss. These coefficients can be placed in the state

vector νi as well although in this case the model becomes nonlinear in the state equation.

The linear Markovian process (11) for the state vector νi is not applicable and we cannot rely
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on the computationally efficient Kalman filter methods as we do below. The treatment of

nonlinear state processes is more involved and computationally more demanding. The details

of the estimation procedures for νi and θ in the current framework are presented in the next

subsection.

3.2 Monte Carlo likelihood evaluation

Given the statistical model specification of the previous subsection, the likelihood function (8)

can be reformulated by

L(θ | FT ) =

∫ { N∏

i=1

p (zi |νi,Fi−1 )

}
p(ν | FT )dν, (12)

where p (zi |νi,Fi−1 ) is given by (9) and the model for ν = (ν ′1, . . . , ν
′
N)′ is implied by (11).

Both p (zi |νi,Fi−1 ) and p(ν|FT ) depend on the parameter vector θ for i = 1, . . . , N . An

analytical expression for (12) does not exist and therefore we rely on numerical techniques for

the evaluation of (12). For this purpose we explore the technique of Monte Carlo integration

using the method of importance sampling. The basic idea is simple. First, we simulate M paths

of ν from p(ν|FT ) denoted by ν1, . . . , νM where M is a large number. Second, we compute the

Monte Carlo estimator of (12) given by

L̂(θ | FT ) = M−1

M∑

m=1

{
N∏

i=1

p (zi |ν
m
i ,Fi−1 )

}
(13)

where νm
i is the ith element from νm. The estimator (13) is poor since νm is simulated ‘uncon-

ditionally’ and is therefore likely to make little contribution to the likelihood. A more efficient

approach is to simulate from p(ν|z,FT ), but this is not feasible since no analytical expression

exists for this density. The idea of importance sampling is to replace p(ν|z,FT ) by the more

convenient Gaussian density pG(ν|z,FT ) for simulating ν’s. The basic algorithm is then ad-

justed as follows. First, simulate M paths of ν from pG(ν|z,FT ) denoted by ν1, . . . , νM where

M is a large number. Second, compute the Monte Carlo estimator of (12) as given by

L̂(θ | FT ) = M−1

M∑

m=1

{
N∏

i=1

p (zi |ν
m
i ,Fi−1 )

}
p(νm|FT )

pG(νm|z,FT )

= pG(z|FT )M−1

M∑

m=1

{
N∏

i=1

p (zi |ν
m
i ,Fi−1 )

}
1

pG(z|νm,FT )
, (14)

since pG(ν|FT ) = p(ν|FT ) and pG(ν|z,FT ) = pG(z|ν,FT ) pG(ν|FT )/pG(z|FT ). We refer to this

estimator as the Monte Carlo likelihood. The construction of pG(ν|z,FT ) and the evaluation

of the different densities is described in detail below.
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Step 1: Simulate paths of ν from pG(ν|z,FT )

To build a device for simulating from the conditional Gaussian density pG(ν|z,FT ), an ap-

proximating linear Gaussian model needs to be formulated that represents the joint density

pG(ν, z|FT ). This density for the linear Gaussian model ideally resembles the true density

p(ν, z|FT ) as close as possible because samples generated from the conditional Gaussian den-

sity pG(ν|z,FT ) may then be similar to samples from the conditional density p(ν|z,FT ). An

appropriate linear Gaussian model can be obtained using the method described in Durbin and

Koopman (2001, Part II) and is based on the linearization of the observational log-density using

a second-order Taylor expansion.

In the context of the model described in Subsection 3.1, the basic idea is to construct a

linear Gaussian state space model for the series of rating event indicators at event i as given by

{Y11i, . . . , YS1i, Y12i, . . . , YSKi} ,

where Yski ≡ Ysk(ti) and Ysk(ti) is one or zero to indicate whether a rating event of type s

has taken place for unit k at time ti. Such a rating event is triggered by the signal Zskiνi =

ηs + γ′swk(ti) + αsψi which determines the intensity λsk(t) for ti−1 < t ≤ ti, see Subsection

3.1. To establish an approximating Gaussian model that relates the signal Zskiνi to Yski, we

consider the linear Gaussian observation equation

Yski = cski + Zskiνi + ξski, ξski ∼ NIID (0, Cski) , (15)

for s = 1, . . . , S, k = 1, . . . , K and i = 1, . . . , N , where scalar constant cski and scalar variance

Cski are considered as auxiliary and unknown variables that need to be constructed in a con-

sistent fashion as is shown below. The observation Yski is linear in vector νi and modeled by

the linear Gaussian process (11). Therefore, observation equation (15) and the dynamic latent

process (11) make up a standard linear Gaussian state space model, see Durbin and Koopman

(2001, part I) for a detailed discussion on this class of models.

The constant cski and variance Cski of the observation equation (15) are constructed in

such a way that the conditional density of the model of interest p(z|ν,FT ) and the condi-

tional density of the approximating model pG(Y |ν,FT ) have the same mode for ν, where

Y = (Y111, . . . , YSKN)′. The joint solution for cski and Cski to obtain the mode denoted by

ν̄ can be obtained recursively, see the treatment in Durbin and Koopman (2001, Chapter 11).

The implementation of this procedure is relatively simple. An initial guess for the mode ν̄

needs to be found that is denoted by ν̂(0). The linear Gaussian model (15) is constructed for
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j = 0 by

cski = Yski − Zskiν̂
(j)
i − CskiZski∇ ln p(z|ν,FT )i,

Cski = − [Zski∇
2 ln p(z|ν,FT )iZ

′
ski]

−1
,

(16)

where

∇ ln p(z|ν,FT )i =
∂ ln p(z|ν,FT )

∂νi

∣∣∣∣
ν=bν(j)

,

∇2 ln p(z|ν,FT )i =
∂2 ln p(z|ν,FT )

∂νi∂ν ′i

∣∣∣∣
ν=bν(j)

.

A new guess of the mode for ν is obtained by estimating the conditional mean of ν conditional on

Y for the approximating linear Gaussian state space model (15) and (11). The conditional mean

of ν can be computed by the Kalman filter and smoothing (KFS) algorithm. More formally,

the KFS method computes EG(ν|Y ) where EG(·) is with respect to the approximating linear

Gaussian model. It is well-known that the mode and the mean are equivalent in a Gaussian

model. The new estimate of ν is denoted by ν̂(j+1). New guesses for the mode are obtained by

the KFS based on (16) for j = 1, 2, . . . until convergence is reached according to some metric.

Usually convergence takes place after 5 to 10 iterations.

The approximating linear Gaussian model consists of (11) and (15), with joint density

pG(ν, z|FT ) and where (16) is evaluated at ν = ν̂ with ν̂ as the estimated mode. We adopt this

model to generate conditional samples for ν from pG(ν|z,FT ). Direct sampling from such a

high-dimensional Gaussian density requires many high-dimensional matrix operations. These

numerical problems can be overcome because the model is formulated as a linear Gaussian state

space model. Therefore, the simulation smoothing algorithms of de Jong and Shephard (1995)

or Durbin and Koopman (2002) can be used to generate conditional samples for ν, denoted as

νm for m = 1, . . . ,M .

Step 2: Compute the Monte Carlo likelihood (14)

Given a set of simulated samples from pG(ν|z,FT ) ≡ pG(ν|Y,FT ) and denoted by νm, the

computation of the Monte Carlo likelihood (14) is relatively simple. The Gaussian density

pG(z|ν,FT ) ≡ pG(Y |ν,FT ) is conditional on ν and its expression is well-known for the linear

model (15). Further, the observation density of interest p(zi|νi,Fi−1) is given by equation (9)

and can also be computed straightforwardly.

The Monte Carlo likelihood is then maximized with respect to θ for a particular choice of

M . The maximization can be carried out by a numerical optimization procedure. For example,

a quasi-Newton method can be used for this purpose. To ensure a likelihood surface that is

continuous (or smooth) in θ, the same random numbers are used for the sampling in Step 1
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of the M signals from pG(ν|z,FT ). The optimization procedure requires an initial estimate

of θ that is chosen ideally in the neighborhood of its final estimate. However, even when

the initialisation is poor, several modifications in numerical optimization procedures exist that

make global convergence attainable.

Step 3: Smoothed estimates of the state vector

The state vector νi contains fixed unknown coefficients and dynamic latent processes. Estimat-

ing the state vector for each i leads to estimates of regression parameters and latent processes

such as ψi. A straightforward estimate of the state vector, given the data, is obtained by

weighting each simulated state vector νm
i by its contribution to the likelihood function, that is

ν̂i|N =

(
M∑

m=1

wm × νm
i

)/(
M∑

m=1

wm

)
, (17)

where

wm =

{
N∏

i=1

p (zi |ν
m
i ,Fi−1 )

}/
pG(z|νm,FT ). (18)

Standard errors for ν̂i|N are obtained by taking the square root of

[{
M∑

m=1

wm × (νm
i )2

}/(
M∑

m=1

wm

)]
− (ν̂i|N)2. (19)

4 Implied Transition Matrices

We now turn to the issue of estimating the transition matrix given the Monte Carlo maximum

likelihood estimates of the parameters. Typical examples include 1-year transition matrices as

the ones published by Standard & Poor’s and Moody’s. We start by recalling the connection

for unit k between the infinitesimal generator matrix Gk(t) and the implied matrix Pk of

transition probabilities for a continuous-time finite-state Markov process. The case of semi-

Markov processes is dealt with later on.7 The matrix Gk(t) contains the hazard rates for

each origin and destination state combination. In particular, the (i, j)th element of Gk(t)

equals λsk(t) for s corresponding to a transition from origin state i to destination state j. The

diagonal elements of Gk(t) are such that the rows of Gk(t) sum to zero. Consider an interval

[T, T + ∆]. Then the matrix of transition probabilities over the interval [T, T + ∆] is given by

7For a Markov chain, the entries of the generator matrix are either constants or (deterministic) functions

of time. However, for generalized semi-Markov processes the entries of the generator matrix are, in general,

stochastic processes.
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the product integral8

Pk (T, T + ∆) =

T+∆

T

(IS +Gk(t)dt) . (20)

For the MLFI model, a parametric form for Gk(t) conditional on observed regressors and

an unobserved factor is assumed. In Aalen and Johansen (1978), by contrast, Gk(t) is left

completely unspecified under the assumption that duration and self-excitation effects are absent.

We therefore use the Aalen Johansen estimator in our empirical section as a benchmark for

evaluating model adequacy. We assume that the elements ofGk(t) are adapted to the observable

filtration Ft. In this situation Pk(T, T+∆) becomes a random variable, and we want to compute

its expectation conditional on FT . This expectation can be interpreted as the transition matrix

over the interval [T, T + ∆],

P̄k (T, T + ∆) = E [Pk (T, T + ∆) | FT ] = E




T+∆

T

(I +Gk(t)dt)

∣∣∣∣∣∣
FT



 . (21)

To estimate the conditional expectation in (21), we suggest two approximating schemes.

In the first scheme, we generate a large number of high frequency (say daily) paths from the

process ψ(t), compare (2) and (3) in Section 2. Using these paths, a consistent estimator for

P̄k(T, T + ∆) is given by

ˆ̄Pk (T, T + ∆) =
1

M

M∑

m=1

T+∆

T

(I +Gm
k (t)dt) , (22)

where Gm
k (t) denotes unit k’s realized matrix of intensities for replication m. This approxima-

tion skips the fact that in our empirical model specification, ψ(t) only jumps at event times.

This last assumption, however, is not material in the model’s specification, and jumps at higher

frequencies (such as every day) are easily allowed for. The second scheme to obtain estimates of

annual transition probabilities uses the bootstrap. Here, we build on the empirical model’s as-

sumption that the common factor ψ(t) only jumps at event times. We start with the estimates

of the unknown model parameters and the smoothed estimates of the latent process, E[ψi|FT ]

for i = 1, . . . , N(T ). Next, we simulate a large number M of possible future sample paths over

the [T, T +∆] interval for the full panel of K firms as well as for the unobserved risk factor ψi.
9

8See Gill (2001) for an exposition on product integration. The product integral is the continuous counterpart

of the standard, discrete product operator, just as the integral is the continuous counterpart of the summation

operator. Informally, the product integral of a function f(t) over the interval [T, T + ∆] is
T+∆

T (1 + df(t)) =

limn→∞

∏n
i=1

(1 + f(ti) − f(ti−1)) for a partition T = t0 < t1 < . . . < tn = T + ∆.
9If weakly exogenous covariates were included in equation (1), then an auxiliary model is needed to forecast

the future path of these covariates (as mentioned in the introduction). One resulting possibility is the estimation

of scenario forecasts.
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The pooled process over [T, T + ∆] for replication m provides a partition T = tm0 < tm1 <

. . . < tmn = T +∆, over which the product integral can be factored, see Andersen et al. (1993, p.

91). For the empirical model in Section 6 these calculations become particularly manageable.

The estimates of P̄k[T, T +∆] can be used to compute several interesting risk measures. For

example, one can compute the average transition probabilities over a specific time interval for

a portfolio of firms,

P̄ [T, T + ∆] = K−1

K∑

k=1

P̄k[T, T + ∆].

One can also compute (non-linear) functions of the default probabilities in P̄k[T, T + ∆] to

obtain direct estimates of capital requirements according to the official Basel II regulations.

This is especially interesting if one does not average over simulations of ψ(t), but considers

quantiles instead. See the forecasting exercise in Section 6. This also allows one to consider

stress scenarios in terms of extreme ψ(t) realizations.

So far, we have discussed how to obtain estimates of transition matrices for Markov processes.

If we move on to semi-Markov processes, the equations become more involved. In the current

case of semi-Markov behavior and a common risk factor ψ(t), the relevant equations are worked

out in Monteiro, Smirnov, and Lucas (2006). If we follow the first approximation scheme above,

we then have to solve a system of Volterra integral equations for a fixed path of ψ(t) to obtain

the transition matrix. This matrix subsequently has to be averaged over different simulated

paths of ψ. Alternatively, we could follow the second approach and simulate the complete

panel of firms to obtain a realized path of ψ that only jumps at event times. This could then

be used in the Volterra equations to obtain a transition matrix. The resulting matrix again

would have to be averaged over many replications. Working out the finite sample properties

of these different approaches is beyond the scope of the current paper. Here we first focus on

estimating the empirical dynamics of systematic credit risk. We leave the implication of these

dynamics for one-year default probabilities and risk measures for future research.

5 Simulation Results

To assess the performance of the Monte Carlo maximum likelihood method in a controlled

environment, a simulation experiment is carried out. The modeling framework resembles closely

one of the model specifications in the empirical study of Section 6. We consider 7 rating classes.

The states can be interpreted as the familiar grades AAA, AA, A, BBB, . . . , CCC, and default.

Default is modeled as an absorbing state. In the simulation section, we restrict the intensities
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to

λsk(t) = Rsk(t) · exp [ηs + αsψ(t)] ,

where ψ(t) is a step function that jumps at the endogenous event times ti as in (2). The firm

heterogeneity in this specification enters through the different parameters ηs for the different

transition types s = 1, . . . , S. Another source of heterogeneity is the latent process ψ(t) that

can be interpreted as the (unobserved) macroeconomic effect. The benchmark model in this

simulation exercise abstracts from duration dependence by setting Hsk(t) ≡ 1. This assumption

is relaxed in the empirical section. Further parsimony is introduced by setting αs = αdown < 0

for downgrades, and αs = αup > 0 for upgrades. The parameter values used for the simulation

can be found in the first column of Table 1.

<INSERT TABLE 1 ABOUT HERE>

Note that the number of parameters, even in this simple model specification, is large. For

7 rating classes, we have 49 possible rating transitions. Given the underlying data generating

process (dgp) in this simulation study, some of the transitions are extremely unlikely, e.g., from

AAA to default. As a result, in a particular simulation run there may be no transitions of this

type. In such cases, the corresponding ηs parameter is not estimated. This means that not

all ηs parameters can be estimated for every simulation. Table 1 only reports the simulation

results for those ηs parameters for which a reasonable (50 out of 500) number of simulations

exists for at least one of the four data generating processes (DGPs) presented in Table 1. The

model settings we consider are K = 70 and K = 700 combined with autoregressive parameters

ρ = 1 and ρ = 0.9.

For bothK = 70 andK = 700, a panel of firms and rating transitions is generated as follows.

At time t0 = 0, the sample contains an equal number of firms in each rating category. The

unobserved process ψ(t) is initialized at zero. Given the parameters, this completely specifies

the intensities up to the event date t1. For the time interval (ti−1, ti], the intensity of the pooled

process is defined by

λ∗(ti) =
K∑

k=1

S∑

s=1

λsk(ti), (23)

with λ∗(t1) applicable over the first spell (t0, t1]. The length of any spell in the pooled process

can therefore be drawn from the exponential distribution with intensity parameter λ∗(ti). Given

the durations of the spells (ti−1, ti] for i = 1, . . . , N(T ), the firm experiencing a rating event is

drawn from the univariate Multinomial{π1(ti), . . . , πK(ti)} distribution where the probability
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of drawing unit k is given by

πk(ti) = [λ∗(ti)]
−1

S∑

s=1

λsk(ti), k = 1, . . . , K. (24)

Next, the type of rating event for unit k is drawn from the multinomial distribution with the

probability of state s being drawn for unit k given by

πsk(ti) =

[
S∑

s=1

λsk(ti)

]−1

λsk(ti), (25)

for s = 1, . . . , S and k = 1, . . . , K. If the event is a default, the dummy variable Rik(t) jumps

to zero. Finally, the unobserved common risk factor ψi = ψ(ti) is updated using (2) with ρ = 1

or ρ = 0.9 and where the disturbances εi, i = 1, . . . , N(T ), are drawn from a standard normal

distribution. This process is repeated until all units have entered the absorbing default state,

or until the event time ti exceeds the maximum period of 25 years. For each panel size, we

performed 500 replications of the simulations. All calculations in this paper were performed

using the Ox matrix programming language of Doornik (2002) and the estimation and smoothing

routines in the package SsfPack of Koopman, Shephard and Doornik (1999).

The simulation results for the Monte Carlo maximum likelihood procedure discussed in

Section 3 are shown in Table 1. We first concentrate on the model with a random walk factor

(ρ = 1). We see that many of the parameters are estimated accurately for a panel with 70 firms.

The parameters that are estimated less accurately, correspond to larger rating transitions (e.g,

AAA to BB or AA to CCC). As the larger rating transitions are much less likely, the Monte

Carlo averages of the corresponding ηs parameters are based on less replications and, therefore,

less accurate themselves. By contrast, the presented averages for the smaller rating transitions

are all very close to the true parameter values. The accuracy of the ηs parameters increases

further if the number of units is increased to K = 700. This is due to the fact that for a larger

panel, we will observe more types of transitions in the same period of 25 years. The increase

in precision also holds for the αs parameters. By considering the average estimate, it appears

that the estimator for αs is somewhat biased towards zero. This implies the magnitude of

the common risk factor is underestimated. Consequently, it is more difficult to find significant

evidence of such a factor in the empirical section later on. The strength of the common factor

actually found in the empirical section might thus be a lower bound on its true value.

If we consider a stationary specification for ψ with ρ = 0.9, the results are similar. Para-

meters for small rating transitions are estimated accurately. Parameters for the larger rating

transitions are more difficult to estimate for the smaller panel due to the limited number of

observations. For the large panel, the bias in the estimates of αs appears smaller than for a
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non-stationary ψ(t). For the stationary model, we estimate the additional AR(1) parameter ρ.

For the small panel of K = 70, the average estimate is near its true value of 0.9. The slight

negative finite-sample bias is well-known from the linear model context. If the panel size in-

creases to K = 700, the estimate of ρ remains stable, while its Monte Carlo standard deviation

decreases somewhat. The mild improvement is largely due to the parameterization chosen. We

increase the cross-sectional dimension of the panel while keeping T at 25 years. This increases

the number of event times, without increasing the calendar time available. Given the scaling

of the parameters of the autoregressive process with the length of the spell intervals, there is

limited additional information on the long-term dynamics of the AR process. There is only a

moderate precision gain caused by a more precise estimate of the signal given the increased

number of events.

As explained in Section 3 (Step 3), we can use smoothing techniques to obtain an estimate

of the unobserved ψ(t) factor. Figure 1 illustrates the result for a single ‘representative’ simu-

lation. For this simulation, we plotted the true value of ψ(t) against its estimated (smoothed)

counterpart using our importance sampling scheme. The 95% confidence bounds are also pro-

vided. The algorithm clearly performs adequately in recovering the characteristics of the true,

unobserved ψ(t) process from the observed data. As expected, the true ψ(t) is much more

volatile at high frequencies than its smoothed counterpart. Local and global peaks and troughs

of the series, however, appear correctly positioned in calendar time. The true process also falls

inside the 95% confidence interval most of the time.

<INSERT FIGURE 1 ABOUT HERE>

6 Empirical Results

6.1 Data

The data consist of rating transitions obtained from Standard & Poor’s. The rating histories

of all issuers are recorded in the CreditPro 7.0 database. The sample period is from the end of

1980 (the left-censoring time point) until June 2005. We express the durations of the pooled

process as a fraction of the business year. Note that there may be multiple rating events on

a single day. This is captured by the variables Ysk(ti) in (6). The rating histories in the data

set distinguish between more than 18 different rating classes. To illustrate our methodology,

we consider only seven broad classes, namely AAA, AA, A, BBB, BB, B, CCC (and lower),

and default. This produces 49 possible rating transitions. Out of these 49, 42 are observed in
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the current sample. In terms of model (9), we therefore have S = 42, K is almost 7000, and

N > 25000 (or 14000 if the ψ(t) process does not jump at transitions involving the non-rated

class). Even with these sample sizes, the model can be implemented on a standard desktop

PC.

New firms enter the sample when they receive a rating for the first time. Firms leave the

sample when they enter the default state or when their rating is withdrawn. However, S&P

continues to track firms whose ratings are withdrawn. It is notified in the database when such

firms default at a later stage. This should substantially mitigate any biases caused by strategic

behavior of firms in maintaining a rating at S&P. If a firm first enters the non-rated class and

later defaults, we skip the transition to the non-rating class. In total, we observe 7000 firms,

though many of these firms are only observed over part of the sample. The number of rated

firms increases over time. Accounting for attrition (defaults and transitions to non-rated) and

sample extension, the time series average of the number of firms available at any moment is

around 2200.

Given our interest in the clustering effect of defaults, we first clean the database for alter-

native forms of clustering. We use two filters. First, we check the data for firms that have

long histories of coincident rating increases and decreases. Typical examples of these are firms

that have merged during the time of the database. In such cases, we leave out one of the two

firms from the time of the merger onwards. Second, there appeared to be some policy of the

rating agencies in clustering re-ratings, e.g., centered around meeting times of the committee.

To account for this, we Winsorized the ‘number of events per day’ to 3 by replacing Ysk(ti) by

Ysk(ti) · min(3, Ys(ti))/Ys(ti), with Ys(ti) =
∑

k Ysk(ti). Experiments with Winsorizing values

between 1 and 5 yielded similar results. The Winsorizing procedure has the largest effect on

the estimation of the dynamics of the latent component, summarized by the AR parameter ρ.

Erratic clustering due to rating agencies’ policies, e.g., around committee meetings, corrupts

the dynamics of ψ and causes a downward bias in the estimate of ρ. This effect is mitigated

considerably by the Winsorizing procedure. In future research, these anomalous clustering

effects can be dealt with differently, e.g., by trying to model them explicitly.

Some descriptive features of the data are as follows. The pooled process has a high intensity

of migrations, resulting in an average duration between transitions, births, or withdrawals of

1.2 days. There is a large number of downgrades and upgrades. The counts of transition events

is given in Table 2. It is clear that most transitions take place to adjacent rating categories.

Some of the transitions are very rare, e.g., large down-grades or up-grades. In order to check

the sensitivity of our results to these rare events, we also performed a robustness check where

we only incorporated transition types with more than 20 events. The results are not sensitive
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to this.

The data are visualized in Figure 2. In order to keep the number of graphs manage-

able, we temporarily clustered the ratings further into investment grade (AAA–BBB) and sub-

investment grade (BB–CCC). The upper two plots in Figure 2 show the number of investment

grade downgrades and defaults on a daily basis since December 31, 1980, respectively. We see

that downgrades and defaults tend to cluster in time. This follows from the concentration of

vertical lines, which originate dark and bright areas along the horizontal (time) axis. The lower

two plots in Figure 2 contain the number of sub-investment grade upgrades and downgrades on

any given day, respectively. Interestingly, the plots complement each other. When downgrades

and defaults cluster, upgrades are more sparse, and vise versa. This suggests that the model

specification used with a single common risk factor ψ(t) might already captures the most salient

features of the data. We also experiment, however, with multiple factor models at a later stage

in the analysis.

<INSERT FIGURE 2 ABOUT HERE>

6.2 Homogeneous continuous-time Markov chain model

To get a first impression of the adequacy of the empirical model specification, we consider the

MLFI model without any latent dynamics. In this case, the model has λsk(t) = exp(ηs) and

the MLFI model reduces to a simple homogeneous continuous-time Markov chain (HCTMC)

model. The maximum likelihood (ML) estimator of ηs for the HCTMC model has a closed-form

expression and is given by

η̂s = ln

(
N∑

i=1

K∑

k=1

Yski

)
− ln

(
N∑

i=1

K∑

k=1

tiRski

)
. (26)

Table 3 presents the parameter estimates based on (26) as well as the estimates obtained by

using the Monte Carlo methods of Section 3. As expected, the parameter estimates are almost

identical for all transition types for which the number of observations is sufficiently large. But

even for the transition types with only one observation, the importance sampling estimates

(SML) never differ more than 10% from their closed form counterparts. This is well within a

bound of two standard errors. As stated before, we also performed a robustness check only

including the transition types with 20 observations or more. Here the differences between the

sampling and analytic approach appear negligible. Also note that the estimate of the likelihood

differs by less than 0.01% from its analytic counterpart. Again, this difference shrinks to zero

if only transition types with more than 20 observations are used.
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<INSERT TABLE 3 ABOUT HERE>

6.3 Estimation results for the MLFI model

We start our empirical exercise with the introduction of a single random walk component

ψi capturing systematic credit risk. This implies the AR parameter ρ is set to unity. The

estimation results are in Table 4, model B. Due to the restriction ρ = 1, ψ(t1) and ηs for

s = 1, . . . , S(= 42) are not jointly identified. Therefore we start the latent process ψ(t) at

ψ1 = ψ(t1) = 0. This means that ψ(t) can be interpreted as a relative credit index compared

to its starting level in December 31, 1980.

For the intensity specification (1) in model B, we set αs = −ᾱ < 0 for downgrades and

αs = ᾱ > 0 for upgrades. Since ψi is interpreted as the (unobserved) credit cycle, these sign

restrictions on αs imply an increase in the probability of downgrades and defaults if ψi is

negative, and a simultaneous decrease in the probability of rating upgrades. Conversely, if ψi is

positive, it leads to an increase in the probability of firms being upgraded. The sign restrictions

are relaxed later on.

It is worth mentioning here that all models reported in Table 4 have an additional 42

(unreported) ηs parameters that need to be estimated. This is the number of non-zeros in

Table 2. Given space constraints, we do not report them here. They are however a part of the

estimation problem as sketched in Section 3.

<INSERT TABLE 4 ABOUT HERE>

The likelihood increase from model A (no common factor) to model B (a single common

random walk ψ(t)) is large: almost 350 points upon adding one parameter. We conclude that

there is ample evidence of a systematic credit risk component in the data at hand. This also

appears from the standard error of the estimate of αs.

The above result, however, hinges on the assumption of a single sensitivity parameter for all

transition types. This may not hold empirically. For example, upgrades can be less sensitive to

common risk factors than downgrades and defaults, see the discussion in Kavvathas (2001). As

a first interesting refinement of model B, we allow in model C the single systematic credit risk

factor ψ(t) to have a different impact on downgrade intensities compared to upgrade intensities.

We again restrict the αs coefficient of downgrades to be negative. For the upgrade αs, no sign

restriction is imposed. We find that the improvement of model C compared to B is again

statistically significant: an almost 18 point increase with one additional parameter. The sign of

the upgrade αs is intuitive. The ψ(t) factor has the opposite effect on downgrade versus upgrade
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intensities. Moreover, the systematic risk in downgrade intensities appears to be significantly

higher than in upgrades. The αs for upgrades (1.61) is about half of that for downgrades

(3.13). This result is in line with the results of Das et al. (2002) and Kavvathas (2001) based

on observed macroeconomic variables as proxies for the common risk factor.

Given the significant difference between systematic risk in upgrades and downgrades, we

make a further distinction. We allow for a different systematic risk sensitivity for investment

grade (AAA–BBB) companies that (i) upgrade, (ii) downgrade to investment grade, and (iii)

downgrade to sub-investment grade. Similarly, for sub-investment grade companies we allow

for a different sensitivity for downgrades, upgrades within the sub-investment grade class, and

upgrades to the investment grade class. The results are presented as model D in Table 4. The

likelihood increase from model C to D is again statistically significant: a 7.9 points increase

upon adding 4 parameters. This gives a likelihood ratio test statistic of 15.8 with p-value 0.003.

Again, we see the largest systematic credit risk sensitivity for sub-investment grade downgrades

and defaults, followed by small and large investment grade downgrades. The smallest systematic

risk exposure appears to be for investment grade upgrades. Though still significant, it is less

than 50% of any of the other sensitivities.

The left-hand panel in Figure 2 presents the smoothed estimate of the factor ψ(t) for model

D. The factor is obviously low (so credit risk is high) in the mid 80s, early 90s, and early

2000s. Given the 95% confidence bands, at each of these three episodes the credit risk factor

is significantly negative. Given the signs of the αs coefficients, this implies that downgrade

and default intensities were significantly higher in those periods. The converse holds for the

upgrade intensities.

<INSERT FIGURE 3 ABOUT HERE>

In order to investigate whether a single risk factor suffices to model systematic credit risk,

we allow for a different factor ψs(t) for each of the 6 blocks used in model D. The results are

presented as model E. The likelihood increases by about 110 points from model D to E. This

cannot be a formal test, however, as the models are non-nested. The results are, however, highly

suggestive of different systematic risk factors being relevant for different transition types. This

also appears from the smoothed estimates of the common risk factors to be presented later.

By looking at the sensitivity parameters αs, we can get a first idea of which transition types

might show a deviating systematic risk exposure. For investment grade companies, we see large

increases in the (absolute) magnitude of the αs coefficients compared to model D for rating

migrations within the investment grade class. This signals that some clustering may take

place, but that the clustering need not coincide with the systematic default risk component.
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The same holds for limited sub-investment grade upgrades, i.e., within the sub-investment

grade class. The coefficient almost doubles compared to model D. In short, the results are

suggestive of a difference in clustering effects between defaults and large rating movements on

the one hand, and limited re-ratings on the other hand. The difference might be attributable

to the through-the-cycle policy of rating agencies. Here large rating movements and especially

defaults might be attributable to economic up and down-turns, whereas limited re-ratings might

be more company, industry, or rating policy specific, thus causing a different type of clustering.

So far, we imposed the restriction of a unit root on the latent component(s) ψ(t). Given

the short average spell length of 1.2 days, this should give a good in-sample description of

the systematic risk factor. Out-of-sample, however, the restriction of a unit root may be less

realistic. It implies that even when the credit risk factor is very low, it can still move up or down

with equal probability. This may result in over-estimates of credit Value-at-Risks (VaRs) for

risk management purposes. To check the sensitivity of the results for the unit root assumption,

we re-estimate all models using stationary AR(1) models. We use the specification in (2) and

(3) in Section 2. The autoregressive parameter and the innovation variance are now tuned

automatically to the spell length. Short durations have a high persistence parameter and a

small innovation variance. By using this specification and the data at hand, the ρ parameter

can readily be interpreted as an autoregressive parameter at an ‘annual’ (260 business days)

frequency.

The results for the single factor model with stationary latent component and common sensi-

tivity parameter αs are presented as model F. The likelihood increases by 4.5 points compared

to model B upon adding one parameter. We cannot say, however, whether this is statistically

significant, because this is a unit root test in a class of non-linear models. Working out the sta-

tistical properties of this test is well beyond the scope of the current paper. A similar increase

of 4.1 points is seen for the case with unrestricted αss, compare model G to D.

The estimated value of the AR parameter in models F (0.38) and G (0.37) is very similar.

The estimates are much smaller than those in Koopman et al. (2005a). The latter, however, are

not based on an intensity framework and use annual default counts. The estimates in McNeil

and Wendin (2006) are based on quarterly counts and are also somewhat higher, around 0.6

to 0.7. Comparing models G and D, we see that the reduced persistence of ψ by the lower

autoregressive parameter causes the sensitivity coefficients αs to increase. This is due to the fact

that the model also tries to match the unconditional in-sample variance in default intensities.

A graph of the smoothed AR(1) factor for model G is presented in the right-hand panel of

Figure 3. Comparing this to the smoothed estimate for the random walk model in the left-

hand panel (model D), we notice that the characteristics of the two paths in terms of peaks
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and troughs are roughly similar. There are three main differences: the location, scale, and

standard error bands. It must be kept in mind, however, that ψ(t) enters the intensity process

as ηs +αsψ(t). The location and scale effect is thus partly off-set by the differences in estimates

of αs and ηs between the models. On average, the ηs in model D is about 0.4 lower than in

model G for downgrades and defaults. For upgrades, the average difference is -0.2. Similarly,

the increase in the (absolute) magnitude of the αss from model D to G off-sets the smaller scale

for the stationary ψ(t) factor in model G. As a result, given the sign differences in αs between

upgrades and downgrades, the difference in impact of the systematic risk factor between models

D and G appears negligible.

In model H we again look at a multiple factor model. The six ψ factors now all follow

separate (independent) stationary autoregressive processes with parameters ρs. Again we see

the familiar effect that lower persistence in ψ is matched by a higher αs. More interestingly,

however, are the differences in the estimated autoregressive parameters between transition

types. The persistence of the sub-investment grade downgrade factor (0.40) is similar as in

model G. The persistence in within investment grade downgrades and within sub-investment

grade upgrades, however, is virtually absent. The common factor here does not appear to be

sticky at all. Though not apparent immediately, this implies that there is not really a systematic

credit risk factor for these types of transitions. If ρs is close to zero, the ψ factor essentially

collapses to another source of firm (and time) specific error given its frequency of updating (i.e.,

at every event). Consequently, the durations in the pooled process are completely idiosyncratic,

though no longer (conditionally) exponential. By contrast, we see that the persistence of the

common factor for large up or downgrades is high (0.93 and 0.92). This again underlines our

earlier finding that the common risk factors may be different across the different transition

types. This is also visualized in Figure 4. The default and downgrade factors ψ(t) for ISdown

and SSdown clearly reveal a different pattern from the upgrades, IIup and SIup.

To conclude our set of model specifications, we also consider a semi-Markov model. In

particular, we allow the intensities to depend on the time spent in the current rating. We

capture this effect through the baseline hazard functions Hsk in (1). We allow for a different

baseline hazard for investment grade versus sub-investment grade companies. The baseline

hazards are flexibly parameterized by cubic splines with knots at 0, 1, 3, and 6 years. The spline

passes through (0,0) in order to identify both the spline parameters and the ηs coefficients. The

results are presented as model I in Table 4. The increase in likelihood from model H to I is again

statistically significant: 76.9 points upon adding 6 parameters. The persistence parameters ρ

and sensitivity parameters αs are very similar between the two models.

Figure 5 presents the log baseline hazard functions (cubic splines) capturing the semi-Markov
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behavior in model I. There is a clear difference between the investment grade and sub-investment

grade splines. During the initial two years, the default intensity of investment grade firms

sharply increases. After that, the intensity again slowly decreases. For sub-investment grade

companies, the pattern is more volatile. Two peaks can be distinguished. First, firms with very

short durations in the sub-investment grade ratings have high re-ratings and default intensities.

This is probably due to the rating momentum effect: firms that have been downgraded recently

are more likely to downgrade in the near future because of the smooth rating revision policy

by rating agencies. A second peak emerges after 3 to 5 years. Here, default typically occurs

because initial debt taken by these companies has to be rolled over. This causes a peak in

defaults because of some sub-investment quality firms getting into financial distress at that

time.

6.4 Forecasting transition probabilities

To illustrate the impact of fluctuations in the estimated latent risk component for the implied

1-year transition/default probabilities, a recursive (partially) out-of-sample forecasting exercise

is carried out. The details of the forecasting study are as follows. We consider the data windows

Dec 1980–June 1992, Dec 1980–June 1993, . . . , Dec 1980–June 2005. For each data window,

we estimate the parameters ηs, the smoothed risk factor estimate ψ̂ and its covariance matrix.

The estimates of the loadings αs and ρs are kept fixed at their estimates from Table 4 in this

illustration. This reduces the computations needed. Note that in the forecasting exercise, we

do not Winsorize the realizations in the forecasting period as we did during the estimation

stage.

Given the estimates in a specific year, we simulate daily paths of the common risk factor(s)

ψs(t) over the subsequent year, starting with a draw from the smoothed distribution. For each

path ψ, the product integral in (20) is computed. This gives us a conditional (on ψ) annual

transition matrix. Finally, we compute the 99% quantile of the default probabilities from these

simulated transition matrices for each initial rating category. The 99% quantile is taken over

the different simulated paths of ψ. We do so for models A, D, E, G, and H from Table 4. As

mentioned in Section 4, if a semi-Markov specification were used like model I, computing the

annual transition matrix would be much more involved and dependent on the current portfolio

composition. See Monteiro et al. (2006) for more details on the semi-Markov case.

To benchmark all model forecasts, we also compute the nonparametric Aalen Johansen (AJ)

estimator of the transition probabilities over each year. This empirical transition matrix can

be seen in the current context as a proxy for the ‘true’ or realized10 transition probabilities, see

10The term realized is chosen deliberately here. Its well-known analogue is the nonparametric computation
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Lando and Skødeberg (2002). Figure 6 presents the results.

<INSERT FIGURE 6 ABOUT HERE>

The forecasts from the MLFI model move much more in accordance with the nonparametric

ex-post AJ estimates than the HCTMC model (HMC). Note that though the HMC does not

include a dynamic component,the forecasts still adapt over the years due to the recursive nature

of the estimation procedure for ηs. The changes are nevertheless insufficient to keep up with

the changes in the true default rates (see AJ curve).

The 99% quantiles for the MLFI models with 1 or 6 AR risk factors appear reasonable upper

bounds for all initial rating categories except single A. By contrast, the forecasted default prob-

abilities for the non-stationary models are much larger. This is due to the random walk nature

of the factors. Even if the common risk factor is already very low (so default probabilities are

high), it is still equally likely that the factor goes further down or up. Excessively large fore-

casts for default probabilities are the result and these subsequently lead to inefficient (though

highly prudent) capital buffers at most times. For the stationary risk factors, low factors tend

to mean revert, resulting in less extreme estimates of future default probabilities. This comes

at the cost of an increased probability of violating the 99% quantile bounds around early 2000s

for some initial rating categories.

An interesting feature of the MLFI specifications is its increase in predicted default proba-

bilities before the actual crash. This holds in many cases, especially around the record default

years in the early 2000s. The HMC model with recursively estimated parameters, however, ob-

viously lags the dynamic pattern in defaults. This suggests that for risk management purposes,

models that account for the dynamic pattern in systematic risk factors are very important.

Our forecasting procedure produces much more than only the default rates. Also all rerating

probabilities are available. To get a (parsimonious) impression of how well the different models

perform with respect to all the remaining transition probabilities, a summary statistic of the

transition matrix is needed. Jafry and Schuetrimm (2004) discuss a number of metrics to

compare the forecasts of transition matrices. In particular, they propose the average of singular

values of the transition matrix minus the unit matrix. We computed this metric over time for

the different model specifications used. The results are in the lower-right panel of Figure 6.

Again, we see a much larger resemblance between the dynamics of the AJ realizations with the

MLFI specifications compared to the HMC model. It appears that the random walk models

are the only ones able to explain the large increase in singular values in the early 2000s. As

of realized volatility in the empirical finance literature, see Andersen, Bollerslev, Diebold, Labys (2003). The

AJ estimator is its counterpart in the context of transition models.
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seen earlier, however, this comes at the cost of very prudent capital standards in other years.

It is clear that the current forecasting exercise can be extended further. Different specifi-

cations for the MLFI could be tried. Also, the semi-Markov property could be included at the

cost of a significant increase in the required computations in line with Monteiro et al. (2006).

Moreover, dollar based metrics could be easily developed. For example, given the conditional

forecasts of transition matrices from the product integral expression, one can construct (con-

ditional) forecasts of capital requirements in line with the New Basle Capital Accord, see also

Jafry and Schuetrimm (2004). We leave such extensions to future applications.

7 Conclusion

In this paper we have motivated and introduced a multi-state latent factor intensity (MLFI)

model for credit rating transitions. The model can be regarded as a generalization of the

latent factor intensity point process introduced in Bauwens and Hautsch (2003) to a situation

with multiple origin and destination states. However, the econometric issues related to this

generalization are intricate and the computational consequences are severe. We have discussed

the details for the estimation of the MLFI model using a Monte Carlo maximum likelihood

procedure that consists of a combination of importance sampling techniques and state space

methods, as outlined in Durbin and Koopman (1997, 2001). It is shown that this procedure

can be extended successfully to a multivariate class of non-Gaussian models. A simulation

study was carried out to show that the estimation procedure works well in recovering the

parameters of the MLFI model. Finally, we have applied the model to a real-world dataset of

credit rating migrations. A significant common risk factor in credit rating migrations is found.

The impact of this risk factor is higher for downgrades than for upgrades. This empirical

result suggests that upgrades are more subject to idiosyncratic shocks than downgrades. This

finding is consistent with the conclusions in the earlier studies of Kavvathas (2001) and Das

et al. (2002). Furthermore, our results pointed towards important potential differences in the

systematic risk of different transition types. This can have important implications for single

factor models for risk management, as they are currently widely employed in the industry.

Generalizations with respect to the current empirical specification are easily incorporated in

the structure of the MLFI model. For example, the general specification allows for the inclusion

of observed firm-specific and economic variables as in Duffie et al. (2006b) and Koopman et

al. (2006), self-exciting processes, and additional dynamic components. A further interesting

feature of the model is that it produces a high-frequency credit cycle index estimated directly

from default and rating migration data. Finally, within the model specification proposed in
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this paper it is possible to estimate and test formally for the number of latent factors driving

the default and rating migration intensities. The implementation of the model for credit risk

simulations is straightforward given the integrated structure of the model. The dynamics of

the common risk factor are estimated simultaneously with the development of default events

conditional on this common risk factor. Therefore, they can also be easily integrated in a fore-

casting exercise as the one presented in Section 6.
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Table 1: Monte Carlo Results
This table contains parameter estimates for the MLFI model, λsk(t) = Rsk(t) ·exp[ηs +αsψ(t)], for k = 1, . . . ,K
with K the number of units, s = 1, . . . , 49. The true parameters are taken in accordance with the empirical
results in Section 6, with different loading αs for up and down-grades, model C in Table 4. There are 7 rating
classes. Initial ratings are distributed evenly over these classes. We estimate the model for K = 70 and K = 700,
both with a random walk common factor ψ and with a stationary AR, parameter ρ = 0.9. The maximum time
T is set to 25 years, unless the complete sample has defaulted at an earlier stage. We performed 500 replications
for each parameter combination. Monte-Carlo averages and standard errors (in parentheses) are presented for
those parameters that have a sufficient number of occurrences over all simulations.

True K=70 K=700 K=70 K=700
ρtrue = 1 ρtrue = 1 ρtrue = 0.9 ρtrue = 0.9

ηAAA→AA -3.47 -3.48 (0.79) -3.51 (0.27) -3.55 (0.88) -3.50 (0.16)
ηAAA→A -5.88 -5.20 (1.36) -5.99 (0.64) -5.35 (1.32) -6.04 (0.51)
ηAAA→BBB -8.38 -5.39 (1.10) -7.67 (1.02) -5.52 (1.37) -7.72 (0.93)
ηAAA→BB -7.55 -5.73 (1.10) -7.36 (1.08) -5.64 (0.89) -7.44 (0.75)
ηAA→AAA -5.04 -4.81 (0.93) -5.05 (0.23) -4.84 (1.00) -5.07 (0.15)
ηAA→A -3.04 -3.10 (0.80) -3.07 (0.26) -3.12 (0.63) -3.08 (0.14)
ηAA→BBB -5.84 -5.38 (1.40) -5.92 (0.55) -5.49 (1.38) -6.00 (0.41)
ηAA→BB -8.47 -5.65 (1.23) -8.01 (1.00) -5.74 (1.30) -8.06 (0.72)
ηAA→B -7.59 -5.78 (1.44) -7.49 (1.08) -5.54 (1.32) -7.65 (0.83)
ηAA→CCC -9.63 -6.03 (1.57) -8.03 (0.90) -5.50 (1.05) -8.20 (0.69)
ηA→AAA -7.06 -6.27 (1.65) -7.03 (0.50) -5.93 (0.82) -7.22 (0.59)
ηA→AA -3.96 -3.99 (0.63) -3.93 (0.10) -3.96 (0.56) -3.96 (0.08)
ηA→BBB -3.38 -3.49 (0.78) -3.41 (0.25) -3.49 (0.72) -3.40 (0.14)
ηA→BB -6.18 -5.91 (1.41) -6.30 (0.52) -5.80 (1.32) -6.27 (0.33)
ηA→B -6.89 -6.34 (1.65) -6.95 (0.73) -6.16 (1.23) -7.06 (0.56)
ηA→D -7.75 -6.52 (1.69) -7.77 (0.98) -6.34 (1.28) -7.86 (0.78)
ηBBB→AAA -8.78 -6.17 (1.18) -8.09 (0.92) -5.91 (0.74) -8.02 (0.64)
ηBBB→AA -5.88 -5.66 (1.15) -5.94 (0.36) -5.39 (0.87) -6.00 (0.26)
ηBBB→A -3.08 -3.12 (0.42) -3.06 (0.08) -3.06 (0.29) -3.07 (0.05)
ηBBB→BB -3.41 -3.50 (0.84) -3.44 (0.26) -3.49 (0.64) -3.43 (0.15)
ηBBB→B -5.81 -5.61 (1.31) -5.87 (0.54) -5.68 (1.26) -5.90 (0.35)
ηBBB→CCC -7.94 -6.51 (1.26) -7.89 (0.92) -6.23 (1.02) -7.92 (0.79)
ηBBB→D -6.51 -6.19 (1.25) -6.61 (0.56) -5.97 (1.39) -6.65 (0.52)
ηBB→AAA -7.62 -5.60 (1.15) -7.36 (0.81) -5.41 (0.96) -7.45 (0.68)
ηBB→AA -6.75 -5.46 (0.92) -6.74 (0.79) -5.27 (1.12) -6.91 (0.71)
ηBB→A -5.20 -4.86 (1.11) -5.26 (0.28) -4.93 (0.94) -5.24 (0.20)
ηBB→BBB -2.61 -2.60 (0.35) -2.61 (0.08) -2.59 (0.28) -2.59 (0.05)
ηBB→B -3.02 -3.13 (0.85) -3.06 (0.27) -3.12 (0.75) -3.05 (0.14)
ηBB→CCC -5.83 -5.53 (1.63) -5.87 (0.51) -5.32 (1.48) -5.94 (0.43)
ηBB→D -5.51 -5.26 (1.17) -5.61 (0.49) -5.26 (1.30) -5.66 (0.34)
ηB→AA -7.06 -5.04 (0.76) -6.98 (0.84) -5.12 (1.15) -7.10 (0.70)
ηB→A -6.14 -5.03 (1.10) -6.24 (0.65) -4.90 (1.17) -6.41 (0.60)
ηB→BBB -5.37 -4.79 (1.10) -5.47 (0.46) -4.86 (0.96) -5.44 (0.28)
ηB→BB -2.64 -2.65 (0.48) -2.62 (0.08) -2.59 (0.28) -2.63 (0.05)
ηB→CCC -3.14 -3.23 (0.93) -3.19 (0.28) -3.22 (0.75) -3.17 (0.16)
ηB→D -3.97 -4.03 (0.89) -4.02 (0.33) -4.03 (1.03) -4.01 (0.18)
ηCCC→A -5.24 -3.40 (1.00) -5.21 (0.75) -3.63 (1.11) -5.30 (0.70)
ηCCC→BBB -4.84 -3.48 (1.12) -4.89 (0.74) -3.49 (0.86) -5.05 (0.62)
ηCCC→BB -4.12 -3.42 (0.90) -4.24 (0.45) -3.36 (1.03) -4.30 (0.43)
ηCCC→B -1.74 -1.76 (0.57) -1.73 (0.10) -1.79 (0.51) -1.72 (0.05)
ηCCC→D -1.24 -1.37 (0.73) -1.29 (0.22) -1.32 (0.55) -1.28 (0.14)

αup 1.60 1.43 (0.81) 1.47 (0.36) 1.46 (1.40) 1.56 (0.36)
αdown -3.20 -2.64 (1.05) -2.90 (0.64) -2.83 (1.41) -3.12 (0.63)

ρ 0.85 (0.20) 0.83 (0.15)
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Table 2: Event counts
This table contains the number of events over the sample period
from (row) a specific rating to a new (column) rating. D denotes
default.

From To
AAA AA A BBB BB B CCC D

AAA 95 8 1 2 0 0 0
AA 34 475 25 2 5 1 0
A 10 219 714 40 19 0 9

BBB 2 27 457 605 53 6 24
BB 4 8 36 467 769 48 65
B 0 6 16 34 524 855 349

CCC 1 0 5 8 13 135 678
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Table 3: Parameter estimates of the HCTMC model
This table presents estimates of a homogeneous continuous-time Markov chain (HCTMC) model with intensities
λsk(t) = exp(ηs). The transition types are sorted on their number of observations. The first two columns provide
the rating transition type. The third column indicates the number of steps taken for this transition type in the
7 grade system. The fourth column contains the number of observations for this transition type. The column
headed ML-η̂s contains the closed form maximum likelihood (ML) estimates from (26). Its ML asymptotic
standard error is in parentheses in column six. The Monte Carlo maximum likelihood estimates SML-η̂s and
their simulated standard errors (using 100 samples) follow in columns seven and eight. The column ∆η̂s and
∆s.e. give the difference between the ML and SML estimates, and between their standard errors, respectively.

From To #steps #obs ML-η̂s SML-η̂s ∆η̂s ∆s.e.
B → CCC 1 855 -2.50 (0.04) -2.50 (0.03) 0.00 0.00

BB → B 1 769 -2.39 (0.04) -2.40 (0.03) 0.00 0.01
A → BBB 1 714 -2.86 (0.04) -2.86 (0.04) 0.00 0.00

CCC → D 1 678 -0.53 (0.04) -0.52 (0.04) -0.01 0.00
BBB → BB 1 605 -2.93 (0.04) -2.94 (0.04) 0.01 0.00

B → BB 1 524 -2.94 (0.04) -2.96 (0.04) 0.02 0.00
AA → A 1 475 -2.55 (0.05) -2.56 (0.04) 0.00 0.00
BB → BBB 1 467 -2.89 (0.05) -2.88 (0.04) -0.01 0.00

BBB → A 1 457 -3.20 (0.05) -3.21 (0.05) 0.01 0.00
B → D 2 349 -3.35 (0.05) -3.34 (0.06) -0.01 0.00
A → AA 1 219 -4.06 (0.07) -4.07 (0.07) 0.01 0.00

CCC → B 1 135 -2.12 (0.09) -2.11 (0.08) -0.01 0.01

AAA → AA 1 95 -2.96 (0.10) -2.97 (0.10) 0.00 0.01
BB → D 3 65 -4.85 (0.12) -4.88 (0.10) 0.03 0.03

BBB → B 2 53 -5.34 (0.14) -5.32 (0.14) -0.02 0.00
BB → CCC 2 48 -5.16 (0.14) -5.18 (0.13) 0.02 0.02
A → BB 2 40 -5.72 (0.16) -5.70 (0.15) -0.02 0.01

BB → A 2 36 -5.44 (0.17) -5.46 (0.17) 0.02 -0.01
AA → AAA 1 34 -5.14 (0.17) -5.14 (0.11) 0.00 0.06
B → BBB 2 34 -5.67 (0.17) -5.63 (0.16) -0.04 0.01

BBB → AA 2 27 -6.02 (0.19) -6.01 (0.15) 0.00 0.04
AA → BBB 2 25 -5.45 (0.20) -5.38 (0.20) -0.07 0.00
BBB → D 4 24 -6.13 (0.20) -6.04 (0.21) -0.10 -0.01

A → B 3 19 -6.46 (0.23) -6.44 (0.22) -0.02 0.00
B → A 3 16 -6.43 (0.25) -6.43 (0.24) 0.01 0.01

CCC → BB 2 13 -4.46 (0.28) -4.49 (0.27) 0.03 0.01
A → AAA 2 10 -7.11 (0.32) -7.16 (0.30) 0.06 0.02

A → D 5 9 -7.21 (0.33) -7.31 (0.33) 0.10 0.01
AAA → A 2 8 -5.39 (0.35) -5.40 (0.26) 0.01 0.09
BB → AA 3 8 -6.95 (0.35) -7.06 (0.31) 0.11 0.04

CCC → BBB 3 8 -4.95 (0.35) -5.17 (0.36) 0.22 -0.01
BBB → CCC 3 6 -7.52 (0.41) -7.48 (0.40) -0.04 0.01

B → AA 4 6 -7.41 (0.41) -7.38 (0.36) -0.03 0.05
AA → B 4 5 -7.06 (0.45) -7.20 (0.45) 0.14 0.00

CCC → A 4 5 -5.42 (0.45) -5.59 (0.40) 0.17 0.05
BB → AAA 4 4 -7.64 (0.50) -7.93 (0.61) 0.29 -0.11

AAA → BB 4 2 -6.78 (0.71) -7.14 (0.73) 0.36 -0.03
AA → BB 3 2 -7.97 (0.71) -7.97 (0.59) -0.01 0.12
BBB → AAA 3 2 -8.62 (0.71) -8.93 (0.88) 0.32 -0.17
AAA → BBB 3 1 -7.47 (1.00) -7.88 (0.91) 0.40 0.09
AA → CCC 5 1 -8.67 (1.00) -9.43 (1.15) 0.76 -0.15

CCC → AAA 6 1 -7.03 (1.00) -7.63 (1.03) 0.61 -0.03

log-likelihood -25582.7 -25584.4 1.7 (<0.01%)
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Table 4: Parameter estimates of the MLFI model
This table contains the parameter estimates ρs and α̃s = 100αs of the MLFI model, λsk(t) = Rsk(t) exp[ηs +
αsψs(t) + hs(usk(t))], for k = 1, . . . ,K with K the number of firms, s ∈ S = {AAA → AA,AAA →
A, . . . , CCC → B,CCC → Dflt}, the 49 different possible rating transitions for the 7 rating classes

AAA, . . . , CCC. The factor ψis = ψs(ti) follows an AR(1) process ψsi = ρ
ti−ti−1

s ψs,i−1 + σsiεsi, with εi

i.i.d. standard normal random variables, ti for i = 1, . . . , N the event times of the pooled process measured

in fractions of the 260 day business year (instead of in days as in (3)), and σ2
si = (1 − ρ

ti−ti−1

s )/(1 − ρ
2/260
s ).

For identification, ψs0 = 0. The log baseline hazard function hs depends on the time spent in the current
rating and follows a cubic spline function with knots at 0, 1, 3, and 10 years. Given the presence of the ηs

factor, we restrict hs(0) = 0. Spline values at spell lengths exceeding 10 years are set to the spline value at 10
years. The ηs are allowed to be different for all transition types (yielding almost 49 parameter estimates that
are not presented here). The log baseline hazard hs only differs between investment grade (AAA-BBB) and
sub-investment (BB-CCC) grade firms (and has 3 parameters per spline). We allow for a different αs for within
investment grade upgrades (IIup) and downgrades (IIdown), within sub-investment grade upgrades (SSup) and
downgrades (SSdown), and across investment-sub-investment grade upgrades (SIup) and downgrades (ISdown).
A similar block structure is imposed on the ψs and ρs if we allow for multi-factor models. For models A–E, the
latent component(s) ψs(t) are random walks, i.e., ρs ≡ 1. Standard errors (in parentheses) and log-likelihood
values are based on 1,000 importance samples.

Model II II IS SI SS SS log-lik #spline #α #ρ #ψ
up down down up up down pars pars pars fact.

A α̃ 0.00 0.00 0.00 0.00 0.00 0.00 -25584.4 0 0 0 0

B α̃ 2.56 -2.56 -2.56 2.56 2.56 -2.56 -25236.4 0 1 0 1
(0.36) (0.36) (0.36) (0.36) (0.36) (0.36)

C α̃ 1.61 -3.13 -3.13 1.61 1.61 -3.13 -25217.7 0 2 0 1
(0.29) (0.46) (0.46) (0.29) (0.29) (0.46)

D α̃ 0.84 -2.82 -2.54 1.92 2.17 -3.27 -25209.8 0 6 0 1
(0.33) (0.47) (0.47) (0.42) (0.44) (0.48)

E α̃ 1.93 -4.37 -2.26 1.27 3.72 -3.32 -25097.2 0 6 0 6
(0.64) (0.83) (0.53) (0.40) (0.85) (0.56)

F α̃ 3.11 -3.11 -3.11 3.11 3.11 -3.11 -25231.9 0 1 1 1
(0.56) (0.56) (0.56) (0.56) (0.56) (0.56)

ρ 0.38 0.38 0.38 0.38 0.38 0.38
(0.17) (0.17) (0.17) (0.17) (0.17) (0.17)

G α̃ 1.03 -3.41 -3.09 2.30 2.64 -3.93 -25205.7 0 6 1 1
(0.43) (0.75) (0.74) (0.59) (0.64) (0.80)

ρ 0.37 0.37 0.37 0.37 0.37 0.37
(0.20) (0.20) (0.20) (0.20) (0.20) (0.20)

H α̃ 2.29 -8.17 -2.65 1.42 6.81 -3.93 -25072.0 0 6 6 6
(0.79) (1.80) (0.77) (0.52) (1.77) (0.80)

ρ 0.80 0.04 0.79 0.92 0.10 0.43
(0.19) (0.05) (0.20) (0.14) (0.10) (0.20)

I α̃ 2.07 -7.80 -2.50 1.43 6.95 -3.93 -24995.1 6 6 6 6
(0.73) (1.51) (0.66) (0.53) (2.04) (0.80)

ρ 0.82 0.05 0.92 0.93 0.09 0.40
(0.17) (0.05) (0.15) (0.14) (0.12) (0.19)
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Figure 1: True versus smoothed estimate of ψ(t)
The baseline model and the simulation set-up are the same as explained in the note to Table 1.
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Figure 2: Daily number of rating actions and recorded defaults
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Figure 3: Smoothed credit cycle ψi with 95% confidence band
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Figure 4: Smoothed credit cycles ψs(ti) with 95% confidence band
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Figure 5: Log baseline hazard functions
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Figure 6: Forecasted default probabilities
Using a recursive state estimation procedure with extending data window from Dec 1980–June 1992 to Dec

1980–June 2005. Transition probabilities are estimated using the methodology of Section 4 for the MLFI model
and the homogeneous continuous-time Markov chain (HMC) model. The MLFI specifications used from Table 4
are models D (1 random walk (RW) factor), G (1 autoregressive (AR) factor), E (6 independent RW factors),
and H (6 independent AR factors). The Aalen-Johansen (AJ) estimates for each year are also plotted as a proxy
for the observed transition rates. There are 7 plots for each of the 7 rating categories. The lower right-hand
plot provides the average singular value measure for transition matrices as proposed in Jafry and Schuermann
(2004).
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