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Abstract

Through Monte Carlo experiments the small sample behavior is exam-
ined of various inference techniques for dynamic panel data models when
both the time-series and cross-section dimensions of the data set are small.
The LSDV technique and corrected versions of it are compared with TV
and GMM regarding: coefficient bias, accuracy of variance estimators -
both of the disturbances and of the coefficient estimators - and the actual
size of coefficient tests. A reasonably simple and consistent bias adjusted
LSDV estimator, for which we find an analytical and a bootstrap consistent
estimator of its variance, performs relatively well. Further higher-order re-
finements of the bias correction do not improve the accuracy considerably.
Most techniques show substantial size distortions for asymptotic ¢ tests.
Finally, it is illustrated how these findings help to interpret empirical re-
sults on the relationship between so-called dynamic externalities and local
economic activity in Moroccan urban areas.

1. Introduction

Least-squares estimation techniques for static panel data models give consistent
estimators in a dynamic setting only when the number of time observations 7" in

*  Tinbergen Institute & Faculty of Economics and Econometrics, University of Amster-
dam, Roeterstraat 11, 1018 WB Amsterdam, The Netherlands (MBUNQ@QFEE.UvA.NL and
JFKQFEE.UvA.NL)



the data set approaches infinity. Since in micro-economics the typical dimension
of a panel data set is a short time span for a large cross-section various authors
have paid attention to this problem and have proposed IV and GMM alternatives,
which are consistent for fixed 7" and an infinite number of cross-section observa-
tions N (Anderson and Hsiao, 1982; Arellano and Bond, 1991; Ahn and Schmidt,
1995). GMM estimators typically use more orthogonality conditions than their
simple IV counterparts and they take the covariance structure of the disturbances
into account. Therefore they are asymptotically more efficient. In an attempt
to avoid the problem of weak instruments, Kiviet (1995) follows another route to
achieve large N consistent estimation and to enhance efficiency. An asymptotic
approximation formula for the finite sample bias of the inconsistent LSDV esti-
mator is exploited to remove inconsistency and to reduce mean squared error. In
Kiviet (1999) this approximation formula has been slightly refined by taking a
particular further higher-order term into account, but its actual performance has
not been examined yet.

Although IV and especially GMM estimators have attractive asymptotic prop-
erties, Monte Carlo experiments (Arellano and Bond, 1991; Kiviet, 1995; Harris
and Matyds, 1996; Judson and Owen, 1999) have shown that for these techniques
the quality of the asymptotic approximations in finite samples depends heavily on
the actual parameter values of the model and on the dimensions of the available
data set. In most of these simulation experiments short time series and reasonably
large cross-section samples have been examined and attention is focused on bias
and mean squared error of the coefficient estimators. Not much is known yet (for
an exception, see Judson and Owen, 1999) about the performance of the various
techniques when both dimensions are small, e.g. N = 10, 7' = 10 or N = 5,
T = 20. Such dimensions can be relevant in both macro- and micro-economic
applications, where the time span is one or two decades and the cross-section
consists of a small number of countries or sectors. Although some attention has
been paid to assessing the accuracy of variance estimators (Arellano and Bond,
1991), little is known about the actual reliability of asymptotic test procedures in
panels of a limited sample size.

The purpose of this paper is to produce further insights into the finite sample
properties of various inference techniques for dynamic panel data models, espe-
cially when both dimensions of the data set are small. By simulation we examine
for this situation the bias and mean squared error of various coefficient estima-
tors, the bias in related estimators for the disturbance variance and the accuracy
of estimators of the coefficient standard errors. Also we examine the actual size
of simple asymptotic coefficient tests. More in particular, we will focus on vari-
ous possible implementations of the bias corrected LSDV estimator (LSDVc) as
proposed by Kiviet (1995, 1999). First, we will analyze the magnitude of the con-



tributions of the separate terms in the bias approximation. Second, as the bias
approximation depends on the unknown model parameters, we also investigate
the sensitivity of the LSDVc estimator with respect to the choice of the prelim-
inary consistent estimator. Third, we develop an appropriate estimator for the
standard error of the LSDVc¢ estimator, which proves to be nontrivial for the small
T, large N case. We examine whether it is possible to exploit such an estimator
in tests on coefficient values. Here, we also analyze the accuracy of estimators
and tests in dynamic panel data models including non-stationary variables, since
this situation is likely to arise in applied research.

In a rather extensive Monte Carlo study Kiviet (1995) examines the bias and
mean squared error of the corrected LSDV estimator and compares these with IV
and GMM alternatives for the small T', relatively large N panel with stationary
variables. One conclusion is that in samples of such a size there is no superior
technique yet over a broad range of relevant parameter values of the model. More
recent simulation results of Harris and Matyds (1996) and Judson and Owen
(1999) indicate, however, that especially in samples with smaller values for N the
semi-consistent IV and GMM techniques often perform rather poorly as far as
the bias and efficiency of coefficient estimators are concerned. Regarding variance
estimators the simulation results of Arellano and Bond (1991) show that in the
panel with small 7" and large N the asymptotic approximation of the standard
errors of their two-step GMM estimator is biased downward, but that one-step
estimators of the asymptotic standard errors are quite accurate. In this paper
less favorable results for the one-step GMM estimator are obtained when both N
and T are small. Often the simulation results show a substantial downward bias
for estimated asymptotic standard errors of coefficient estimators. We also find
that for all procedures presently available the true size of t-type tests may differ
substantially from the nominal level.

The outline of this study is as follows. In Section 2 the estimators to be ana-
lyzed are introduced. A review of their asymptotic distributions and an expression
for an estimator for the variance of corrected LSDV estimators, derived in an Ap-
pendix, is given in Section 3. In Section 4 the simulation design is described,
with further details in another Appendix, and the finite sample behavior of the
various estimators and tests are compared. Section 5 contains an application of
the various procedures in a panel analysis of so-called dynamic externalities and
local economic activity in Morocco, and Section 6 concludes.



2. Estimators for dynamic panel data models

We consider estimation methods for the standard linear first-order dynamic panel
data model

Yit :7y27t71+ﬁ/$1t+?72+82t (Z: 1,,N, t= 1,,T) (21)

In this model the dependent variable y;; is regressed on a vector of K exogenous
explanatory variables x; and the one period lagged value of the dependent vari-
able. The composite disturbance term w; = 7, + £; consists of an individual
specific effect n;, which is either fixed or random, and a white noise term ¢;; with
variance o2. In case of random effects, 1; has mean zero and finite variance o2,

is uncorrelated between units ¢ and not correlated with the general disturbance
term ;. Stacking the observations over time and across individuals one gets

y=Wé+ (In @ tr)n+e, (2.2)

where § = (v,3)’, y and W = [y_,:X] are NT x 1 and NT x (K + 1) matrices of
stacked observations, € is the NT' x 1 vector of disturbances and ¢ = (1,...,1)" a
T x 1 vector of ones.

2.1. LSDV estimator

It is clear from (2.1) that when the effects are random, the regressor v;;—; is cor-
related with the composite disturbance term 7, + ¢;;. Hence, standard estimators
for the random effects model are inconsistent (results on the asymptotic bias can
be found in Sevestre and Trognon, 1985). Therefore, one usually avoids to esti-
mate the coefficients (y, 3')’ by error component techniques, because this leads to
many complications (see Sevestre and Trognon, 1996). It is more common to as-
sume that the individual effects are fixed, or otherwise to treat genuinely random
individual effects as fixed anyhow, in order to deal with their likely non-zero corre-
lation with the regressors. Then the N components of the vector n = (14, ..., ny)’
constitute N unknown parameters corresponding to the dummy variables Iy ® ¢
in (2.2). Note that their estimation will lead to a considerable loss of degrees of
freedom, especially when N is large. Estimation of the N + K + 1 coefficients
of (2.2) by ordinary least squares yields estimates which are called Least Squares
Dummy Variables (LSDV) or fixed effect estimates. Using standard partitioned
regression results, the resulting estimator for 6 can be expressed as

SLSDV = (W’AW)_IW/Ay (23)

_ ! -1 yl—lAg
= s oram (%),
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where the NT' x NT matrix A = Iy ® (Ir — zupi)y). Note that A is the within
transformation which wipes out the individual effects. For ease of exposition it
is assumed that all the explanatory variables are time variant so that W’ AW is
invertible. Although exogeneity of the regressors X implies F(X'Ae) = 0, we
have E(W'Ae) # 0, since it can be shown that

B(y.,Ae) = o’ al - (1 - Tla_—ji)> | (2.4)

Therefore, the LSDV estimator of ¢ is consistent for 7" — oo but inconsistent for
N — oo and T finite, see Nickell (1981).

2.2. IV estimation

A different transformation of (2.2) for removing the individual specific effects is
first differencing, i.e.

Dy =~Dy_1 + 3 DX + De. (2.5)
Here D = Iy ® Dy is the N(T — 1) x NT matrix operator with the (T"— 1) x T
matrix Dy defined as

Since E(y' ;D'De) = —E(y 1e_1) = —E(¢' 16_1) = —02N(T — 1) least-squares
is inconsistent now, irrespective of how the sample size is extended. However,
Anderson and Hsiao (1982) propose two simple instrumental variables (IV) es-
timators for the parameter vector §, which make use of either Dy 5 or y 5 as
instrument for Dy ;. The proposed instruments are uncorrelated with the distur-
bance term De and correlated with Dy 1, so they are valid. In this study we will
analyze the second option only, i.e. using y_o as instrument. Then estimation of
(2.5) leads to the estimator

Srv = (ZW*)"1Z' Dy, (2.6)

where Z and W* are N(T'—1) x (K 4 1) matrices and Dy is a N(T —1) x 1 vector.
More in particular W* = [Dy_; : DX], with DX a NT(—1) x K matrix and
Z = [y_o : DX]. Although the Anderson and Hsiao IV estimators, unlike Sis DV,
are consistent for N — oo and finite 7', they are inefficient because (2.6) does not
exploit all valid instruments neither takes into account that the disturbance term
in (2.5) is an MA(1) process rather than white noise.
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2.3. GMM estimation

Enhancement of efficiency can be pursued by a more elaborate estimation method,
namely Generalized Method of Moments (Arellano and Bond, 1991; Ahn and
Schmidt, 1995), which copes with both the correlation structure of the distur-
bances and the exploitation of any further instruments. The GMM estimator
used in this paper is that of Arellano and Bond (1991). In their simulation study
and empirical application they do not use all available overidentifying restrictions
concerning the exogenous variables. Their (T — 1) x (§7(T — 1) + 1) matrix Z;
of instruments for individual i, also used in this paper, is

[0 0 0 0 0 0 0 0 Az,
0 Yio Yia 0 0 0 0 0 AJIZ'73

A 0 0 0 wo i1 Uie (2.7)
O O o O 0 o Yi,0 Yir—o Ax;p

The moment conditions can be written conveniently as E(Z* De) = 0, where
Z* = (Z¢,...,Z%)". The GMM estimator of ¢ is based on the sample moments
% Zf\il Zj’DTgi = 0 and is obtained as

S = arg min £'D'Z*GZ* De, (2.8)

where G is a weighting matrix. The optimal choice for G in (2.8) is to make it
proportional to the inverse of 02V = E[Z* Dee’' D’ Z*], which is the covariance
matrix of the moment conditions. The estimator in (2.8) is equivalent with the
GLS estimator of ¢ in

7" Dy = Z*W*§ + Z* De, (2.9)

where 02V is the variance matrix of the transformed disturbance term Z* De.
Then the GMM estimator equals

(ASGJW]\/[ _ (W*/Z*V—lz*'W*)—IW*lz*V—lz*’Dy' (210)
The estimator of V' used in this paper is V= %Z * HZ*, which is equivalent with
the GMM1 estimator of Arellano and Bond (1991). The N(T' — 1) x N(T' — 1)
matrix H = Iy ® Hp_;. Multiplied by the disturbance variance ag this is the
variance matrix of De, which is an MA(1) process under the assumption that e
is white noise. The matrix Hr 1 = DrD/ has twos on the main diagonal, minus
ones on the first subdiagonals and zeros elsewhere.



2.4. Corrected LSDV estimation

Unlike the more traditional estimators for static models, the proposed IV and
GMM estimation methods have attractive asymptotic properties in dynamic mod-
els. These will be discussed more thoroughly in the next section. The focus in this
paper, however, is on finite sample properties, which can be analyzed either by
analytical finite sample approximations or by Monte Carlo experiments. Kiviet
(1995) derives an approximation formula for the bias of the LSDV estimator (2.3)
in the normal stationary dynamic panel data model such that the approximation
error has a magnitude which is of order O(N~!) and of order O(T~?) at the same
time. In Kiviet (1999) this analysis is extended and an approximation to the
bias is produced which is not only accurate to order O(7T!) again, but now it is
accurate to order O(N™') as well. These expressions for the approximate bias are
rather complicated, but here we shall show that they can be simplified consider-
ably. In the simulations to follow we shall examine closely the actual magnitude
of the various contributions to the finite sample bias of terms of decreasing orders
with respect of both T and N. This will help to select an implementation of a
bias corrected LSDV estimator with attractive properties in finite samples.

In order to employ the usual O and O, notation unambiguously for panel
data, where the sample has two dimensions, we put this notation into a wider
context defined as follows: Let ¢ and 1 be real numbers. If the elements ay;
(where k =1,..., K and [ = 1, ..., L) of a non-stochastic K x L matrix A constitute
sequences {ay,(i,t)} fori =1,..., Nand t = 1,..., T, where we allow either N — oo
or T'— oo or both, then A = O(N?) indicates that there exists a finite constant
a, > 0 such that ‘N“’ﬁak,l(i,t)‘ < Gy, Vk,1,i,t. Similarly A = O(T") indicates
that there exists a finite constant a, > 0 such that ‘T‘”’ak,l(i, t)| < ay, Yk, 1,1i,t.
In addition, A = O(N?T"?) indicates that there exists a finite constant ag, > 0
such that ‘N7¢T7U)ak71(i, t)‘ < Qg ), VEk,l,1,t.

When A = O(N?) we say that the elements of A are at most of order N?,
which is equivalent with O(N?TY), i.e. the quantities N~%q;,; are finite, even
when T approaches its limit. More generally, A = O(N?T") indicates that all the
elements of A are at most of order N*T.

In addition we define that when the matrix A contains random elements,
A = O,(N?) indicates that for all ¢ > 0 there exists a finite constant a. > 0
and a positive integer N. such that Prob(|N‘¢ak,l(i,t)‘ > a.) < e, Vk,I,t and
i > N.. Similarly, A = O,(T") indicates that for all € > 0 there exists a finite
constant @. > 0 and a positive integer 7. such that Prob(|T Yay,(i, t)| > a.) <e,
Vk,l,i and t > T.. And finally, A = O,(N?T?) indicates that for all ¢ > 0
there exists a finite constant a. > 0 and positive integers N. and 7. such that
Prob(|N=*T~Yay,(i,t)| > a.) <e, Vk,l and i > N.,t > T..

When A = O,(N?) we say that the elements of A are bounded in probability
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by order N?, which is equivalent with O,(N?T?), and implying that N %ay,
is of order unity in probability, irrespective of the value of T. More generally,
A = 0,(N?T?) indicates that the elements of A converge at least at rate N*T.

The above terminology on rates of convergence and orders of magnitude of
double-indexed deterministic and stochastic sequences of vectors or matrices will
be employed now for estimators in panel data models, especially for the LSDV
estimator. It has been shown in Kiviet (1995, 1999) that

EGrspy —8) = E ((W’AW)—1 W’Aa) (2.11)
= (T )+ (N T Y +es(N T %)+ O(N 2T ?),
where
a(T™h) = QEW'As) =0(T)
(NTI'T™Y) = —QEWAW — Q™ HQ[W'Ae — E(W'Ae)] = O(N~'T™)
a(N'T?) = —QE([(WAW —Q HQJ*) E(W'Ae) = O(N'T™?),
with

[EW'AW)] ™! = W AW + otr(IT'T)e )]~
W = B(W)=[E(y-1):X]

E(yi,o) = Yo, E(yzt) = ’)’E(yi,tfl) + ﬁlxi,t (Z =1,.,N;t=1,.., T)
e = (1,0,...,0) has K + 1 elements
II = ALL, '=Iy®Ty, I'p=(Ir—~Ly)"", L=1Iy® L,

O
Il

where the T' x T matrix Ly has ones on its first lower subdiagonal and all other
elements equal to zero. Using the shorthand notation

q = Qe; and qi = 6/16117
and following the derivations as presented in the papers referred to above, one
obtains
a(T™) = otr()g (2.12)
c(NTI'T™Y) = —QE(WAWQW'Ae) + QE(W' A¢) (2.13)
= —o[QW'TAW + tr(QW'TIAW ) I,
+202quitr (T I 1] g
c3(NT'T™?) = QEWAWQW'AW)QE(W'Ae) — QE(W' A¢) (2.14)
= oltr(IN){2quQW'TIII'Wqy
+H(GWII'Way)
+qtr(QW'TIT'W) + 2tr (T 3|1 }-

8



In Kiviet (1995) only the first two terms (2.12) and (2.13) have been taken into
account, so the approximation error is still O(N 1T~2). The more general result
with approximation error of order O(N~2T~2) can already be found in Kiviet
(1999) but here the expressions are simpler due to removing factors W’/ AW by
exploiting W/ AW = Q! — o2tr(II'Tl)e; e}

Note that all components given above implicitly contain contributions which
are in fact of smaller order than the order indicated. For example, upon exploiting
the simple structure of I'r, as was also done in (2.4), we obtain for (2.12)

N N NAT
a(T™) = 2tr(Igy = —o? | 7= - | @, (215)
L=y T(A-7)" T-9)
and so, since ¢ = O(N7'T7'), ¢;(T~!) also contains contributions of order

O(T~?) and smaller. Note that such is fully in accordance with our definitions
given above, i.e. O(T™') refers to ”is at most of order 77! (but could even be
smaller, or be a combination of terms of order 7! and smaller terms). The ap-
proximation to the LSDV bias established by the first of the three components of
(2.15), ie.

E(brspy — 8) = —0q +O0(T3)+O(N T, (2.16)

L—n
is an extremely simple one, which may work well for moderately large N and
T, because the "pure” O(T~!) contribution to the bias has been separated here
from O(N~1T1) and "pure” O(T?) contributions, together constituting a hybrid
remainder term.

In numerical calculations for relevant data generating processes we shall ex-
amine the bias approximation

N
0
Béb)’DV = —oiq T— (2.17)
and make comparisons with the approximations produced by
_ J
Bilpy =Y e, forj=123, (2.18)

h=1

where ¢, (h = 1,2, 3) refers to the contributions to the bias given in (2.12), (2.13)
and (2.14) respectively. By assessing the true bias from Monte Carlo simulations
we shall examine the relative accuracy of the various approximations and examine
the importance of the inclusion of higher-order terms.



It is known from simulation studies that, despite its serious bias, the LSDV
estimator has a relatively small variance as compared with IV and GMM tech-
niques. Therefore, on basis of a mean squared error criterion, a reasonably efficient
procedure may result when a bias approximation is used to correct for the bias in
the LSDV estimator. We shall examine the implementations

2 () 2 3 .
5L]SDVc,h = drspv — BJ(:]S)DV,hv J=0,.,3, (2.19)

where any consistent preliminary estimators &, and &?7 1, obtained from estimation
technique h = IV, GM M, can be used to estimate the correction term.

Numerous other estimators have been proposed for the dynamic panel data
model, and therefore the techniques described in this section are not exhaustive.
See, for example, Harris and Matyas (1996) for a broader overview of the existing
techniques for the dynamic panel data model. However, the techniques discussed
in this section are considered to be either the most common or the most promising
ones.

3. Asymptotic properties

In this section we establish limiting distributions for the various estimators, either
for N — oo and T finite, or for " — oo and N finite, and occasionally for N — oo,
T — oco. We will not consider the limiting behavior of the estimators when both
N and T grow, but at different rates (see Alvarez and Arellano, 1998). Note that
an appropriate asymptotic variance for LSDVc estimators (2.19) has not been
derived yet for the case N — oo and T finite. The last subsection is about the
asymptotic distribution of simple ¢-ratios for the various estimators.

3.1. IV and GMM estimators

First, we focus on the method of moment estimators. Under standard regularity
conditions, and upon defining

1
Yyw- = plim —Z'W* (3.1)
N—oo
1
N—oo
1
N—o0 N
1
EZ*HZ* = phm —Z*/HZ*, (34)
N—o0 N

10



the usual asymptotic reasoning yields the normal limiting distributions for the IV
and GMM estimators for fixed T, viz.

VN <8W - 5) D N[0, S Sama(S) Y (3.5)
and R .
\/N (6(;]”1\[ - 6) Njo)o N [0, O-?(Z/Z*W*ZEEHZ* EZ*W*)il} . (36)
>From the above, we obtain the asymptotic approximations
orv o N[o, oA ZW) T ZHZ(WT Z) ™ (3.7)
and R )
barnr o N [5, ag(W*’Z*V—lz*’W*)—l} . (3.8)
Consistent estimators for o2, the variance of the disturbance term ¢, are given by
as,h N(T . 1) _ (K + 1)7 (h Va G ) (3 9)
where )
th =Yy — W5h (310)

Note that the numerator in (3.9) is the sum of squares of the group-demeaned (in
order to account for the estimated individual effect coefficients) residuals, and the
denominator contains a degrees of freedom correction for the N + K 41 estimated
coefficients. Obviously, &?7 ;v and &iG A Are semi-consistent, like 87y and dgarar,
for N — oo and any 7.

3.2. LSDV estimator
To obtain similar results for the LSDV estimator, where
<SLSDV — 6) = (W’AW)il W/AE, (311)

we have to be a little bit more careful. We will obtain results for T — oo and
N finite and N — oo and T finite. The right-hand expression of (3.11) has two
factors. First, we will consider the order of the expectations of both W’ AW and
W' Ae, which have already been presented below (2.11). They are obtained from

AW = E(AW) + [AW — E(AW)] = AW + ¢}, (3.12)
where II = Iy ® [Ir with Il = ApLy'r. This yields
EW'AW) = Q' = WAW + o*tr(II')e.e; = O(NT) (3.13)

11



and

EW'Ae) = E(Tle)e; = o*tr(Il)e, (3.14)
= E[EI(IN X HT)€]€1 = O'gNtT(HT)Gl = O(N),

because

_ 1 _ 1—fyT
tr(Ily) = (1—7 T(1—7)2>7 (3.15)

see (2.15). From (3.12) we also find

Var(W'Ae) = Var(W'Ae + e'llee;) (3.16)
= oW AW + 0N [tr (I1,117) + tr (TpIlz)] er€) = O(NT).

Now we define both

1
N—o0 N
for T finite, and
1
T—o0 T

for N finite. First consider

- 1
plim (6.5py — 8) = Y33} 4 Plim ?W’Ae.

T—oo T—o0

Since it follows from (3.14) and (3.16) respectively that, for N finite, E(£W’Ae) =
O(T7') and Var(£W’'Ae) = O(T~"), we have plim LW’ Ae = 0. Hence,

T—oo

plim &,.5py = 6, (3.19)

T—o0

ie. ESLSDV is consistent for T' — .
Employing an appropriate central limit theorem yields

VT (busov = 8) =5 N[0, 2 Tybu] (3.20)

T—oo

leading to the asymptotic approximate distribution
a

518DV o~ N (6, o2(WAW) ] (3.21)

Also, for
2 Uy spyAlrspv
= 3.22
TeLSDV = N(T 1) — (K + 1) (3:22)

12



with lALLSDV =Yy — WSLSDV, we find

plim ¢ Ua LSDV = U?-

T—oo
In principle, of course, these large T approximations will be useful only when T is
large relative to N. It is straightforward to show that similar asymptotic results
can be obtained for both N — oo and T" — .

However, for T finite and N — oo the situation is much more complicated.

It follows from (3.14) and (3 16) that E( W'Ae) = O(1) and Var(+W'Ae) =
O(N~'). Hence, using plim ~ (W’'Ae — (W’As)) = 0, we find

—00

. 1
§* = plim (brspy — 6) = X5} 4 plim =W’ Ae (3.23)

N—oo N—oo N

1
= Y 4w plim — N (W’As — E(W'A¢)) + Sytaw hm NE(W’A&)

— 00

o 1 _ 1—7

which defines 6" as the inconsistency (asymptotic bias) of LSDV for N — oo and
finite T, earlier addressed in Nickell (1981) and Sevestre and Trognon (1996).

It is interesting to examine whether, in addition to (3.20), the LSDV estimator
has a limiting distribution for N — oo and fixed 7', and what the situation is for
LSDVc¢ estimators like (2.19). From (3.16) and (3.13) we obtain

Var(W'Ae) = o2Q ™" + o Ntr (Il 117) ese), (3.24)
and with (3.17) this yields

1
i (W' Ae — E (W' Ag)) N%;o N[0, 028w aw + ottr(Il7lly)erel] . (3.25)
Hence,

]‘ ! o ]‘ ! ]‘ !

4N [0 o O tr(HTHT)ZITVIAwelellzleIAW] 5

N—oo

and, using (3.11) and (3.23), we obtain from the above
VN <8LSDV 5 6) (3.26)

-, N [0 UQZWAW+U tT(HTHT)EWAWﬁelZWlAW]

N—oo
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So, we find that for N — oo and fixed T the estimator B) rspy has a limiting dis-
tribution, but it is not centered at ¢. Note that this limiting distribution depends
not only on 02 and Yy aw, but via II7 also on 4. If §* were known, the corrected
LSDV estimator & rspy — 0° would provide a v/N-consistent estimator of § with
limiting distribution (3.26). Hence, even if 6" were known and could also be used
to obtain a consistent estimator 6* for o2, then 6*(W’AW)~! would not provide
an adequate expression for the asymptotic variance. Thus, for N — oo we find
at least two striking differences with the T — oo results: bias correction is in-
dispensable for achieving consistency and the asymptotic variance of a consistent
estimator is non-standard.

3.3. Corrected LSDV estimator

We will now analyze the limiting behavior of corrected LSDV estimators as pro-
posed in (2.19). From (2.11) it follows that as long as 7" — oo the limiting behavior
of corrected LSDV estimators is equivalent to that of the ordinary LSDV estima-
tor. Note that in this case also the ordinary LSDV estimator can be used as a
preliminary consistent estimator of 6 in the bias approximation, i.e. h = LSDYV,
IV, GM M in (2.19) yields consistency.

For T finite and N — oo we have for the ordinary LSDV estimator the limiting
result in (3.26). In practice 6" of (3.23) is unknown, but we can estimate it.
Employing a \/N—consmtent estimator 6h, for instance & v of (3.5) or 5GMM of
(3.6) and corresponding 6 057 ny yields

o 1 1—4T 1 !
§ =62, _ T ) (=WAW ) e, h=IV, GMM.
TAL=Y T(L—-4) N
(3.27)

We shall examine now the asymptotic distributions of the LSDVc estimators

8LSDVc,h = brspv — 32, h=1V, GMM. (3.28)

(1
Note that this implementation corresponds to (S(L ; pven given in (2.19). The higher
order implementations with 7 > 1 have the same limiting distribution. To derive
this limiting distribution we use

¢N@mwm—@:JN@mw—ﬁ—Q—JN@}wﬁ. (3.29)

The first right-hand term has already been dealt with in (3.26) and in Appendix A
the limiting distribution of the second term is derived and also of their difference.
Since the second term has a finite limiting distribution indeed, i.e. is O,(1), the
asymptotic variance of the corrected estimator with estimated ¢* is found to be
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different from that where 6™ is known, which was already found to be non-standard
itself.
In Appendix A we find

VN (8uspven—6) = N0, Quspver, =1V, GMM,

N—oo

which leads to

8LSDVc,h N:a:oo N [67 VLSDVc,h] ) h = ]‘/7 GMM. (330)

For h = IV the expression for the asymptotic variance matrix has been derived
and we find

Vispvery = o2(WAW)™! (3.31)
+o Ntr(ILp 1) (W AW) " ter e (W AW) ™!
+oN(W'AW) "W AD' Z(W* Z) eid,
+0Nd e (ZW*) 1 Z' D AW (W AW) ™!
+02 (6N/ (T — 1)) dod,
+0 N2 (ZWH 1 ZHZ(W Z) L erdyd)
+0S N2t (I T Ly KDy ) (W AW) "YW Z) ey d,
+0S N2tr (I T Ly K Dy dy € (Z W) "YW AW) L,

where

1_‘_,}/T—1_2 1_,yT

(1-v° T(1-y)°
d2 = tT(HT)(WIAW)ilel.

d, = (W AW) e

The expression in (3.31) can be used to estimate the asymptotic variance matrix of
(3.30). For h = GM M we did not derive such an expression due to the complexity
of the dependence of the matrix of instruments Z* on .

An alternative way to obtain empirical estimates of Vi,spv. n, which avoids the
use of complicated analytical expressions as in (3.31), is to bootstrap the standard
errors. Exploiting the normality assumption, we may use a parametric bootstrap
and the procedure for resampling is then as follows:

e Obtain the corrected LSDV estimators &, DVe,hs &?7 pand 7pspyep;

e For b = 1,..., B generate a random sample £ ~ N[0, &zthNT];
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e Calculate y®) = fAyLSDVc,hygq +X BLSDVc,h + (In @ t)iispyep + € where

yg’i contains the original starting values;

e Estimate the model with the resampled data to obtain the bootstrap LSDVc

. 2(b)
estimator 6;gpyep-

Note that the presence of y_; necessitates to use a recursive resampling scheme.
The limiting distribution for the bootstrap estimator, conditional on érs5pven, is

/7 (20 2 d
N <5Lspvc,h - 5LSDVc,h> J\:;O N [0, QLSDVc,h] ) h =1V, GMM.
(b
The variance of 62; DVen Can be estimated from its empirical distribution by

B
- 1 2(b) < 2(b) <
VLSDVc,h = ﬁ ;(6LSDVCJL - 5LSDVc,h)(5LSDVCJL - 5LSDVc,h)/7 (3~32)

_ (b

with 61spven = & Zszl 5(LQDVCJL. Especially when N is large this variance esti-
mator should be appropriate and may replace the estimation by the analytical
expression (3.31).

3.4. t-ratios

The asymptotic distributions presented above can be used to construct asymptotic
t-ratio tests for the null hypotheses Hy : 6, = &} for k = 1,..., K + 1. Using e
to denote a K + 1 unit vector with all elements equal to zero, apart from a unit
element at position k, the statistics can be expressed as (j = 0,1,2,3; h =1V,
GMM):
s 0
t(8Y) = ko — O . (3.33)
VoRe, (ZWe) 2 HZ (WZ) e

0 G;C(ASGJWM - 52
tGI\IM(ék) = T y (334)

~(5) 0
j e;c&LSDVc n— Ok
tg;'DVc,h,(&g) = — 7 ; (335)
\/ €,Vispvenek
<) 0
j ex0rspven — Ok
TL(QDVc,h(ég) = 7 ) (3-36)

\/5§,LSDV€2 (W/AW)_l €k
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s 0
€k5LSDV - 5k

\/&E,LSDve?c (W/AW)_I €k

Trspv(67) (3.37)

Because they have been appropriately normalized, the statistics ¢ (6Y), taarar(6%)
and t(LJ; DVe, L (67) will all converge to a standard normal distribution for N — oo

under the null hypothesis. For the tests TL(]S) Dve, ,(87), which combines the LSDVc

coefficient estimator with the ordinary LSDV variance, and T,spy (&%) this is only
the case when T approaches infinity.

4. Simulation results

The simulation design is basically the same as in Kiviet (1995), although slightly
different values for some of the parameters have been chosen including cases with
non-stationary regressors. Data for y have been generated according to equation
(2.1) with K = 1. The generating equation for the explanatory variable x is

Tip = pTig—1 + &y i=1,..,.N; t=1,..,T, (4.1)

where &, ~ TIN [O,ag]. As already noted in the introduction the focus is on
samples in which both dimensions are relatively small. Therefore, the following
three cases have been analyzed: T' = N = 10; T" = 10, N = 20 and T = 20,
N = 10. Three values for v (viz. 0.8; 0.5; 0.2) and two for p (viz. 0.8; 1.0) are
considered. Each experiment consists of one thousand replications. The long-run
effect 3/(1 —7) of = on y has been set equal to unity in all experiments. This
implies that the impact multiplier 3 varies with the chosen values for . The
variance of the disturbance term o2 is set at the value of one. So, for the three
chosen sample sizes we consider six different designs concerning § = (v, 5)’, p and
O..

Appendix B gives a detailed description on how the remaining design parame-
ters o, and o, have been determined. By varying o, we control the relative impact
on y of the two error components 1 and €. The parameter o, has been determined
by controlling the signal-to-noise ratio o2 of the model. In Kiviet (1995) it has
been shown that a proper comparison of simulation results over different parame-
ter values requires to exercise control over some of the basic model characteristics
such as the signal-to-noise ratio. Appendix B discusses also the modifications of
the design required when the exogenous regressor is non-stationary. In this case p
is equal to one, which is a situation not examined in Kiviet (1995). The signal-to-
noise ratio ait is now varying with ¢. Hence, we have chosen to fix the signal in the
experiments at the mean value of ait over the sample, and then the parameters
o, and o¢ are determined as in the experiments with a stationary regressor .
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The following estimators have been analyzed: least squares dummy variables
(LSDV), the Anderson and Hsiao (1982) simple IV estimator with the one-period
lagged level as instrument (AHL), the GMM1 estimator of Arellano and Bond
(1991) and the correction method of Kiviet (1995, 1999) based on either an initial
GMM estimate (LSDVc) or IV estimate (LSDVcA#L). In the correction formula

we have always included the approximation st) py» unless stated otherwise. Note
that the uncorrected LSDV estimator is the only one that relies on asymptotics
requiring large 7.

In the experiments the GMM estimator is calculated for three sets of instru-
ments. One, five and eight lagged values have been taken, which results in three
different GMM estimators (GMMa, GMMb and GMMec respectively). The GMMc
estimator is used as the preliminary estimator in the operational bias corrected
estimator LSDVec.

We performed 1000 Monte Carlo replications. Results on the bias, variance and
mean squared error of the various coefficient estimators are presented in Tables 1
and 2. To get a quick impression of the general qualities of the estimators (and to
save space) we give here average outcomes over the three different ~ values only
(for particular 7' and N) but do report separate results for the stationary and
non-stationary variable cases. We observe the following patterns in the simulation
results. First, the sign and magnitude of the bias in estimating v and 3 is for LSDV
and the GMM procedures more or less comparable when both T and N are small.
Second, the AHL estimator has almost negligible bias in estimating v and a rather
small bias for 3, but it yields for both the largest variance. Regarding ~ the large
dispersion of the AHL estimator is confirmed by the results in the second column
of Tables 1 and 2, which show the high frequency of estimates of v outside the
unit circle. Third, the LSDV procedure has relatively small variance as compared
with GMM and IV. Fourth, bias correction reduces the bias considerably. Fifth,
based on a mean squared error criterion the LSDVc procedures are never beaten
by the other estimators. In addition, we note that the sensitivity with respect to
the preliminary estimator used in the bias approximation, i.e. GMMc or AHL, is
only marginal. Also when the difference in accuracy of AHL and GMM is large,
the extent to which this is carried over to the accuracy of the bias corrected LSDV
is minor. Finally, we note for GMM that its variance (but not its bias) decreases
with the number of moment conditions employed.

In Tables 3 and 4 we compare the contributions of the various terms in the bias
approximation for LSDV, calculated at the true parameter values, with the actual
bias as estimated from the Monte Carlo for the stationary and non-stationary data
respectively. We find that the magnitude of the bias depends much more on 7" than
on N, and relatively little on p, the pattern of the regressor variable. The negative
bias in the estimator of v is larger in absolute value when ~ is larger, and on the
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whole it is much more serious than the bias in estimating 3. In relative terms the
bias in estimating -y is certainly serious when -~ is small. The decomposition of the
bias approximation in terms of different orders in 7" and N shows that the pure
O(T~") approximation can be reasonably accurate when the bias is moderate but
otherwise it may yield a considerable overstatement of the actual bias. Leaving
into the approximation the contributions which are o(7!), but which are still
O(N?) at the same time, is often profitable, but not always so. The contributions
to the bias which are O(N~'T~1) and O(N~'T~?) are found to be of very limited
actual magnitude, so one could decide to omit them from implementations of the
LSDVc procedure.

We return now to results for the various estimation procedures and focus
on variance estimates. In Table 5 results are presented for the case v = 0.5
and p = 0.8. For reference, the first two columns give the bias of coefficient
estimators in estimating v and [ for this specific experiment. Naturally, some of
the results concerning the coefficient estimators will carry over to the findings for
the disturbance variance estimators (3.9). The Table presents the estimated bias
in the estimators of . as percentage of the true disturbance standard error, which
is one in all experiments. Regarding this bias we find first of all that the magnitude
of the bias of the LSDV and GMM estimators is more or less equal and always
negative. Second, the bias in the AHL estimator is often positive. Third, bias
problems seem to be less severe for larger T'. In this Table the bias in estimating
the standard deviation of the various coefficient estimators is also presented as
percentage of the true standard deviation as estimated from the Monte Carlo. In
many cases these relative biases of the coefficient standard deviation are worse
than the bias of the disturbance variance (which is one of their determinants, of
course). For LSDVc and LSDVcA#L we present different variance estimators. The
conventional large T expression of (3.21) is always reported. In addition, when
T < N also the ”analytic” (only in case of LSDVc¢A#L) and the bootstrap variance
estimators as in (3.31) and (3.32) are presented. Especially for v these alternative
estimators seem more accurate than the standard expression. Similar results are
obtained when allowing for a nonstationary regressor, i.e. p = 1.0. However,
results not reported here show that for larger v, i.e. v = 0.8, the ”analytic”
variance estimator breaks down, while the bootstrap estimator is still relatively
accurate.

We shall examine now what the implications are of the results on coefficient
bias and bias in standard errors for the accuracy in small samples of the usual
statistical inference as produced by t statistics. Table 6 shows that relying on
asymptotic theory in small samples of the type analyzed here can be quite mis-
leading as the empirical distribution of the ¢ statistics can differ substantially
from the asymptotic standard Normal. The true size for testing 3 is in many
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cases still reasonably close to the nominal size. For testing v all the techniques
show substantial distortions. For AHL underrejection is more of a problem than
overrejection. LSDV (understandably) but GMM too show huge distortions. The
LSDVc results are generally much less extreme, but not really satisfactory. The
differences in performance of LSDVc implementations when using alternative vari-
ance estimators seem to be marginal.

5. Dynamic externalities and local economic activity in Mo-
rocco

5.1. Introduction

In this section the performance of the various estimators will be examined in
an empirical application. We analyse the determinants driving local economic
activity in six major Moroccan urban areas. The existence of cities or urban areas
is often explained by localization and urbanization economies, which arise as a
result of a higher degree of both concentration and differentiation of economic
activities. Localization economies emerge when similar firms cluster, while in
case of urbanization economies it is the diversity of the industrial structure that
matters. For example, localization economies permit firms to have better access to
natural resources and lower transport costs, while urbanization economies enhance
diversity of products and firms and increase market size.

While localization and urbanization economies describe the existing locational
structure of a region, they do not necessarily explain the pattern of economic
development through time. Growth theory (Romer, 1986) emphasizes the role of
knowledge spillovers as an important source for technological change and hence
economic growth. As close proximity of firms facilitates the transmission of ideas
and innovations between firms, knowledge spillovers are most likely to occur in
urban areas. The agglomeration economies arising from knowledge spillovers are
called dynamic externalities. In contrast with traditional localization and ur-
banization economies, dynamic externalities explain both the formation of urban
areas and local economic growth.

In the literature on dynamic externalities three main theories are distinguished.
All these theories agree that knowledge spillovers are important, but they differ
regarding their origins. First, Marshall-Arrow-Romer (MAR) externalities arise
from intra industry knowledge spillovers, see for example Glaeser et al. (1992).
MAR externalities imply that an increase in the concentration of firms of the
same industry within a region facilitates knowledge spillovers, which in turn in-
creases productivity. In other words, specialization of firms within a region will
have positive effects on local economic activity. Another feature of MAR ex-
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ternalities is that local monopoly rather than competition is better for growth.
Second, contrary to MAR externalities, so called Jacobs (1969) externalities arise
from inter industry knowledge spillovers or, in other words, diversity among firms
is beneficial. Third, Porter (1990) externalities agree with MAR theory that a
higher concentration of similar firms in a region facilitates knowledge spillovers.
In contrast to MAR, however, Porter argues that a higher degree of local com-
petition induces firms to innovate in order to remain competitive. In the view
of Porter, which is supported also by Jacobs, competition is good for economic
growth contrary to the prediction of MAR.

In Bun and El Makhloufi (1999) an attempt has been made to distinguish
which type of externality, if any, is predominant for economic activity in some
major urban areas in Morocco. As the empirical literature on dynamic external-
ities has focused exclusively on industrialized countries like the United States or
European countries, this is a first attempt to quantify these theories for a devel-
oping country. It establishes significant MAR externalities, but provides mixed
evidence on Jacobs and Porter effects.

An important question not addressed by Bun and El Makhloufi is to what
extent the influence of dynamic externalities on local economic activity differs
between manufacturing sectors. Glaeser et al. (1992) report estimation results on
several subsamples of industries to check the robustness of their overall results.
Henderson et al. (1995) argue that for large mature industrial sectors MAR ex-
ternalities should be dominant, while for new industries also Jacobs externalities
matter. Moreover, the degree of persistence in economic activity should be higher
for large traditional industries as compared with smaller newer industries. Here,
we will examine these features by assessing the degree of parameter heterogene-
ity between industries, i.e. separate regressions will be estimated for five main
one-digit sectors available in the data. As these subsamples naturally have few
observations in both the time and cross-section dimensions, the simulations in
the previous section will be informative about the anomalous differences between
estimates produced by the various techniques.

5.2. Data

The available data contain annual time series on several characteristics including
gross value added, employment, wages and number of establishments. The period
covered is 1985-1995 and the data are collected for eighteen two-digit manufac-
turing sectors and six large urban areas in Morocco. The data are obtained from
the ”Ministeére de 'Industrie, du Commerce et de I’Artisanat” of Morocco.

In order to establish in an econometric analysis the importance of dynamic
externalities for local economic activity the various types of externalities have
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to be quantified. The data include three indicators, which aim to measure these
externalities. Data about sectors s =1, ..., S and regions r = 1, ..., R are available,
so each cross-section unit ¢ has a unique combination of s and . We can identify
each cross-section unit ¢ = 1, ..., SR uniquely with ¢ = (r — 1)S + s. Denote with
empsrs employment of industry s in region r at time period ¢. Furthermore, define
empst, emp,; and emp; as employment at time ¢ in sector s, region r or the whole
country respectively.

Using the notation introduced above the definition of concentration or special-
1zation becomes
eMPsri/€Mpr
empst/emp; '
This ratio measures the fraction of employment in sector s located in region r
relative to the fraction of total employment in sector s of total employment in
the country. Therefore, high levels for sp;; indicate that production of sector s is
relatively concentrated in region r.

The measure for diversity is

s 2
eMPr
dvg= Y { Dirt } . (5.2)
k=1,k+s EMPry — EMPiyry

(5.1)

Spit =

The ratio in this indicator is employment in sector k in region r relative to the
total other manufacturing employment in region r. If this ratio is low for the
majority of the sectors then there are many diversified activities in the region.
Hence, a low level of dv;; implies a high degree of diversity.

The competition indicator is defined as

Nesrt/EMPsrt

CDit = P
Negt / EMpst

(5.3)
where neg,; are the number of establishments of industry s in region r. If the
number of establishments per worker for industry s and region r is relatively high
to that of industry s in the whole country, then firms of sector s in that particular
region are assumed to be relatively competitive.

The specialization and competition indicators given above are similar to those
used in Glaeser et al. (1992). The diversity indicator is similar to the so-called
Hirschman-Herfindahl index, which has been used also in Henderson et al. (1995)
and other studies. Other explanatory variables measuring local market conditions
are total regional manufacturing production (¢rp), which reflects market size', and

1To check the robustness of our results we have experimented with other measures, e.g. total
regional population and total regional manufacturing employment. The estimation results of
these specifications are similar to those presented here.
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real unit wage costs (wcap). Finally, following De Lucio et al. (1998) real value
added (va) will be used as a proxy for economic activity.

5.3. Estimation results

Because of the time series aspect of the data, a general dynamic specification has
been estimated including as many lagged explanatory variables as seem required,
including the one-period lagged value of the dependent variable. To account
for unobserved heterogeneity, e.g. local resources or the institutional, cultural
and political environment, individual specific effects have been included. The
estimated specification is

Invay; =ylnva;; 1+ B'xy +n; + €, (5.4)
with
Ty = (ln trpie, In trpii—1, In weap;, In weap; t—1, SPits SPit—1, dvq, dvi,tfla CPit, sz',tq)/.

Complete data are available over the years 1985-1995 for 95 cross-section units.
Bun and El Makhloufi (1999) report estimation results of (5.4) for the full sample.
In that study, a significant positive effect for the specialization indicator has been
found, while the coefficients of the diversity and competition indicators are nega-
tive. Because both Jacobs and Porter externalities should imply positive effects of
competition, the results are in favour of MAR effects. An interesting question is
whether these results hold for all sectors analysed. In other words, do the pooled
estimates for the full sample blur sector specific differences?

We address this issue by dividing the full sample into five subsamples corre-
sponding to the five one-digit manufacturing sectors and estimating specification
(5.4) sector by sector. These sectors are food and agricultural products, tex-
tile and leather, chemical and allied products, metal and machinery, and elec-
tric and electronic manufacturing. The first three sectors are considerably larger
than the latter two sectors. The cross-section dimensions of the subsamples are
N = {18,18,29,20,10} 2, while 7' = 11 in all cases. Two observations are lost in
constructing the IV and GMM estimators and the number of regressors in (5.4)
is K =11.

Results not reported here suggest that the lag structure of specification (5.4) is
adequate. Longer lags of both the dependent and explanatory variables were also
tried, but in general these regressors do not seem to have a significant contribu-
tion in explaining In(va). Regarding the estimators employed, apart from LSDV,

2For example, regarding the one-digit sector food and agricultural products we have N = 18
because data are available for three two-digit subsectors and six regions.
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AHL and GMM results we present two different corrected LSDV estimators, i.e.
based on preliminary GMM estimates (LSDVc) and AHL estimates (LSDVcA7L)
respectively. The corrected LSDV estimators use the approximation ngmm ie.
O(T7"), O(N7'T~') and O(N~'T~?) bias terms have been removed. For LSDV,
IV and GMM the estimation of standard errors is based on conventional asymp-
totic approximations, while for the LSDVc¢ variants bootstrap standard errors will
be reported.

To save space we present some selected estimation results only. Table 7
presents the estimation results for the sector chemical and allied products. Several
remarks with respect to the pattern of the estimation results can be made which
apply to the estimates of the other sectors too. First, regarding the autoregressive
parameter all estimators produce more or less plausible estimates implying a sta-
ble autoregressive process for the dependent variable. Second, the GMM estimates
of the autoregressive parameter are close to the LSDV estimate, while the bias
corrected LSDV variants and especially the AHL estimator produce a relatively
high estimate of the coefficient of the lagged dependent variable regressor. Third,
the estimated standard errors of LSDV and LSDVc are in general considerably
smaller than those of the AHL and GMM estimators. Especially the AHL esti-
mates are often poorly determined. Fourth, while there are certainly differences
between estimators, the pattern of the remaining estimates is often similar across
estimators. An exception is the immediate effect of the diversity indicator, which
shows differences between (corrected) LSDV and IV/GMM variants.

Regarding the estimation results for the three indicators of externalities (sp,
dv and cp), the sign and significance of the corresponding coefficients are similar
for all estimators. The impact multiplier or immediate effect of the specialization
indicator is significant and positive, while the coefficient for the one-period lagged
variable is often significant and negative. Regarding diversity the immediate effect
is positive and its lagged effect significant and negative. Considering the compe-
tition indicator the immediate effect is significant and negative, while the lagged
effect is positive in general.

Table 8 reports estimation results for specification (5.4) for each one-digit
sector. Only the LSDVc estimates are shown, but the pattern for the other es-
timators is similar to that found in Table 7, reasserting the differences between
estimation techniques. Note that we have removed any insignificant dynamics.
Across sectors the estimate of the autoregressive parameter lies around 0.5 im-
plying moderate persistence for the process of the dependent variable. Regarding
the indicators, specialization and competition are influencing economic activity
in all sectors albeit with different dynamics. Considering the immediate effects
we find significant positive specialization effects and significant negative compe-
tition effects, while the lagged effects are vice versa. The results for the diversity
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indicator are less pronounced, i.e. we find significant effects for one sector only.

In general the estimation results in Tables 7 and 8 suggest that dynamic ex-
ternalities do matter for local economic activity in Morocco. Table 9 presents
the long-term effects implied by the estimates of Table 8. The long-term effects
of regional production and unit wage costs are elasticities, while those for the
externality indicators are semi-elasticities. We find significant positive long-term
effects for the specialization indicator in four out of five sectors. Regarding di-
versity we find a significant negative long-term effect in one sector only. For the
competition indicator negative long-term effects are present in all sectors.

Summarizing the empirical evidence, in most sectors we do find positive spe-
cialization effects and negative diversity and competition effects. Note that the
construction of the diversity indicator is such that a negative coefficient implies a
positive effect on economic activity. Hence, we conclude that both specialization
and diversity are beneficial for local economic development, while competition is
harmful. As both Jacobs and Porter externalities agree that competition should
stimulate economic activity, the evidence here is in favour of MAR externalities
confirming the results of Bun and El Makhloufi (1999). However, in the present
study we do find significant differences across sectors, so actually pooling is not
vindicated.

5.4. Accuracy of the estimates

The samples analysed have the dimensions 7' = 11 and N = {18, 18,29, 20, 10}.
Hence, the simulation results of the previous section can shed some light on the
differences in estimation results. We will consider only the accuracy of coefficient
estimators. Considering the case N = 10,7 = 10 the simulations show that the
bias in the coefficient estimators is small for the AHL estimator, moderate for bias
corrected LSDV versions and substantial negative bias is found for ordinary LSDV
and GMM estimators. Increasing the number of cross-section observations to N =
20 leads to an improvement in the accuracy of all estimators, but still ordinary
LSDV and GMM estimators have a substantial negative bias in estimating the
autoregressive parameter. Note that the AHL estimator is almost unbiased, but
its variance is at least twice the variance of the LSDV estimator.

With these simulation results in mind and analyzing the estimation results in
Table 7 a remarkable resemblance is found between the various estimates of the
autoregressive parameter and the picture showed by the simulations. Therefore,
the ordinary LSDV and GMM results on v are most likely biased downward.
On the other hand, bias corrected LSDV variants seem to be much less biased
downward. Because of its large dispersion, the AHL estimator sometimes fails
completely in producing sensible and accurate estimates. This unstable behavior

25



emerges too in the simulations, where in a considerable number of cases the AHL
estimate of the autoregressive parameter exceeded unity. Hence, it seems wise
to use GMM rather than AHL estimates in the construction of bias corrected
LSDV estimators, although the simulations did not show serious differences in
performance.

6. Concluding remarks

In this study the finite sample properties of various IV and GMM coefficient
estimators for dynamic panel data models have been compared through Monte
Carlo experiments with the inconsistent LSDV estimator and corrected consistent
versions of LSDV. Kiviet (1995) compared in a similar Monte Carlo study the
bias and efficiency of these estimators in panel data sets with 7' small and N
moderately large and concluded that there is not a superior technique over a
broad range of parameter values for this model. However, in the present study we
find that when both 7" and N are rather small the bias corrected LSDV estimator
has almost uniformly lower mean squared error in comparison to IV and GMM
methods. This result is in line with results of Judson and Owen (1999) who used
a slightly different design regarding the parameter values and sample dimensions.
Also results of Harris and Mdtyds (1996), who used a totally different design,
coincide with the findings in this study.

Adding an extra term to the approximation formula for the bias of the LSDV
estimator, as derived in Kiviet (1999), does not improve the finite sample perfor-
mance of this estimator notably. In fact, the present simulation results indicate
that including O(T 1) and O(T2) terms and omitting the O(N1T"1) contribu-
tions accounts for most of the bias in the LSDV estimator. Also the sensitivity of
the corrected LSDV estimator to the choice of the preliminary consistent estima-
tor (AHL or GMM) is found to be low, although the finite sample performance of
AHL is rather different as compared with GMM.

As far as the variance estimators are concerned, we find that for the corrected
LSDV estimator variance estimation is highly nonstandard when 7' is finite. For
a particular implementation of corrected LSDV, i.e. when the estimate of the
bias approximation is based on the AHL estimator, an analytical expression of its
asymptotic variance has been found. In addition, bootstrap consistent variance
estimators of LSDVc and LSDVcA#E have been examined. The simulation results
show that the analytical variance expression performs poorly for high values of
the autoregressive parameter, which can be explained by the unstable behavior of
the AHL estimator for these parameter values. On the other hand, the bootstrap
variance estimator is relatively accurate in many cases. Also it is found that biases
in LSDV and GMM variance estimators can be considerable, especially when T is
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small as is the case in the typical panel data set. The anomalies of these methods
in small samples are even more evident when the empirical null distributions of
ordinary t statistics are considered. The true rejection probabilities of asymptotic
t tests can differ substantially from the nominal size, which leads in many cases
to incorrectly rejecting the null hypothesis either too often or far too little.

The available simulation evidence becomes helpful when analyzing the rela-
tionship between dynamic externalities and local economic activity in Morocco.
We find some differences in estimation results when analyzing five one-digit in-
dustrial sectors in isolation. In general, the sector specific results show that both
specialization and diversity are beneficial for local economic development, while
competition is harmful. As both Jacobs and Porter externalities agree that com-
petition should stimulate economic activity, the evidence here is in favour of MAR
externalities confirming the results of Bun and El Makhloufi (1999) but revealing
significant heterogeneity at the same time. As the available samples have both T’
and N relatively small, the simulation results can clarify the differences between
estimators. The pattern of the coefficient estimates is remarkably in line with the
corresponding simulation results. The anomalies of some estimation techniques
are clearly visible and the superior performance of the corrected LSDV coefficient
estimator in finite samples with both 7" and N small is apparent here.
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A. The limiting distribution of LSDVc

First we derive the limiting distribution of v/ N (52 — 6"), the second term of
(3.29), with §* given in (3.23) and &, given in (3.27). Next, we combine both
terms in (3.29) and show that the resulting estimator is a sum of three zero-mean
vectors. A central limit theorem applies and the corrected LSDV estimator is
found to have a limiting normal distribution. The derivation of the asymptotic
covariance matrix is pursued only for the case that the AH L estimator is used as a
preliminary consistent estimator. Because of the complexity of the dependence of
the instruments on ¢ for the GM M estimator we have not derived the expression
for the variance in that case.
The expression (3.27) for §, contains a factor

1 1—47
a—gh( - Th 2), h=1IV, GMM (A.1)
T\L=% T -4,)

whose components can be approximated as follows. First we have

2 9 <2 2
Och — 05+(05,h_05)

., ((y — Wé) Aly — W) )

NT-1) - (K+1) ¢
_ s ([a — W(én — )] Ale = W(é, — 6)] )

NT-1)—(K+1) e
2 g'Ae 2 —1
= ot (N(T—l)—(K+1) —0—5) T O (N ),

where the second term is O,(N~1/2). This follows from

e Ae 2\ o N(T-1)
E(N(T—l)—(K+1) _‘7€> — 7 (N(T—l)—(K+1)

— 1) =O(N™)

and
g'Ae 9

Var (N(T “1)-(K+1) "f) = O,

which results from Var(e'Ae) = 202tr(AA) = 2N(T — 1)o?. The order of the
remainder term can be established from W'Ae = O,(NY?) and (6, — §) =
O,(N~Y/2). Given the magnitude of the remainder term we can simplify the second
term using

(s ) = (5 - 2) o
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so we have 4
A2 €A 2 -1
= _ N7,
6., =0 +(N(T—1) 05)+Op( )

A next component of (A.1) is

I 1
L= a L=y =, —7) X
- = = )]
- 1i [1+ 17@ >]+0< Y

where the second term is O, (N~ 2) From (A.3) we easily find

(1—1@)2:(%) +2(ﬁ> (A — ) + Op(N71).

Next we obtain

L= = 1=l + G -"
L—AT =Ty (F, = 7) + Op(N ).
For the second factor of (A.1) the results (A.3) - (A.5) yield
1 1=4 1 147
1-%, T(1-4,) l—v T(1—7)
+[1+7T_1 2 1—~T
(1-7)° T@—9)
+0,(N71).
>From (A.2) and (A.6) we obtain:

2 1 19, o 1 1—9" 1\
Och A 2| —O¢ o 2 )
L= T1-4) L=y T(1-9)
2[1+7T1_21_7T
(1-7° T(@1-y)°

(750 )
+O, (N

} (Y =)
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giving
VN (82 - 5*) (A7)

1+ vT_l 21— vT B / N
= —O'? |: (1 _ 7)2 - T (1 _ 7)3 EVVIAWelel\/N <6h - 6)

'A
—tT(HT)Z{TVIAWGI\/N (ﬁ — O'?) + Op(N—l/Q)
- ) (e -2) i

where d; and dy have been defined implicitly.

Now we find from (3.29) that the limiting distribution of VN (8.5pven — 0)
must be the same as the limiting distribution of the sum of the three zero-mean
vectors vg, v1 5 and vy, where

_ 1
v = Sy (ﬁ

- 1
v,1v. = o—gdle'lzgy* (ﬁZ’D&)

- 1
2 ! ! -1 —1yv -1 */
'ULG]V[]\[ = O-Edlel(ZZ*W*EZ*HZ*ZZ*IV*) ZZ*W*EZ*HZ* ( _Z DE

/ VN
» = HVN (% _ag) |

(W' Ae + (e'lle — oZtr(11)) el]) (A.R)

Hence, the limiting distribution of the corrected LSDV estimator is

\/N(SLSDVCJL —0) <, N0, Qrspven]

N—oo
where

Qrspven = ]\}l_fgo Var(vg + vy, + v2). (A.9)

Taking now the AHL estimator ) v for 3h, some of the components of Qrspy. v
have been established before, so we easily find for N — oo

Var(vg) = 028y + octr(rlly) Sy aerey Syt
VaI‘(UL[\/) = O'S@IIEE%/V* EZHz(EIZW*)ileldldll
200 -
Var(vg) = T_ 1d2d2,
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where we used results of (3.25), (3.5) and one mentioned above (A.2) respectively.
Next we obtain for N — oo

E(vovy) =

_ 'A _
S=l BV As + (11 — o2tr(I1)) e (% _ ag) a

—1 7 / 2 e'Ae 2
ZWAWeldQE (E Ile — O'EtT'(H)) m — 0.
4 r(Il7)
cT-—1
200 -

—dod,

-1 7
20 Ywaweids

To derive covariances with v; 1y we have to express the stochastic nature of

the instruments Z = [y _»:DX]| and the disturbances De explicitly. We may write

Z—E(Z|X,n) =KLlee,,

see Kiviet (1999), where the N(T'— 1) x NT matrix K performs lag operations.
More precisely, K = Iy ® Ky with the (T'— 1) x T matrix K defined as

0o - - -0
10

=

Il
o~

_ o -

This can be used to obtain

E(UOULIV) =

and

E(vivs)

%EZM}AWE{[W'AS + (¢'le — U?tT(HT)) e1]
x(e'D'Z + & D'KLTeey) } (S ) erd,
52
N
S BT — (1) £ DK LT es ) ) e
%ZWIAWW/ADIZ(E/ZW*)IQJQ -

Soaw EW' Aee' D' Z) (S ) terd)

6
%{tr(HD’KLF) + tr(IIT L K’ DY Sy (S ) erd,

1 - g’ Ae _
= 0ldi Y01 B (€T LK De) (m - o—i) d,
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= 20%r(D'KLT A)d e\ e1
= O,

noting that ¢r(D'KLT'A) = 0. Defining

1
ZWADZ = phm (NWIADIZ>

N—oo

1 - _
= lim (NWIADIZ> -+ O'gtT(HrITDr/TKTLTFT)elell,

N—oo

we find

lim E(UOULIV) = o SpawEwanz(Bgw) " ed;

N—oo
+oStr (gl Ly K Dr) Syt a (S )~ ead).

Collecting terms this yields

QLSDVC,IV = O-?ZI/VIAW —|— O';ltT(HTHT)Z‘TVIAI/V_Gl_Gllz‘TVIAW o (A]_O)
+02e S Xz (Syw ) erdidy 4 (6/ (T — 1)) otdad,
ol S awEwapz (Sgwe) " erd + diey (Szw) T S anz S waw]
+o%tr (Il T Ly K7 Dr) (St aw (S ) "t erd + di€y (Szw) ™ Syt aw)-

For the case where the v/ N-consistent estimator SG v of (3.6) is employed, we
find that v N <3 LSDVe,GMM — 6> has a limiting distribution where the variance

Vispveaumm can be obtained in the same way. The only difference is that we then
have

- 1
_ 2 / ! -1 —15yv -1 */
V1,GMM = aadlel(zz*w*Zz*Hz*Zz*W*) ZZ*W*ZZ*HZ* (—Z Ae ).

VN

Because of the complexity of the dependence of the instruments Z* on ¢ we have
not derived the expression for the variance Vi gpyeaar, but it is feasible.

B. Details on the simulation design

The simulation design is basically the same as in Kiviet (1995), especially for the
case where all variables are stationary. The generating equation for y;; is

Yit = VWit + BT +n; +eu (B.1)
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for individuals ¢ = 1, ..., N and time periods t = 1,...,T. A latent variable v;, free
of the individual specific effect in y;, is introduced:

1
Vit =Yit — 57— Tl (B.2)
t t 1 — v
Substitution of (B.2) in (B.1) leads to
Vit = Yigo1 + BTy + eq (B.3)

For K = 1 and upon omitting the index ¢, the model for every cross-section unit
becomes

v = Y1+ B+ & (B.4)
= prig+§;.

Using L for the lag-operator and substituting the second equation of (B.4) into
the first, we obtain for |p| < 1

1 1
ARy A A
= B¢+ ¢y

The latent variable v; consists of two independent components, viz. B¢, and 1,
which are an AR(2) and AR(1) process respectively. Data for the processes £, and
g; are obtained through sampling independently from ZZN (0, ag) and ZZN (0, 02).
Next ag is determined through fixing the signal-noise ratio, which is a measure of
the explanatory power of the regressors, defined as Var(v;; —e;;)/ Var(g;;). Scaling
with respect to o2, i.e. 0. = 1, this is in the stationary case

(B.5)

o2 = Var(vy —eit) (B.6)
+p)? - 7
— 32521 (v 1) — 27-1 ‘

When values for 7, 3, p and for o2 have been chosen, ag is determined through

1 7 (v +p)°
o = =07 — S+ (

B 1—x L+9p
The series ¢,, ¥, and x;, including starting values ¢, ¢, 1%, and x,, are ob-

tained by employing a procedure described in McLeod and Hipel (1978). Let z
be a normal stationary AR(p) process, i.e.

vp —1) = (vp)?]. (B.7)

=121+ .o+, t=1,...,T (B.8)
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with u; ~ ZZN(0,02). It is easy to generate a series uy, ..., ur. Consider now the
first p observations z = (21, ..., 2,) and u = (u, ..., up). Let 023 be the covariance
matrix of z and consider the Cholesky decomposition of 3,

S = MM, (B.9)

where the matrix M is lower triangular. It is easily seen that z and Mwu have the
same distribution, and hence a p element vector z can be generated easily from
the first p elements of u upon making use of the autocovariance function of the
AR(p) process (which determines ¥) and the Cholesky decomposition M of the
covariance matrix Y. The remaining 7" — p observations ¢t = p + 1,...,T" can be
generated now recursively according to (B.8).

Hence, once starting values have been obtained, series  and y can be generated
according to

¢ = (V+ )1 — VPPra + & (B.10)
Yy = Yt
Ty = pxi—1 +§,

1
Yy = Po+ 1+ ="

where the vector of individual specific effects 7 is drawn from ZZN(0,07). The
standard deviation o, of the individual specific effect is determined by

on = po(1—7). (B.11)

In this way the impact on y of both the individual specific effect 1 and the general
disturbance term e are independent of the values of v and (3, and the relative
importance of both shocks can be varied through choosing different values for u.
For example, when g is unity the impact on y of both shocks is the same.

A different situation arises when the exogenous variable x is non-stationary.
In this case model (B.4) for the latent variable v; becomes

v = Yu1+ Bxy+ e (B.12)

Ty = $t71+£t.

The exogenous variable can be written as

¢
Ty = xo + Z &, (B.13)
s=1
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Now a similar expression as in (B.5) can be obtained through substitution of
(B.13) into the equation for vy, i.e.

v, = 1f7x0+52(1—7L)1§8+(1—7L)15t (B.14)
s=1
3 ~
= l_vxow;@wt.

The latent variable has again two random components, viz. the AR(1) process
1, and the partial sum of an AR(1) process. Starting values for the processes ¢;
and 1, can be obtained again by using the procedure described above. Drawings
for y and x can now be generated from

o = 9+ (B.15)
vy = g &y
Ty = T+ ft
8 ~ 1
g = 1_7$0+ﬁ;¢s+wt+ -

after choosing a value for xy. This has been set equal to zero, without loss of
generality.

While the generation of the data in case of a non-stationary exogenous variable
does not cause any complications, the control over the signal is not so straight-
forward. The signal in the non-stationary case is not constant through time, but
increasing. We find

o3, = Var(vi —€a) (B.16)
2 9 t 2
o 2 2v(1 —
b 1+ —) — 1l 72)]+ Y2 t=1,.,T
1—vy 1—v"  (1-9) 1—v

To control the signal in the experiments the mean value of ait (over t =1,...,T)
has been fixed. In this way it was tried to make the outcomes for p = 1 more or
less comparable with the results for the stationary case.
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Table 1:

Bias, standard deviation and root mean-squared error of
estimators for v and ( in case of stationary y and x

# Bias v Bias (8 Std vy Std ¢ Rmse v Rmse (3

N=10,T=20
LSDV 0 -0.074  0.013 0.057 0.084 0.095 0.086
LSDVe 0 -0.016  -0.014 0.060  0.081 0.063 0.082
LSDVAHL -0.009  -0.012 0.061 0.083 0.062 0.084
AHL 37 -0.006  -0.009 0.133 0.151 0.133 0.152
GMMa 4 -0.079  0.022 0.116 0.143 0.141 0.145
GM Mb 0 -0.116  0.073 0.078 0.122 0.140 0.145
GMMc¢ 0 -0.109  0.054 0.069 0.108 0.130 0.123

N=10,T=10
LSDV 0 -0.149  0.026 0.088  0.149 0.175 0.153
LSDVe 0 -0.043  -0.011 0.096 0.144 0.108 0.144
LSDVAHL -0.024  -0.010 0.099 0.147 0.104 0.147
AHL 77 0.002  -0.016 0.242 0.215 0.242 0.215
GMMa 19 -0.098  0.010 0.187 0.201 0.213 0.202
GMMb 1 -0.166  0.038 0.132 0.184 0.214 0.190
GMMc¢ 0 -0.165  0.039 0.121 0.177 0.206 0.183

N=20,T=10
LSDV 0 -0.144  0.031 0.062  0.099 0.158 0.106
LSDVe 0 -0.037  -0.009 0.069  0.096 0.080 0.096
LSDVAHL -0.020  -0.010 0.070  0.098 0.074 0.099
AHL 49 -0.006  -0.004 0.151  0.158 0.152 0.158
GMMa 15 -0.059  0.008 0.135 0.153 0.148 0.153
GMMb 0 -0.111  0.026 0.101  0.140 0.151 0.144
GMMc 0 -0.115  0.023 0.095 0.134 0.150 0.137

* Figures are averages over three experiments, i.e. 7y = {0.8, 0.5, 0.2}

* # is number of cases where the estimate of 7y is equal or larger than 1 in absolute value
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Table 2:

Bias, standard deviation and root mean-squared error of
estimators for v, and (3 in case of non-stationary y and =

# Bias v Bias Std~ Std 3 Rmse v Rmse (3

N =10,T =20
LSDV 0 -0.082  0.045 0.061 0.164 0.103 0.171
LSDVe 0 -0.012  0.003 0.065 0.153 0.066 0.154
LSDVAHL -0.004  0.000 0.065 0.159 0.066 0.159
AHL 36 -0.003  0.001 0.152 0.323 0.152 0.323
GMMa 3 -0.095  0.007 0.131 0.313 0.162 0.313
GMMb 0 -0.150  0.019 0.095 0.280 0.178 0.282
GMMec 0 -0.131  0.037 0.079  0.230 0.153 0.235

N=10,T=10
LSDV 0 -0.154  0.090 0.089  0.200 0.180 0.220
LSDVe 0 -0.041  0.021 0.099 0.191 0.109 0.193
LSDVAHL -0.025  0.026 0.105 0.205 0.110 0.207
AHL 143 0.009  0.008 0.838  0.455 0.839 0.455
GMMa 17 -0.170  -0.012 0.245  0.297 0.298 0.297
GMMb 0 -0.213  0.022 0.149  0.268 0.260 0.270
GMMe 0 -0.191  0.045 0.132  0.256 0.233 0.261

N=20,T=10
LSDV 0 -0.145  0.091 0.062 0.142 0.159 0.169
LSDVe 0 -0.033  0.024 0.068 0.135 0.078 0.137
LSDVAHLE -0.014  0.020 0.072  0.140 0.075 0.142
AHL 82 0.004  0.001 0.299  0.230 0.299 0.230
GMMa 14 -0.118  -0.006 0.195 0.218 0.228 0.218
GMMb 0 -0.166  0.012 0.130 0.204 0.211 0.205
GMMe 0 -0.153  0.028 0.116 0.196 0.193 0.199

* Figures are averages over three experiments, i.e. 7 = {0.87 0.5, 0.2}

* # is number of cases where the estimate of 7y is equal or larger than 1 in absolute value
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Table 3:
LSDV bias for stationary y and x

Bias v Bias (8 Bias v Bias 3 Bias vy Bias 3

N=10,T=20 N=10,T=10 N=20,T=10
v=0.8, p=08
-0.115  0.001 -0.232 0.005 -0.224  0.015
-0.134  0.028 -0.388 0.032 -0.387  0.047
-0.101 0.021 -0.215 0.018 -0.214  0.026
-0.108  0.024 -0.218 0.020 -0.216  0.027
-0.113  0.025 -0.232 0.021 -0.224  0.028
v=0.5, p=038
-0.062  0.023 -0.126  0.039 -0.123  0.043
-0.055  0.031 -0.136  0.054 -0.138 0.063
-0.050  0.028 -0.109 0.043 -0.111 0.050
-0.055  0.032 -0.115 0.048 -0.114  0.052
-0.056  0.032 -0.120  0.050 -0.116  0.053
v=02,p=08
-0.046  0.014 -0.088 0.035 -0.085 0.034
-0.037  0.026 -0.084  0.049 -0.085 0.052
-0.035  0.025 -0.073  0.043 -0.074  0.046
-0.039  0.027 -0.079 0.047 -0.077  0.048
-0.039  0.028 -0.080  0.048 -0.078 0.048

j=0,...,3, is given in (2.17) and (2.18)
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Table 4:
LSDV bias for non-stationary y and x

Bias v Bias (8 Bias v Bias 3 Bias vy Bias 3

N=10,T=20 N=10,T=10 N=20,T=10
v=0.8,p=1.0
-0.114  0.044 -0.229 0.104 -0.214  0.109
-0.137  0.066 -0.386  0.185 -0.384  0.168
-0.103  0.050 -0.214  0.102 -0.213  0.093
-0.111 0.054 -0.219 0.105 -0.215 0.095
-0.116  0.056 -0.233  0.111 -0.223  0.097
v=0.5,p=1.0
-0.075  0.048 -0.135 0.090 -0.127  0.090
-0.075  0.053 -0.154  0.109 -0.159 0.105
-0.068  0.047 -0.123  0.087 -0.127  0.084
-0.075  0.052 -0.131 0.093 -0.131 0.087
-0.077  0.053 -0.135 0.096 -0.134  0.089

v=02p=1.0

-0.056 0.042 -0.098 0.074 -0.095 0.075
-0.055 0.044 -0.102 0.083 -0.105 0.080
-0.051 0.041 -0.089 0.072 -0.092 0.070
-0.056 0.045 -0.095 0.078 -0.095 0.073
-0.057  0.046 -0.097  0.080 -0.097  0.074

j=0,...,3, is given in (2.17) and (2.18)
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Table 5:

Bias of coefficient estimators and estimators of standard errors (v = 0.5 and p = 0.8)

Bias of : 0% I6] O Std v Std ¢
N=10,T =20
LSDV -0.062 0.023 -2.5 -8.0 3.4
LSDVe -0.012 -0.006 -2.3 -11.1 -3.0
LSDVcAHL 0006 -0.008 -2.2 -12.0 2.6
AHL -0.008 -0.007 0.6 0.7 0.6
GMMa -0.071  0.025 -1.0 1.5 1.2
GMMb -0.106  0.078 -2.0 -3.5 2.7
GMMec -0.098 0.062 -2.3 -6.0 1.7
N=10,T=10
LSDV -0.126  0.039 -5.9 9.1 -10.0
LSDVe -0.028 -0.005 -5.1 -15.4/NA/-5.6 -8.5/NA/-7.2
LSDVcAHE 0,006 -0.006 -4.6 -19.5/4.4/-5.8 -8.3/-6.0/-6.8
AHL -0.001 -0.013 0.7 -1.0 2.9
GMMa -0.084 0.016 -3.8 -3.6 1.8
GMMb -0.145 0.051 -5.7 -13.0 -1.3
GMMec -0.144  0.052 -5.9 -14.3 -3.6
N=20,T=10
LSDV -0.123  0.043 -6.1 -8.3 -9.6
LSDVe -0.025 -0.003 -5.3 -15.7/NA/-5.0 -8.7/NA/-5.8
LSDVARL 0010 -0.007 -5.1 -18.7/3.5/-3.0 -8.3/-5.1/-5.4
AHL -0.009 -0.004 -1.5 -0.4 -1.3
GMMa -0.054 0.011 -4.8 -2.1 -3.1
GMMb -0.097 0.036 -6.0 -7.9 -3.2
GMMec -0.100 0.034 -6.2 7.8 4.1

* The bias in estimators of asymptotic standard errors is in percentage of the true value
* Multiple -/ - /- figures are based on (3.21), (3.31) and (3.32) respectively
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Table 6:
Estimated true size of nominal 5% one- and two-sided ¢ tests (y = 0.5 and p = 0.8)

H : 1>9" <y’ £+ B>p3 B<pB’ B+ 3°
N=10,T =20
LSDV 1 31 23 11 3 8
LSDVe 4 10 8 4 7 7
LSDV cAHL 6 9 8 4 7 6
AHL 3 6 5 4 5 5
GMMa 1 16 9 8 2 6
GMMb 0 42 30 23 0 15
GMMe 0 45 34 21 1 14
N=10,T =10
LSDV 0 47 35 13 3 10
LSDVe  4/NA/3 13/NA/11 10/NA/7 7/NA/7 8/NA/8  8/NA/S
LSDVAHL  8/1/5 0/7/7 11/4/7  7/6)7  8/7/8 7/7/8
AHL 2 6 4 4 4 4
GMMa 1 13 9 7 3 4
GMMb 0 35 2 11 2 8
GMMe 0 41 30 12 3 9
N=20,T=10
LSDV 0 69 59 19 2 13
LSDVe  4/NA/3 14/NA/11 13/NA/8 6/NA/6 8/NA/7  7/NA/T
LSDVAHL  7/2/3 12/8/8 12/4/6  6/6/6  8/8/7 7/6/8
AHL 9 7 4 5 6 5
GMMa 1 15 8 6 4 6
GMMb 1 30 21 12 2 7
GMMe 0 34 23 11 3 7

* Multiple -/ - /- figures are based on (3.21), (3.31) and (3.32) respectively
! g
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Table 7:
Estimation results of specification (5.4) for chemical and allied products (T=11, N=29)

LSDV LSDVe LSDVcARL  AHL GMMa GMMb GMMec

Invar;,—;  0.29 0.44 0.52 0.72  0.44 0.29 0.34
(0.05)  (0.06) (0.08) (0.37)  (0.17)  (0.10)  (0.09)

In trpy 0.53 0.42 0.31 041  0.26 0.34 0.37
(0.19)  (0.16) (0.19) (0.30)  (0.24)  (0.23)  (0.23)

Intrpi;1  -0.05  -0.05 -0.06 018 0.02 0.10 0.01
(0.18)  (0.16) (0.17) (0.33)  (0.24)  (0.23)  (0.22)

Inweapy;  0.75 0.64 0.58 0.77  0.74 0.73 0.78
(0.07)  (0.06) (0.06) (0.11)  (0.09)  (0.09)  (0.09)

Inweap;—1 015  -0.16 -0.18 042 021  -018  -0.18
(0.08)  (0.07) (0.07) (0.27)  (0.14)  (0.11)  (0.10)

SPit 0.60 0.52 0.49 046  0.48 0.55 0.54
(0.09)  (0.08) (0.08) (0.12)  (0.11)  (0.11)  (0.11)

SPii-1 012 -0.11 -0.10 044  -020  -0.21 -0.27
(0.09)  (0.07) (0.08) (0.23) (0.14)  (0.12)  (0.11)

dvy, 0.06 0.03 0.00 046  0.40 0.43 0.35
(0.13)  (0.12) (0.13) (0.22)  (0.19)  (0.19)  (0.18)

dvi 1y 024  -0.23 -0.25 040  -035  -0.33  -0.34
(0.15)  (0.12) (0.13) (0.22)  (0.19)  (0.18)  (0.18)

cpit 015  -0.13 -0.11 017  -016  -0.16  -0.16
(0.02)  (0.02) (0.02) (0.03)  (0.03)  (0.03)  (0.03)

Pip—1 0.06 0.06 0.07 0.08  0.04 0.03 0.04
(0.02)  (0.02) (0.02) (0.06) (0.04)  (0.03)  (0.03)

* Figures in parentheses are standard errors
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Table &:

LSDVc estimation results of specification (5.4) for the five one-digit sectors

food and agri- textile and  chemical and  metal and electric and electronic
cultural products leather allied products machinery manufacturing
Invar; ;1 0.48 0.56 0.41 0.60 0.50
(0.06) (0.04) (0.05) (0.06) (0.10)
In trp;; 0.77 0.34 0.40
(0.17) (0.10) (0.08)
Intrp; ;1 -0.41
(0.16)
In weapi+ 0.25 0.69 0.64 0.67 0.91
(0.06) (0.04) (0.06) (0.07) (0.13)
Inweap; ;1 -0.32 -0.15 -0.35 -0.43
(0.06) (0.07) (0.08) (0.17)
SPit 0.39 0.50 0.72 0.36
(0.09) (0.07) (0.10) (0.07)
SPit—1 -0.13 -0.32 -0.16
(0.05) (0.10) (0.08)
dvjy
d'Ui,t—l -0.23
(0.08)
Cit -0.09 -0.48 -0.13 -0.12 -0.13
(0.03) (0.05) (0.02) (0.03) (0.03)
CPit—1 0.38 0.06 0.07
(0.06) (0.02) (0.02)

* Figures in parentheses are bootstrap standard errors (B=100)
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Table 9:

LSDVc long-run (semi-) elasticities of specification (5.4) for the five one-digit sectors

food and agri- textile and  chemical and  metal and electric and electronic
cultural products leather allied products machinery manufacturing
trp 0.70 0.80 0.67
(0.21) (0.22) (0.14)
weap 0.46 0.84 0.83 0.82 0.97
(0.14) (0.12) (0.13) (0.18) (0.34)
sp -0.24 0.88 0.83 1.01 0.41
(0.14) (0.24) (0.15) (0.29) (0.15)
dv -0.52
(0.26)
cp -0.18 -0.23 -0.12 -0.13 -0.26
(0.07) (0.17) (0.03) (0.07) (0.08)

* Figures in parentheses are standard errors
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