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Abstract

A simple asset pricing model with two types of adaptively learning traders, funda-
mentalists and technical analysts, is studied. Fractions of these trader types, which
are both boundedly rational, change over time according to evolutionary learning,
with technical analysts conditioning their forecasting rule upon deviations from a
benchmark fundamental. Volatility clustering arises endogenously in this model.
Two mechanisms are proposed as an explanation. The first is coexistence of a stable
steady state and a stable limit cycle, which arise as a consequence of a so-called
Chenciner bifurcation of the system. The second is intermittency and associated
bifurcation routes to strange attractors. Both phenomena are persistent and occur
generically in nonlinear multi-agent evolutionary systems.
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1 Introduction

Modern finance is based on the concept of rational expectations. As a consequence finan-
cial markets are considered to be efficient in the sense that past prices cannot help in
predicting future prices. This view is known as the efficient market hypothesis (EMH).
There has been a long debate about the EMH. In particular, there is empirical evidence
that many so-called ‘stylized facts’ observed in financial time series cannot solely be ex-
plained by fundamentals, but that markets have internal dynamics of their own.

One of the most important ‘stylized facts’ is volatility clustering. Whereas changes in asset
prices themselves appear to be unpredictable, the magnitude of those changes seems to be
predictable in the sense that large changes tend to be followed by large changes — either
positive or negative — and small changes tend to be followed by small changes. Asset price
fluctuations are thus characterized by episodes of high volatility, with large price changes,
irregularly interchanged by episodes of low volatility, with small price changes. Mandelbrot
(1963) first discovered this phenomenon in commodity prices. Since the pioneering work of
Engle (1982) and Bollerslev (1986) on autoregressive conditional heteroskedastic (ARCH)
models and their generalization to GARCH models, volatility clustering has been shown
to be present in a wide variety of financial assets including stocks, market indices and
exchange rates.

In empirical work, volatility clustering is usually modeled by a statistical model, such as
the familiar (G)ARCH model or one of its extensions. Although these models are useful
as a statistical description of the data, they do not offer a structural explanation of why
volatility clustering is present in so many financial time series. Rather the statistical
models postulate that volatility clustering has an exogenous source and is for example
caused by the clustered arrival of random ‘news’ about economic fundamentals.

A recent branch of literature, including for example Arthur et al. (1997), Brock and
Hommes (1997, 1998), Farmer (2000), Gaunersdorfer and Hommes (2000), LeBaron
(2000), LeBaron et al. (1999), Lux (1995) and Lux and Marchesi (1999a,b), has offered a
structural explanation of the phenomenon of volatility clustering by multi-agent systems,
where financial markets are viewed as complex evolutionary systems between compet-
ing boundedly rational trading strategies. In these multi-agent systems two important
classes of traders can be distinguished, fundamentalists and technical analysts, that have
different trading strategies and expectations about future prices of a risky asset. The fun-
damentalists believe that prices will move towards its fundamental rational expectations
(RE) value, as given by the expected discounted sum of future dividends. In contrast, the
technical analysts observe past prices and try to extrapolate historical patterns. Volatil-
ity clustering arises as an endogenous phenomenon, caused or amplified by the trading
process itself through the interaction between fundamentalists and technical analysts.
The multi-agent systems are characterized by an irregular switching between phases of
low volatility, where fundamentalists dominate the market and prices move close to the
RE fundamental price, and phases of high volatility, where the market is dominated by



technical trading with prices deviating from the fundamental price. Volatility clustering
thus becomes an endogenous phenomenon driven by news about economic fundamentals,
but amplified by heterogeneity and adaptive learning.

This paper investigates asset price fluctuations in a simple adaptive belief system intro-
duced by Gaunersdorfer and Hommes (2000), extending the present discounted value
asset pricing model with heterogeneous beliefs of Brock and Hommes (1998). There are
only two trader types: fundamentalists, who believe that prices will move in the direction
of the ‘fundamental value’, and trend followers or chartists, who extrapolate the latest
observed price change. The fractions of the two different trader types change over time
according to evolutionary fitness, as measured by utility from realized profits or, equiv-
alently, forecasting accuracy in the recent past. Chartists, however, also condition their
forecasting rule upon price deviations from the RE fundamental price. Gaunersdorfer and
Hommes (2000), henceforth GH (2000), have investigated the time series properties of this
adaptive belief system buffeted with dynamic noise. They showed that the evolutionary
dynamics is characterized by unpredictable asset price returns, with almost no significant
autocorrelations, and at the same time by predictable squared returns, with significant
and slowly decaying autocorrelation coefficients. Put differently, the simple adaptive be-
lief system generates simultaneously unpredictable returns and volatility clustering, and
provides a structural explanation of the first and second moments of the returns distribu-
tion of asset prices. The present paper shows that two fundamentally important concepts
explain the endogenous occurrence of volatility clustering: intermittency and coexistence
of attractors.

The phenomenon of intermittency, as introduced by Pomeau and Manneville (1980), oc-
curs when asset price fluctuations are moving on a strange, chaotic attractor character-
ized by phases of almost periodic fluctuations irregularly interrupted by sudden bursts
of erratic fluctuations. In the evolutionary learning model studied here intermittency is
characterized by close to the RE fundamental steady state fluctuations, suddenly inter-
rupted by price deviations from the fundamental triggered by technical trading. Recent
mathematical results on homoclinic bifurcations have shown that strange attractors are
persistent in the sense that they typically occur for a positive Lebesgue measure set (i.e.
a set of positive probability) of parameter values, see e.g. Palis and Takens (1993) for
a mathematical treatment; recent economic applications include the overlapping genera-
tions economy in de Vilder (1996) and the ‘hog cycle’ or cobweb model with evolutionary
learning in Brock and Hommes (1997a).

The second phenomenon naturally suited to describe volatility clustering is coexistence of
attractors. In particular, our evolutionary model exhibits coexistence of a stable steady
state and a stable limit cycle due to a so-called Chenciner or degenerate Hopf bifurcation.
When buffeted with dynamic noise, irregular switching occurs between close to fundamen-
tal steady state fluctuations, where the market is dominated by fundamentalists, and large
amplitude price fluctuations, where the market is dominated by chartists. It is important
to note that both, intermittency and coexistence of attractors, are persistent phenomena,
which are by no means special to our evolutionary system, but occur naturally in nonlinear



dynamic models, and moreover are robust with respect to and sometimes even reinforced
by dynamic noise. In particular, coexistence of attractors is a structurally stable phe-
nomenon, occurring for an open set of parameter values. The Chenciner bifurcation has
codimension two, implying that it is a generic feature in nonlinear systems with two or
more parameters. We conjecture that both mechanisms proposed here, intermittency and
coexistence of attractors, are also relevant to other computationally oriented nonlinear
evolutionary multi-agent systems such as the Santa Fe Artifical stock market and other
references cited above.

An important critique from ‘rational expectations finance’ upon heterogeneous agent mod-
els using simple habitual rule of thumb forecasting rules is that ‘irrational’ traders will not
survive in the market. For example, Friedman (1953) argues that irrational speculative
traders would be driven out of the market by rational traders, who would trade against
them by taking infinitely long opposite positions, thus driving prices back to fundamen-
tals. In an efficient market, ‘irrational’” speculators would simply lose money and disappear
from the market.

However, for example, De Long et al. (1990) have shown that a constant fraction of
noise traders may on average earn higher expected returns than rational or smart money
traders, and may survive in the market with positive probability.! Brock and Hommes
(1997a,b, 1998, 1999), henceforth BH, have also discussed this point extensively in a
series of papers, and stress the fact that in an evolutionary framework technical analysts
are not ‘irrational’, but they are in fact boundedly rational, since in periods when prices
deviate from the RE fundamental price, chartists make better forecasts and earn higher
profits than fundamentalists. Speculative deviations from the fundamental price may in
fact be triggered by short run profit opportunities for chartists. On average, technical
analysts and fundamentalists may earn approximately equal profits, so that in general
fundamentalists can not drive chartists out of the market. See the survey in Hommes
(2000) for an extensive discussion of these points. See also Grandmont (1998), Evans and
Honkapohja (1998), and Sargent (1993, 1999) for related work on adaptive learning and
motivation of bounded rationality.? In related empirical work Brock et al. (1992) have
shown that simple technical trading rules applied to the Dow Jones Index may yield
positive returns, suggesting extra structure above and beyond the EMH fundamental.

The paper is organized as follows. Section 2 describes the asset pricing model with funda-
mentalists and chartists. Section 3 presents a stability analysis of the fundamental steady
state and bifurcations of codimension one and two. Section 4 contains a numerical analysis
of typical bifurcation routes, wheras section 5 focusses on complicated, chaotic dynam-
ics. Section 6 discusses the effect of noise on these systems. Finally, section 7 concludes.

1An early example of a heterogeneous agent model is Zeeman (1974); other more recent examples
include Frankel and Froot (1988), Kirman (1991), Chiarella (1992) and Brock (1993).

2Timmerman (1993, 1996), for example studies, adaptive learning and its role for generating excess
volatility in asset pricing models. Our evolutionary approach is also related to reinforcement learning in
evolutionary game theory as e.g. in Borgers and Sarin (1997).



In an appendix we present so-called normal form computations of the Hopf bifurcation
underlying the numerical computations of the Chenciner bifurcation points.

2 The model

We briefly recall the asset pricing model with heterogeneous beliefs introduced in BH
(1997b, 1998, 1999), see also Brock (1997), Gaunersdorfer (2000a), and GH (2000). Agents
trade in a market with one risky and one risk-free asset. The risk-free asset is completely
elastically supplied at a gross return R > 1. p; denotes the price (ex-dividend) of the risky
asset and {y;} the (stochastic) dividend process. The dynamics of wealth of investor type
h is described by . .

Whit+1 = RWht + Riy12h,

where zp; is the number of shares of the risky asset purchased at time t and Rt+1 =
Dir1 + Y1 — Rp; is the excess return per share. Variables carrying tildes denote random
variables. Let E; and V; denote conditional expectation and conditional variance based
on a publically available information set F;, such as past prices and dividends, and let
Ey: and Vj; denote the ‘beliefs’ or forecasts of investor type h about these conditional
expectation and variance.

Equilibrium
Assuming that investors are myopic mean-variance maximizers, the demand for shares
zpe by type h solves

Ep Ry
aVi Ry 1

a

2Vhtﬁ/t+1}a ie. zp =

maX{EhtWh7t+1 - (1)
Here the nonnegative parameter a characterizes risk aversion. Let zy; and np; denote
respectively the supply of shares per investor and the fraction of investors of type h at
time t. Equilibrium of supply and demand implies

Z NhtZht = Zst- (2)
h

Assuming constant supply of outside shares over time we may stick to the (equivalent)
special case z,; = 0.3 Further, we assume that dividends are independently and identically
distributed (iid), in particular, E;g;11 = y*.

Beliefs
In the case where there is only one type of traders the equilibrium equation (2) reduces
to

Rpy = Eypri + 47

3In the general case z;; = const one can introduce a risk adjusted dividend yﬁl = Yppq — ao?

Brock (1997).

2%, see



In the standard case R > 1 there is only one solution p; = p* = y*/(R — 1) that satisfies
the ‘no bubbles’ condition lim, ., Ep;/R" = 0. This price, given as the discounted sum of
expected future dividends, would prevail in a perfectly rational world and will be called
the fundamental price.

We make some simplifying assumptions concerning the beliefs:

A1 The beliefs about future prices and dividends are assumed to be of the form

Eni(Pesr + Ge1) = E(Pr1) + 4" + fa(Der,s - p—1) = R}, + fu(Pe=1, - - De—1),

where f, is some deterministic function of past prices describing the beliefs of traders
about price deviations from the fundamental value. Further, this assumption im-
plies that investors have homogeneous beliefs about future dividends Ep(g:11) =
Ei(§i41) = y*. Hence all traders are able to derive the fundamental price pj.

A2 The beliefs about conditional variances of the excess returns are assumed to be of
the form . )
Vhth+1 = V;ERH—I = 0'2, Vh, t.

That is, beliefs about conditional variances are the same for all types and constant
over time.*

We consider a model with two simple belief types,

Eipr1=pi = pr o —p7), 0<0<1 (3)
By = pg,tJrl = pra1+9Pe1—pi2), geR (4)

Trader type 1 are ‘fundamentalists’, believing that tomorrow’s price will move in the
direction of the fundamental price p* by a factor v. Trader type 2 derive their beliefs from
price histories. If g > 0 these traders are trend followers, extrapolating the latest observed
price change, if ¢ < 0 they are contrarians. Given our assumptions, the equilibrium

dynamics (2) reads as
2

Rp, = Z MhtPpie1 T ()
h—1

Fractions
Fractions ny; are updated according to past performance, conditioned upon the deviation

of actual prices from the fundamental value. The evolutionary competition part of the
updating rules closely follows Brock and Hommes (1997a,b, 1998, 1999). The additional

4Gaunersdorfer (2000a) studies the case of time varying (homogeneous) beliefs about conditional
variances. She obtains similar bifurcation routes to complicated asset price fluctuations as in the case with
constant beliefs. We therefore restrict here to this more simple case. Chiarella and He (2000) introduce
heterogeneity in beliefs about variances.



conditioning upon deviations from the fundamental was introduced in GH (2000) similar
to the approach taken for instance in the Santa Fe artificial stock market in Arthur et al.
(1997) and LeBaron et al. (1999).

In a first, evolutionary, step fractions are determined as discrete choice probabilities

i = explBUne 1)/ Z,  Zi=)_ exp[BUn; 1], (6)
h

where Uy, is some ‘fitness function’ or ‘performance measure’.® Note that the fractions
are independent of the fitness level. The parameter 3 is called the intensity of choice. It
measures how sensitive traders are to differences in performance of trading strategies. For
(8 = 0 fractions are fixed over time and are — in the case of only two different types — equal
to 1/2. In the limit of § — oo all traders choose immediately the predictor with the best
performance in the recent past. Thus, for finite, positive 3 agents are boundedly rational
in the sense that fractions of the predictors are ranked according to their fitness.

The fitness function Uy is defined as utility derived from realized profits, that is, risk
adjusted realized profits. A straightforward computation (for details see Gaunersdorfer
(2000a,b) and GH (2000)) shows that this results in

1

Un = —w(pt — pfn)Q +nUp -1, (7)

i.e., fitness is determined by minus squared prediction errors. The parameter 0 < 7 <1
represents ‘memory strength’.

In the second step of the updating conditioning on deviations from the fundamental by
the technical traders is modeled as

noe = MNorexp[—(p1 — p*)Q/Oé]; a>0 (8)
nyie = 1-— Not.

According to (8) the fraction of technical traders decreases more, as prices deviate further
from their fundamental value p*. This is motivated by the fact that technical traders are
conditioning their charts upon price deviations from the fundamental.

Notice that fractions in period ¢ depend on observed prices up to the end of period t — 1
(beginning of period t), p; 1,pt 2,.... See GH (2000) for a more detailed discussion of
the definition of the fractions and other aspects of the model.

Dynamical system
Setting Up; = Upt—1, we obtain the following dynamical system,

1 e e e *
bt = E(pl,tJrl + th(pQ,t+1 - pl,t+1) +y) (9)
~ 1 ~
Un = =551 = Praa)’ +10ni, h=1,2 (10)
ao

SGaunersdorfer (2000b) introduces costs in the performance measure of the fundamentalists.



Introducing new variables p;(t — 1) = py_s, up(t — 1) = Uny_1, (9)-(10) is written as a six
dimensional system in (py, p2, Ps3, Ps, U1, uz) =: p. In the following we denote this system
by ®, where

p(t) = (p(t —1)).

Also, when working in a neighborhood of p*, the mathematics becomes more transparant
if local coordinates (z1,- - -, x4, u1, uy) =: x are introduced by

z;(t) = pi(t) — p*.

The system then takes the form

1
O(x) = {E <(1 — ng)vry + na(Ty + g1 — $2))> , L1, T2, L3, (11)
" (n — vwa)? + s, — (3 — w2)* +
9002 T1 — Ux3 nus, 2002 L1 — T3 — g\T3 — T4 nuz| ,

where ns is given by

3 Stability analysis of the fundamental steady state

This section gives a local analysis of the dynamics at the fundamental steady state. In
the first part it is shown that x* = 0 is the only steady state of (11). In the following, this
will be called the fundamental steady state or the fundamental for short. The remainder of
this section analyzes the stability of this fundamental steady state. It is stable for g close
to 0, and it loses its stability in two different ways: period doubling bifurcations occur for
certain negative values of g, while Hopf bifurcations occur for some positive g.

Period doubling and Hopf bifurcations are codimension one bifurcations, that is, they oc-
cur generically when a single parameter is varied. In subsection 3.3 the Hopf bifurcation is
investigated in more detail. By inspecting its normal form (which is a simple representa-
tion of the system by choosing appropriate coordinates around the equilibrium), we note
that for parameters in a certain set, these bifurcations can be degenerate and a so-called
Chenciner bifurcation is said to occur. The Chenciner bifurcation is a codimension two
bifurcation, that is, it occurs generically when varying two parameters. Codimension two
bifurcation points are important, because they serve as ‘organizing centers’ of the codi-
mension one bifurcation curves in the complete bifurcation diagram. In particular, close
to a Chenciner bifurcation point a ‘volatility clustering region’ occurs, that is, an open
region in the parameter space where a stable steady state and a stable limit cycle coexist.
A short discussion of the theory of the Chenciner bifurcation is given in subsection 3.3.



3.1 Uniqueness and stability of the steady state

Lemma 1
Let ®(x) be given by (11). Let moreover R >1,0<v <1 and 0 <n<1. Then x* =0
1s the unique steady state of ®.

Proof
Let x* be any steady state of ®, that is, let x* satisfy

x* = d(x"). (12)

Notice first that x* = 0 is indeed a steady state. From the second, third and fourth
component of equation (12), it follows that x; = x5 = x5 = x4. Setting x; = z, the first
component then reads as

Rz = (1 — ny)vzx + nax.

Assuming that x # 0, we may divide both sides of this equation by . But then we have
R = (1—n2)v+ny <max{v,1} <R,
which is a contradiction, hence = 0. Now the last two components of equation (12) yield
Uy = nux, Uz = MNuU2.

Since n # 1,° the lemma follows. i

Stability
In order to determine the stability of the fixed point the characteristic polynomial of the
Jacobian D®(0) at the steady state is computed. It is given by

pON) = N2(5 — A)? (A2 _ HQ’%A + %) . (13)

Thus, the eigenvalues of the Jacobian are 0,  (both of multiplicity 2) and the roots Ay, As
of the quadratic polynomial in the last bracket. Note that these roots satisfy the relations

I+g+w

R and )\1)\2 = i (14)

)\1—|—)\2: SR’

Also note that the eigenvalues 0 and 7 always lie inside the unit circle. Thus, the stability
of the steady state is determined by the absolute values of \; and \s.

6For 7 = 1 the dynamical system has a double eigenvalue 1 (see equation (13)) and hence is non-generic
in a two parameter system. Though this is an interesting case, it is — because of additional mathematical
difficulties — beyond the scope of this paper to analyze it.



3.2 Codimension one bifurcations

As parameters are varied, bifurcations, that is, qualitative changes of the dynamical be-
havior will arise. In particular, bifurcations changing the (local) stability of the steady
state may occur. At such a bifurcation value, the steady state must be non-hyperbolic
having (at least) one eigenvalue of D®(0) with absolute value one, that is, one of the
eigenvalues is equal to 1, —1, or there is a pair of complex eigenvalues having modulus 1.
We first discuss the codimension one bifurcations, which are those bifurcations that are
expected to occur (generically) when only a single parameter is varied.

Eigenvalue equal to 1
Assume that one of the eigenvalues )\, is equal to 1, say Ay = 1. Then it follows from (14)
that

_ 9 _1+g+v
_2R and 1+)\1——2R .

Eliminating \; from these equations leads to the condition

A

14+v=2R.

However, since v < 1 < R, this condition can never be satisfied. Hence eigenvalues equal
to 1 cannot occur.

Eigenvalue equal to —1
Under the assumption that Ao = —1, equations (14) lead to the relations
g I1+g+wv
A = —— d 1+ =—.
'TTr M AT TR
Eliminating \; leads to
2g+v=-1-2R.

For parameters satisfying this equation, a period-doubling (also called flip) bifurcation of
the steady state is found (if a certain nondegeneracy condition is satisfied).

Two complex conjugate eigenvalues of modulus 1
The roots A1, Ao of the characteristic equation are complex conjugate and of modulus
one if A; A =1 and |\; + A\o| < 2. Using (14), this leads to the conditions

9

9 _4 1+g+v
2R

and ‘ o

Substituting the first condition into the second yields

1+v

9.
R | =

‘1+

For 0 < v < 1, this condition is always satisfied, since R > 1. Hence, for parameters
satisfying the equation
g =2R,

9



a Hopf (also called Neimark-Sacker) bifurcation occurs (again if certain nondegeneracy
conditions are satisfied; see subsection 3.3 and the appendix).

Conclusion
Introduce the functions gpp (5, v, R) and gy (5, v, R) by

gro(0,0,B) = —3(0+2R+1) and gu(F,v, R) = 2R (15)

The following lemma summarizes the above discussion.

Lemma 2
The steady state x* = 0 is hyperbolic for g # gpp and g # gy (9pp and gy defined by
(15) ). It is asymptotically stable for gpp < g < gu, and unstable for g > gy and g < gpp.

For g = gpp or g = gy, the fundamental steady state fails to be hyperbolic. In the first
case D®(0) has an eigenvalue —1, in second case two complex conjugate eigenvalues of
absolute value 1.

If moreover in these latter cases certain nondegeneracy conditions are satisfied, then
for g = gpp the system undergoes a period doubling (flip) bifurcation, and for g = gu a
Hopf (Neimark-Sacker) bifurcation.

3.3 Codimension two bifurcations

In lemma 2 we mentioned necessary nondegeneracy conditions for the occurrence of period-
doubling or Hopf bifurcations. This subsection investigates the situation that these non-
degeneracy conditions are violated.

In the following, attention is restricted to the case of no memory in the performance
measure (n = 0), and, since it is the economically more relevant case, to g > 0, that is,
to the case of the Hopf bifurcation.

In that case, we obtain degenerate Hopf or Chenciner bifurcations, originally analyzed by
Chenciner (1985a, 1985b, 1988), see also Kuznetsov (1998a) for a textbook treatment. The
Chenciner bifurcation is a codimension two bifurcation: it is a non-generic phenomenon
when only one parameter is varied, but a generic phenomenon when two parameters are
varied simultaneously. We discuss the Chenciner bifurcation in some detail, since it is
particularly relevant for the phenomenon of volatility clustering in our adaptive belief
system, because close to the bifurcation point, there exists an open region in parameter
space where a stable steady state and a stable attracting invariant circle coexist.

Nondegeneracy of the Hopf bifurcation

In the previous section, a surface in the space of parameters has been found for
which D®(0) has two complex conjugate eigenvalues A\, A of absolute value 1, and four
eigenvalues with absolute values less than one. In this case, a two-dimensional center man-
ifold W€ can be found that is invariant under the map ® and tangent to the eigenspace

10



spanned by the eigenvectors associated to the eigenvalues A, A\. The nondegeneracy of
the Hopf bifurcation can be decided by restricting attention to this manifold (for gen-
eral references on center manifolds and nondegeneracy of bifurcations, see, for example,
Guckenheimer and Holmes (1986) and Kuznetsov (1998a)).

In the following, we briefly discuss general normal forms of Hopf and Chenciner bifurca-
tions. The system (11) will serve as the prime example.

Normal form transformation

By a so-called normal form transformation, that is, by a sequence of appropriate coor-
dinate transformations, the map ® restricted to the center manifold can be brought into
the following normal form,

©0r(2,2) = A7)z + c(T)]2)P2 + ... .

Here the dots denote terms of higher order in z. Complex variables z, z are used to describe
points on the two-dimensional real center manifold W¢. They are chosen such that z =0
corresponds to the steady state of the full system ®. The multi-dimensional parameter 7
takes values in some parameter space P, which is usually an open subset of R®. For our
model, P is equal to”

P={(B,v,g,R) : >0,0<v <1, R>1}.

The coefficients A(7) of the linear part and ¢(7) of the cubic part depend smoothly on 7 €
P.

Bifurcation manifold
There is a smooth (codimension 1) submanifold H of P, such that if 7 € H, the necessary
condition for a Hopf bifurcation is fulfilled. Writing A = A\; 4+ ¢\, this condition reads as

Al =1, Ao # 0.
The manifold H is called a Hopf bifurcation manifold. Note that for our system (11)

H={(B,v,9,R) € P : g=2R}.

Nondegeneracy
The bifurcation is nondegenerate if

Re A(1)e(1) #0 and grad, |\ #0, forTeH,

"Changing the values of parameters a and o is equivalent to choosing a different value for (3, see
equations (6) and (7). Further, by changing to new coordinates x = /aX, the iteration equation (11)
changes to /aX;y1 = ® (y/a%x;) and it follows, by some algebra, that ;11 = ® (X;), where the parameter
[ is replaced by B = af. Thus, attention may be reduced to the case a = 1. Hence we can restrict the
parameter space of our model to P as given above (see also the Appendix).
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where grad. denotes the derivative with respect to 7. The sign of Re A\¢ determines the
type of Hopf bifurcation: if it is negative (positive), a stable (unstable) invariant circle
branches off the stable (unstable) fixed point z = 0, which becomes unstable (stable) as
7 is varied and crosses H. The Hopf bifurcation is called supercritical (subcritical).

For our evolutionary adaptive learning model, the locus of Re A\¢ = 0 is sketched in
figure 1.

Figure 1: Plot of the curve C of Chenciner bifurcation points lying within the Hopf bifur-
cation set H = {g = 2R} in the B-v-diagram, for 3 € [0,10] and v € [0, 1].

Chenciner bifurcation

If the nondegeneracy condition of the Hopf bifurcation is violated, then a degenerate
Hopf or Chenciner bifurcation is said to occur. In the above notation, this happens for
parameters 7 € H such that

Re A(1)c(1) = 0. (16)

Condition (16) defines a codimension two manifold C C H in the space of parameters.
Again by performing normal form transformations, the restricted system can be brought
into the following form, which is analogous to the normal form of the Hopf bifurcation
with a fifth order term added,

0r(2,2) = Az + |2z +d|z[*2+ ... .

Here ¢ = ¢(7) = 0 if 7 € C, and both ¢ and d depend smoothly on 7. This normal form is
analyzed most easily in polar coordinates z = re®’. Introducing parameters fi1, j and w
by

A= (14 pu)e™, Re A\é = po,

@, takes the form

pr(r,9) = (r+ pr + por® + 1 (1)r° + .. 0w () + L) (17)
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All parameters are collected in a new multidimensional parameter, also called 7: 7 =
(1, pr2, w, - - -). The nondegeneracy conditions for the Chenciner bifurcation are in these
coordinates

Y1(7) # 0 # 7a(7).

Local bifurcation diagram

We discuss the structure of the local bifurcation diagram of the Chenciner bifurcation,
illustrated in figure 2, using the normal form (17), where (for the time being) the higher
order terms are set to zero. We discuss the case v1(0) < 0 and, without loss of generality,
we assume that v;(0) = —1. See Kuznetsov (1995) for more information.

Note that any positive solution r, to the equation
p1 + par® —rt =0,

or, equivalently, to

2 2
(-2 o

corresponds to an invariant circle in phase space.

For 111 > 0, equation (18) has exactly one positive solution. For y; = 0 equation (18) has
a solution 7, = 0. Thus, u; = 0 is a line of Hopf bifurcations, whose type is determined by
the sign of ps: for ps < 0, the Hopf bifurcation is supercritical, for ps > 0 it is subcritical.

The number of positive solutions for p; < 0 is determined by the sign of p3/4 + p;: there
are two if it is positive, none if it is negative. Finally, for parameters on the curve
2
S: K2 + p1 =0,
4
two positive roots of equation (18) coincide, making it a curve of saddle-node bifurcations
of invariant circles.

For parameters not on either bifurcation curve, the invariant circles are normally hy-
perbolic. This implies that these circles are in a sense ‘robust’, they persist under small
perturbations. A sketch of the bifurcation diagram is given in figure 2. Consider a point
in parameter space {(u1, 12)}, with gy < 0 and ps < 0. For these parameter values the
steady state is locally stable. Now fix s and increase p;. When crossing the ps-axis, for
i1 = 0, a supercritical Hopf bifurcation occurs, that is, a stable invariant circle is created
and the steady state becomes unstable. Thus, in the region {g; > 0} a stable limit cycle
around an unstable steady state exists. Now fix a parameter value s > 0 and decrease ji;
from some positive value. When crossing the ps-axis again at p; = 0, a subcritical Hopf
bifurcation occurs in which the steady state becomes stable, an unstable invariant circle
emerges out of the steady state, and the stable invariant circle still exists. Decreasing
further, the unstable and stable circles approach each other and dissappear in a saddle-
node bifurcation of invariant circles when p; crosses the curve SN. Thus, in the region
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between the positive us-axes and the curve SN the system has two attractors, a stable
steady state and an attracting (large) invariant circle, with an unstable invariant circle
forming the boundary between these two attractors. We will call this region a ‘volatility
clustering region’, since adding some noise to the system, the dynamics is characterized by
an irregular switching between phases of small price fluctuations close to the steady state
with small price changes and phases of large price fluctuations with large price changes
along the limit cycle.

2

~
~
N
S
N\

SN

O

\
\

1

K1

Hopf

Figure 2: Bifurcation diagram of the Chenciner bifurcation in the pi-ps-plane. The codi-
mension two bifurcation point is in the origin of the coordinate system. The drawn lines
are Hopf bifurcations, supercritical on one side of the Chenciner point (o < 0), subcritical
on the other (uy > 0). The dashed curve SN denotes a curve of saddle-node bifurcations
of invariant circles. The ‘volatility clustering region’ is the region between the curve SN
and the positive uo-azes, where a stable steady state and a stable limit circle coezist.

Dynamics on the invariant circle

However, the situation is more complicated than sketched above, since the dynamics
on the invariant circles may undergo bifurcations as well. For these dynamics there are
two possibilities. The first possibility is that the dynamics on these circles consist of a
sequence of attracting and repelling hyperbolic periodic points. This type of dynamics is
called resonating, phase locked or Morse-Smale; for an example see figure 4 (middle plot).
There is usually an open set of parameters for which the invariant circle has phase locked
dynamics. The boundaries of this set are formed by saddle-node bifurcation curves of the
attracting and repelling points on the invariant circle.® While the total set of parameters
with phase locked dynamics is open and dense, its complement has positive measure.
Parameters in the complement correspond to the case that the dynamics on the invariant
circle are quasi-periodic; an example is shown in the left plot of figure 4. There is a large

8Pintus, Sands and de Vilder (2000) present an infinite horizon intertemporal equilibrium model
exhibiting these types of local bifurcations after a Hopf bifurcation of the steady state, finally leading to
strange attractors.
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literature on quasi-periodic dynamics, to which the interested reader is referred (see Moser
(1974), Herman (1979), Arnol’d (1983), Broer et al. (1990) and references there).

4 Global structure of the bifurcation diagram

In this section, the structure of the bifurcation diagram of the system is explored further.
Above, the local bifurcations of the fixed point x* = 0 were determined analytically. Here,
a sketch of the global bifurcation structure is attempted, at least at the onset of instability.
The pictures in this section were generated using the numerical bifurcation packages
AUTO97 (see Doedel et al. (1998)), CONTENT (Kuznetsov (1998b)) and DSTOOL (Back
et al. (1992), Krauskopf and Osinga (1998)). We take R = 1.01 throughout this section.

4.1 Onset of instability

In the previous section it has been shown that in the case of g > 0, the fixed point x* = 0 is
stable for small g, and it loses its stability in a Hopf bifurcation for g = 2R, as illustrated
in figure 3. At ¢ = 2.09 an invariant attracting circle, quasi-periodic (or periodic with
high period), has appeared. For g = 2.4, the circle has developed into a strange attractor.
The corresponding chaotic time series suggests some form of volatility clustering caused
by intermittency.

However, attractors different from the fixed point can already exist before the Hopf bifur-
cation at x* = 0 takes place, as is shown in figure 4. Here attracting quasi-periodic circles
exist already for ¢ = 1.60. Since the origin is a stable fixed point up to g = 2R = 2.02,
we conclude that here we have coexisting attractors. Note that coexisting attractors are a
consequence of the occurrence of the Chenciner bifurcation discussed in section 3. Recall
that it implies the existence of a codimension one manifold S in the space of parameters
that carries a set of saddle-node bifurcation points of invariant circles.

This kind of saddle-node bifurcation is a ‘global’ phenomenon, in the sense that invariant
circles are ‘global’ objects, and it typically occurs ‘far away’ from the fixed point. Except
in small neighborhoods of Chenciner bifurcation points, no analytic information can be
obtained about the location of the manifold S.

A crude sketch of the location of & has been obtained as follows: for fixed values of 3
and v, plots of the phase space have been inspected visually for a range of g-values. The
lowest value of g (to a precision of 0.01) for which an attractor other than x* = 0 existed,
has been termed the (approximate) bifurcation value g, (3, v). See figure 5 for the graph S
of g.; in the second plot of figure 5, the set of Hopf bifurcations (plane g = 2R) is shown
as well. Note that S can be seen as the set of onset of instability in the system. In the
region bounded by S and H (‘volatility clustering region’), the stable steady state and
another attractor coexist. From the graph of S we conclude that, if the intensity of choice
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Figure 3: Bottom panel: Projection of the attractors on the ps-p1-plane. Parameters are:
06 =4, v =0.3 and, from left to right, g = 2, g = 2.09 and g = 2.4. The fixed point
1s attracting in the leftmost picture: points spiraling towards it are shown. It undergoes a
supercritical Hopf bifurcation at g = 2.02, has a quasiperiodic attractor for g = 2.09 and a
strange attractor for g = 2.4 (shown in the middle and to the right, respectively). Bottom
panel: Time series for the attractor of the top right plot showing intermittent chaos.

B

= s

Figure 4: Projections of a quasi-periodic, a periodic and a chaotic attractor on the ps-
p1-plane. Not drawn is the stable fundamental steady state at p* = 100. Parameters are:
6 =4, v = 0.6 and, from left to right, g = 1.60, g = 1.70, and g = 2.00. These
parameter values lie in the ‘volatility clustering region’ where two attractors coexist. The
fixed point undergoes a subcritical Hopf bifurcation at g = 2.02. In the right figure the
unstable invariant circle can be seen as the inner boundary of the strange attractor.
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0 is high and v is in an intermediate range, say 0.4 < v < 0.8, then a relatively small
value of the trend parameter g already leads to coexistence of attractors and volatility
clustering.

) [

HEAENN S i —

\

Figure 5: The codimension one set S of saddle-node bifurcations of invariant circles at the
onset of instability in (5,v, g)-space. In both pictures, the axes are oriented as usual, with
the axis pointing to the top being the g-awis. In the right hand plot, the Hopf manifold H
(the plane g = 2R) is plotted as well. Coexisting attractors occur in the region in between S
and H (‘volatility clustering region’).

4.2 Bifurcations past onset of instability

For values of g larger than g.(3, v), the structure of the bifurcation diagram becomes very
rich, as testified by figures 6 and 7. Partly, this can be explained by the theory of the
Chenciner bifurcation: there are many (probably countably many) curves of saddle-node
bifurcations of periodic points on the invariant circles that are approximately tangent
to S.

Also homoclinic bifurcations of periodic points are predicted by the theory (Chenciner
(1988)), and are found in the system, see figure 8. These imply in turn generically the
existence of period-doubling cascades, horseshoes and infinitely many repelling or attract-
ing periodic points and strange attractors (see Mora and Viana (1993), Palis and Takens
(1993)).

Even for g in the ‘unstable’ region, the long run dynamics can become regular, periodic
or quasi-periodic, and all the complicated structure (infinitely many periodic points and
their stable and unstable manifolds) may be repelling and hence invisible. But typically,
as parameters vary, for some parameter values this structure, or part of it, becomes stable
and forms a strange attractor. This theme will be further explored in the next section.
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Figure 6: Bifurcation diagram in the g-v-plane for 3 = 3. At the points DH a Chenciner
bifurcation occurs. These points lie on the Hopf bifurcation line H: ¢ = 2R and are con-
nected by a dashed line S corresponding to the saddle-node bifurcation curve of invariant
circles. The area between S and H is the ‘volatility clustering region’. SNn and flipn denote
saddle-node and period-doubling (flip) curves respectively, of periodic points of period n.
Many of the SN bifurcation curves accumulate on the curve S, the boundary of the onset
of instability. Note that only a few of the (countably many) bifurcation curves are drawn
here. Hopf and saddle-node bifurcations of periodic points with all hyperbolic eigenvalues
lying in the unit circle are indicated by solid curves, flip curves by long dashes. Saddle-

node curves of periodic points with one eigenvalue outside the unit circle are also short
dashed.

18



Figure 7: Bifurcation diagram in the B-g-plane for v = 0.6. The point DH is a Chenciner
bifurcation point, lying on the Hopf bifurcation line H: ¢ = 2R. The lower dashed line
S starting at the Chenciner bifurcation point corresponds to the saddle-node bifurcation
curve of invariant circles. PFn denotes pitchfork bifurcations curves of points of period
n, which are indicated by short dashes; further notation as in figure 6.
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Figure 8: Phase space plots in the py-p1-plane for 3 = 3, v = 0.8 showing the disappearance
of an invariant circle in a homoclinic bifurcation. Top left: g = 1.57557. Three coexisting
attractors, the fundamental steady state, an attracting invariant circle, and a stable cycle
of period 22 (marked as triangles) lying outside the invariant circle. The other three figures
show details of phase plots for g = 1.57553 (top right), g = 1.575576 (bottom left) and g =
1.57559 (bottom right). Top right: points are attracted to an invariant circle, of which only
a part is visible. Bottom left: the invariant circle (almost) connects consecutive saddle
points. This situation is close to a so-called homoclinic bifurcation, hence the ‘kinks’ at
the saddle points in the picture. Bottom right: after the homoclinic bifurcation value, points
starting at the saddle converge to a period 22 sink. The invariant circle has disappeared
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5 Chaos

This section explores the occurrence of chaotic behavior in the model. First the location
of chaotic dynamics in parameter space is determined by computing Lyapunov exponents.
Then, mainly for the case that the parameter v is close to 1, the structure of the strange
attractor is examined in more detail. We employ so-called one-dimensional return plots,
defined for a suitable region in the phase space, to show the occurence of chaos. Such return
plots can be used for all higher dimensional system which are close to a one-dimensional
system in some suitable part of the phase space.

An intuitive argument why chaotic dynamics are likely to occur is the following. The
dynamics of our model is characterized by the interaction of fundamentalists and tech-
nical traders extrapolating trends. As prices move away from the fundamental value the
performance of fundamentalists is bad and price trends are reinforced by technical traders
and prices will even move further away from the fundamental. However, as prices deviate
too much technical traders become nervous, starting to believe that a price correction
towards the fundamental is about to occur and their fraction decreases. This will cause
prices to move towards the fundamental value. As prices approach the fundamental value
trend traders will come into the market again and the story repeats.

Actually, this suggests reasons why the dynamics might be chaotic. A set of initial states
of the system close to the fundamental will be stretched out during the phase when
technical traders dominate. At the point where the fundamentalists start to become the
dominating fraction in the market, the set will be folded back onto itself. The action of the
fundamentalists transports this folded set back to the fundamental. See figure 11 below.
It is precisely this stretching and folding which lies at the root of the occurrence of chaos
in dynamical systems in general. Below we argue that this line of reasoning leads to a
rather rigorous understanding of the source of at least some of the chaos in the present
system. Technical trading causes stretching, whereas the conditioning of technical trading
rules upon fundamentals causes folding in the adaptive belief system.

5.1 Regions of chaos

To get a global impression of the ‘amount of chaos’ to be expected in the system, Lyapunov
exponents are computed for several values of the parameters.

Definition
If {x;:}$2, is an orbit on an attractor, then the first (or upper) Lyapunov exponent \ is
defined as:

n—1
1
A= lim =) "log || DP(x)]].
k=0

t—oo N

The (upper) Lyapunov exponent measures the average rate of divergence (or convergence)
of nearby trajectories. A system is commonly considered to be chaotic, if it has an attractor
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such that orbits on the attractor have positive upper Lyapunov exponent.

For the present system, Lyapunov exponents have been computed for 10 different initial
conditions, in order to account for the possibility of coexisting attractors. The largest value
of the exponent obtained has been taken. These plots have been made both in the (3, g)
(figure 9) and the (g, v) (figure 10) diagrams, given as a contour plot (right plots: region
with positive Lyapunov exponents are indicated) and a 3D-plot (left plots: z-coordinate
indicates magnitude of the Lyapunov exponent). For g > 2R chaos seems to be the rule
rather than the exception. But even for the stable region g < 2R, for parameters in the
‘volatility clustering region’ a coexisting chaotic attractor may exist (cf. also figure 4).

Figure 9: Lyapunov exponents for g € [1,5], v € [0,1], B = 3: on the left, the magnitude
of the upper Lyapunov exponent is plotted along the z-axis. In the right picture, for points
in the grey area, upper Lyapunov exponents are positive — for those parameters, there is
a chaotic attractor (compare the bifurcation diagram in figure 6).

Figure 10: Lyapunov exponents for 3 € [0,10], g € [1.2,3] (compare the bifurcation dia-
gram in figure 7). Legend as in figure 9.

5.2 Structure of the dynamics

First, some qualitative remarks are made. Note that if the fundamentalists dominate the

market (ny; = 1, ng & 0), they determine the new price, which will be close to
v

xr = E.CL'Q. (19)
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If the domination extends over several periods, the corresponding phase points in the
xo-x1 diagram will lie close to the line ¢ given by

v
(: x= Exg.
However, if the trend chasers dominate, then the new price will be close to
1+g g
I = R T — El‘g. (20)

This rule corresponds to a one-parameter family of curves close to the family of straight
lines’
my: T =grs+0, (21)

where b € R is a parameter that depends on the initial values of x; and .

89

89 111

Figure 11: A strange attractor in phase space, projected onto the py-p1-plane, for parame-
ters (8,g,v, R,a) = (10,5,0.95,1.01,10). On the attractor, 5-10* points are plotted. Note
the pronounced line £, which is approximately equal to x1 = 0.94xs, as well as a family of
curves with slope approximately equal to 5 close to the origin.

Example
We discuss the global features of the dynamics with parameters equal to
(3,9,v, R) = (10,5,0.95,1.01),

and with a = 10. Note that these parameter values are not intended to reflect an econom-
ically relevant situation; in particular, the value g = 5 is much too high to be realistic.

9For R = 1, (20) implies that the dynamics dominated by trend followers lies on a straight line (21)
close to the origin. This can be seen by substituting (21) repeatedly into (20) and solving for coefficients.
For R close to 1, the family of lines (21) is replaced by a family of curves approximating these straight
lines at the origin.

23



However, this situation serves very well to illustrate the dynamics of the model. See fig-
ure 11 for a plot of 4 - 10* iterates on the attractor.

Note that both the line ¢ and the family of lines m,, are clearly visible, at least close to the
fundamental. They turn into curves away from the fundamental, due to the influence of
the term e *i/. Notice that close to the origin, several trajectories depart from ¢. Points
which where close while on ¢ are there drawn apart in the unstable directions of the fixed
point.

Return plots

To obtain more information on the dynamics, return plots have been made in figure 12.
They use the fact that in the phase where the fundamentalists dominate, all points travel
close to the one-dimensional line ¢, and there they are effectively characterized by a single
coordinate, for instance x;.'° A point x* is taken on the attractor and near the line £. Its
image under iteration is denoted x, = ®(x*). A fundamental set F is introduced by

F = (x4,27].

Now a relation R C F' x F'is defined as follows. Let x be such that its first coordinate x;
is in F. Let y be the first iterate of x under ® such that y; € F and ns(y) < c. This last
condition is needed in order to insure that the point y will again be close to ¢, that is, it
will be a point of the branch dominated by fundamentalists. Typically ¢ < 0.4 was taken.
Then the relation R is given by

(.111, yl) € R.

This relation can be plotted by forward iteration of a single point (for instance, for para-
meters where by inspection of plots of the phase space chaos is expected). This has been
done in figures 12-13 below. In case of figure 12, graphical evidence suggests that there
the relation R is actually described by a function ¢,

R = {(5131,y1) Sy = @(xl)}a

and that, consequently, the system is equivalent to a one-dimensional dynamical system.
Since the endpoints of F' can be identified, ¢ can be thought of as a circle map. Note first
that the maps in figure 12 have on a large set large derivatives. As remarked in the caption
of figure 12, as [ increases, a critical value of the map increases steadily (the ‘hump’ in
the right hand side of the picture). If the corresponding critical point is nondegenerate,
the theory of circle embeddings (Newhouse et al. (1983)) can be brought to bear on the
system, insuring the existence of a nondegenerate homoclinic tangency. Then results of
Jakobson (1981) and Mora and Viana (1993) insure the existence of strange attractors
for a set of parameters of positive measure.!!

"Hommes (1992) contains an example of a two-dimensional piecewise linear model analyzed by a
one-dimensional return map of a suitable line segment in the phase space.

UTf the critical point is degenerate, at least arbitrarily close to the system, there is another system
with this property.
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316 318

Figure 12: Return map to a fundamental domain, for B = 8 (left) and § = 10 (right),
respectively. The other parameters are fized at (g,v) = (5,0.95). Notice the parabolic
shape on the right hand side of the pictures, whose critical value increases as [3 increases.
This suggests strongly the presence of the familiar ‘quadratic family chaos’ in the model.
This plot illustrates the stretching and folding described at the beginning of section 5: the
monotonic branches (the steep parts) of the graphs correspond to the stretching, the humps
correspond to the folding.
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Figure 13: Examples where the relation R cannot be described by a function. On the left side
(8,g9,v) = (9,3.2,0.8); note that the set of points cannot be parametrized by a graph, yet
there is a lot of one-dimensional structure in the picture. On the right (3, g,v) = (6, 3,0.2);
in some parts the description with a graph is very good, while it breaks down in others.
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This one-dimensional description of the system fails notably in the cases of figure 13,
where the dynamics are intrinsically higher dimensional. However, even in those cases,
the stretching and folding that generate chaos are apparent.

6 A normal form with noise

GH (2000) investigated time series properties of the adaptive belief system studied here,
buffeted with dynamic noise, and compared the autocorrelation structures of returns and
squared returns to those observed in 40 years of daily S&P 500 data. The matching of the
autocorrelation patterns has essentially been done by extensive trial and error simulation
of the adaptive belief system with noise and visual inspection. This section presents a
model of the adaptive belief system with noise: a simple one-dimensional “normal form”
with dynamic noise, motivated by our bifurcation analysis of the GH-model. This sim-
ple nonlinear stochastic model generates strong volatility clustering with slowly decaying
positive autocorrelations of squared returns in the presence of rapidly vanishing autocor-
relations of returns, similar to those observed in real financial data.

Universality of bifurcation normal forms

Bifurcations are qualitative changes of the geometry of orbits in phase space, and in that
sense universal to all dynamical systems. Those bifurcations that are of low codimension
can be brought, by an appropriate choice of coordinates (normal form transformation),
into a particularly simple form, characterized by only a few parameters. A normal form is
in fact a reduction of the map at the bifurcation value to the minimum number of nonlinear
(polynomial) terms and the minimum number of parameters. There is a large literature on
unit root properties of economic time series. This suggests that in order to get insight into
the mathematical mechanism generating statistical properties such as volatility clustering,
it makes sense to investigate time series obtained from the normal form of a bifurcation,
buffeted with noise. It is to be expected that the full system displays the same statistical
properties, especially when the parameter values are close to the particular bifurcation
point. Turning the argument around, knowledge of the time series behavior of a normal
form buffeted with noise gives indications to where to look, and what to look for in the
full system, if certain statistical properties are to be emulated.

Recall that the normal form of the Chenciner bifurcation in (17) reads as
o (r,9) = (r+ mr + por® — v (T 4.0+ w A (T)r 4 - (22)

Recall also from subsection 3.3 that the (complex) eigenvalue of the linearized system is
A = (1+pu1)e™, where p; determines the (in)stability of the steady state and w determines
the rotation around the steady state. In numerical simulations of the Chenciner normal
form buffeted with noise volatility clustering occurs, but at the same time significant
autocorrelations of returns, defined as relative changes, also may arise, especially when
the rotation parameter w is not close to zero. For w close to zero, the ¢ component in (22)
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only changes slowly and moreover does not affect the r-component up to order 5. If the 9-
component is dropped, and r is taken to range over R instead of R, we get the normal
form of the degenerate pitchfork bifurcation.

System specification
The normal form of the degenerate pitchfork reads as

goﬂ(r):7’+/L17“+,u27’3—717’5+... )

To investigate the dynamics of this normal form buffeted with Gaussian noise, the ‘dots’
have to be specified. This has been done in such a way that the map ¢, is a diffeomorphism,
that is, a smooth map with a smooth inverse, bounded at plus and minus infinity. The
following diffeomorphism is taken

T+ 1+ per® — yrtarctan 10r + o' arctan 20r

Sé,u(r) = + €.

1 + ,737,10

The graph of the map ¢, is shown in figure 14. Note that the arctan terms ensure that the
map is bounded and that the dynamics remain in a (small) neighborhood of the origin.
Notice also that in a neighbourhood of the origin up to fifth order terms in r» ¢, ~ ¢,.
The map has five fixed points: a stable fixed point at the origin, surrounded by two
unstable fixed points, one positive and one negative, and two additional stable fixed points,
one positive and negative, outside the interval bounded by the unstable fixed points.
Recall that, as the rotation parameter w goes to zero, the Chenciner bifurcation normal
form (22) approaches the degenerate pitchfork bifucation normal form.!? Therefore, since
the parameters p; and s have been chosen in the volatility clustering region, the unstable
fixed points of the degenerate pitchfork may be thought of as corresponding to the inner
unstable invariant circle of the Chenciner bifucation with small rotation around the stable
steady state, and the stable fixed points of the pitchfork relate to the outer stable invariant
circle in the same way.

We generated time series from the normal form model buffeted with noise, that is,

Ti1 = @u(rt) + &,

where ¢, is a white noise term, that is, identically and indepentently drawn from a A/ (0, o.)
distribution. The variable r; should be thought of as a price deviation from a fundamental
price p*. The results of the simulation are given in figure 15. The top panel shows the
time series of the ‘prices’ p, = r; + p* and the corresponding ‘returns’

Pty1 =Pt Tip1— T

D re+pt

The ‘price’ series is higly persistent, whereas the ‘returns’ series is higly unpredictable and
clearly shows volatility clustering. The autocorrelations of squared returns are significantly
positive and decay slowly.

12Note however, that the Chenciner normal form ceases to be valid in this case since the normal form
transformation is singular for w = 0.
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Figure 14: Graph of the degenerate pitchfork normal form map @, for pp = —107%, py =
0.368 and higher order term parameters v, = 25.6, vo = 58254.2 and v, = 314572.8 (left)
and graph of the difference @,(r) —r. The map has five fized points, one stable at 0, two
unstable fized points close to 0 and two stable fixed points further away from 0. Notice
also that there is an interval around O where the graph of ¢, is close to the diagonal.

It is remarkable that our example bears some resemblance to an example of a simple first
order nonlinear autoregressive time series model, exhibiting slowly decaying autocorrela-
tion functions and long memory effects as in Granger and Terdsvirta (1999). The reader is
urged to compare figure 1 in Granger and Terasvirta (1999) to our ‘price’ series in figure 15
(top left). Granger and Terésvirta (1999) have two stable states, one high and one low,
and if the probability of switching between the two states is low, the system has slowly
decaying autocorrelations and long memory. Our system has three stable states, a high
state, a low state and the middle fundamental state. The ‘price’ series in figure 15 (top
left) shows irregular switching between these three stable states and, as a consequence,
the corresponding returns series (top right) shows irregular switching between phases of
high and low volatility.

Our simulations show that normal form models buffeted with noise can reproduce volatil-
ity clustering and long memory effects. The normal form (22) yields the best results for
the rotation parameter w close to zero, implying that the two complex eigenvalues are
close to an eigenvalue +1. For the adaptive belief system a double eigenvalue +1 occurs
when g = 2R and v = 2R — 1. In particular, for v = 2R — 1 the adaptive belief system has
always an eigenvalue +1. Since R is close to 1, this implies that for v = 1 the system is
close to having a unit root, and this may explain why GH (2000) get the best statistical
properties and strong volatility clustering in the adaptive belief system with noise for
v=1.
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Figure 15: The normal form system of the degenerate pitchfork bifurcation for the parame-
ters iy = —107%, pp = 0.368, 11 = 25.6, 12 = 58254.2 and vy, = 314572.8, with Gaussian
noise (0. = 0.002) added. The fundamental price level was chosen to be p* = 0.055. Top
left, time series of the prices. Top right, returns of this time series are shown. Bottom
left the first 40 autocorrelations of the returns (crosses) and of the squared returns (drawn
bars); bottom right, for comparison, the time series of the returns of daily SE€P 500 index
from the last 80 years.
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7 Conclusions

In this paper we present a simple, nonlinear structural model for volatility clustering,
based on the concept of evolutionary adaptive belief systems introduced by BH (1997a).
Volatility clustering arises endogenously due to the interaction between fundamentalists
and technical analysts driven by adaptive learning. Two mechanisms are proposed as an
explanation: intermittency and coexistence of attractors. Chaos arises from the combina-
tion of stretching due to trend extrapolation by chartists and folding due to conditioning
of the forecasting rules upon market fundamentals. Coexistence of attractors arises due
to a codimension two Chenciner bifurcation. Close to the Chenciner bifurcation there is a
“volatility clustering region”, that is, an open set in parameter space where a stable steady
state and a stable invariant circle coexist. Both mechanisms proposed are generic phe-
nomena and thus may serve as explanations of volatility clustering in more complicated
computational multi-agent systems.

We have also proposed to model the adaptive belief system with noise by a one-dimensional
normal form model buffeted with dynamic noise. This simple normal form model is able
to generate unpredictable returns and strong volatility clustering with slowly decaying
autocorrelations in squared returns similar to those observed e.g. in the S&P 500 data.

Two extensions seem worthwhile investigating in future work. Normal form models from
bifurcation theory buffeted with noise may generate some of the stylized facts in financial
data. Normal forms originate from bifurcation theory and are in fact simple unit root
models, with a minimum number of (polynomial) nonlinear terms and parameters, corre-
sponding to that type of bifurcation. We use the so-called degenerate pitchfork bifurcation
normal form (with noise) because it is in some sense close to the Chenciner bifurcation
that occurs in our adaptive belief system. A systematic investigation of the statistical
properties of noisy normal forms of bifurcations of low codimension would be useful.

The adaptive belief system has been formulated around a benchmark fundamental. In this
paper we have focussed exclusively on the case of a constant fundamental, derived from
an underlying IID dividend process. A second natural extension seems to be to investigate
the evolutionary adaptive system in the case of more realistic dividend and time varying
fundamental processes, for example a geometric random walk, and see whether such non-
stationary models match the data more closely. We leave all this for future work.
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A Normal form computations

The purpose of this appendix is to give a normal form analysis of the Hopf bifurcations
at the origin in the GH-model and, in particular, compute the curve of codimension two
Chenciner bifurcation points as shown in figure 1. This section recalls briefly that part
of normal form theory that is relevant for the analysis of a Hopf bifurcation. For a fairly
complete treatment of bifurcation theory see, for example, Guckenheimer and Holmes
(1986) and Kuznetsov (1998).

Definitions

Note that in everything that follows, deviations x; = x(t) are used instead of prices p; =
p(t). They are introduced in terms of the fundamental price p*:

Note that the ‘fundamental’ fixed point p* corresponds with z = 0. This convenience is
the main reason for the change of variables.

Consider a family of maps ¢, : R™ — R™ such that ¢,(0) = 0; that is, 0 is a fixed point
of all maps of the family. Here i is a multi-dimensional parameter, taking values in an
open subset P in R?; P is called the parameter space. Note that the dependence on p will
not always be indicated, in order not to overburden the notation.

Given an initial value zg, an orbit {z(t)} of the system is defined by:

2(t) = u(x(t — 1)) = ¢, (x0), for t > 0.

Notation

For nonnegative functions f(z), the ‘big-O’ notation will be used for remainder terms R(z)
which are of the form R = R; + Ry + - -+ + R,,, such that:

|R;(2)]

im =0,
=0 f;(x)
for nonnegative functions f;(x). This will be denoted by:

O (fr(x), -+, ful@)).
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Linearization

Let A denote Dy, (0) = dy,/ dz(0), the Jacobian matrix of ¢, at 0. Then ¢, can be
written as:
ou(zr) = Ax + N(x),

where N (z) = O(|z[?).

If an eigenvalue of A has absolute values different from 1, it is called a hyperbolic eigenvalue.
If all eigenvalues of A are hyperbolic, the point 0 is called a hyperbolic fixed point. However,
if for some p = py, there is one ore more eigenvalue A such that |A| = 1, the fixed point 0
is called nonhyperbolic, and the family ¢, is said to bifurcate at pn = po.

This note is interested in the case that there are precisely two nonhyperbolic eigenval-
ues A1, which satisfy the following nonresonance condition:

Aig{e%i% :p,q:l,---,G}. (23)

Centre space and centre manifold

The eigenvectors associated to these eigenvalues span a two-dimensional linear space, the
linear centre space E°. The remaining eigenvectors span the so-called hyperbolic space E".
Note that the sum of these two spaces is equal to R™:

E‘+E"=R"
The map ¢ can be written as ¢ = (¢, n), where for z. € E€ and z), € E™:
((ze, zp) € ES, n(xe, xn) € E".

At a bifurcation, the ‘interesting’ dynamics occurs on an invariant manifold W¢ which is
tangent to the linear space E° at 0, the so-called centre manifold (see Guckenheimer and
Holmes (1986) for more information). Locally around 0, this manifold can be described
as the graph of a function w(x,):

w: B¢ — E" w(zr.) = O(|z|?).

The ‘interesting’ dynamics ¢ are precisely given by the map ¢ restricted to the centre
manifold W¢:

(xe) = € (e, w(ae)) -

Note that ¢ maps E° to itself: the dynamics have been ‘pulled’ to the linear centre space,
that is to the plane R? in the present case of two nonhyperbolic eigenvalues.
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Normal form

Since the nonhyperbolic eigenvalues A\i are complex, it turns out to be convenient to
introduce complex coordinates (z, Z) in the plane. In these coordinates, the map 1 can be
written as:

1:0(272) = Az + f(z7 2)7
where f = O(|z|?). An orbit {(2(¢),2(t))} is now given by:
2t) =9zt —1), 2t - 1)),  2(t) =¥(z(t 1), 2(t - 1)).

The normal form procedure performs a series of coordinate changes:

u:Hj(Z;Z):Z+ Z hmnzmzna

m-+n=j

where m, n take only nonnegative integer values, such that in the new coordinates the form
of v is as ‘simple’ as possible. In the present case, and under the present nonresonance
condition (23), 1 can be transformed into the following form:

D(2,2) = Az + a12]2|* + azz|z* + O(|2]%).

If:
Re \a; # 0, (24)

then the point 0 is said to undergo a Hopf bifurcation at u = py. However, if condition (24)
is violated, but the following condition holds:

Re 5\(12 7£ O,

then 0 undergoes a Chenciner bifurcation at 0.

A.1 Preliminary transformations

The remainder of this note computes a third order normal form at the origin of the
GH-map, following the strategy sketched in the previous subsection.

The system

Consider the family of maps ®,(x) = (¢(z, 1), z1, T2, x3), which map the state space X =
R* into X, with multidimensional parameters y € P, where the parameter space P is an
open subset of R®. The evolution map ¢ is assumed to be of the form:

ol ) = 35 (1= mzy + (e + g — 22)).
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Here R, v, g are parameters, and n is a function of the form:
22/~
n=e /R,

with: )
e—Ba1—lrs+g(zs—14)])?

1T e BGi—lmsta(ms—ea))? | g-Blri—vzs)?’

where a and § = 3/(2a0?) are additional parameters. This is the model for nonlinear
volatility clustering as presented in GH. Notice that:

/’lj: (a7B7U7g7R)'

Preliminary scaling

An initial state z( leads to an orbit {x(t)}{2, by iterating the map ®,,:
z(t+1) =, (z(t)).

Change to new coordinates © = /a . Then the iteration equation changes to:

Vai(t+1) =, (Vai(t),

and it follows, by some algebra, that:
Bt +1) = @5 (2(1)),

where the new parameter [ is equal to:
ji=(1,08,v,9,R).

Attention may be reduced to the case that o = 1, and the parameter y will be considered
to be four-dimensional. In the following, the parameter « as well as the hat of § are
dropped, in order not to overburden the notation.

A.1.1 Linearization around the origin

This note investigates the bifurcations of the origin. For this, the linearization D®(0) of ®
at 0 has to be computed:

s=(1+v+g) —5% 0 0

4o 1 0 00

De(0) = (0) = 0 1 00
0 0 10
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Here it is used that for x =0, n = % Introduce parameters a and b by:

9
2R’

a l1+v+yg), and b=

:E(

The characteristic equation of the matrix then reads:
M (A? —2a\+b) =0
The root A = 0 has multiplicity 2, whereas the other two roots are:

Ar =atVa®—b. (25)

Necessary conditions for a Hopf bifurcation

A necessary condition for the occurence of a Hopf bifurcation is that [A4| =1 and Ay &
{—1,1}. Equivalently, that:

b=1, and a*—-1<0.
In terms of the original parameters:
g=2R, and —-6R-1<v<2R-1.

In the following these conditions are assumed to be fulfilled. Let A = A,; note that
then A_ = \.

Eigenvectors

Complex eigenvectors of A are ¢ and g € C*, given by:
qg= (1, A%\, (26)

satisfying Ag = \q, Ag = \q, and e3 and ey, satisfying Aes = e4, Aey = 0. Here e; denotes
the j'th unit vector.

A.1.2 Centre space and centre manifold

The (real) subspace spanned by eigenvectors of A with eigenvalues having norm equal to 1
is called the linear centre space E°; eigenvectors to eigenvalues with norm not equal to 1
span the hyperbolic space E™. In the present case, E° is two-dimensional. It is spanned by
linear combinations of ¢ and ¢ of the form zq + Zg. The space spanned by e3 and ey is the
space E". The spaces E° and E" span together the tangent space of X at zero, which, in
the following, will be identified with X.
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The Hopf bifurcation can now be studied by reducing the system to a centre manifold of
the nonhyperbolic singularity 0. This manifold is tangent to the span of the eigenvectors q
and . Since every vector x € X can be written as:

T =29+ 20+, (27)

where z € C and y € E", the centre manifold can be described by a function w : £¢ — E",
w = w(z, Z), with the property that:

ow ow
w(0,0) = E(O’O) = E(O’O) =0.

Actually, because of the point symmetry of the system, the centre manifold has to be
point symmetric as well; consequently, the function w has the property that:

w(—z,—2) = —w(z, 2).
But then w has to start with third order terms; that is, w = O(|z|?). It will suffice to

consider the restriction of the dynamics to the linear centre space E°.

Adjoint eigenvectors

It is convenient to introduce at this point the notion of adjoint eigenvectors. This approach
is taken from Kuznetzov (1995).

If the complex inner product (-, -) is given by:

<Jf, y> = Z jzym
i=1
then there is a unique vector p € C*, the adjoint eigenvector of ¢, satisfying:
ATp=Xp and (p,q)=1.

Here AT denotes the transpose of A.

Properties

1. {p,q) =0
2. Any real vector y satisfies (p,y) = 0 if and only if y € E".

Proof
For the first property, observe that:

AMp, @) = (Ap,q) = (A"p,q) = (p, Aq) = Xp, @)
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Since A # A, the first property follows.

Note for the second property that E™ is the span of (generalized) eigenvectors with eigen-
value having norm not equal to 1. If y is an ordinary eigenvector with eigenvalue p, then,
as above:

Mp,y) = (p, Ay) = puip, y),

and since |u| # |A| = 1, it follows that (p,y) = 0. If y is a generalized eigenvector of A
with eigenvalue p, then there is a & > 0 such that § = Ay is an ordinary eigenvector.
Hence:

No(p,y) = (p, Ay) = (p,7) = 0;

the last equality follows from the previous result. To prove the converse, notice that any
vector x can be written as:
T =2zq+ zZq+y,

with y € E". Assume that (p,z) = 0. But then the first property and the normalization
of p imply together that:
0= (p,z) =2(p,q) =z,

and hence x = y € E™. [

For g given by (26), the vector p is equal to:

1

p= m(la—)\,oﬂ)-

Projection of the system along eigenvectors

In the new coordinates z, zZ and y introduced in (27), the dynamics, take the form:

P(zq + 20 +y) = C(2,2,y)q + C(2, 2,9)7 + (2, 2, y),

where 7 takes values in E". Using the adjoint eigenvector, the projections of ® on E° can
be computed easily:

C(z,2,y) = (0 P(zq+27+y))
= o le(eat 20+y) Az + ) (28)
n(z,z,y) = ®(2q+2zq4+y) —C(q—(q. (29)
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A.2 Normal form computations

Here the normal form computations referred to in subsection A.1.2 are performed. Recall
that the map ® defining the system is of the form ®(z, u) = (p(z, ), 1, o, x3), With:

Pl ) = (L= m)uas + oy + g1 — 22))]

where:
B
"= e Bur  o—Puz’
Here u; and uy are of the form:
_ 2
w = (1 —vas)?,
uy = (o1 — (w3 + g(as — x4))>

In order to compute the normal form of a Chenciner bifurcation, a Taylor development
up to and including fifth order terms of ¢ is required.

A.2.1 Expansions

Expanding n up to second order yields:

e Pu2 1

e_ﬁul -+ e_ﬂUZ e_ﬁ(ul—UZ) + ]_

_ 1 6
~ 9 — B(us —up) + %ﬁQ(ul — uy)? + O(|z[")

1
= 5 D —us) + Ol

Hence, it follows for n(x) that:

o) = (=) (5 + 50— ) + O(l

Substituting this in the expression for ¢ above, and rearranging terms leads to:

1
o(x,p) = 7 {Ufﬁ + (21 + g(z1 — 22) — V1)

(1-22) (% + B w)) + o(!xﬁ)]
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A.2.2 Change of variables

The next step is to find an expression of @ in (z, z,y) variables. Note that:
(21, 72,23, 24) = (2 + 2, Az + AZ,y3 + XN22 + AN2Z,ys + X32 + V%)
In the new coordinates, the factors of ¢ have the following form:

T+ g(r1 —x) —vT1 = o2 + CoZ,
1—22 = 1-22-2|z)*-2°

D) = 12+ alef +752 + O(l2lly)

where the c¢; have the following values:

co = 1+g—v—g\ (30)
o = S0- o - L (4R + g, (1)
cy = §|1—v)\2|2—§|1—(1+g))\2+g)\3|2. (32)

The projection ¢ of ® along ¢, given by (28), now reads:

((2,2,y) = Az + > G2+ O(2[% 12yl lyl?).

m+n=3
m>0,n>0

1— N2
The only coefficient which actually has to be computed, (51, is given by:

C1=colea—1)+7 (01 — %) . (33)

A.2.3 Normal form transformation

Since w = O(|z]*), the dynamics on the centre manifold up to fourth order are given by:

1
1—)\2

(2,2) = (2 5w(2,2)) = Az + S G2 4+ O(12P).

m+n=3
m>0,n>0

The form of ¢ can be simplified by choosing coordinates appropriately: consider the
transformation h, where:

z=H(u,u) =u+ h(u,u) =u+ Z hmpu™u".

m+n=3
m>0,n>0
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In new coordinates, the dynamics @(u, u) have the form:

+ M — )\m_”hmn> u™ " + O(|ul?).

~ S 3
»(u, @) u+ (1 e
m+n=3

Equating to zero as many coefficients of third order terms as possible leads to:

Cl 2 COS

(30
hapg = ———— hot =0 hip = ——>= ho = — — —.
30 21 ) 12 )\(1 — )\2)27 03 )\(1 — )\2)(1 — )\4)

ST = A2

Here it is assumed that A & {1,4,—1, —i}. After the transformation, the map v reads:

(a1
— 2

Y(u,u) = Au+ N ulul® + O(|ul?).

Hence, the Hopf bifurcation at 0 is degenerate if:

Re )\C21 — Re C21_ 0,
1— A2 A—A
or, equivalently, if:

A.2.4 Bifurcation curves

Using equations (25), (30)—(32), (33), (34), and Mathematica, the curve of points where
the necessary condition for a Chenciner bifurcation (34) is satisfied has been plotted in
figure 1 in the main text. This has been done for the case that R = 1.01, using the fact the
necessary condition for a Hopf bifurcation g = 2R is satisfied for Chenciner bifurcations

as well.
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