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Abstract

In this paper the well-known minimax theorems of Wald, Ville and
Von Neumann are generalized under weaker topological conditions on
the payoff functionf and/or extended to the larger set of the Borel prob-
ability measures instead of the set of mixed strategies.

1 Introduction.

In this paper we will generalize the classical minimax theorems of von Neu-
mann (cf.[18]), Ville (cf.[17]) and Wald (cf.[20]) in game theory under weaker
topological conditions on the payoff functionf . Also these results are ex-
tended to a larger class of strategies than the so-called class of mixed strate-
gies (cf.[19]). Before presenting those results and the generalizations, we first
need to introduce the following notations. LetA andB, unless stated other-
wise, be nonempty Haussdorff spaces with Borelσ-algebrasA, respectively
B, and consider a payoff functionf : A × B → R. Denote now byPF (A),
respectivelyPF (B), the set of all finite discrete Borel probability measures
on (A,A), respectively(B,B). If εa represents the Borel probability measure
concentrated ona ∈ A then by definitionλ belongs toPF (A) if and only if
there exists some finite set{a1, ..., an} ⊆ A and a finite set{λ1, ..., λn} of
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positive numbers satisfying
∑n

i=1 λi = 1 such that

λ =
∑n

i=1
λiεai . (1)

A similar observation applies toPF (B), and soµ belongs toPF (B) if and
only if there exists some finite set{b1, ..., bm} ⊆ B and a finite sequence
{µ1, ..., µm} of positive numbers satisfying

∑m
j=1 µj = 1 such that

µ =
∑m

j=1
µjεbj . (2)

In noncooperative game theory (cf.[9], [19]) the setsPF (A), respectivelyPF (B)
are called the set of mixed strategies of player1, respectively player2 and
these strategies have a clear probabilistic interpretation. To measure the payoff
for both players using mixed strategies we need to extend the payoff function
f : A×B → R from the cartesian set of pure strategies to the cartesian set of
mixed strategies. This extensionfe : PF (A)× PF (B)→ R is defined by

fe(λ, µ) :=
∑n

i=1

∑m

j=1
λiµjf(ai, bj) (3)

with λ ∈ PF (A), µ ∈ PF (B) given by relations (1), respectively (2). In-
troducing the setP(A), respectivelyP(B) of all Borel probability measures
on (A,A), respectively(B,B) it follows for A a finite set consisting of the
elements{a1, ..., an} thatP(A) = PF (A) and

PF (A) = {λ : λ =
∑n

i=1
λiεai ,

∑n

i=1
λi = 1, λi ≥ 0 for 1 ≤ i ≤ n}.

A similar observation also applies forB a finite set. In1928 von Neumann
(cf.[18]) published his famous minimax result for finite zero sum noncoopera-
tive games and this result in listed in the following theorem.

Theorem 1 If A andB are finite sets, then it follows that

maxλ∈P(A) minµ∈P(B) fe(λ, µ) = minµ∈P(B) maxλ∈P(A) fe(λ, µ).

The next minimax result due to Ville (cf.[17]) and published in1938 is
a generalization of the result of von Neumann and plays an important role in
infinite zero sum noncooperative game theory (cf.[19]). In this theorem we
need to assume that the pure strategy setsA andB are metric spaces.

Theorem 2 If A andB are compact metric spaces and the functionf : A ×
B → R is continuous, then

supλ∈PF (A) minµ∈PF (B) fe(λ, µ) = infµ∈PF (B) maxλ∈PF (A) fe(λ, µ).
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Another generalization of von Neumann’s result is due to Wald (cf.[20])
and published in1945. This result plays a fundamental role in the theory of
statistical decision functions (cf.[21]).

Theorem 3 If B is a finite andA an arbitrary set, then it follows that

supλ∈PF (A) minµ∈P(B) fe(λ, µ) = minµ∈P(B) supλ∈PF (A) fe(λ, µ).

Although the above results seem different it is possible to show that all
these results and some other results proved more recently in the literature by
sometimes different proofs can be easily deduced from each other and are
equivalent to the well known separation result of a closed convex set and a
point outside this set in a finite dimensional vector space (cf.[6]). This means
that all these results are based on elementary mathematics. One of those equiv-
alent results which plays an important role in this paper for the verification
of the generalizations is given by a minimax result due to Kneser (cf.[11])
and proved in1952. The proof of this result is very elementary, ingenious,
and depends only on simple computations and the well known result (cf.[1])
that any upper semicontinuous function on a compact set attains its maximum
(Weierstrass-Lebesgue lemma). Before mentioning this result we introduce
for the functionf : A × B → R the associated functionsfa : B → R and
fb : A→ R given byfa(b) = fb(a) = f(a, b).

Theorem 4 If B is a nonempty convex, compact subset of a topological vector
space,A is a nonempty convex subset of a vector space and the functionf :
A × B → R is affine in both variables andfa is lower semicontinuous onB
for everya ∈ A then it follows that

supa∈A minb∈B f(a, b) = minb∈B supa∈A f(a, b).

In this paper we will generalize the above results by weakening the topo-
logical conditions on the payoff functionf and/or extending the set of mixed
strategies. In particular, the Fubini-Tonelli theorem, the Riesz representation
theorem, the separation theorem between disjoint convex set in normed lin-
ear spaces and the Banach-Alaoglu theorem play an important role in proving
those generalizations. The first generalization under the strongest conditions is
given by the following result.

Theorem 5 Let f : A × B → R be either bounded from above or below and
measurable with respect to the Borel productσ-algebraA⊗ B. If A andB
are compact Hausdorff spaces andfa is lower semicontinuous for everya ∈ A
andfb is upper semicontinous for everyb ∈ B, then it follows that

supλ∈PF (A) minµ∈PF (B) fe(λ, µ) = infµ∈PF (B) maxλ∈PF (A) fe(λ, µ).
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Since every finite set is clearly compact this result is a generalization of the
minimax result of Von Neumann. Also, since the topological conditions on the
functionf are weaker, it is a generalization of the minimax theorem of Ville.
To give an interpretation within game theory we observe that Theorem 5 shows
that player1, respectively player2, using the mixed strategy setsPF (A), re-
spectivelyPF (B) with A andB compact Hausdorff spaces can achieve under
some topological properties on the payoff functionf anε-equilibrium for any
ε > 0. Moreover, if the value of the game is positive (this can be assumed
without loss of generality by scaling the payoff function) this value is equal to
the optimal objective value of the primal problem

sup ‖µ‖tv∫
B fadµ ≤ 1 a ∈ A
µ ∈MF (B)

to be solved by player2. In this optimization problemMF (B) denotes the
set of all finite discrete Borel measuresµ on (B,B) with (finite) total variation
norm ‖µ‖tv. The same value can be determind by player1 solving the dual
problem

inf ‖λ‖tv∫
A fbdµ ≥ 1 b ∈ B
λ ∈MF (A)

and so Theorem 5 generalizes the duality theorem of linear programming. Both
the optimal objective value of the primal and dual problem are the same but the
above problems might not have an optimal solution within the setsMF (B),
respectivelyMF (A). It can be shown that the optimal solution for both players
exists in the larger set of Borel measures with a finite total variation norm
and by scaling these solutions we obtain the optimal strategies belonging to
the set of Borel probability measures on(A,A), respectively(B,B). In the
next result the topological conditions on the functionf are weaker than the
conditions presented in Theorem 5. Under these conditions the extension of
the payoff function to the domainP(A) × P(B) is well defined and given by
fe(λ, µ) :=

∫
A×B fd(λ×µ) with λ×µ the Borel probability product measure

on (A×B,A⊗ B).

Theorem 6 Let f : A × B → R be either bounded from above or below and
measurable with respect to the Borel productσ-algebraA⊗ B. If the setB is
a compact Hausdorff space,A an arbitrary set andfa is lower semicontinuous
for everya ∈ A then it follows that

supλ∈P(A) minµ∈P(B) fe(λ, µ) = minµ∈P(B) supλ∈P(A) fe(λ, µ).
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This result can be seen as a generalization of the minimax result of Ville.
Again it shows that the two players can achieve anε-equilibrium for every
ε > 0, when the strategy sets are given byP(B) andP(A). As before, one can
easily construct the associated primal and dual optimization problems for de-
termining the value of the game and so Theorem 6 also generalizes the duality
theorem of linear programming. Finally we list the minimax result valid under
the weakest topological conditions.

Theorem 7 If B is a compact Haussdorf space,A is an arbitrary set, and the
functionfa is lower semicontinuous for everya ∈ A, then it follows that

supλ∈PF (A) minµ∈P(B) fe(λ, µ) = minµ∈P(B) supλ∈PF (A) fe(λ, µ)

Again this is a generalization of the minimax result of Wald and von Neu-
mann and as before it has a clear interpretation in game theory. Considering
now these generalizations one might wonder whether the same equality holds
under weaker assumptions. The main assumptions in these generalizations are
a compactness assumption on the set of pure strategies, a topological and a
boundedness assumption on the functionf. It turns out that these assumptions
are critical and to show this we list some counterexamples in the last section.

2 On the Riesz Representation Theorem and Lower
Semicontinuous Functions.

In this section we will gather results needed from functional analysis for the
proof of the minimax result. LetB be a compact Hausdorff space and introduce
the normed linear space(C(B), ‖.‖∞) of all continuous real valued functions
h onB equipped with the supnorm

‖h‖∞ := supx∈B |h(x)| <∞.

The set of all continuous linear functionals onC(B) is given by the dual linear
spaceC(B)∗ and this linear space has dual norm

‖x∗‖d := sup‖h‖∞ 6=0

| < x∗, h > |
‖h‖∞

.

Also, let (M(B), ‖.‖tv) denote the normed linear space of all finite signed
Borel measures on the measurable space(B,B) with B the Borelσ-algebra on
B and‖.‖tv the total variation norm and consider for everyµ ∈ M(B) the
continuous linear functionalIµ : C(B)→ R defined by

< Iµ, h >:=
∫
B
hdµ.
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ClearlyIµ belongs to the dual spaceC(B)∗ and by the so-called Riesz repre-
sentation theorem it follows that all elements of the dual spaceC(B)∗ actually
have this representation (cf.[4]).

Theorem 8 ForB a compact Hausdorff space the mappingµ→ Iµ is a linear
mapping of the space(M(B), ‖.‖tv) onto the space(C(K)∗, ‖.‖d) satisfying

‖µ‖tv = ‖Iµ‖d.

By the Riesz representation theorem we obtain that the unit ballU :=
{Iµ ∈ C(B)∗ : ‖Iµ‖d ≤ 1} can be identified with the set{µ ∈ M(B) :
‖µ‖tv ≤ 1} and since by the Banach-Alaoglu theorem (cf.[3]) the setU is
weak∗compact, the set{µ ∈M(B) : ‖µ‖tv ≤ 1}must also be weak∗compact.
It is shown in [13] that the Banach-Alaoglu theorem is an easy consequence
of Tychonoff’s theorem on the cartesian product of compact sets. Introducing
now the setP(B) of Borel probability measures on(B,B) we obtain

P(B) = {µ ∈M(B) : µ a positive measure and‖µ‖tv = 1}.

We will now show that this setP(B) ⊆ {µ ∈M(B) : ‖µ‖tv ≤ 1} is closed in
the weak∗topology and hence weak∗compact. It is well known (cf.[3]) by the
definition of the weak∗topology and Theorem 8 that a net{µi, i ∈ I} ⊆ M(B)
converges in the weak∗topology to the finite signed Borel measureµ if and only
if
∫
B hdµi →

∫
B hdµ for everyh belonging toC(B). This implies that any

net of Borel probability measures converging in the weak∗topology converges
to a Borel probability measure and so it follows thatP(B) is a weak∗closed
and hence a weak∗compact subset of{µ ∈ M(B) : ‖µ‖tv ≤ 1}. Actually
one can prove using the so-called theorem of approximation (cf.[2]) that the
convex setP(B) of Borel probability measures is given by the weak∗closure
of all finite convex combinations of the so-called one point Borel probability
measuresεb concentrated onb, b ∈ B. This meanscl(PF (B)) = P(B) with
PF (B) the already introduced set of all finite discrete probability measures on
(B,B). Summarizing we have the following result.

Theorem 9 If the setB is a compact Hausdorff space then the setP(B) is
weak∗compact. Moreover, ifPF (B) ⊆ P(B) denotes the set of all finite dis-
crete probability measures onB,then it follows thatcl(PF (B)) = P(B) with
the closure taken in the weak∗topology.

The following result is a simple consequence of the Riesz representation
theorem and the Hahn Banach theorem on normed linear spaces.

6



Lemma 10 LetB be a compact Hausdorff space. For an arbitrary convex set
G ⊆ C(B) the following properties are equivalent:

1. For everyh ∈ G it holds that minx∈Bh(x) ≤ 0.

2. There exists a Borel probability measureµ on(B,B) such that
∫
B hdµ ≤

0 for everyh ∈ G.

Proof. We first observe for everyh ∈ C(B) andB compact that the minimum
of h overB is attained. To show2 ⇒ 1 assume by contradiction that there
exists someh ∈ G satisfyingminx∈B h(x) > 0. This implies for every Borel
probability measureµ on (B,B) that

∫
B hdµ ≥ minx∈B h(x) > 0 and so we

obtain a contradiction. To verify1 ⇒ 2, it is clear that the convex setG does
not intersect the convex coneK+ := {h ∈ C(B) : minx∈B h(x) > 0}. Since
the setK+ is open in the normed linear space(C(B), ‖.‖∞) we may apply
the separation theorem in normed linear spaces between two disjoint convex
sets of which one set is open (cf.[15]), and so there exist somex∗0 ∈ C(B)∗

satisfying

suph∈G < x∗0, h >≤ infh∈K+ < x∗0, h > . (4)

To show thatx∗0 is a positive continuous linear functional we assume by con-
tradiction that there exists someh0 ∈ K+ satisfying< x∗0, h0 >< 0. This
implies usingth0 ∈ K+ for everyt > 0 that infh∈K+ < x∗0, h >= −∞ and
so by relation (4) we obtainsuph∈G < x∗0, h >= −∞. This is a contradiction
and so it follows for everyh ∈ K+ that

suph∈G < x∗0, h >≤ infh∈K+ < x∗0, h >= 0 (5)

or equivalentlyx∗0 is a positive continuous linear functional. By the Riesz rep-
resentation theorem there exists some finite signed Borel measureµ satisfying

< x∗0, h >=
∫
B
hdµ

for everyh ∈ C(B) and sincex∗0 is a positive continuous linear functional
it must follow thatµ is a finite Borel measure. By scaling we may assume
without loss of generality thatµ(B) = 1 and so by relation (5) the desired
result follows. �

To extend the above result to a larger class of functions, recall that the class
of lower semicontinuous real valued functions on the compact Hausdorff space
B is given by the next definition.
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Definition 11 The functionφ : B → R is called lower semicontinuous if for
everyr ∈ R the lower level setLφ(r) := {x ∈ B : φ(x) ≤ r} is closed.

Clearly a lower semicontinuous function is a Borel measurable function.
In the next result we relate the class of lower semicontinuous functions to the
class of continuous functions. Although this result is known, we list a short
proof for completeness.

Theorem 12 The following properties of a functionφ : B → R on the com-
pact Hausdorff spaceB are equivalent:

1. The functionφ is lower semicontinuous.

2. φ(x) = suph∈Hφ h(x) withHφ := {h ∈ C(B) : h ≤ φ} nonempty.

Proof. To show1 ⇒ 2 we first observe usingφ is lower semicontinuous and
B compact that by the Weierstrass-Lebesgue lemma the functionφ attains its
minimum overB.Hence without loss of generality we may assume thatφ ≥ 0.
Clearlyφ(x) ≥ suph∈Hφ h(x) for everyx and assume now by contradiction
that φ(x0) > r > suph∈Hφ h(x0) for somex0 ∈ X. Using now the lower
semicontinuity of the functionφ, there exists some open neighborhoodU of
x0 satisfyingφ(x) > r for everyx ∈ U. Also, sinceB is a compact Hausdorff
space, the setB is normal (cf.[4]) and the sets{x0} andB\U are closed and
disjoint. Hence Urysohn’s lemma holds and so one can find someh ∈ C(B)
satisfying0 ≤ h ≤ 1, h(x0) = 1 andh(x) = 0 for everyx ∈ B\U. Taking
nowhr := rh it is easy to verify thathr ∈ C(B), hr ≤ φ andhr(x0) = r and
we obtain a contradiction. The implication2 ⇒ 1 is obvious and so we omit
its proof. �

By the above result we see that a function is lower semicontinuous on a
compact setB if and only if it can be pointwise approximated from below
by continuous functions onB. Actually the set of lower semicontinuous func-
tions is obtained from the normed linear space(C(B), ‖.‖∞) by addition of
an extra operation: taking the supremum of an arbitrary set of functions. It is
now easy to see that the set of lower semicontinuous functions is the smallest
class of functions onB which containsC(B) and is closed with respect to
taking a supremum of an arbitrary set of functions belonging to this class. An
immediate consequence of Theorem 12 is given by the next result.

Lemma 13 LetB be a compact Hausdorff space. A real valued functionφ on
B is lower semicontinuous if and only ifHφ is nonempty and for every Borel
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probability measureµ on (B,B) it holds that

suph∈Hφ

∫
B
hdµ =

∫
B
φdµ.

Moreover, forφ lower semicontinuous it follows that the mappingL :M(B)→
(−∞,∞] given byL(µ) =

∫
B φdµ is lower semicontinuous in the weak∗

topology onM(B).

Proof. By Theorem 12 it follows thatφ = suph∈Hφ h and this implies by
the definition of the integral

∫
φdµ (cf.[2]) thatsuph∈Hφ

∫
hdµ =

∫
φdµ. To

show the reverse implication we observe thatεx is a Borel probability measure
for everyx ∈ B and this implies by our assumption that

φ(x) =
∫
B
φdεx = suph∈Hφ

∫
B
hdεx = suph∈Hφ h(x)

showing the desired result. To prove the last part we observe by the definition
of the weak∗topology that for everyh ∈ C(B) the mappingµ →

∫
B hdµ is

continuous in the weak∗topology and using now
∫
B φdµ = suph∈Hφ

∫
B hdµ

the desired result follows. �

We now list an extension of Lemma 10 to the class of lower semicontinuous
functions on the compact Hausdorff spaceB.

Lemma 14 Let B be a compact Hausdorff space. For an arbitrary convex
setG of lower semicontinuous functions onB the following properties are
equivalent:

1. For everyφ ∈ G it holds thatminx∈B φ(x) ≤ 0.

2. There exists a Borel probability measureµ on(B,B) such that
∫
B φdµ ≤

0 for everyφ ∈ G.

Proof. Again by the Weierstrass-Lebesgue lemma the functionφ attains its
minimum overB. As in Lemma 10 one can easily show2 ⇒ 1 and so we
only verify 2⇒ 1. Considering the setG0 := ∪φ∈GHφ ⊆ C(B) it follows by
the convexity of the setG that alsoG0 is convex. Also by our assumption we
obtain thatminx∈B h(x) ≤ 0 for everyh ∈ G0. Hence we may apply Lemma
10 and so there exists some Borel probability measureµ on (B,B) satisfying∫
hdµ ≤ 0 for everyh ∈ G0. This implies for everyφ ∈ G usingHφ ⊆ G0

that
∫
B φdµ = suph∈Hφ

∫
B hdµ ≤ 0 and the proof is completed. �

In the next example we construct a convex setG containing at least one
Borel measurable and not lower semicontinuous function and for this setG

9



we showinfx∈B φ(x) ≤ 0 for everyφ ∈ G and supφ∈G
∫
B φdµ > 0 for

every Borel probability measureµ. This means that Lemma 14 does not hold
if the convex setG contains at least one Borel measurable function which is
not lower semicontinuous.

Example 15 Let φ0 : B → R be an arbitrary Borel measurable function
bounded from below but not lower semicontinuous. For such a function the
setHφ0 is nonempty and so by Lemma 13 there exists some Borel probability
measureµ0 on (B,B) satisfying

suph∈Hφ0

∫
B
hdµ0 <

∫
B
φ0dµ0.

Without loss of generality (add a constant to the functionφ0) we may assume
that

0 = suph∈Hφ0

∫
B
hdµ0 <

∫
B
φ0dµ0. (6)

Introduce now the nonempty convex coneG0 := {h ∈ C(B) :
∫
B hdµ0 ≤ 0}

and consider the convex set

G := {αφ0 + h : h ∈ G0, 0 ≤ α ≤ 1}.

For this convex setG we will now verify thatinfx∈B φ(x) ≤ 0 for everyφ ∈ G
andsupφ∈G

∫
B φdµ > 0 for every Borel probability measureµ. To show that

infx∈B φ(x) ≤ 0 for everyφ ∈ G we assume by contradiction that there exists
some0 ≤ α0 ≤ 1 andh0 ∈ G0 satisfying

β := infx∈B(α0φ0(x) + h0(x)) > 0 (7)

If α0 = 0 then by relation (7) it follows that
∫
B h0dµ0 ≥ β > 0 and this

contradictsh0 ∈ G0. Thereforeα0 > 0 and again by relation (7) we obtain
φ0(x) ≥ α−1

0 (β − h0(x)) for everyx ∈ B. Sinceh0 ∈ C(B) this implies that
the functionx → α−1

0 (β − h0(x)) belongs toHφ0 and by relation (6) it must
follow that ∫

B
α−1

0 (β − h0)dµ0 ≤ 0. (8)

Also, sinceh0 ∈ G0, α0 > 0 andβ > 0 we obtain∫
B
α−1

0 (β − h0)dµ0 ≥ α−1
0 β > 0.
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and this contradicts relation (8). Therefore it must hold thatinfx∈B φ(x) ≤ 0
for everyφ ∈ G and we have verified the first property of the convex setG.
To showsupφ∈G

∫
B φdµ > 0 for every Borel probability measureµ we first

observe that for every Borel probability measureµ 6= µ0 there exists some
h ∈ C(B) satisfying

∫
B hdµ 6=

∫
B hdµ0. Without loss of generality we may

assume
∫
B hdµ >

∫
B hdµ0 (take−h instead ofh) and adding a constant to

the functionh one can find a functionh0 ∈ C(B) satisfying∫
B
h0dµ0 ≤ 0 and

∫
B
h0dµ > 0. (9)

This showsh0 ∈ G0 and sinceG0 is a convex cone, alsoαh0 ∈ G0 for every
α > 0. This implies using relation (9) that

suph∈G0

∫
B
hdµ =∞,

and sinceG0 ⊆ G it follows for every Borel probability measureµ 6= µ0 that

supφ∈G

∫
φdµ ≥ suph∈G0

∫
hdµ =∞.

Also forµ = µ0 we obtain by relation (6) that

supφ∈G

∫
B
φdµ0 ≥

∫
B
φ0dµ0 > 0

and so one may conclude that in this example there does not exist any Borel
probability measureµ satisfyingsupφ∈G

∫
B φdµ ≤ 0. This means that Lemma

13 does not hold for the considered convex setG and our counterexample is
completed.

This concludes our discussion of consequences of the Riesz representation
theorem. In the next section we will consider the application of the above
results within game theory.

3 On Minimax Theorems.

Using the results of the previous section, we will prove in this section some of
the generalizations of the minimax results of Von Neumann, Wald and Ville.
As already observed the minimax results of Von Neumann, Wald and Ville
are equivalent to the separation result in finite dimensional vector spaces be-
tween a closed convex set and a point outside this set. For our generalizations
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the stronger mathematical tools of the previous section are needed. For the
key result given by Theorem 17 we give two different proofs. One proof uses
Theorem 9 (a combination of the Banach-Alaoglu theorem and the Riesz repre-
sentation theorem) and the last part of Lemma 13, based on Urysohn’s lemma,
to verify that the conditions of Kneser’s minimax result hold and this yields
the result. The other proof uses Lemma 14 based on the Riesz representation
theorem, Urysohn’s lemma and the separation result between disjoint convex
set in normed linear spaces. We will start with the proof based on Lemma 14.
Let f : A × B → R be given and consider the functionsfa : B → R and
fb : A→ R given by

fa(b) = fb(a) := f(a, b). (10)

If B is a compact Hausdorff space andfa is lower semicontinuous onB for
everya ∈ A then by Theorem 12 and the definition of the integral we obtain
for every finite signed Borel measureµ on (B,B) that∫

B
fadµ := sup{

∫
B
hdµ : h ∈ Hfa} ≤ ∞

and this implies that the integral
∫
B fadµ is well defined for everya ∈ A and

µ a finite signed Borel measure. Hence it is possible to prove the following
consequence of Lemma 14.

Lemma 16 Let c0 be a finite constant andB a compact Hausdorff space. If
for everya ∈ A the functionfa is lower semicontinuous then it follows that
supλ∈PF (A) minb∈B fe(λ, εb) ≤ c0 if and only if supa∈A fe(εa, µ) ≤ c0 for
someµ ∈ P(B).

Proof. Replacing the functionf by f − c01A×B with 1A×B(a, b) := 1 for
every(a, b) ∈ A × B we may assume without loss of generality thatc0 = 0.
Introducing now for everyλ ∈ PF (A) the functionφλ : B → R given by

φλ(b) := fe(λ, εb) =
∫
A
fbdλ

it follows that the setG := {φλ : λ ∈ PF (A)} is convex. Due tofa is lower
semicontinuous for everya ∈ A the setG is also a subset of the set of lower
semicontinuous functions onB andφλ attains its minimum overB. Since by
definition

supλ∈PF (A) minb∈B fe(λ, εb) ≤ 0⇔ minb∈B φλ(b) ≤ 0 for everyφλ ∈ G
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and

supa∈A fe(εa, µ) ≤ 0⇔
∫
B
φεadµ =

∫
B
fadµ ≤ 0 for everya ∈ A

we obtain the desired result by Lemma 14. �

An immediate consequence of Lemma 16 is given by the following result.
This result will play a key role in this paper.

Theorem 17 LetA be an arbitrary set andB a compact Hausdorff space. If
the functionfa is lower semicontinuous for everya ∈ A then it follows that

supλ∈PF (A) minb∈B fe(λ, εb) = infµ∈P(B) supa∈A fe(εa, µ).

and there exists someµ ∈ P(B) attaining the above infimum.

Proof. The result follows immediately by applying Lemma 16. �

The following remarks are immediate consequences of Theorem 17.

Remark 18 In this remark we observe the following:

1. If B is a compact Hausdorff space and the functionfa is upper semi-
continuous for everya ∈ A instead of lower semicontinuous then we
replace in Theorem 17 the functionf by−f and this yields the equality

infλ∈PF (A) maxb∈B fe(λ, εb) = maxµ∈P(B) infa∈A fe(εa, µ) (11)

Reversing the roles of the setsA andB we obtain by relation (11) forA
a compact Hausdorff space and the functionfb is upper semicontinuous
for everyb ∈ B that

infµ∈PF (B) maxa∈A fe(εa, µ) = maxλ∈P(A) infb∈B fe(λ, εb) (12)

2. To compute the optimal Borel probability measureµ on(B,B) satisfying
the equality in Theorem 17 we need to solve the optimization problem

min z∫
B fadµ ≤ z a ∈ A
µ ∈ P(B)

By scaling the functionfa, the optimal solution of the above problem
does not change and so we may assume that the optimal objective value

13



of this ”generalized linear programming” problem is positive. Replac-
ing now every feasible(µ, z) with µ ∈ P(B) and z > 0 by the finite
Borel measureµ = z−1µ and using‖µ‖tv = µ(B) = z−1 we need to
solve the primal optimization problem

max ‖µ‖tv∫
B fadµ ≤ 1 a ∈ A
µ ∈M(B).

(P )

It is easy to show that the result in Theorem 17 is actually a minimax
result. Sinceεb ∈ P(B) for everyb ∈ B and

∫
B φdµ ≥ infb∈B φ(b), for φ

lower semicontinuous andµ ∈ P(B) with B a compact Hausdorff space we
obtain

infµ∈P(B)

∫
B
φdµ = infb∈B φ(b). (13)

Actually, sinceφ is lower semicontinuous,B a compact Hausdorff space and
εb ∈ P(B) for everyb ∈ B, we obtain by the above equality that

minµ∈P(B)

∫
B
φdµ = minb∈B φ(b).

This implies withφ replaced byb→ fe(λ, εb), λ ∈ PF (A) that under the same
conditions as in Theorem 17

minµ∈P(B) fe(λ, µ) = minb∈B fe(λ, εb)

for everyλ ∈ PF (A). Also it is easy to verify that

supa∈A fe(εa, µ) = supλ∈PF (A) fe(λ, µ) (14)

for everyµ ∈ P(B) and so the result in Theorem 17 is the same as the minimax
result

supλ∈PF (A) minµ∈P(B) fe(λ, µ) = minµ∈P(B) supλ∈PF (A) fe(λ, µ). (15)

The equality in relation (15) shows that players using the mixed strategy sets
PF (A) andP(B) can achieve forB a compact Hausdorff space andf satis-
fying some additional topological conditions anε-equilibrium for everyε > 0.
Also the player using strategy setP(B) can achieve the value of the game.
Clearly this result is a generalization of the minimax result of Wald. An alter-
native proof of relation (15) and hence of Theorem 17 is given by an applica-
tion of Kneser’s minimax result in combination with the Riesz representation
theorem and the weak∗compactness ofP(B).
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Proof. By Theorem 9 the setP(B) of Borel probability measures on(B,B)
is weak∗compact. Also by Lemma 13 the mappingµ → fe(εa, µ) is lower
semicontinuous in the weak∗topology onM(B) for everya ∈ A and this
implies that the mappingµ → fe(λ, µ) is also lower semicontinuous in the
weak∗topology for everyλ ∈ PF (A). Since the function(λ, µ)→ fe(λ, µ) is
affine in both variables onPF (A) × P(B) andPF (A) is clearly convex the
conditions of Kneser’s minimax result hold and this shows the result. �

Assuming for the moment that the integralfe(λ, εb) =
∫
A fbdλ is well

defined for everyλ ∈ P(A) andb ∈ B it follows that

supλ∈P(A) infb∈B fe(λ, εb) ≥ supλ∈PF (A) infb∈B fe(λ, εb). (16)

Imposing the same conditions as in Theorem 17 this implies

supλ∈P(A) infb∈B fe(λ, εb) ≥ minµ∈P(B) supa∈A fe(εa, µ). (17)

We are now interested under which conditions an equality occurs in relation
(17). By relation (16) such an equality is stronger as the one verified in Theo-
rem 17 and so it seems reasonable to impose, besides the conditions of Theo-
rem 17, some additional condition onf. This additional condition is given by
the assumption that the integral

fe(λ, µ) =
∫
A×B

fd(λ× µ)

is well defined withλ × µ denoting the Borel probability product measure of
λ ∈ P(A) andµ ∈ P(B). By the Fubini-Tonelli theorem (cf.[4]) it is well-
known that this integral indeed exists and satisfies∫

A×B
fd(λ× µ) =

∫
A

(
∫
B
fadµ)dλ =

∫
B

(
∫
A
fbdλ)dµ (18)

if the functionf : A×B → R is measurable with respect to the Borel product
σ-algebraA⊗ B and is either bounded from below or above.

Theorem 19 Let f : A × B → R be measurable with respect toA⊗ B and
either bounded from above or below. If eitherB is a compact Hausdorff space
andfa is lower semicontinuous for everya ∈ A or A is a compact Hausdorff
space andfb is upper semicontinous for everyb ∈ B then it follows that

supλ∈P(A) infb∈B fe(λ, εb) = infµ∈P(B) supa∈A fe(εa, µ).

Moreover, ifB is a compact Hausdorff space andfa lower semicontinuous
then there exists someµ ∈ P(B) attaining the above infimum, while forA
a compact Hausdorff space andfb upper semicontinuous, there exists some
λ ∈ P(A) attaining the above supremum.
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Proof. We first assume thatB is a compact Hausdorff space andfa is upper
semicontinuous for everya ∈ A. Since by the first assumption the Fubini-
Tonelli theorem holds the integralfe(λ, εb) is well defined for everyλ ∈ P(A)
and so by relation (17) we only need to show that

supλ∈P(A) infb∈B fe(λ, εb) ≤ infµ∈P(B) supa∈A fe(εa, µ).

Sinceµ andλ are probability measures we obtain by the Fubini-Tonelli theo-
rem that

inf
b∈B

∫
A
fbdλ ≤

∫
B

(
∫
A
fbdλ)dµ =

∫
A

(
∫
B
fadµ)dλ ≤ supa∈A

∫
B
fadµ

and this implies

supλ∈P(A) infb∈B fe(λ, εb) ≤ infµ∈P(B) supa∈A fe(εa, µ)

showing the desired result. To prove the result forA a compact Hausdorff
space andfb upper semicontinuous for everyb ∈ B we apply the first part
with f replaced by−f and the roles ofA andB reversed. This implies

supλ∈P(A) infb∈B fe(λ, εb) = − infλ∈P(A) supb∈B −fe(λ, εb)
= − supµ∈P(B) infa∈A−fe(εa, µ)

= infµ∈P(B) supa∈A fe(εa, µ)

and so the second part is verified. To show the last part we observe by Lemma
13 thatµ → supa∈A

∫
B fadµ is lower semicontinuous in the weak∗topology

and by the Weierstrass-Lebesgue lemma the infimum is attained. A similar
proof applies forB compact andfb is upper semicontinuous. �

The following remarks are immediate consequences of Theorem 19.

Remark 20 In this remark we observe the following:

1. Letf : A × B → R be measurable with respect toA⊗ B and either
bounded from above or below. IfB is a compact Hausdorff space and
the functionfa is upper semicontinuous for everya ∈ A instead of lower
semicontinuous then we replace in Theorem 19 the functionf by−f and
this yields the equality

infλ∈P(A) supb∈B fe(λ, εb) = maxµ∈P(B) infa∈A fe(εa, µ). (19)

A similar observation applies forA a compact Hausdorff space andfb
lower semicontinuous for everyb ∈ B yielding the equality

minλ∈P(A) supb∈B fe(λ, εb) = supµ∈P(B) infa∈A fe(εa, µ) (20)
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2. In Remark 18 we observed forB a compact Hausdorff space andfa
lower semicontinuous for everya ∈ A that finding the Borel probability
measureµ on (B,B) attaining infµ∈P(B) supa∈A fe(εa, µ) boils down
to solving the ”generalized linear programming” problem

max ‖µ‖tv∫
B fadµ ≤ 1 a ∈ A
µ ∈M(B).

In caseA is a compact Hausdorff space andfb is upper semicontinuous
for everyb ∈ B we obtain under the conditions of Theorem 19 that

maxλ∈P(A) infb∈B fe(λ, εb) = infµ∈P(B) supa∈A fe(εa, µ).

To compute the optimalλ ∈ P(A) attaining the above maximum one can
show similarly that the dual ”generalized linear programming” problem

min ‖λ‖tv∫
A fbdλ ≥ 1 b ∈ B
λ ∈M(A)

needs to solved. Actually for the primal objective value

infµ∈P(B) supa∈A fe(εa, µ)

positive, the above optimization problems with max replaced by sup and
min by inf have the same optimal objective value and so Theorem 19
generalizes the duality principle in linear programming. In case bothA
andB are finite sets Theorem 19 reduces to Von Neumann’s minimax
result, which can be derived by the duality principle. As we saw, the
generalized duality principle holds under the assumptions of Theorem
19 with only one of those problems having an optimal feasible solution.
In case both problems have an optimal solution we need to assume by
Theorem 19 thatA andB are compact Hausdorff spaces andfb is up-
per semicontinuous for everyb ∈ B andfa is lower semicontinuous for
everya ∈ A. In the next subsection we will show by means of counterex-
amples that this generalized duality principle will fail if the conditions
of Theorem 19 are weakened.

Since in Theorem 19 the Fubini-Tonelli theorem holds we obtain in a sim-
ilar way as in relation (13) that

infb∈B fe(λ, εb) = infµ∈P(B) fe(λ, µ)
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for everyλ ∈ P(A) and

supa∈A fe(εa, µ) = supλ∈P(A) fe(λ, µ)

for everyµ ∈ P(B). This shows that the result in Theorem 19 is the same as
the minimax result

supλ∈P(A) infµ∈P(B) fe(λ, µ) = infµ∈P(B) supλ∈P(A) fe(λ, µ). (21)

Hence under the conditions of Theorem 19 any two players with the strategy
setsP(A) andP(B) can achieve anε-equilibrium for everyε > 0. Moreover,
in caseA is compact the player with strategy setP(A) can achieve the value of
the game, while forB compact the player with strategy setB can achieve this
value. Finally, inspired by the second part of Remark 20 we list the following
consequence of Theorem 19 and 17.

Theorem 21 Let f : A × B → R be measurable with respect toA⊗ B and
either bounded from above or below. IfB is a compact Hausdorff space and
fa is lower semicontinuous for everya ∈ A andA is a compact Hausdorff
space andfb is upper semicontinous for everyb ∈ B then it follows that

supλ∈PF (A) minb∈B fe(λ, εb) = infµ∈PF (B) maxa∈A fe(εa, µ).

Proof. SinceB is a compact Hausdorff space andfa is lower semicontinuous
for everya ∈ A it follows by Theorem 17 that

supλ∈PF (A) minb∈B fe(λ, εb) = infµ∈P(B) supa∈A fe(εa, µ). (22)

Using nowA is compact andfb is upper semicontinous for everyb ∈ B we
obtain by relation (12) that

infµ∈PF (B) maxa∈A fe(εa, µ) = maxλ∈P(A) infb∈B fe(λ, εb) (23)

Applying now Theorem 19 to the last parts of relations (23) and (22) yields the
desired result. �

Using relation (14) it is easy to verify that the result of Theorem 21 is the
same as the minimax result

supλ∈PF (A) minµ∈PF (B) fe(λ, µ) = infµ∈PF (B) maxλ∈PF (A) fe(λ, µ).

and this minimax result is clearly a generalization of the minimax result of Von
Neumann. We will now show some easy consequences of Theorem17, thereby
generalizing earlier results to be found in the minimax literature. Before men-
tioning those generalizations we introduce for convenience the following class
of functions.
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Definition 22 The functionf : A×B → R belongs to the classC if

infµ∈P(B) supa∈A fe(εa, µ) = infb∈B supa∈A f(a, b).

Moreover, the functionf : A×B → R belongs to the classD if

supλ∈PF (A) infb∈B fe(λ, εb) = supa∈A infb∈B f(a, b).

We first start with an improvement of the main minimax result proved by
Kassay and Kolumban (cf.[10]). Observe the usual topological conditions are
imposed beforehand.

Lemma 23 LetB be a compact Hausdorff space andA an arbitrary set. If
the functionfa is lower semicontinuous for everya ∈ A then it follows that
f ∈ C if and only if

supλ∈PF (A) minb∈B fe(λ, εb) = minb∈B supλ∈PF (A) fe(λ, εb).

Proof. To showf ∈ C implies the desired equality we observe by Theorem 17
andf ∈ C that

supλ∈PF (A) minb∈B fe(λ, εb) = infb∈B supa∈A f(a, b).

Sincefa is lower semicontinuous for everya ∈ A it follows that supa∈A fa
is also lower semicontinous and by the Lebesgue-Weierstrass theorem andB
compact this yields

supλ∈PF (A) minb∈B fe(λ, εb) = minb∈B supa∈A f(a, b)

Applying now relation (14) yields the desired equality. To show the reverse
implication, it follows immediately by Theorem 17 and our assumption thatf
belongs toC. �

A second easy consequence is given by a characterization for which func-
tionsf actually a minimax result forf holds. This result generalizes for dif-
ferent sets of generalized convex functions the well known minimax results of
Ky-Fan (cf.[5]), König (cf.[12]), Neumann (cf.[14]) and Jeyakumar (cf.[8]).
The class of functions considered by these authors are a proper subclass of the
setC ∩ D.

Lemma 24 LetB be a compact Hausdorff space andA an arbitrary set. If
the functionfa is lower semicontinuous for everya ∈ A then it follows that
f ∈ C ∩ D if and only if

supb∈B minb∈B f(a, b) = minb∈B supa∈A f(a, b).
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Proof. To showf ∈ C ∩ D implies the desired equality we apply Lemma 23
and usef ∈ D. The reverse implication is obvious using Theorem 17. �

Finally we list some counterexamples showing that the conditions men-
tioned in Theorems 17, 19 and 21 cannot be deleted from these theorems. In
this paper we have used three types of conditions. These conditions are given
by:

1. (Topological) The functionfa is lower semicontinuous or the function
fb is upper semicontinuous.

2. (Compactness) The setA orB is a compact Hausdorff space.

3. (Boundedness) The functionf is either bounded from above or below.

In the first counterexample we show that Theorem 19 is not correct if only
conditions2 and3 hold. Observe this is also a counterexample for Theorem
17. Actually in this counterexample both setsA andB are compact metric
spaces (hence condition2 is replaced by a stronger condition) and the function
f is uniformly bounded from above and below (also stronger than condition
3). However, the functionfa is not lower semicontinuous for everya ∈ A and
fb is not upper semicontinous for someb ∈ B. Clearly by Theorem 19, for
bothA andB compact metric spaces andf is bounded from below or above,
the minimax result should hold if eitherfa is lower semicontinuous orfb is
upper semicontinuous.

Example 25 Let A = B = [0, 1] and introduce the functionf : [0, 1] ×
[0, 1]→ R given by

f(a, b) :=


1 for 0 < a < b
1 for b = 0
0 otherwise

This function is bounded from above and below. Also for every0 < a ≤ 1 we
obtain{b ∈ B : fa(b) ≤ 0} = (0, a] and{b ∈ B : f0(b) ≤ 0} = (0, 1] and so
fa is not lower semicontinuous for everya ∈ A. Similarly for every0 < b < 1
it follows that

{a ∈ A : fb(a) ≥ 1} = (0, b) (24)

and sofb is not upper semicontinuous for every0 < b < 1. Also by relation
(24) we obtain forλ ∈ P(A) and0 < b < 1 that

0 ≤
∫
A
fbdλ = λ((0, b))
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and this showsinfb∈B fe(λ, εb) = 0 for everyλ ∈ P(A). At the same time, for
µ ∈ P(B) and0 < a < 1 it follows that

1 ≥
∫
B
fadµ = µ({0} ∪ (a, 1])

and this impliessupa∈A fe(εa, µ) = 1. Hence the conclusion of Theorems 17
and 19 do not hold.

In the next more complicated counterexample we construct an example
with A andB compact metric spaces,f bounded from above and below,fb is
continuous for everyb ∈ B andfa upper semicontinuous for everya ∈ A (not
lower semicontinuous) and show that the conclusion of Theorem 21 does not
hold.

Example 26 LetA = B = [0, 1] and consider for anyn ∈ N a continuous
mappingφn : [0, 1]→ Πn

i=1[0, 1] given by

φn(t) := (φn1(t), ..., φnn(t))

onto the n-dimensional cubeΠn
i=1[0, 1] satisfyingφn(0) = φn(1) = 0. To con-

struct such a continuous surjective curve we use forn = 2 the so-called Peano
space filling curveφ2 (cf.[7]) and use induction onn and the composition of
functions

[0, 1]
φ2→ [0, 1]× [0, 1] h→ Πn

i=1[0, 1]

with h(s, t) := (p(s), φn−1(t)) and

p(s) =
{
s for 0 ≤ s ≤ 1

2
1− s for 1

2 ≤ s ≤ 1
.

Introduce now the nonnegative functionf : [0, 1]× [0, 1]→ [0,∞) given by

f(a, b) :=
{

2 exp(1) for b = 0
2 exp(1)Πn

k=1pnk(a, b)
1
n for b ∈ (0, 1]

with pnk : [0, 1]× (0, 1] defined by

pnk(a, b) := |a− φnk(2nb− 1)| for b ∈ (2−n, 2−n+1], n ∈ N.

To determine an upperbound on the functionf we observe for every(a, b) ∈
[0, 1]× (0, 1] thatpnk(a, b) ≤ 1 and this implies

sup(a,b)∈{0,1]×[0,1] f(a, b) ≤ 2 exp(1). (25)
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Hence we have shown that the functionf is bounded from above and be-
low. To list the topological properties of the functionf it is obvious that the
function fb is continuous for every0 ≤ b ≤ 1. Also for everya ∈ [0, 1]
and b0 ∈ (0, 1] it is clear that limb→b0 fa(b) = fa(b0) and by relation (25)
lim supb↓0 fa(b) ≤ 2 exp(1) = fa(0). This shows thatfa is upper semicon-
tinuous, and to prove thatfa is not continuous we consider fora ∈ [0, 1) the
sequencebn = 2−n+1, n ∈ N. Usingφnk(0) = 0, 1 ≤ k ≤ n it follows that

limn↑∞ fa(bn) = 2a exp(1) < fa(0)

and sofa is not lower semicontinuous for0 ≤ a < 1. We will now verify for
everyλ ∈ PF (A) that

minb∈[0,1] fe(λ, εb) = 0. (26)

To show this, we observe for everyλ ∈ PF (A) that

fe(λ, εb) =
∑n

i=1
λif(ai, b) (27)

for some finite set{a1, ..., an} ⊆ Πn
i=1[0, 1] and positive numbersλi, 1 ≤

1 ≤ n satisfying
∑n

i=1 λi = 1. Since the mappingφn : [0, 1] → Πn
i=1[0, 1]

with φn(0) = φn(1) = 0 is surjective onto the hypercube, there exists some
0 < t0 < 1 with φn(t0) = (a1, ..., an), and this implies for every1 ≤ i ≤ n
that

Πn
k=1|ai − φnk(2nb0 − 1)|

1
n = 0

with 2−n < b0 := (t0 + 1)2−n ≤ 2−n+1. Hence it follows thatf(ai, b0) = 0
for every1 ≤ i ≤ n, and so by relation (27) we obtainfe(λ, εb0) = 0.Applying
the nonnegativity of the functionf the result in relation (27) now follows. To
give a lower bound on the value

supa∈[0,1] fe(εa, µ) = supa∈[0,1]

∫ 1

0
fadµ

for everyµ ∈ P(B) we continue as follows. Since the functionx → ln(x) is
concave on(0,∞) it follows by Jenssen’s inequality (cf.[16]) that

ln
∫ 1

0
ψ(t)dt ≥

∫ 1

0
ln(ψ(t))dt
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for every positive continuous functionψ on [0, 1]. This shows for every2−n <
b ≤ 2−n+1, n ∈ N andbk := φnk(2nb− 1) that∫ 1

0
fb(a)da ≥ 2 exp(

∫ 1

0
ln(Πn

k=1|a− bk|
1
n )da+ 1) (28)

= 2 exp(
1
n

∑n

k=1

∫ 1

0
ln(|a− bk|)da+ 1).

Since0 ≤ bk ≤ 1 for every1 ≤ k ≤ n and the functionp : [0, 1] → R given
by

p(x) =
∫ 1

0
ln(|a− x|)da =

∫ x

0
ln(a)da+

∫ 1−x

0
ln(a)da

achieves its minimum atx = 1
2 (check by differentiation), we obtain by relation

(28) that ∫ 1

0
fb(a)da ≥ 2 exp(

∫ 1

0
ln(|a− 1

2
|)da+ 1) = 1.

Hence we have shown that
∫ 1

0 fb(a)da ≥ 1 for every0 ≤ b ≤ 1 and by the
Fubini-Tonelli theorem this yields for everyµ ∈ P(B) that∫ 1

0
fe(εa, µ)da =

∫ 1

0
(
∫ 1

0
fadµ)da =

∫ 1

0
(
∫ 1

0
fb(a)da)dµ ≥ 1.

This showssupa∈[0,1] fe(εa, µ) ≥
∫ 1

0 fe(εa, µ)da ≥ 1 for everyµ ∈ P(B) and
so the conclusion of Theorem 21 does not hold.

We will now consider two examples which show that the compactness as-
sumption given by condition2 cannot be deleted in the above theorems. In
the first counterexample of this kind we show that there exists open setsA and
B and a uniformly bounded continuous functionf : A × B → [0, 1] (much
stronger than conditions1 and3!), for which the conclusion of Theorems 17
or 19 does not hold.

Example 27 LetA = B = (0, 1) and introduce the functionf : A × B →
[0, 1] given byf(a, b) := h(1− b

a) with h : R→ [0, 1] defined by

h(t) =


1 for t ≤ 0
1− 2t for 0 < t ≤ 1

2
0 for t > 1

2

.
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Since the functionh is continuous onR it follows that also the functionf :
A × B → R is continuous onA × B. Moreover, for every0 < b < 1

2 and
λ ∈ P(A) we obtain

0 ≤
∫
A
fbdλ ≤ λ((0, 2b])

and soinfb∈B fe(λ, εb) = 0 for everyλ ∈ P(A). Also we obtain for every
0 < a < 1

2 andµ ∈ P(B) that

µ([a, 1)) ≤
∫
B
fadµ ≤ 1

and this showssupa∈A fe(εa, µ) = 1 for everyµ ∈ P(B). Hence the conclu-
sions of Theorems 17 and 19 do not hold.

In the second counterexample related to the compactness assumption we
construct a continuous functionf onA × B, bounded from above and below,
with A compact andB not, and show that the conclusion of Theorem 21 does
not hold.

Example 28 Let A = [0, 1] and B = (0, 1] and consider the functionf
defined in Example 26. It is easy to see that this functionf is continuous
on A × B. As in Example 26 we obtaininf0<b≤1 fe(λ, εb) = 0 for every
λ ∈ PF (A) and supa∈[0,1] fe(εa, µ) ≥ 1 for everyµ ∈ P(B). This shows
that the conclusion of Theorem 21 does not hold.

Finally in the last counterexample we show that the boundedness condition
in Theorem 19 cannot be omitted. Actually in this counter example we con-
struct compact setsA andB together with a functionf neither bounded from
above or below satisfyingfa andfb are continuous for everya ∈ A andb ∈ B
and show that the Fubini-Tonelli theorem does not hold. This implies that also
the conclusion of Theorem 19 does not hold.

Example 29 LetA = B = [0, 1]. We will now construct a functionf satisfy-
ing fa andfb continuous for everya ∈ A and b ∈ B, which is not bounded
from above or below. To carry out the construction of this function consider
a continuously differentiable functionθ : R → R satisfyingθ(t) < 0 for
0 < t < 1

2 andθ(t) = 0 otherwise. Clearly such a function exists and intro-
duce now the functionh : R→ R given by

h(t) =

{
θ(t)−θ(t− 1

2
)

t for t 6= 0
0 for t = 0.

(29)
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Sinceθ is continuously differentiable withθ′(t) = 0 for everyt < 0 we obtain
by relation (29)

limt↓0 h(t) = limt↓0
θ(t)
t

= θ′(0) = limt↑0 θ
′(t) = 0 = h(0)

and limt↑0 h(t) = 0 = h(0). This shows that the functionh is continuous
at 0 and since this function is clearly continuous att 6= 0 the functionh is
continuous inR and satisfies by relation (29) supp(h) ⊆ [0, 1]. If 1

2 ≤ b ≤ 1,
it follows by relation (29) that∫ 1

b
th(t)dt =

∫ 1

b
θ(t)− θ(t− 1

2
)dt = −

∫ 1
2

b− 1
2

θ(t)dt ≥ 0

and for0 ≤ b < 1
2∫ 1

b
th(t)dt =

∫ 1

b
θ(t)− θ(t− 1

2
)dt = −

∫ b

0
θ(t)dt ≥ 0.

Also for this functionh we obtain∫ 1

0
h(t)dt =

∫ 1
2

0
θ(t)(t−1 − (t+

1
2

)−1)dt < 0

and by scaling we may assume that we have constructed a continuous function
h with supp(h) ⊆ [0, 1] satisfying∫ 1

0
h(t)dt = −1 and

∫ 1

b
th(t)dt ≥ 0 for everyb ∈ [0, 1]. (30)

Introduce now the functiong : A×B → R given by

g(a, b) =
{
a−3h( ba) for 0 < a ≤ 1, 0 ≤ b ≤ 1
0 for a = 0, 0 ≤ b ≤ 1.

The functionga : [0, 1]→ R given byga(b) := g(a, b) is continuous for every
0 ≤ b ≤ 1 and the functiongb : [0, 1] → R given bygb(a) := g(a, b) is also
continuous for every0 ≤ b ≤ 1. Also by relation (30) it follows that∫ 1

0
g(a, b)db = −a−2 ≤ −1

for every0 < a < 1,
∫ 1

0 g(a, b)db = 0 for a = 0 and∫ 1

0
g(a, b)da = b−2

∫ 1

b
th(t)dt ≥ 0
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for every0 ≤ b ≤ 1. Now we finally introduce the functionf : A × B → R

given by

f(a, b) = g(a, b) + g(1− a, b)− g(b, a)− g(1− b, a). (31)

By the previous observations it follows that the functionsfa andfb are contin-
uous. Also one can check by relation (31) that

∫ 1
0 f(a, b)db ≤ −1 for every

0 ≤ a ≤ 1 and
∫ 1

0 f(b, a)da ≥ 1 for every0 ≤ b ≤ 1. This shows

supλ∈P(A) infb∈B fe(λ, εb) ≥ infb∈B

∫ 1

0
f(a, b)da ≥ 1

and

infµ∈P(B) supa∈A fe(εa, µ) ≤ supa∈A

∫ 1

0
f(a, b)db ≤ −1

and so the concludion of Theorem 19 does not hold.

This concludes our discussion of the generalizations of the minimax results
of Wald, Ville and Von Neumann. An important issue related to the above re-
sults would be to derive computational procedures for finding good approxi-
mations of the optimal strategies within the set of Borel probability measures.
This might be a topic of future research.
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