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Abstract

Asymptotic expansions are employed in a dynamic regression model with a unit root in
order to find approximations for the bias, the variance and for the mean squared error of
the least-squares estimator of all coefficients. It is found that in this particular context such
expansions exist only when the autoregressive model contains at least one non-redundant
exogenous explanatory variable. Surprisingly the large sample and small disturbance asymp-
totic techniques give closely related results, which is not the case in stable dynamic regression
models. The expressions for moment approximations are specialized to the random walk
with (trend in) drift model and their accuracy is examined in Monte Carlo experiments.

1. Introduction

In dynamic regression models with normally distributed white noise disturbances least squares
(maximum likelihood) estimators may be seriously biased in small samples. Strong evidence for
this is provided by Sawa (1978) who used the moment generating function to find exact values for
the bias (and variance) of the least squares estimator of the lagged dependent variable coefficient
in the case of a constant but no exogenous variables, i.e. the stable AR(1) model. This work
was extended by Hoque and Peters (1986) to the case of included exogenous variables under
normality assumptions, while Peters (1987) analyzed the same ARX(1) model with non-normal
disturbances. These papers provided numerical results for different disturbance structures and
exogenous data series.

An alternative approach to investigating the moments of econometric estimators is to find
asymptotic approximations. This was the method followed by Grubb and Symons (1987), who
used large-T" asymptotics in the tradition of Kendall (1954) where T' is the sample size. They
derived an expression for the bias to the order of 7! of the lagged dependent variable coefficient
in the ARX(1) model, while the present authors — henceforth referred to as KP — analyzed the
bias of the full coefficient vector, see KP (1993). Later, KP (1994) extended the analysis to the
higher-order dynamic regression model, i.e. ARX(p), and Kiviet et al. (1995) to the dynamic



seemingly unrelated regression model. More recently, KP (1998) found the bias to the order of
T2 in the stable ARX(1) model.

In econometrics there are two main approaches to finding asymptotic approximations to the
moments of estimators in models with random regressors. The first was introduced by Nagar
(1959), who found large sample approximations to the moments of consistent k-class estimators
in a static simultaneous equation model, while a second alternative procedure was employed
in the same model by Kadane (1971) based upon small disturbance asymptotics. This yielded
small-o asymptotic approximations which, remarkably, were essentially the same as the large-T
ones. However, KP (1993, 1994) compared bias approximations from these two approaches and
found that they can produce quite different results in dynamic regression models; in particular,
in that context the large-T" approximation (which was also used by Grubb and Symons) was
found to be superior, both theoretically and numerically.

Asymptotic methods are also used to approximate the distribution of estimators. In the
context of stable and unstable dynamic regression models Evans and Savin (1984) employ both
large-T and small-oc methods and, because they focus on first-order asymptotic distributions,
they establish equivalence. Interesting results on asymptotic distributions in near unit root
models have also been obtained by Nabeya and Sgrensen (1994), but their results do not yield
approximations to the moments of estimators.

The moment approximations in dynamic regression models referred to above were all ob-
tained in stable models with stationary or non-stationary exogenous regressors. Although the
large-T approximations, in particular the second-order approximations, are often remarkably
accurate, it has also been demonstrated that they are of limited use for models where the AR
parameter is close to unity. In KP (1998) it was even established that, for near unit root models,
an approximation to the bias to the order of 772 is generally much more vulnerable than the
simpler approximation to order 7~!. Given the current interest in non-stationary models with
unit roots, a natural extension of the KP work is to a model in which the stability assumption is
relaxed. The need for bias reduction methods in unit root models is also expounded in Abadir
(1995). In this paper we examine the least squares estimator in the normal ARX(1) model
when the true coefficient of the lagged dependent variable is unity. The major achievements are
the derivation of an approximation accurate to order 773 for the bias of the lagged dependent
variable coefficient (this bias is of order 7~2 when the exogenous regressors are stationary) and
an approximation accurate to order T~ for the mean squared error (MSE) of this coefficient
(when the bias is of order T2, then the variance and the MSE are of order T—3). In addition,
we show that, unlike in the stable case, the large-T" and small-o approximations produce results
which are very closely related, with — quite remarkably — the small-o results potentially superior
here because we find that an order 72 approximation does not contain all terms of order o2,
whereas the order o approximation does include all contributions of order 72 and also some
of the order 772 terms. Attention is also paid to the moments of the full vector of coefficients,
especially when the model contains an intercept plus a linear trend.

The paper is organized as follows. In Section 2 we distinguish large sample and small
disturbance asymptotic methods, focusing on asymptotic expansions for the lagged dependent
variable coefficient estimator in the ARX(1) model. In Section 3 we obtain approximations
to its finite sample bias, variance and mean squared error, and specialize these results for the
case of an AR(1) model with a non-zero intercept. Section 4 extends the results for the full
coeflicient vector of a unit root model with an arbitrary number of possibly non-stationary
regressors. In Section 5 we investigate the accuracy of the theoretical results via simulation
methods and Section 6 concludes. Proofs are given in a series of Appendices.



2. Expansions for the Unit Root Coefficient

In the Nagar approach to finding moment approximations we commence by expressing the
estimation error in terms of stochastic components which are of decreasing order of magnitude
in terms of the sample size T. In particular, we determine a positive constant ¢ such that for
an estimator A of the unknown parameter A we have the expansion

T'A=A) =ag+T a1 +T rag + T a3 + - - -+ T a,+T V2R, (2.1)

where the a;, j = 0,...,q and the remainder Rqy; are all Op(1) as T — oo. Notice that the

first-order asymptotic distribution is determined by the leading term, i.e. T‘S(X - A) L ap as
T — oo. Often ¢ = % but it may take other values in non-stationary models.

The small disturbance approach requires that a normalized estimation error be represented
in terms of stochastic components which are of decreasing order of magnitude with respect to
the standard deviation of the disturbance term, o. Typically, the expansion takes the form

1~ . . 2. 3. q; q+1 1
;(A—A)—a0+aa1+aa2+a as+---+0lag+ 0T Ry, (2.2)
where the a; ,7=0,...,q and Rq—i—l are all bounded in probability as ¢ — 0.

When large-T" or small-o expansions have been found moment approximations can be ob-
tained by dividing the corresponding moments of the retained terms in the expansion by the
normalizing constant (i.e. T° or o~!). However, there is no standard approach to finding these
expansions; we shall return to this point later.

The autoregressive model of our interest will be written

y=Xy_1+XB+u, (2.3)

where the scalar A and the k x 1 vector 3 are coefficients whose values are unknown, y =
(y1,-.-,yr)" is a T x 1 vector of observations on a dependent variable, y_; is the y vector lagged
one time period, i.e. y_1 = (Y0, .-.,y7r—1)", X is a full column rank 7' x k matrix of observations
on k strongly exogenous regressors and u ~ N[0,0?] is the T x 1 disturbance vector. We shall
examine the least-squares estimators of A and [ conditional on X and yq (the first observed
value for y). In particular we investigate the bias, variance and MSE of these estimators in finite
samples. For the moment we shall assume that all components of X are bounded, so X'X =
O(T). Assuming that Z = [y_; : X| has rank k + 1, the least-squares estimator for X in (2.3)
is given by

~ " M "M
A=l g e (2.4)
Yy My 1 y My
where M = It — X (X'X)71X’. We may write
y-1=yoc(A) + CN)X B+ C(A)u, (2.5)
where ¢()) is a T' x 1 vector and C(\) a T x T matrix given by
1 0 07
A 1 0
A2 A 1
c(\) = , C)=| X A (2.6)
AT A2 T A1 0




In the unit root case ¢(1) is just a vector with all components unity, whereas C(1) has zeroes
on and above its main diagonal and components unity below. Introducing special notation for
this situation we define:

v=c)=| - |, 7=coy=| - - - - -], (2.7)
. N
1 1 10

In Appendix A various properties of expressions in ¢ and J are collected, which will be used in
the derivations to follow.

We shall focus now on the situation where A is unknown and is estimated by least-squares,
but where actually A = 1, i.e. model (2.3) has a unit root. Hence, (2.5) specializes into

Yy-1=yot+ JXB+ Ju, (2.8)
and, assuming the presence of a constant in the model so that M: = 0, we have
My 1 =MJXB+ MJu. (2.9)

Hence, My_1 is free of yg so that Ain (2.4) does not depend on yo. This is in sharp contrast
to the stable model for which KP (1998) showed to what extent finite sample bias is affected
by the actual value and stochastic properties of the start-up value yg.

From (2.4) and (2.9) we find for the estimation error of the unit root model

BX'J Mu+u'J Mu

A—1=
FX T MJIXJ3+ 28 X' J MJu A+ u'J MJu

(2.10)

for which an expansion is to be developed. We first focus on obtaining large-T' results. To
proceed, we have to examine the orders of magnitude of all terms in the above ratio. For the
present setting where X’'X = O(T'), which will be relaxed in Section 4, this is done in Appendix
B. Assuming (3 # 0 (i.e. not all regressors are redundant), we may rewrite the estimation error
(2.10) as

A

|- <6’X'J’Mu+u’J’Mu> < 25/X/J/MJU+U/J,MJU>1 o)

BX' T MJIX}3 BX'JMJIX}3

and if 3 is fixed and finite i.e. S = O(1), it follows that the first factor of (2.11) has two
terms which are O,(T~%/2) and O,(T~?) respectively, and in the other (inverted) factor there
are two ratios which are of order O,(T~1/2) and O,(T~1) respectively. In going from (2.10) to
(2.11) we have divided both the numerator and denominator of (2.10) by the ("largest”) term
B X' J' M.JX 3, which we call the base. Notice that it appears in the denominator of the inverse
term in (2.11) so that when this inverse is expanded as a power series successive terms are of
decreasing order in probability. Using the very simple expansion

< |y XN M T+ u'J'MJu> - | g BX T MTu

_ o - -7 T*l
FX T MIXS Fxarrxs T

and upon omitting in (2.11) all terms of stochastic magnitude 0,(T2), it is easily shown that

~ B'X'J Mu u'J Mu BX'J Muu' J MJIX3 _
A—1= /1T + Ry —2 / ) 2 + OP(T 2)7 (212)
X' IMJIXE [BX'JMIXJ (BX/J/]V[JXIB)




where the first term is O,(T~%/?) and the remaining two terms are O,(7~2). Hence, the first
term of (2.12) determines the first-order asymptotic distribution of the estimator. Under the
assumed conditions it is readily shown that the limiting distribution is still normal, i.e.

2
320 -1) LN (0. 1 d 2.13
A=1)=N|0, lim LAX TMIXE )’ (2.13)

but that the rate of convergence is faster (§ = 3/2) than in the stable model. This surprising
result is relatively well-known, see for example West (1988) and Banerjee et al. (1993, Chapter
6), who give particular attention to the case where there is a constant term but no exogenous
variables.

It is of interest to note that in (2.10) the denominator naturally contains a decomposition
of the term y’ ; My_; into its stochastic and non-stochastic parts such that the non-stochastic
part 3 X'J'MJX /3 is independent of 0% whereas it is also the "largest” term and subsequently
may then form a suitable base for the expansion of the denominator. This differs from the
situation in the stable dynamic model and the approach followed by Kendall (1954), Grubb
and Symons (1987) and KP (1993, 1994, 1998) where the base chosen for the expansion was
E(y"_;My_1) which is linear (but not generally affine) in 2. As a result the large-T and the
small-o expansions yield qualitatively different results, as shown in KP (1993, 1994). In fact
the small-o results were shown to be marked inferior in the stable case because any finite order
small-o approximation omits terms of order 7.

In the present nonstable model, where the base ' X'J'MJX[ is independent of o2, we
find a strong correspondence between the large-T" and small-o asymptotic results. To see this,
consider the expansion in (2.12). If w is replaced by oe, where ¢ is a vector of independent
standard normal variables, then the expansion involves terms of increasing order in o, so that
the expansions to Op(c) and O,(c?) coincide with the expansions to O,(T~3/2) and O,(T~?)
respectively. However, when focusing on bias, the expansions again shows a difference between
small-o and large-1" approximations. Below, we will prove that the third term in the expan-
sion (2.12), which is O,(T~2), has an expectation that is O(T~3), which is thus omitted from
the large-T approximation to order T~2. Therefore the O(c?) contribution to the bias con-
tains, apart from the components of order of magnitude 72, some contributions of order T—3.
So, surprisingly, in this unit root model the first-order small-o bias approximation includes a
contribution which is of second-order in a large-T sense.

Close correspondence of large-T" and small-o asymptotic results has earlier been established
between the findings of Nagar (1959) and Kadane (1971) for consistent k-class estimators in a
static simultaneous equation framework. As shown in KP (1996) this equivalence breaks down,
however, for the inconsistent least-squares estimator in the static simultaneous equations model,
where an appropriate base for the expansion is again linear in o2, whereas it is independent of
o2 for consistent estimators.

One specific finding in KP (1993) is that in the stable model the small-o expansion is not
feasible when yg = 0 and 8 = 0, because the estimator \ is invariant with respect to o in that
case. When 8 = 0 in the present unit root model small-o is again not feasible because the
estimation error (2.10) reduces then to a simple ratio of quadratic forms in standard normal
variates. Hence, its moments can be accurately determined by well-known numerical methods.
Nevertheless it is instructive to examine large-T" expansions for this case. Using the expectation
of the denominator as a base we obtain

~ u'J Mu u'J Mu ' J MJu—E (u'J MJu) -1

A—1= = 1 . 2.14
W J'MJu  E (W J MJu) * E (W' J'MJu) (2.14)

Since w'J'MJu — E (W J'MJu) = Op(T?) and E (v'J'MJu) = O(T?) the random term in the
inverse factor is Op(1) and not O,(T~") with £ > 0 as would be required for a converging



expansion. An alternative formulation is however

WIMu WS Mu [ WX (X)X ]

WwIMJu W J Ju w' J' Ju

(2.15)

and now the random term in the inverse factor is O, (T ~1/2) enabling a valid expansion. How-
ever, evaluation of moment approximations from this expansion is not straightforward since it
requires the evaluation of products of ratios of stochastic terms. Hence, while we have a valid
large-T expansion, we cannot use it fruitfully.

The accuracy of our expansion based moment approximations to be obtained in the next
section deteriorates when (3 gets close to zero (as we shall see later from the simulations).
Therefore it could be worthwhile to develop special results for the case where ( gets close to
zero asymptotically. Thus, alongside the cases 8 = O(1) and 8 = 0 we examined 3 = O(T %)
and 8 = O(0?) for § > 0. The result is that for 0 < § < % the original expansion is valid and
so yields similar results. For 6 = % no valid expansion can be found while for § > % the largest
term in the numerator of (2.10) is «/J'Mu and in the denominator «'J M Ju. This implies
the same problem as in the 3 = 0 case. Hence, 3 local to zero expansions cannot be usefully
employed here.

3. The Moments of the Unit Root Coefficient Estimator

We now derive approximations to the bias, the variance and the mean squared error of the
estimator A given in (2.4). An approximation to the bias accurate to O(T2) is obtained by
summing the expected values of the three terms in (2.12). Since the expected value of the
first term is zero and that of the third term is of order 773, just the second term determines
the O(T2) bias. Extending the expansion and including all terms of O,(T3) leads to the
following result (proved in Appendix C).

Theorem 1. In the first-order dynamic regression model (2.3) where the coefficient of the
lagged dependent variable X\ is equal to unity, 3 # 0, f = O(1) and X'X = O(T), the bias of
the least squares estimator of \ to the order of T3 is given by:

BG_1) = Zlr@) 1 ot (M) b (S M)
Ao’ tr (M) §X"TMT T MIX
(Bx'IMIXg)°

+o(T™3). (3.1)

Note that X is unbiased to order T3/2 and also to order o. Also note that the bias of X is
O(T~?) and that the bias to order T~2 is given by

~ 2 tr{(X'X)"' X'JX}

_ —2
B - 1) = T ] (3.2)

whereas an approximation to order o2 incorporates an extra O(T~3) contribution, viz. the term
o? (B'X "TMJX B) - Hence, large-T and small-o asymptotic expansions correspond here more
closely than in the stable dynamic model (where small-o is inferior because any finite order
small-o approximation omits terms of order 7—1), but they are not equivalent and the leading
term of small-o incorporates contributions here, which are omitted in the leading term of the
large-T approximation.



The case where there is a constant term but no further exogenous variables is of particular
interest. The corresponding bias can be obtained by substituting X = ¢ in Theorem 1, but
the resulting expression will then include also some elements which are o(T~3). These can be
eliminated; the resulting ”trimmed” expression is evaluated in Appendix D, leading to the
following result.

Corollary 1. If in the model of Theorem 1 we have X = 1 with finite intercept 3 # 0, then
the bias simplifies to:

EQA—1)=—6 <%>2 % +18 (%)2 % - % <%>4 % +o(T™3). (3.3)

From this we see that the bias is always negative to the order T2, and that the magnitude
of the bias crucially depends on the ratio /3. From Corollary 1 it is fully evident that an
approximation to order O(c?) incorporates some of the order T—3 bias, viz. a positive contri-
bution, whereas a negative order 73 contribution is omitted because it is O(c*). Note that
when /3 = (90/84)'/2 2~ 1.15 the two O(T3) terms cancel.

To obtain an approximation to the MSE of A we use (2.11) and write

(1) = BX'J Mu+ o' J Mu\? L 28X M Tu+ S M Ty -2
N BX'JMJIX[ BX'JMJIX[3 ’
Expanding the right hand side term as a power series in which successive terms are of increasing
powers of O,(T~1/2) yields the following (proof in Appendix E).

(3.4)

Theorem 2. In the model of Theorem 1 the MSE of the least squares estimator of X\ to the
order of T~% is given by:

EG_1? - o2 adltr M) 4 e (JMIM) — t (J'MI)}
X' T MIXJ (B X' MIXB)
X' MITMIXB — B X' T MIMIMIX
4ot D f=F B) o). (35)

(Bx' 7 MIXB)°

Because the squared bias of A s O(T—*) the first term in the above expression, which is
the only O(T~?) contribution to the MSE, establishes also an approximation to var(\) =

MSE(A) — E(A — 1)2. For the special case of a constant and no further exogenous regressors this
yields:

Corollary 2. If in the model of Theorem 2 we have X = 1 with finite intercept 3 # 0, then
the MSE and variance simplify to

2 4
EQA—1)2=12 <%> % + % <%> % +o(T™) (3.6)

and ~ o\21 156 [0\ 1
var()\) =12 <B> ﬁ -+ ? <E> ﬁ -+ O(Tﬁ4). (3.7)

From the results of the two corollaries it is apparent that for a given sample size T the quality
of the approximations will deteriorate as |o/[3| increases above unity. Thus the smaller |3/0]
is, the larger the sample size will need to be to achieve a desired accuracy. This point will
be addressed in Section 5 where the accuracy of the approximations will be examined and
compared with their ”"untrimmed” counterparts.



4. The Moments of the Full Coefficient Vector

We now approximate the first two moments of the least squares estimator of the full vector of
coefficients (A, 3'), and at the same time we shall relax the assumption on the stationarity of
the exogenous regressors. We rewrite model (2.3) as

Yy=Ay—1+XB+u=Za+u, (4.1)
where Z = [y_1 : X], @« = (A, ')’ and the least squares estimator
a=(G3) =27y (42)
has estimation error
B0

In the case where all regressors X are stationary the estimation error of A is O,(T =3/2) while

( 5 -1 > —a—a=(2'2)"17u. (4.3)

that of 3 is Op(T~1/2). 1f some of the regressors in X are non-stationary this affects the order of
probability of both the corresponding coefficients’ estimation error and that of . For Tegressors
that are I(1), i.e. integrated of order one, the estimation error will be O,(7~%/2), and if such
a regressor has a non-zero coefficient the dependent variable will in principle be I(2), due to
the unit root, which reduces the estimation error of X to O, (T -5/ 2); the same happens when a
non-redundant linear deterministic trend occurs in the model.

To facilitate the development of an appropriate asymptotic expansion for general X matrices
we shall rescale the regressors and coefficients so that all components of the rescaled estimation
error vector are of the same stochastic magnitude. Thus, we consider the (k+1) x (k+ 1)
diagonal matrix D designed such that:

D = diag (dy,- -+, dg+1)
di=T%, (i=1,..k+1) (4.4)

DZ'ZD = O,(T)

In the unit root model with stationary X we should have §; = —1 and §; = 0 for ¢ > 1; in
a model with & = 2, where the first column of X corresponds to the constant and the second
is a linear trend, we should select 6; = —2 (if the trend coefficient is nonzero and 6; = —1
otherwise), 2 = 0 and é3 = —1. The model is now

y=2D(D la)+u, (4.5)
with rescaled coefficients D~'a and estimation error
D Y(@a—-a)=(DZ'zZD) 'DZ. (4.6)
To simplify subsequent analysis, we put
W=Z2ZD=ZD+2ZD=W+W, (4.7)

where W = ZD = E(Z) D is nonstochastic and W = ZD = [Z — Z]D is stochastic with
zero mean. Since Z = Jue!, with e; = (1,0,---,0) a (k+1) x 1 unit-vector, we may write
W = Jue|D. Now (4.6) can be expressed as

DY a—a)= WW+WW+WW+WW)"\(W +W). (4.8)



Note that D is designed such that WW = DZ' ZD = O(T), WW = DZ ZD = O,(T/?),
W'W = DZ'ZD = O,(1), W = O,(T"/?) and W'u = O,(1). Assuming that W'W is invert-
ible, and putting
R=WW) !, P=WWR+WWR, S=WWR, (4.9)
where R = O(T~Y), P = Op(T~"/?) and S = O,(T~"), we may write
D' (@—a)=R[I+P+58) " (W+W)u, (4.10)

and the inverse matrix can be expanded with successive terms being of descending stochastic
order. It is our intention here to find a stochastic expansion of (4.10) including terms up to
Op(T’I) only. Hence, it will suffice to approximate the inverse matrix by

-1 _
[I+P+8'=1—P+o,(T?.
The required expansion is then

Dl'@—-a) = RUI—P)(W+W)u+o,(T
= RW'u+ RW'u — RPW u+ 0,(T 1), (4.11)

from which the following bias approximation readily follows (see Appendix G).

Theorem 3. In the first-order dynamic regression model (4.1), where the coefficient of the
lagged dependent variable X\ is equal to unity, the regressor matric Z = [y—1 : X| and the
scaling matriz D = diag (dy,- - -,dy11) , with d; = T% (i = 1,....k +1), is such that DZ'ZD =
Op(T), the bias of the least squares estimator of the separate elements of the coefficient vector
a = ()\,6’)/ can be approximated, provided that Z = [yor + JX 3 : X| has full column rank and
B is finite and non-zero, as (i =1,...,k):

—~ —— — — 1 ——
B~ B) = ~0*nl(Z2) " ZIZ+ 5T~ k= Dhal(Z2) e
+o(T~1H0i+1), (4.12)
and )
EA—1) = —5(T - k)oe (Z'Z) ey + o(T1100). (4.13)

This bias approximation of order O(T~1+%1) for A is equivalent to the O(T~?) expression given
in (3.2). From this, and more generally from the lines followed in the proof of Theorem 3,
it is evident that non-stationarity of the regressors does not change the algebraic form of the
approximations; the principal difference is just that the various terms in the approximations
may be of smaller order of magnitude. Hence, the full approximation given in Theorem 1 also
applies to a model which includes a nonredundant (1) regressor or a linear trend, but then its
accuracy is actually of order O(T~*) rather than O(T3).

Finally we shall derive an approximation to the MSE of all elements of the coefficient vector.
From (4.10) we obtain the expansion

D' (@—a)=R(I-P—S+PPWu+R(I—P)Wu+ o,(T%?), (4.14)

from which an expansion for D~ (@ — ) (@ —a)' D! to order T2 easily follows and this
yields (proof in Appendix H):



Theorem 4. In the model of Theorem 3 the elements of the MSE(a) matriz, i.e. E(q; —
a;)(a; —ay) fori,j=1,...k+1, are given by

o%eQe;
+ot (t0(QZ' T I Z) — 240(QZ I Z) — tr (J'J)
+t1(QZ JZQZ IZ) + t1(QZ JZ) tr(QZ T Z))(€sQer) (€ Qer)
+o(eiQe ) (€QZ (I — JJ =TT +JZQZ J + JZQZ JZQe,)
+0 () Qe ) (e QZ [T — J'J — T T ZQe))
+ot(ehQe) (e QZ [T — J'J — JJ|ZQe;)
+0*[(1QZ' TZQe1) + t1(QZ T Z)(€1Qer)|(;QZ [J + J'1ZQe;)
+o(T—2H0iteiy, (4.15)

where Q = (Z Z)Y, Z = B(Z) and e; is the it unit vector.

From the results in Theorems 3 and 4 approximations to the elements of var(a) can be obtained
straightforwardly.

5. The Accuracy of the Approximations

In this section the accuracy of the approximations is examined in the context of two types
of unit root autoregressive models, viz. the AR(1) model with a constant only and the same
model including a linear trend. Some of the moments of these least squares estimators have
been obtained by numerical integration, see Evans and Savin (1984); we shall estimate them
by simulation. With a sufficiently large number of replications, the exact moments can be
obtained to a high degree of accuracy so that the estimated moments can be taken as almost
exact for the purpose at hand. Our estimates of true bias, variance and MSE presented below
are based on 100,000 replications and we also present estimated standard errors of our Monte
Carlo estimates (indicated by MCSE).
For the random walk with drift case, the model actually simulated was

i =M+ 2 +e
ye=0,A=1, 240 t=1,..,T. (5.1)
¢ ~ iid N(0, 1)

Note that we have already found that A is invariant with respect to yo, so taking this to be
zero has no consequences for our findings on A. From (2.10) it is easily seen that the properties
of X are not determined by (6 and o separately, but only by their ratio, and that is why we
scaled the simulation model and gave it unit variance. For 0 < |3/o| < 1 the stochastic trend
of the random walk with drift model dominates the deterministic trend in a certain sense; for
|3/c| > 1 the deterministic trend dominates. Being especially interested in cases where 3 is
non-negative and given that our approximations are not valid for 3 = 0 (for Monte Carlo results
on estimator bias in this model when 3 = 0 see MacKinnon and Smith, 1998), we examined
cases where 10 =2 /0 = 0.1. Results for three different sample sizes are given in Tables 1, 2
and 3 respectively. As is to be expected, the bias of h) depends strongly on (/0. For 3 much
larger than o the bias is very small, even in very small samples. For relatively small values of
(3 the bias is substantial in samples of a limited size and there is a very serious bias problem in
small samples when 3 is much smaller than o.
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The case 3 < o seems to be relevant in practice. Some empirical evidence is provided by
Rudebusch (1992, Table 3) where a difference stationary model is fitted by least-squares to 14
time-series. Some care is required in interpreting these results, because they are biased and
even inconsistent in case of model misspecification, but also because the random walk with drift
model was estimated directly in only a few cases. The more usual case involved augmented
equations which implicitly use a transformation to remove serial correlation and, hence, change
the constant term. However, one can easily recover an estimate of the original constant. For
the 12 cases that have a positive estimate of 3/0, 4 range from 0.19 to 0.26, 7 estimates range
from 0.45 to 0.66 and one is 1.18. Empirical evidence is also found in Hylleberg and Mizon
(1989, p.227) and Banerjee et al. (1993, p.171) which report /o values of 0.25, 0.72, 0.77 and
about 1 respectively.

The numerical results for the various approximations to moments derived in this paper are
labelled in the tables by the order of their smallest fully included term and also by the formula
from which they originate (sometimes by deliberately omitting terms in order to be able to
examine the effects of these higher-order terms). Note that non-trimmed approximations may
include parts of terms which are of the same or of lower order as the remainder term.

In the majority of the cases examined the approximations are very good. However, in sit-
uations where the bias is very substantial (we deliberately included extreme values for 3/c
which may be empirically less relevant), the quality of the approximations is generally poor,
or sometimes extremely bad, and, surprisingly, in those situations the higher-order approxi-
mation is much worse than the approximation established by the leading term only; note for
this phenomenon the difference for the result of Corollary 1 when the full O(T~3) formula is
used or only its O(T~2) term. For large 3/0 the higher-order approximation is better, but
it is vulnerable when [3/0 gets small. We find no systematic quality difference between the
trimmed and the untrimmed approximations, and the O(c?) approximation is not found to be
systematically better than the O(T~2) approximation. The variance of ), and even more so
its MSE, increases when [3/0 decreases. We find here again that trimming has little effect and
that the approximations are very bad for very small [3/0 values, especially for small 7. Note
that the untrimmed approximations for the MSE of A given in Theorems 2 and 4 respectively
give slightly different results. This is because they are obtained in different ways and hence the
retained terms may include different bits and pieces that are of the same order as the remain-
der term. The bias in the estimator of the intercept increases when the intercept decreases,
hence its relative impact is very substantial for small /o and then it does not change much
with T (for 20 < T" < 80). We should keep in mind, however, that the distribution of @ is not
independent of yg, so choosing yp = 0 in the Monte Carlo does not provide general results in
this respect (it can be shown, though, that only the higher moments of B are affected by yo and
not its bias). The O(T 1) approximation to the bias given in Theorem 3 is found to be very
accurate as long as the relative bias is less than, say, 50%. For /o > 0.5 the approximations
to the variance and MSE of § are very good, even for samples as small as T = 20.

Next we examine the unit root model with a trending drift, i.e.

yi =iy + 2 By
y=0,A=1, G208 20 » t=1,.T (5.2)
et ~ iidN(0, 1)
Note that our approximations are not valid for the case where 3; = 3, = 0. We could have
included the case where the intercept is redundant (3; = 0) and not the linear trend (35 # 0),

but we didn’t, because this does not seem to be a particularly relevant case. We have to exclude
the case where the linear trend is the only redundant regressor (i.e. 3; # 0, By = 0) because
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then we have X = [v : 7] with 7 = ¢ so that JX = [Jt : Jr] = [T — ¢ : J7] and hence
Z =[(tr —1t)By/o : T—1:J7] does not have full column rank. So this is another case for which
the expansion employed in this study does not apply.

The special form of the X matrix implies that My_1, given in (2.9), is invariant with respect
to (3, and so it follows directly from expression (2.4) that the distribution of A will not depend
on (3;, and neither will its bias and MSE, nor their approximations. Note that the estimators
Bl and BQ are not invariant with respect to either (3; or (35 or yo. We present numerical results
for model (5.2) for parametrizations with (3,/0 = 0.1 only; some support for a value in this
range (or smaller) may be obtained again from Rudebusch (1992, Table 9). In Tables 4, 5 and 6
we present some results. For very small samples the bias in )\ is substantial. Its approximation
by the leading term approximation given in Theorem 3 works adequately, even for T" = 20.
Including the O(T~*) term, which can be obtained readily from Theorem 1, is found to be
counterproductive in a very small sample. Note that the approximation for the MSE of A given
in Theorem 4 works well. As always the quality of the approximation of the variance suffers
when the bias approximation is poor. Note that especially in small samples the relative biases of
Bl and 32 are very substantial, and that these biases are opposite in sign. The approximations,
even for huge biases, are remarkably good, and also the second moments can be approximated
extremely well.

6. Conclusions

The foregoing theoretical results shed light on the factors which are important in determining
the bias, the variance and MSE in the unit root dynamic regression model. From the numerical
experiments we find that for the random walk with drift model the bias is substantial when the
sample size is rather small and the drift is smaller than the standard deviation of the random
shock. This may often be a realistic case, and then bias correction may be worth pursuing.
Our approximations can be used for that purpose, but our numerical experiments show that
they will only work well over a limited domain of the parameter space, depending on the size
of the sample. For very small relative values of the drift term the approximations deteriorate.
When further exogenous regressors are added the bias seems to get worse (as is also the case in
the stable model), but the quality of the approximations improves. We gave special attention
to the model with an intercept and a linear deterministic trend which is so often applied in
practice, viz. when the Dickey-Fuller test is applied. Earlier, in KP (1993, 1998), we developed
bias approximation formulae for the stable model and found that these deteriorate close to the
unit root case, especially when higher-order terms are taken into account. In the present study
we developed special approximations for the unit root case and established that these may work
very well, apart from cases where the regressors are, or are close to being, redundant. Also
the second moments of the least-squares estimators in these models can be approximated quite
accurately, and hence the tools developed in this paper can be exploited to improve inference
methods for the analysis of small samples of dynamic regression models in the presence of unit
roots.
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A. Basic results on ¢ and J

For the T' x 1 vector ¢ and the 7' x T' matrix J, introduced in (2.7), we have the following results
fort =1,..,T: (Ju)y=t—1,(JJ)e = ({t—=1)t—=2)/2, (J'J)e =[T(T—-1)—t(t—1)]/2,
(J'o)y = T —tand (JJ')y = (t—1)(T — t/2). Making use of the well-known summation
results Y0t = (T+1)T/2, Y #2 = (T+1) (2T +1)T/6, Y1_, 13 = [(T+1)T)?/4 and
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ST 4 = (T +1) (2T + 1) (372 4 3T — 1)T/30 we also find:

T
L’JL:;(t—l)zg(T—l):%TQ—%T7
L’J’JL:zT:(t—l)Q:lT3—1T2+1T
- 3 2 6"’
L’JJ’LZET:(T—t)szT:(t—n?:1T3—1T2+1T
t=1 t=1 3 2 6 7
L’JJLZZT:(T—t)(t—n:1T3—1T2+1T
t:l 6 2 37
VI T = i(t - 1)X(T -1t/2) = Spr_Sgpsy Tpe Lp
e 24 12 24 127
L’J’J'JL:lsz(t—l)Q(t—Q):lT4—£T3+§T2—iT—1
2 £ 8 12 8 12 ’
, - 1., 1., 11, 1
LJJJL:§;(T—t)(t—1)(t—2):ﬂT - 5T+ 5T 4T
I U = T t ? 2 5 4
LJJJJL:;{E(T—I)—a(t—l)} :1—5T +0(T%),
! gt g gt 1 a r 4 1 5 4
LJJJJLZE;[E(T—U—EQ—D](t—1)(t—2):%:r +O(TY).

The simple structure of J also leads to the results:

tr(J) =0, fori=1,2,...
1 1
tr(J'J) = =T? — =T
r(JJ) 5 51>

Ly o(T?).

T—t
tr (J'ITT) =) [(t —D) (@ -1+ ) -
=0

B. Basic results on orders of magnitude

(A1)

(A.2)

(A.3)

(A4)

(A.5)

(A.6)

(A.10)

(A.11)

(A.12)

Here we collect results that support the statements made in Sections 3 and 4 on orders of
magnitude of relevant expressions. From E(X'u) = 0 and var (X'u) = 02 (X'X) = O(T)
follows X'u = O,(T"/?). Since JX = O(T) we have X'J'JX = O(T?) and X'J'u = O,(T?/?),
also giving X' J'MJX = O(T?) and X'J' Mu = O,(T?/?). Along similar lines X'.J'JJ' JX =
O(T5) yields X' J' Ju = Op(T??), from which X' J' M Ju = Op(T??) follows. From E (' Ju) = 0
and var (v'Ju) = o*tr (J'J) = O(T?) we find v/ Ju = Op(T), which yields u'J' Mu = O,(T).
Moreover, because E (v'J'Ju) = o?tr(J'J) = O(T?) and var (u'J'Ju) = 20*tr (J'JJ'J) =

O(T*), we find u'J' Ju = O,(T?), from which o' J' M Ju = O,(T?) follows.
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C. Proof of Theorem 1

Expanding the inverse factor of (2.11) further than in (2.12) we obtain

- BX' T MJu N W I MJu \ !
BX'JMIXB  BX JTMJIXB
| 28X T MIu T MJu BX' T MJu \*
BX'JMIXB BX JMJIXB BX'JMJIX[3

+4

(B'X" T M.Ju) (' J' M.Ju) o (BXTMIu ’ o (T2
(BIX’J’]WJX,B)Q BX'JTMJIX[3 P )

Substitution in (2.11) yields

’X 1 B /BIX/J/]\/_[U U/J/]\/_[U 2 (ﬁ’X’J’]\Iu) (ﬁ/X/J/]\/.[JU)
T FXJMIXG FXTMIXE (AX'IMIXP)

5 (BX'TMJu) (v'J Mu)  (BX'J Mu) (u'J' MJu)

(BX"TMIXB)? (BX" 7 MIXB)
W IMJw) (M) (BX' T MJu)? (8 X' J Mu)
(BX' T MIXB)? (Bx'7MIXE)?

L (FX1TM.Tu) 2 (! J' Mu) (FX1TM.Tu) (53X M) (/' M.Tu)

(Bx'7MIXE)? (Bx'7MIXE)?

(BX'T MJu)® (8X"T Mu)

-8 T
(X' T MJIXP)

+0p(T77).

To approximate the bias we take the expectation of these terms. Terms involving an odd
number of zero mean normal random variables can be ignored. Occasionally we can simplify the
expressions by using the fact that in traces or in scalars the expression is sometimes unchanged
when J is replaced by .J', and hence J can be replaced by [J + J'| = $[1/—I7]. Because M. = 0,
this may lead to some simplification. Using

E (WJ'Mu) = o tr (MJ) = %02 tr[M(u — I7)] = —%02 (T — k) = O(T),

E (X' JMwJMIXB) = o*BX'JMIMJIXJ
= —%agﬁ’X’J’MJXB = O(T?),

E (v JMJu) (u'JMu) = o*[tr (MJ)tr (J'MJ) +2tr (J'MJJM)]
= o' [tr (MJ)tr (J'MJ) —tr (J'MJ)]
= ot tr (MJ)tr (J'MJ) +o(T?),

B (6'X'J MJu)? (uJ Mu)
= E(WTMJIXBEX T MJu) (u' MJu)
= ot [tr (JMIXBEX T MJ) tr (MJ) + 2t (J MIXBE X' T MIMJ))
= o [tr(MJ) B X' T MITMIXG+ 28 X' T MIMJJ MJX 3] = O(T),
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E(BX'JMJu) (FX'J Mu) (u'J' MJu)
= EWJ' MJu) (WJ MJIXBF X' J Mu)

ot [tr (J'MJT) BX' T MI MIXB+ 23X T M MJJ MJIX ]
= 04[_% tr (J'MJ)FX' T MIXS+ 26 X' T MJ MJJ MJXf3]
= 203X T MI MJJ MJIXS+ o(T®),

E(BX' T MJu)® (8X'J Mu)
= EWJMIXBFX' T MJu) (W' J MIXBFX'J Mu)
= 30" (BX'TMITMIXB) (BX' T MIMIX})
= —ga‘l (BX'TMITMIXB) (BX'TMIXB) =0T,

and removing terms that are of such magnitude that they can be neglected in an O(T~3)
approximation, yields

BA-1) = o tr(MJ) N o? ottt (M) tr (J'MJ)
- AXTMIXE FXMIXB (BX T MIXB)
4ottt (MJ)BX' TMITMIXB  8c*B X' T MIMJJT MJX 3
(Bx' 7 MIXB)° (Bx' 7 MIXB)
8o X' M I MJJ MJIX
7 ﬁ 3 IB + OP(T_3)7
(BX'TMJIX])

where the last two terms can be combined, such that the numerator involves
1
BX'TM|J+J|MJJMIX3 = ) BX'TMIJTMIX3=0(T?),
which shows that these two terms can be neglected in the result of the theorem.

D. Proof of Corollary 1

Putting X =, M = I — %LL’ and (3 scalar in the various terms of Theorem 1 and using results
from Appendix A leads to

1 1
tr(MJ) = —TL/J/L =-3 (T-1),
1

/ 2 1
T(LJL) =—T(T—-1)(T+1),

X' JIMIX =T J— =5

tr (J'MJ) =tr (J'J) — %L/JJ/L = %(TQ - 1),

X' JIMITMIX =T JJ J— %L/JLL/JJ/JL + %L/J/LL/JJ/LL/JL = %OTE) +0(TY),

which after substitution lead to the result of the Corollary.
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E. Proof of Theorem 2

To find the approximation to the MSE we commence from (3.4). Using an expansion for the
inverse factor of the form (1 + x)fg =1—2x+ 322 — 423 + .... the MSE may be approximated

E (6 X'J Mu)? E/Mu? B (B'X" 7' Mu)® (u' ' MJu)
Bx'IMIXB)?  (BX.TMIXE)? (Bx' 7 MIXB)®
P (B'X"J Mu) (' J' Mu) (X' MJu)

(Bx' I MIXB)’°
E(8X'J Mu)® (B X'J MJu)?
(BxMIX3)!

+12 +o(T™%).

Here we have removed terms from the original expansion which involve a product of an odd
number of normal random variables with mean zero, together with terms which are 0,(T*). Be-
low we evaluate the expectations in the various numerators and exploit the same simplification
as in Appendix C.
I TN N2 2ol 7l
E(BXJM’U) =X JTMIXp,

B (uJ' Mu)? = o*{[tr (M.J)]* + tr (JMJIM) + tr (J'M.J)},

E (8'X"J Mu)? (u'.J' M.Ju)
= E(WMJXBFX'J Mu) (u'J MJu)
o {tr (JMJI)BX' T MIXB+238X' T MIMIMIXB},

E (B'X"J Mu) (u'J Mu) (X' J' MJu)
= E(WJMJIXBEX'J Mu) (u'J Mu)
= oMo (M BFX' TMIMIXG+ X' JM[JMJ +JJ] MJX
(MJ) B+ 5 B
1
= 04{—5 tr (MJ) X' I MIXB+ X' TM[IMJ+ JJ'| MJX (3},

E(6X'J Mu)? (8X'J MJu)?
= EWMJXBFX'J Mu) (u'J MIXBFX'T MJu)
= X' TMIXBxBX JTMIJMIXG+2 (ﬁ’X’J’MJMJXﬁ)Q]
1
= oYX TMIXBx X' JTMITMIX3+ 3 (ﬁ’X’J’MJXﬁ)Q}.
Substitution yields
BG 1) = o2 _altr (MJ)]? 4 tr (JMJIM) + tr (J' M.J)
FX TMIX} (BX' T MIXB)?
5yt T (J'MI)BX'TMIXB+28X'JMJ MIMJIX 3
— 40
(Bx" 7 MIXE)?
gt BX'JMIMJI+JJMJXB - 5 trS(JVIJ) X' JMIX}3
(B X' T MJX3)
) y ) 2
0l BX'JMJIX[3 x ﬁ’X’J’MJJ’MJXﬁ;L L (X' TMIXP)
(BX'TMIX])

+1 +o(T™%
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and removing terms of small order we obtain

o2 tr (M) +tr (JMJIM) — tr (J'MJ)
FXTMIXE (X TMIXA)
A BX I MIMIMIXE 4 fX T MIMIMIXf
(Bx' I MIXB)° (Bx' I MIX3)°
4 ABX I MITMIX
(BXx I MIXB)’

EQ—1)?2 =

+o(T ™%

which then, after minor further simplification, gives the result of the theorem.

F. Proof of Corollary 2

Following up on the proof in Appendix D, we have to evaluate a few extra expressions after
putting X =¢, M = Iy — %LL/ and [ scalar. We find

1
T?

(! J0)* = L Ly 0

2
tr(J]V[J]V]):tr(JJ)—TL’JJL—k 13 5 o

and
X' JIMIMIMIX =/J'JJJL — %L/J/LL/JJJL - %L/J/JLLIJJL - %L/J/JJLL/JL
2 2 1 2 1 4 L 5 4
+ﬁ (V') T T+ ﬁL/J/JL (VJ')” = T3 (V)" = —mT +0(T?).
Substitution yields

2 4192
~ o 12 o\ 1221 1 1
A—-1)2 = ([Z2) ——— [ e
B <ﬁ> T2 1) <ﬁ> T {4 12 6]
4 193
o\ 12 1 1
4{=) = |—+— T
* <5> 7 [120+720] o(T™)
which leads to the result in the corollary.

G. Proof of Theorem 3

The required bias is obtained from the expansion (4.11). Since terms with an odd number of
stochastic factors have zero expectation, we have to evaluate

E[D ' (@—a)] = E[RW'u] — RE[(W'W + WW)RW u] + o(T"1).

We find o
E(RW'u) = RE(Dev' J'u) = RDe; E(u'J'u) = 0,

E(W/WRWIU) = B(W' Jue, DRW u) = 0*W' JW RDey,
EWWRW u) = E(Deyu/ JWRW u) = o tr(RW JW)Dey,
hence, using R = D~Y(Z Z)"'D~! and W = ZD, we find
E[D'@-a)= (G.2)
—o*DV(Z2) ' ZIZ +{(Z2) " Z T2 111 )(ZZ) er + o(T ).
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Some further simplification is possible. Note that
Y, 1 —— _ 1 -
t{(Z2)'Z'JZ} = 3 t{(Z2)Z (T +J)Z} = 3 tr{Z(Z'2) 7 (v’ — Ir)}.
Since the regression contains a constant, we have 7(717)_171L =, and hence

w{(ZZ)ZJZ} = %[tr (i) — tr (Tsn)] = % (T—k—1). (G.3)

Finally consider

— ==

e 1
NZZ) " ZIZ(Z7Z) ey = 5e’l(Z’Z)*lz’[u' —1NZ(Z'7Z) te.
Because ¢ is the second column of Z we have (7’7)_17/L = e9, and hence, using ejey = 0,
e 1.
NZ2) ' ZIZ(Z7) ey = —Eeg(z’z)*lel. (G.4)

Premultiplying both sides of (G.2) with €} D and making use of (G.3) and (G.4) yields the bias
of A as stated in the theorem, which can be shown to be equivalent to (3.2) for the case 6; = —1.
Premultiplying (G.2) by ej, ;D yields the bias of the individual elements 3;,i =1, ..., k.

H. Proof of Theorem 4

Upon removing the terms which are a product of an odd number of normal random variables
with zero mean, we may write

BID ' (@-a)@-a) D! =
REW wu/'W + Wud W + PW ui/ W P!
—PWwdW — Wud WP — PWwl/W — Wud WP
+PPWwd W + WudWP' P — SWudW — Wud/WS'|R + o(T~2). (H.1)
The required approximation to the MSE of @ is obtained by evaluating this expectation and
pre- and post-multiplying the result by D. We make use of the substitutions WW = R,
= Jue =W Jue + Deju WR an = Deju ue and, often using the
W = Jue|D, P W'J 'DR + Deqt/ JJWR and S = Deju'J' Juei DR and, of g th
result E[uu’ Buu'] = o*[tr(B)I+ B+ B'] for general B matrices, we find for the successive terms:
EW w/W] = *WW = o’R™!
E[W w/W] = E[Deyt J'ua! Jue, D] = o* tr (J'J) Deiey D

E[PW uu/W P']
= E[W Juei DRW wi/WRDeiu' J'W + Deyu! J'W RW wi/W RDeru' JW
+W Jue, DRW w/W RW Jue', D + Deyu! JW RW wi/ W RW Jue, D]
= E[W Juu/WRDe,e, DRW uu' JW + Deiey DRW wu! JW RW uv JW
+W Ju/W RW Jun/W RDeyé', D + ' J'W RW wu/W RW JuDe, ¢, D)
= 0%, DRDe) )W JJ'W + 20*W' JW RDe, ¢y DRW J'W
+0* tr(RW JW)Deye, DRW J'W + o*Dere) DRW J'WRW' J'W
+0*De1ey DRW' JJ'W + o tr(RW JW)W JW RDe1é, D
+0*W JWRW JW RDe1€D + o*W'JJ'W RDe1 ¢}, D
+ot tr(RW JW) tr(RW JW)Deyé, D
+0* tr(RW' JJ'W)Deyé, D + o* tr(RW JWRW' JW)Deyé', D
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E[PWw/W] = E[W Jue,DRW wJue,D + Deiu' J W RW w Jue), D]
= E [W’ Juu' Juu'W RDeye, D +u'.J "W RW wu! JuDey ey D]
= o'W JJWRDeé\D + o*W'JJ'W RDe1¢, D
+0* tr(RW' JJ'W)Deye, D + o* tr(RW' JJW)Dey€}, D
EW w/WP'] = {E[PW w/W]}

E[Pwluu'_} = E[W/JuellDRDelu’J’uu’W + Dey JW RDeyu' J'uu/ W
= E[(¢\DRDe))W Juu! J'uu/W + De1ey DRW Juw! J'uu/ W)
= o%(e, DRDe))W JJ'W + o*(¢) DRDe) W JJW

+0*De ¢, DRW' JJ'W + o*De ¢, DRW JIJW
EW'uw/WP] = {E[PW ud/W]}

E[PPW uu/W)|
= E[W Jue,DRW Jue, DRW wu/'W + Deyu' J'WRW ' Jue, DRW uu/W
+W Jue,DRDeiv JWRW wi/W + Deiv J'W RDeyu/ JW RW wu/W|
= E[W’J uu' J'W RDey e’lDRW/uu'W + DelellDRW/uu’J "WRW' Juu'W
+(ey DRDe )W Jut!' JW RW wi/W + Deye, DRW Juu' J'W RW /W]
= o*(e\DRW JWRDe )W JW + ¢*W JJ'W RDe; ¢y D
+0*W' JW RDe1¢) DRW' JW + o* tr(RW JJ'W)De1€, D
+20'De1ey DRW J W RW JW + o tr(RW JW) (e, DRDe)\W JW
+0*(¢) DRDe) )W JJ'W + (¢, DRDe) )W JWRW' JW
+o0* tr(RW JW)Deye, DRW JW + o*Deyei DRW JJ'W
+U4D€1€/1DRW/JWRW/JW

EW w/WP'P'| = {E[PPW wu/W]}/

E[S’W’uu’W] = E[Delu'J'JuellDRW/uu'W} = E[DelellDRW/uu'J'Juu’W]
= o*tr(J'J)Deré, D + 20*Derey DRW ' J' JW
EW w/WS'] = {E[SW u/W]}

20



Now we can evaluate the expectation of the term in square brackets in (H.1). This amounts to:
o’R™" + o tr (J'J) Dere D + o*(eyDRDe) W' JJ'W
+20*W' JW RDe ¢, DRW J'W + o tr(RW JW)De1y DRW JW
+0*Dee, DRW JWRW J'W + o*Deiey DRW JJ'W
+ot tr(RW JW)W JW RDe1 €, D + W' JWRW JW RDe; €, D
+0* W' JI'WRDe1 ¢, D + o tr(RW JW) tr(RW JW)Dey e, D
+o* tr(RW JJW)De1ey D + o* tr(RW JWRW JW)Deye, D
—o"W' JJWRDe €\ D — oW JJ'W RDe1¢) D — 20" tr(RW ' J.J'W)Dey ¢, D
—20* tr(RW' JJW)Deyé, D — c*Dere, DRW' J' J'W — 0*Deye, DRW' JJ'W
—20*(ey DRDe) YW JJ'W — o*(¢, DRDe))W' JJW — o*De1e) DRW JJ'W
—0*De e, DRW' JIW — o* (¢, DRDe) )W J' JW — oW J.J'W RDey ¢, D
—o"W'J' JW RDey€, D + (¢, DRW JW RDe )W JW + ¢*W' JJ'W RDe ¢, D
+0* W' JWRDe, ¢, DRW JW + 20 tr(RW' J.J'W)Dey e}, D
+20*De1 e DRW JW RW' JW + o* tr(RW JW) (e, DRDe) )W JW
+20* (e DRDe )W JJ'W + o(¢, DRDe) YW JW RW' JW
+o* tr(RW JW)De e, DRW JW + o*Deiey DRW JJ'W
+0'De1ey DRW JWRW JW + o*(¢, DRW JW RDe )W J'W
+0*De e, DRW' JJ'W + o*W' J'W RDe ¢y DRW J'W
+26 W' J'W RW' JW RDe1€, D + o* tr(RW' JW) (¢, DRDe) )W J'W
+0(¢, DRDe )W JWRW JW + o* tr(RW JW)W' J'W RDe; €, D
+0* W' JJ'WRDey e, D + o*W' J'WRW ' J'W RDe1¢}, D
—20*tr(J'J)Deré, D — 20*Derey DRW' J' JW — 20*W ' J' JW RDe ¢, D

Exploiting J + J' =’ — I yields

WRW'[J+JW = WRW [ —I|W = [/ — I|W,
WJ+JWR = W —I|WR=WuWR—1=[We,—1I],
W'[J + J|WRDe; = [W iey— I|Dey = —Dey.
Thus we can simplify the term in square brackets and obtain:
O_QRfl
+0412 —tr (J'J) = 2tr(RW JW) — 2t2(RW JJW) + te(RW JJ'W)
+ te(RW JWRW JW) + tr(RW JW) tr(RW JW)|Deyé, D
+0* (¢, DRDe YW [J.J — JJ — J J|W
+o'W'[1J = J'J — J JWRDe e, D
+0*Deiey DRW'[JJ' — J'J — JJ|W
+0*[(¢, DRW JWRDe,) + tr(RW JW)(¢, DRDe1)]W [J + J|W
+0*(ey DRDey)[W JWRW JW +W JWRW J'W)|
To obtain the required result for (H.1) we should pre- and postmultiply the above by R, but first

we may remove terms from it that are o(1). Finally pre- and postmultiplying this expression by
D yields the result of the theorem.
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Table 1:

Bias, variance and MSE of coefficient estimators in model (5.1) for various values of 3/c

T=20 ref. 10 5 2 1 0.5 0.2 0.1
bias A -0.0001 -0.0005 | -0.0033 | -0.0151 | -0.0774 [ -0.1916 | -0.2229
(MCSE) (0.0000) | (0.0000) | (0.0001) | (0.0001) | (0.0004) | (0.0006) | (0.0006)
o(T™2) (3.3) -0.0002 -0.0006 | -0.0037 [ -0.0150 | -0.0600 | -0.3750 | -1.5000
o(T™?) (3.2) -0.0001 -0.0006 | -0.0036 [ -0.0143 | -0.0571 -0.3571 | -1.4286
O(c?) (3.3) | -0.0001 | -0.0005 [ -0.0032 | -0.0127 | -0.0510 | -0.3187 | -1.2750
0(c?) (3.1) -0.0001 -0.0005 | -0.0032 [ -0.0128 | -0.0511 -0.3195 | -1.2782
o(T™) (3.3) -0.0001 -0.0005 [ -0.0033 [ -0.0148 | -0.0846 | -1.6313 | -22.275
o(T®) (3.1) | -0.0001 | -0.0005 [ -0.0033 | -0.0148 | -0.0834 | -1.5803 | -21.450
var A 0.0000 0.0001 0.0004 0.0018 0.0138 0.0311 0.0331
o(T?) (3.7 0.0000 0.0001 0.0004 0.0015 0.0060 0.0375 0.1500
o(T™) (3.5) 0.0000 0.0001 0.0004 0.0015 0.0060 0.0376 0.1504
o(r—*) (3.7) 0.0000 0.0001 0.0004 0.0017 0.0091 0.1594 2.1000
MSE A 0.0000 0.0001 0.0004 0.0020 0.0198 0.0678 0.0828
o(r—*) (3.6) 0.0000 0.0001 0.0004 0.0019 0.0127 0.3000 4.3500
o) (3.5) 0.0000 0.0001 0.0004 0.0019 0.0127 0.3002 4.3519
o(T™%) (4.15) 0.0000 0.0001 0.0004 0.0019 0.0121 0.2747 3.9448
bias 8/c 0.0159 0.0331 0.0853 0.1757 0.3075 0.2381 0.1323
(MCSE) (0.0014) | (0.0014) | (0.0014) | (0.0013) | (0.0015) | (0.0020) | (0.0022)
or1 | (412) | 0.0171 0.0343 0.0857 0.1714 0.3429 0.8571 1.7143
var /o 0.1864 0.1862 0.1847 0.1816 0.2131 0.4030 0.4821
O(r?) | (4.15) | 0.1857 0.1856 0.1848 0.1820 0.1709 0.0929 [ -0.1857
MSE 5/c 0.1866 0.1873 0.1920 0.2125 0.3077 0.4596 0.4996
o(T™?) (4.15) 0.1860 0.1867 0.1921 0.2114 0.2884 0.8276 2.7531
Table 2:
Bias, variance and MSE of coefficient estimators in model (5.1) for various values of §/o
T =40 ref. 10 5 2 1 0.5 0.2 0.1
bias A -0.0000 | -0.0001 | -0.0009 [ -0.0037 | -0.0193 | -0.0845 | -0.1131
(MCSE) (0.0000) | (0.0000) | (0.0000) | (0.0001) | (0.0001) | (0.0003) | (0.0003)
o(T™?) (3.3) -0.0000 | -0.0002 [ -0.0009 [ -0.0037 | -0.0150 | -0.0938 | -0.3750
o(1?) (3.2) | -0.0000 | -0.0001 [ -0.0009 [ -0.0037 | -0.0146 | -0.0915 | -0.3659
0O(c?) (3.3) -0.0000 | -0.0001 -0.0009 | -0.0035 [ -0.0139 | -0.0867 | -0.3469
0(c?) (3.1) -0.0000 | -0.0001 -0.0009 | -0.0035 [ -0.0139 | -0.0868 | -0.3471
o(T?) (3.3) | -0.0000 | -0.0001 [ -0.0009 [ -0.0037 | -0.0181 | -0.2508 | -2.9719
o(T™®) (3.1) -0.0000 | -0.0001 -0.0009 | -0.0037 [ -0.0180 | -0.2472 | -2.9136
var A 0.0000 0.0000 0.0000 0.0002 0.0014 0.0081 0.0098
o(T™?) (3.7) 0.0000 0.0000 0.0000 0.0002 0.0008 0.0047 0.0187
o(T™*) (3.5) 0.0000 0.0000 0.0000 0.0002 0.0008 0.0047 0.0188
o) (3.7 0.0000 0.0000 0.0000 0.0002 0.0009 0.0123 0.1406
MSE X 0.0000 0.0000 0.0000 0.0002 0.0018 0.0153 0.0226
o(T™) (3.6) 0.0000 0.0000 0.0000 0.0002 0.0012 0.0211 0.2813
o(T™% (3.5) 0.0000 0.0000 0.0000 0.0002 0.0012 0.0211 0.2813
o(r*) | (4.15) | 0.0000 0.0000 0.0000 0.0002 0.0011 0.0203 0.2679
bias /o 0.0078 0.0171 0.0452 0.0930 0.1895 0.2269 0.1407
(MCSE) (0.0010) | (0.0010) | (0.0010) | (0.0010) | (0.0010) | (0.0014) | (0.0016)
oI (4.12) 0.0093 0.0185 0.0463 0.0927 0.1854 0.4634 0.9268
var 3/c 0.0962 0.0962 0.0958 0.0951 0.0993 0.1886 0.2604
o(T™?) (4.15) 0.0963 0.0963 0.0961 0.0955 0.0930 0.0758 0.0140
MSE g8/o 0.0963 0.0965 0.0979 0.1037 0.1352 0.2401 0.2802
o(Tr72) (4.15) 0.0964 0.0967 0.0983 0.1041 0.1274 0.2905 0.8730
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Table 3:

Bias, variance and MSE of coefficient estimators in model (5.1) for various values of §/o

T =280 ref. 10 5 2 1 0.5 0.2 0.1
bias A -0.0000 | -0.0000 | -0.0002 | -0.0009 | -0.0042 | -0.0307 | -0.0531
(MCSE) (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0001) | (0.0002)
o(T™?) (3.3) -0.0000 | -0.0000 [ -0.0002 [ -0.0009 | -0.0037 | -0.0234 | -0.0938
o(T?) (3.2) | -0.0000 | -0.0000 [ -0.0002 [ -0.0009 | -0.0037 | -0.0231 | -0.0926
0O(c?) (3.3) -0.0000 | -0.0000 [ -0.0002 [ -0.0009 | -0.0036 | -0.0226 | -0.0902
0(c?) (3.1) -0.0000 | -0.0000 [ -0.0002 [ -0.0009 | -0.0036 | -0.0226 | -0.0902
o(T?) (3.3) | -0.0000 | -0.0000 [ -0.0002 | -0.0009 | -0.0041 | -0.0431 | -0.4184
o(T™®) (3.1) -0.0000 | -0.0000 [ -0.0002 [ -0.0009 | -0.0041 -0.0428 | -0.4145
var A 0.0000 0.0000 0.0000 0.0000 0.0001 0.0016 0.0026
o(T™?) (3.7) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0023
o(T™?) (3.5) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0023
o) (3.7 0.0000 0.0000 0.0000 0.0000 0.0001 0.0011 0.0100
MSE X 0.0000 0.0000 0.0000 0.0000 0.0001 0.0025 0.0054
o(T™) (3.6) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0016 0.0187
o(T™% (3.5) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0016 0.0188
o(r*) | (4.15) | 0.0000 0.0000 0.0000 0.0000 0.0001 0.0016 0.0183
bias /o 0.0037 0.0085 0.0230 0.0474 0.0983 0.1817 0.1368
(MCSE) (0.0007) | (0.0007) | (0.0007) | (0.0007) | (0.0007) | (0.0009) | (0.0011)
oI (4.12) 0.0048 0.0096 0.0241 0.0481 0.0963 0.2407 0.4815
var 3/c 0.0491 0.0491 0.0491 0.0489 0.0489 0.0763 0.1235
o(Tr72) (4.15) 0.0491 0.0491 0.0490 0.0489 0.0483 0.0442 0.0295
MSE 8/o 0.0492 0.0492 0.0496 0.0511 0.0586 0.1093 0.1422
o(Tr72) (4.15) 0.0491 0.0492 0.0496 0.0512 0.0576 0.1021 0.2613

Table 4:

Moments of A, 31 and ﬁz in model (5.2) for various values of 8,/0 and §,/0 = 0.1
T=20 ref. 10 5 2 1 0.5 0.2 0.1
bias A -0.1776 | -0.1776 | -0.1776 | -0.1776 | -0.1776 | -0.1776 | -0.1776
(MCSE) (0.0005) | (0.0005) | (0.0005) | (0.0005) | (0.0005) | (0.0005) | (0.0005)
o) | (413) | -0.2051 | -0.2051 | -0.2051 | -0.2051 | -0.2051 | -0.2051 | -0.2051
or* | (31) | -0.2391 | -0.2391 | -0.2391 | -0.2391 | -0.2391 | -0.2391 | -0.2391
var A 0.0287 0.0287 0.0287 0.0287 0.0287 0.0287 0.0287
o(1T°) 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200
MSE X 0.0602 0.0602 0.0602 0.0602 0.0602 0.0602 0.0602
o(r=°% | (3.5) 0.0708 0.0708 0.0708 0.0708 0.0708 0.0708 0.0708
o(T % | (415) | 0.0620 0.0620 0.0620 0.0620 0.0620 0.0620 0.0620
bias 3, -2.4414 | -1.5534 | -1.0207 | -0.8431 [ -0.7543 | -0.7010 | -0.6833
(MCSE) (0.0065) | (0.0040) | (0.0028) | (0.0024) | (0.0023) | (0.0022) | (0.0022)
Oy | (412) | -2.6824 | -1.7710 | -1.2242 | -1.0419 | -0.9508 | -0.8961 | -0.8779
var 3, 4.1908 1.6147 0.7577 0.5869 0.5230 0.4915 0.4822
o(T72) 4.3787 1.6642 0.7261 0.5286 0.4513 0.4119 0.3999
MSE 3, 10.151 4.0278 1.7995 1.2977 1.0919 0.9829 0.9490
o(T™2%) | (4.15) 11.574 4.8007 2.2248 1.6142 1.3553 1.2149 1.1706
bias 3, 1.9638 1.0759 0.5432 0.3656 0.2768 0.2235 0.2058
(MCSE) (0.0059) | (0.0032) | (0.0016) | (0.0011) | (0.0008) | (0.0006) | (0.0006)
o2y | (412) | 2.0201 | 1.1087 | 05619 | 0.3796 | 0.2884 | 0.2338 | 0.2155
var B, 3.4329 1.0138 0.2510 0.1115 0.0633 0.0413 0.0351
o= | (4.15) | 34165 | 1.0013 | 024290 | 0.1051 | 0.0579 | 0.0364 | 0.0304
MSE 3, 7.2895 2.1714 0.5461 0.2452 0.1399 0.0912 0.0774
O | (4.15) | 74971 | 22305 | 05585 | 02492 | 01411 | 00911 | 0.0769
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Table 5:

Moments of X, Bl and ﬁQ in model (5.2) for various values of 3, /o and §8,/0 = 0.1

T =40 ref. 10 ) 2 1 0.5 0.2 0.1
bias A -0.0131 -0.0131 -0.0131 -0.0131 -0.0131 -0.0131 -0.0131
(MCSE) (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
O(T™3) | (4.13) | -0.0134 | -0.0134 | -0.0134 | -0.0134 | -0.0134 | -0.0134 | -0.0134
o= (3.1) -0.0131 -0.0131 -0.0131 -0.0131 -0.0131 -0.0131 -0.0131
var A 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007
o9 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007
MSE X 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
o9 | (3.5) 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
O(T~%) | (4.15) 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
bias 3, -0.3510 -0.2856 -0.2464 -0.2333 -0.2268 -0.2229 -0.2216
(MCSE) (0.0022) | (0.0019) | (0.0017) | (0.0016) | (0.0016) | (0.0016) | (0.0016)
o= | (4.12) | -0.3476 -0.2841 -0.2460 -0.2333 -0.2270 -0.2232 -0.2219
var @1 0.4999 0.3526 0.2813 0.2605 0.2506 0.2448 0.2429
o(T72) 0.5021 0.3533 0.2814 0.2603 0.2503 0.2445 0.2426
MSE 3, 0.6231 0.4341 0.3420 0.3149 0.3020 0.2945 0.2920
O(T=2) | (4.15) | 06220 | 04341 | 03419 | 03148 | 03018 | 0.2043 | 0.2018
bias 8, 0.1588 0.0934 0.0542 0.0411 0.0345 0.0306 0.0293
(MCSE) (0.0010) | (0.0006) | (0.0003) | (0.0003) | (0.0002) | (0.0002) | (0.0002)
O(T™%) | (412) | 0.1542 0.0907 0.0527 0.0400 0.0336 0.0298 0.0285
var @2 0.1027 0.0350 0.0115 0.0065 0.0046 0.0036 0.0033
o= | (4.15) 0.1033 0.0351 0.0115 0.0065 0.0046 0.0036 0.0033
MSE 3, 0.1279 0.0437 0.0144 0.0082 0.0058 0.0045 0.0041
o= | (415) | 01271 | 0.0434 | 00143 | 00081 | 0.0057 | 00045 | 0.0041
Table 6:
Moments of A, Bl and BQ in model (5.2) for various values of 3, /0 and 8,/0 = 0.1

T =280 ref. 10 5 2 1 0.5 0.2 0.1
bias A -0.0008 | -0.0008 [ -0.0008 | -0.0008 [ -0.0008 | -0.0008 | -0.0008
(MCSE) (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000)
o= | (4.13) | -0.0009 -0.0009 -0.0009 -0.0009 -0.0009 -0.0009 -0.0009
or=* | (3.1) | -0.0008 | -0.0008 | -0.0008 | -0.0008 | -0.0008 | -0.0008 | -0.0008
var A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
o(r=° 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MSE A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
o(Tr=° (3.5) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
O(T~% | (4.15) | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
bias 3, -0.0653 -0.0611 -0.0586 -0.0577 | -0.0573 -0.0571 -0.0570
(MCSE) (0.0012) | (0.0011) | (0.0011) | (0.0011) | (0.0011) | (0.0011) | (0.0011)
oT 1) | (412) | -0.0641 | -0.0599 | -0.0574 | -0.0566 | -0.0562 | -0.0559 | -0.0558
var 31 0.1440 0.1303 0.1226 0.1201 0.1189 0.1182 0.1179
o(T™?) 0.1442 0.1305 0.1228 0.1203 0.1191 0.1183 0.1181
MSE 31 0.1482 0.1340 0.1260 0.1235 0.1222 0.1214 0.1212
O(T~?) | (4.15) 0.1483 0.1341 0.1261 0.1235 0.1222 0.1215 0.1212
bias (3, 0.0120 0.0078 0.0053 0.0045 0.0040 0.0038 0.0037
(MCSE) (0.0002) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
O(T7?) | (4.12) 0.0119 0.0078 0.0052 0.0044 0.0040 0.0037 0.0037
var B, 0.0043 0.0018 0.0008 0.0006 0.0005 0.0004 0.0004
O(T % | (415) | 0.0043 0.0018 0.0008 0.0006 0.0005 0.0004 0.0004
MSE 32 0.0045 0.0019 0.0008 0.0006 0.0005 0.0004 0.0004
o(T %) | (4.15) | 0.0045 0.0019 0.0008 0.0006 0.0005 0.0004 0.0004
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