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Abstract

Internationally operating firms naturally face the decision whether or not to hedge the
currency risk implied by foreign investments. In a recent paper, Bos, Mahieu and van Dijk
(2000) evaluate the returns from optimal and alternative currency hedging strategies, for a
series of 7 models, using Bayesian inference and decision analysis. The models differ in the
way time-varying means, variances or the unconditional error distributions are incorporated.
In this extension, we compare the hedging decisions and financial returns and utilities as they
result from the modelling assumptions and the attitudes towards risk.

JEL classification: C11, C44, E47, G15
Keywords: Exchange rates, risk management, Bayesian analysis

∗This is a preprint of an article accepted for publication in the proceedings of ISBA 2000, the Sixth World
Meeting of the International Society for Bayesian Analysis

†Correspondence to Charles S. Bos, Tinbergen Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-
3000 DR Rotterdam, The Netherlands. Email: cbos@few.eur.nl



1 Introduction

Every firm with foreign investments faces the risk of a depreciation of the foreign currency, leading
to a lower value of the foreign investment expressed in the home currency. In many firms the
decision whether or not to hedge currency risk is revised regularly, independently of the original
investment decision. In the finance industry this approach to currency hedging is called currency
overlay management.

In Bos et al. (2000) a series of models for the DMark/US Dollar daily exchange rate are
constructed. Based on the models, optimal hedge ratios for a utility-optimizing currency overlay
manager are calculated, and the risk and return of the optimal and several alternative strategies
are evaluated using Bayesian inference and decision analysis with Markov chain Monte Carlo
techniques. In this brief extension, we describe the sensitivity and variation of the hedging decision
in more detail.

Section 2 summarizes the models, the hedging strategy and the data that are used. Also, the
main findings from a Bayesian analysis of the posterior distribution of the parameters are reported
here. The paper continues in section 3 with a detailed description of the hedging decisions that
are taken, with special attention for the link between modelling decisions and the variation of the
hedge ratio over the period January 1998 until December 1999. The financial returns and utilities
that are derived from applying the hedging strategies are examined both over the first year of the
evaluation period and over both years jointly. A summary of the results is given in section 4.

2 Preliminaries

We concentrate on the hedging decision that a manager may take in order to hedge the currency
risk. A detailed description of the setting is given in Bos et al. (2000), here we limit ourselves
to a basic overview of the modelling framework, and on a summary of the results concerning the
Bayesian posterior density.

Let st+1 be the return on the exchange rate S over the time interval [t, t + 1], defined as
st+1 = 100 ln(St+1/St). The investor may choose to hedge a fraction H ∈ [0, 1],1 leading to a
continuously compounded gross hedged currency return exp(rt+1) equal to a weighted average of
returns concerning the exchange rate st+1 and the difference between the home and foreign risk
free interest rates rht and rft ,

exp(rt+1) = (1−Ht) exp(st+1) +Ht exp(rht − rft ). (1)

The overlay manager is interested in optimizing his wealth Wt+1 =Wt exp(rt+1), according to, as
we assume here, a power utility function U(Wt+1) = (W γ

t+1 − 1)/γ, γ < 1. For a background on
international portfolios and risk, see Jorion (1985).

In order to find the optimal hedging decision we need to derive a predictive density P (st+1|It),
with It = {st, st−1, ..}, marginal with respect to the posterior density of the vector of parameters
θ in the model. Bos et al. (2000) consider 7 models, describing the evolution of the exchange rate
return over time. The baseline model is a state space model (see Harvey 1989),

st = µt + εt, εt ∼ i.i.d. (0, σ2
ε,t), (2)

µt = ρµt−1 + ηt, ηt ∼ N (0, σ2
η), (3)

which allows for a varying mean µt.2 We also allow the variance σ2
ε,t in the observation equation (2)

to be time time varying. Special cases of this general model include: the White Noise model (WN),
with ρ = 1, ση = 0, εt ∼ N (0, σ2

ε ); the Local Level model (LL) which equals the WN model but
with ση unrestricted; the Generalized Local Level model (GLL), both ρ and ση free. Four models
allow for different disturbance distributions: theGLL-Student t model allows for εt to be Student

1We do not allow the hedging position to exceed the underlying exposure, i.e. H < 0 or H > 1.
2The uncovered interest rate parity, which prescribes to introduce the interest rate differential as the expectation

of st, does not hold on a daily timescale. The interest rates are introduced in the hedged return equation (1).
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t distributed (with ν degrees of freedom); a GLL-GARCH model allows for a GARCH evolution
of the variances with the εt normally distributed; a GLL-GARCH-Student t model combines
the GARCH and the Student t effects; and a GLL-Stochastic Volatility model (GLL-SV). The
disturbance of the observation equation (2) of the GLL-SV model is normally distributed, but
with a randomly evolving variance, i.e. εt ∼ N (0, σ2

ε exp(ht)) and ht = φht−1 + ξt, ξt ∼ N (0, σ2
ξ ).

Our inference is Bayesian. We compute posterior distributions of the parameters through
Markov chain Monte Carlo sampling. For the models without Student t-distributed disturbances
or Stochastic Volatility, a Metropolis-Hastings sampler can be applied (see e.g. Chib and Greenberg
1995). For the other models, a Gibbs chain was constructed, sampling successively from the full
conditional distributions (Carter and Kohn 1994, Kim, Shephard and Chib 1998, Koop and van
Dijk 2000). In constructing the posterior, care was taken to use only mildly informative conjugate
priors. We take the sample distribution of the parameters into account in the analysis of the
predictive density and the hedging decision.

Before we can evaluate the expected utility, we need to know the predictive density of the
exchange rate returns. The predictive density P (st+1|It) was constructed by integrating the
conditional predictive density P (st+1|θ, It) with respect to the posterior θ|It

3 (see Geweke (1989)
and Bauwens, Bos and van Dijk (1999)). Effectively, we calculate

P (st+1|It) ≈ 1
N

∑
P (st+1|θ(i), It) (4)

with θ(i) the i-th drawing of the vector of parameters in the model. This predictive density
is calculated over a fine grid of values of st+1, and is used in optimizing the expected utility
Est+1|It

(U(Wt+1)). It is sufficient to optimize the expected utility using only the wealth increases
wt+1 =Wt+1/Wt = exp(rt+1). The function to be optimized is

Est+1|It
(U(wt+1)) =

∫
exp (γ rt+1(Ht))− 1

γ
P (st+1|It) dst+1, (5)

with equation (1) substituted for the hedged currency return. The optimization is again imple-
mented evaluating the expected utility increase over a fine grid of values for the hedge ratio Ht,
and choosing the optimal Ht.

The analysis is carried out using daily observations on the DMark/US Dollar exchange rate
over the period 1/1/1982-31/12/1999 (4695 observations). We look at the case of a manager based
in Germany, seeking to hedge currency risk connected to investments in a US Dollar denomination.
Estimation4 of the posterior distribution is done using the first 16 years of data, leaving two years
(523 days) for evaluating the hedging decision. For the interest rates, the 1-month Eurocurrency
middle rates are used.5,6 Figure 1 depicts both the exchange rate St (over both the estimation and
evaluation periods) and the interest rate differential rDM

t − rUSD
t over the evaluation sample. The

local trending of the exchange rate seen in the first panel of figure 1 is modelled by the varying
mean of the exchange rate returns. We note that this local trending behaviour is not apparent
from autocorrelation of the exchange rate returns; day-to-day jumps are large relative to a possibly
varying mean.

In table 1 the modes of the posterior distributions of the parameters are presented. For the
WN model, a very small mean return µ is found. The mode of the standard deviation of the
observation equation (2), σε, is 0.68; for the other models a similar value is found. The distribution
of the standard deviation ση of the disturbance in transition equation (3) for the model LL has
a mode which is 30-fold smaller than that of σε, indicating that the signal is weak. For the other

3Instead of resampling the posterior distribution of the parameters for each sample size t, we use the same
posterior distribution θ|IT for evaluating all predictive densities P (sT+j |IT ), j > 0 in the evaluation period. As
the estimation sample is large compared to the evaluation sample, the approximation error appears to be small.

4All calculations are performed in Ox version 2.20 (see Doornik 1999), using SsfPack 2.3 (Koopman, Shephard
and Doornik 1999)

5We assume the investor hedges the currency risk using 1-month forward contracts. If the hedge position is
changed, the overlay manager may need to reverse contracts.

6Source: Datastream, series DMARKER/USDOLLR, ECWGM1M, ECUSD1M.
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Figure 1: DMark/US Dollar exchange rate and the interest rate differential

Table 1: Summary statistics of posterior distributions
GLL-

GLL- GLL- GARCH- GLL-
Parameter WN LL GLL Student t GARCH Student t SV

µ × 100 −0.39
ρ 1 1 0.75 0.75 0.83 0.86 0.77
ση × 10 0 0.23 0.59 0.53 0.60 0.49 0.54
σε 0.68 0.67 0.67 0.67 0.65 0.76 0.67
δ 0.90 0.92
α × 10 0.65 0.64
ν 4.48 4.82
µh −1.07
φ 0.93
σξ 0.28

S/N ×100 2.36 1.66 2.92 1.46 2.06

Ln PO −6.5 −54.6 0 143.8 163.2 256.0 270.9

The table reports the modes of the posterior density of the parameters, together
with the signal-to-noise ratio and the logarithm of the posterior odds.
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models, an AR coefficient ρ for the signal around 0.8 is found. Together with ση in the range
0.05-0.06, this results in an average signal-to-noise ratio

S/N =
σ2

µ

σ2
ε

=
σ2

η

/
(1− ρ2)
σ2

ε

(6)

between 0.0146 and 0.0292 as reported in the bottom of the table. The low signal-to-noise ratio
also results in a wide HPD region (not reported here) of the parameter ρ. The GARCH parameters
δ and α and also the SV parameters φ and σξ are estimated with high precision, indicating the
importance of catering for varying variances in the model. The degrees of freedom parameter ν
is estimated between 4 and 5, corresponding to tails in the disturbance density which are thicker
than the tails of the normal density.

The last row of the table indicates the logarithm of the posterior odds (see Kass and Raftery
1995, Chib 1995), comparing to the GLL model. The models are given equal prior probabilities
(therefore the posterior odds equal the Bayes factors). As the number of observations is large, only
a small evidence per observation in favour of a certain model already causes huge (log) posterior
odds. Even so, the results calculated here are stable between different samples from the posterior
distribution. The importance of modelling the varying mean µt is clear from the results. Only
the LL model has a lower marginal likelihood than the WN or GLL models. Including varying
variances improves the marginal likelihood, with highest posterior odds/marginal likelihood for
the GLL-SV model.

3 The variability of hedging decisions

Given the posterior distributions from the previously described models, we evaluate the optimal
hedging decision for a risk-averse investor, with a risk tolerance parameter γ of -10. Table 2 reports
statistics on the hedging decisions, table 3 sheds light on the resulting returns and utilities both
in the first year and over both years in the evaluation period 1/1/1998-31/12/1999 jointly. Figure
2 presents the evolution of the optimal hedge ratio through time.

Table 2: Variability of hedging decisions
Model H H=0 H=1 |∆H| 3M-L 3M-G

Full hedge 1.00 0 523 0.000 −0.49 −0.33
No hedge 0.00 523 0 0.000 −12.86 9.57
RW 0.46 281 242 0.471 −7.49 8.16

WN 0.91 0 0 0.004 −1.33 0.32
LL 0.47 206 191 0.074 −5.51 8.55
GLL 0.78 0 119 0.105 −1.58 2.09
GLL-Student t 0.75 0 99 0.122 −1.77 2.39
GLL-GARCH 0.61 65 162 0.179 −3.35 4.38
GLL-GARCH- 0.58 66 135 0.176 −3.60 5.65

Student t
GLL-SV 0.62 46 135 0.187 −2.16 3.95

Columns report the average hedge ratio, number of occurrences of
a no-hedge or fully hedged position, the average absolute change
in position and the maximum loss and gain over a period of three
months over the period 1/1/1998-31/12/1999, for a risk averse (γ =
−10) investor.

The first panel in tables 2 and 3 corresponds to special hedging cases where no use of a model
was made. An infinitely risk-averse investor would choose never to run any exchange rate risk
and will have H = 1 over the complete evaluation sample, 1/1/1998-31/12/1999. No changes in
the hedging position occur, and the total return C over the two years is -3.20%, the cumulative
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Table 3: Return and utility of hedging decisions
First year Both years

Model C U C U

Full hedge −1.48 −1.48 −3.20 −3.20
No hedge −7.65 −11.52 8.18 0.24
RW −3.61 −5.34 7.56 3.35

WN −1.99 −2.01 −2.18 −2.24
LL −8.02 −8.93 3.51 −0.16
GLL −2.56 −2.73 −1.05 −1.59
GLL-Student t −2.59 −2.78 −0.50 −1.17
GLL-GARCH −3.35 −3.96 −0.56 −2.62
GLL-GARCH- −3.28 −3.95 2.31 −0.01

Student t
GLL-SV −1.54 −1.97 4.29 3.10

Columns report cumulative returns and utilities over
the first year and over both years jointly, for a risk
averse (γ = −10) investor.

interest rate differential over the period. A risk-seeking investor, not hedging at all during the 523
days, obtains a return equal to the return on the exchange rate. Note that this includes periods
with large losses and others with large gains. Reported in the columns labeled by 3M-L and 3M-G
are the maximum losses and gains encountered over a 3-month period. The power utility function
with risk tolerance parameter γ = −10 is skewed, penalizing losses more than equally sized gains
can counterbalance, such that the utility of the no-hedge case is -11.52 for a return of -7.65 in
the first year, and only 0.24 for a total return of +8.18 over the two years. The third row reports
the results from a Random Walk (RW) strategy, where tomorrow’s risk is fully hedged whenever
today a loss is led, and vice versa. The hedging position fluctuates strongly, judging from the
average absolute change |∆H|. The first panel in figure 2 displays the hedging decision for this
case. The maximum loss over a three month period is no more than 7.49%, substantially less than
the 12.86% loss of the exchange rate itself. The total return is slightly less than the return on the
exchange rate itself, even though on almost half of the days the risk was hedged. This results in a
positive utility after two years of 3.35, as most of the exchange rate return is obtained at a lower
risk. It turns out that improvements on this simple strategy during this evaluation period of a
strongly appreciating currency are not easy to find.

The second panel in table 2 reports results on the hedging decisions based on the predictive
density P (st+1|It) resulting from the models, after integrating out the parameters. The WN
model allows neither the mean nor the variance to vary over time. Therefore, the only fluctuating
element in the return equation (1) is the interest rate differential ∆rt. The hedge ratio is high
on average, with a final return and utility, in table 3, close to (but slightly higher than) the fully
hedged return of -3.20%.

The LL model takes an extreme position: The exchange rate is modelled as an I(2) process.
When the hedging decision changes, it changes strongly. In 397 out of 523 days a border solution
H = 0 or H = 1 is chosen. The final hedging result is halfway the no-hedge and full-hedge return.
Even though the return is lower than the no-hedge return, utilities are of similar size, as the return
is gained incurring less large losses. The maximum 3-month loss and gain are similar to the results
of the RW strategy.

The GLL model is more conservative, with a slower adaptation to shocks. It results in a higher
average hedge ratio (see also panel 4 in figure 2). This model points out that the risk resulting
from the varying exchange rate is most of the time too high, resulting in a negative return (though
it is still higher both in return and utility than the WN or fully hedged return). The downside
risk, judging from the value of 3M-L, is covered to a large extent.

The GLL-Student t model includes a heavier tailed disturbance distribution. The extreme
position H = 1 occurs less often, leading to a higher final return than for the GLL model. As the
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Figure 2: Hedging decisions during the evaluation sample

influence of the heavy tails on the hedging decision is not large, returns and utilities do not differ
much with the GLL model.

The next model introduces changing variances through a GARCH component. Periods of lower
risk can now be recognized, with a lower average hedge ratio as a result. Both downside risk and
upside risk appear to be larger compared with the GLL and GLL-Student t models; the final
return is slightly higher. The flexibility of the heavier tails and the GARCH effect are combined
in the GLL-GARCH-Student t model. The downside risk hardly changes, but larger gains are
made in periods of appreciation. The GLL-SV model is indicated by the posterior odds as the
model with the best fit. It leads to less extreme hedging positions (both H = 0 and H = 1 are
chosen less often), but the hedging position changes considerably (|∆H| is largest). The downside
risk is lower compared with the other models with varying variance. In the first year, with strong
depreciation in the foreign currency, the GLL-SV model manages to incur no stronger loss than
the cumulative interest rate differential, leading to the best utility of the model-based strategies.
In the second year, highest positive gains are made, leading to a utility which is of a size similar
to the cumulative result of the RW case.

Table 4 displays the correlation between the hedging decisions. The similarity between the
results for the GLL and GLL-Student t models results in a correlation coefficient of 0.96.
Likewise, inclusion of the Student t disturbance distribution only marginally alters decisions from
the GLL-GARCH model: Even though the final cumulative return is 2.9% higher, correlation
between the Ht’s is 0.96 as well. The difference in returns results from a small number of days with
large appreciations on which the GLL-GARCH-Student t model leads to a lower hedge ratio.
It is interesting to note that the RW strategy, seemingly so random, has a positive correlation of
0.5 with most model based strategies.

The results for the RW hedging strategy indicate a higher utility than for the model based
strategies, at least for the two-year evaluation period with the strong appreciation of the US
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Table 4: Correlation between hedging decisions
GLL-

GLL- GLL- GARCH-
Model RW WN LL GLL Student t GARCH Student t

WN −0.02
LL 0.20 0.11
GLL 0.55 0.07 0.57
GLL-Student t 0.60 0.13 0.57 0.96
GLL-GARCH 0.48 −0.01 0.58 0.91 0.88
GLL-GARCH- 0.49 0.04 0.63 0.88 0.91 0.96

Student t
GLL-SV 0.54 0.02 0.50 0.88 0.89 0.92 0.91

Dollar vis-a-vis the German DMark, and with a risk tolerance of γ = −10. Figure 3 displays the
cumulative utilities over the evaluation period for the set of models and the RW-based strategy,
over a range of risk tolerance parameters γ. For γ ∈ [−14,−6], the utility of the RW strategy is
(slightly) higher than for the best model strategy. For lower values of γ, the losses of the RW
strategy are penalized such that the final utility is lower; for values of γ > −6 the average hedge
ratio of the model based strategies becomes smaller, such that the appreciation of the exchange
rate is picked up in the returns and utility. In unreported calculations we switched focus to an
investor based in the US, seeking to hedge the currency risk connected to investments in the
German market. In this case the RW strategy loses out compared to the other strategies, for
almost all values of γ. The RW strategy is not able to effectively cover downside risk.

In figure 3 it is also seen how the ordering of the models indicated by the posterior odds in
table 1 does not correspond to a clear ordering of models by their cumulative utility over the two
years considered. Models with varying variance tend to deliver better hedging results, though
differences are small. Taking an incorrect decision on just one or two days can lead to a lower
final utility, which can switch the ordering in utility between models. Switching the focus to a
US investor in the German market alters the ordering, then the GLL-GARCH model comes out
first.
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Figure 3: Cumulative utility attained using different strategies over the period 1/1/1998-
31/12/1999, for a range of risk tolerance parameters
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4 Summary of the results

For 7 models, differing in the method of modelling varying means, varying variances, and the
distribution of the disturbances of the exchange rate return, we evaluated the optimal strategy of
hedging the currency risk for a risk-averse investor. The models were compared on the basis of
the optimal hedging decisions, and of the financial return, downside risk and the upside risk.

It was found that even though the exchange rate returns exhibit very little correlation, it
does make a large difference in the hedging decision whether local trending behaviour in the
exchange rate is modelled. An even larger effect was found when the volatility was allowed to
change over time. In periods of lower variance, an investor could adapt his hedging position
accordingly, while still hedging against depreciations in periods of higher volatility. The difference
in hedging decisions between the GLL-GARCH, -GARCH-Student t and -SV models is small.
Even though the correlation in decisions is high, a small difference in the hedging ratio on only
a few days with stronger movements in the exchange rate can alter the (ordering of the) final
cumulative returns and utilities. Furthermore, it was found that in periods of strong appreciation
simple strategies that hedge little can appear to be best, and likewise during strong depreciation
a strategy always hedging a high percentage can perform well. The added value of model-based
hedging decisions is better appreciated in periods with switching high and low downside risk,
which e.g. the GLL-SV model covers well. The framework described here can be of use for an
overlay manager, as a decision-supporting tool.

An evaluation of the performance of the hedging strategies over a longer period, and on ex-
change rates between other currencies, can shed more light on the robustness of the results pre-
sented in this paper, and is left for later research.
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