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Abstract. Different theories of expectation formation and learning usually yield different outcomes for

realized market prices in dynamic models. The purpose of this paper is to investigate expectation forma-

tion and learning in a controlled experimental environment. Subjects are asked to predict next periods

aggregate price in a dynamic commodity market model with feedback from individual expectations. Sub-

jects have no information about underlying market equilibrium equations, but can learn by observing past

price realizations and predictions. We conduct both a stable, an unstable and a strongly unstable treat-

ment. In the stable treatment rational expectations (RE) yields a good description of observed aggregate

price fluctuations: prices remain close to the RE steady state. In the unstable treatments prices exhibit

large fluctuations around the RE steady state. Although the sample mean of realized prices is close to

the RE steady state, the amplitude of the price fluctuations as measured by the variance is significantly

larger than the amplitude under RE, implying persistent excess volatility. However, agents’ forecasts are

boundedly rational in the sense that fluctuations in aggregate prices are unpredictable and exhibit no

forecastable structure that could easily be exploited.
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1 Introduction

The question whether ‘expectations matter’ and may cause excess price volatility, above

and beyond volatility driven by news about underlying economic fundamentals, has been

a matter of heavy debate among economists for many decades already. In a pioneering

paper, Shiller (1981) for example argued that stock prices are excessively volatile. The

present paper may be viewed as an experimental testing of expectation formation and

learning in a dynamic market setting. We employ the simplest of all dynamic economic

market models, the classical cobweb or ‘hog cycle’ model, to investigate whether agents

learn the unique steady state rational expectations equilibrium (REE) or whether excess

price volatility is a persistent phenomenon.

In modeling price movements in real markets the expectations hypothesis is a key

assumption. Any dynamic economic model has a self-referential or expectations feedback

structure, where expectations about future variables affect realizations of actual variables

and new realizations in turn lead to new expectations. In modeling dynamic markets this

interaction is repeated ad infinitum and the underlying expectations hypothesis is thus

crucial in determining dynamic market equilibrium. Since the pioneering work of Muth

(1961) and Lucas (1971) the rational expectations hypothesis (REH) has become (and

currently still is) the dominating paradigm in expectation formation in economics and

finance. According to the REH agents use all available information and their subjective

expectation equals the mathematical expectation conditional upon this information. In

implementing the REH in economic modeling it is usually assumed that agents have per-

fect knowledge about market equilibrium equations. The agents in the model use these

equations to compute their optimal predictions for future variables. In a rational expec-

tations equilibrium forecasts coincide (on average) with realizations.

Until the sixties, before the rational expectations (RE) revolution, it was common

practice to use simple habitual rule of thumb predictors for agents’ expectations in dy-

namic market models. The best known textbook example is probably the cobweb market

equilibrium model or ‘hog cycle’ model with a one period production lag. Ezekiel (1938)

investigated the price dynamics in the cobweb model under naive expectations, where the

expected price for tomorrow equals today’s price. Nerlove (1958) studied price fluctuations

under adaptive expectations, where the expected price is adapted by a constant factor in

the direction of the latest observed market price. Under naive or adaptive price expecta-

tions, price fluctuations in the (linear) cobweb model are characterized by up and down

oscillations around the market equilibrium steady state, either converging or diverging
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from the steady state price. The rational expectations argument against these mechanical

forecasting rules is well known. Agents make systematic forecasting errors along the ‘hog

cycles’, and rational agents would learn from these forecasting errors and revise expec-

tations accordingly. In the cobweb model, the only forecast without systematic errors is

the prediction that the price will be at its steady state value where demand and supply

intersect. This rational expectations equilibrium is unique and can be derived easily, when

demand and supply curves are known to the agents.

There seems to be general agreement among economists that the REH assumes too

much knowledge of the agents. In particular, the assumption that agents have perfect

knowledge of underlying market equilibrium equations is at odds with practice in real

markets. In the last decade much theoretical work has been done on bounded rationality,

in an attempt to back off from rational expectations. Instead, in the bounded rationality

framework agents are assumed to form expectations based upon time series observations.

Recent surveys on bounded rationality in expectation formation include Sargent (1993,

1999), Evans and Honkapohja (1999, 2001) and Marimon (1997). Bounded rational agents

have some simple model of the world, the perceived law of motion, and try to learn or

optimize the parameters of their perceived law of motion, e.g. by an econometric tech-

nique such as ordinary least squares, as additional observations become available. An

important question in the bounded rationality work is whether or not adaptive learning

schemes converge to a RE steady state. If convergence occurs, REE would be an accurate

description of the realized market equilibrium outcome, at least in the long run, and this

REE outcome could be attained without any knowledge of market equilibrium equations.

For the cobweb model, indeed a number of papers have argued that simple learning

rules based upon time series observations enforce convergence to the unique RE steady

state. For example, Bray and Savin (1986) show that if agents employ ordinary least

squares learning prices converge to the REE steady state. Arifovic (1994) shows that con-

vergence to the RE equilibrium occurs when agents use genetic algorithm learning. Finally,

Hommes and Sorger (1998) have recently shown that, if agents learn the sample mean

and the first order sample autocorrelation from observed past prices and use these in their

linear forecasting rule, convergence to the RE steady state occurs. These theoretical pa-

pers suggest that, in the cobweb model, learning of simple forecasting rules may stabilize

price fluctuations and enforce convergence to the RE steady state, even when market equi-

librium equations are unknown. In contrast however, e.g. Chiarella (1988) and Hommes

(1994) show that the cobweb model with adaptive expectations need not converge to the
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RE steady state but periodic or even chaotic price fluctuations around an unstable steady

state can arise. Brock and Hommes (1997) study the cobweb model with heterogeneous

expectations and show that under evolutionary learning prices need not converge to the

RE steady state. See also Grandmont (1998) and Grandmont and Laroque (1991) for a

general discussion how learning may lead to instability, and Guesnerie (1992, 2002) for a

discussion of eductive learning and coordination on rational expectations equilibria. The

main conclusion from this theoretical work is that different theories of expectation forma-

tion and learning yield contradictory results concerning the stability or instability of the

(unique) RE steady state equilibrium in the cobweb framework.

Unfortunately, it is hard to test the expectations hypothesis empirically and to infer

the way people form expectations from economic or financial data. Survey data research,

as for example in Frankel and Froot (1987) on inflation expectations and in Shiller (1989,

2000) on stock market expectations, yields useful insights on expectation formation but

also has its limitations, for example because of changing underlying economic funda-

mentals. Controlled laboratory experiments seem to be well suited to investigate which

expectation formation hypothesis is most accurate in describing human forecasting be-

haviour and observed aggregate market outcomes in particular situations. As noted e.g.

by Sunder (1995), it is remarkable that, despite an explosion of interest in experimental

economics, relatively few contributions have focused on expectation formation and learn-

ing in dynamic experimental markets with expectations feedback. Some exceptions are

the well known ‘bubble experiments’ by Smith, Suchanek and Williams (1988) in an ex-

perimental asset market, the experimental work by Marimon, Spear and Sunder (1993) on

the role of price expectations in an inflationary overlapping generations economy and the

experiments by Marimon and Sunder (1993) on hyperinflations. These studies can not be

viewed however as pure experimental testing of the expectations hypothesis, everything

else being constant, because in all these cases dynamic market equilibrium is affected

not only by expectations feedback but also by other types of human behaviour, such as

trading behaviour. Two other related papers, Hey (1994) and Kelley and Friedman (2002)

focus exclusively on expectation formation on time series generated by stationary stochas-

tic processes. Hey (1994) studies forecasting of a first order autoregressive process, and

finds that “subjects are trying to behave rationally, but frequently in a way that appears

adaptively”. Kelley and Friedman (2002) consider learning in an Orange Juice Futures

price forecasting experiments, where prices are driven by a linear stochastic process with

two exogenous variables (weather and competing supply). They find that learning is slow
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but quite consistent in the sense that estimated coefficients slowly converge to the true

values. In these papers, the stochastic process is exogenous however, so that there is no

expectations feedback as in dynamic market equilibrium models. The key difference with

our experiments is the self-referential structure in our setting.

The present paper may be viewed as experimental testing of the expectations hypothe-

sis in what is perhaps the simplest of all dynamic models, the cobweb model. A convenient

feature of the cobweb model is that it has a unique REE. Market equilibrium equations

are controlled and fixed during the experiment (although they are subject to small de-

mand shocks). Subjects are asked to predict prices and their earnings are inversely related

to their quadratic forecasting errors. Price realizations only depend upon subjects’ price

expectations. In all treatments the experimental environment is stationary and the RE

steady state is fixed and constant over time. All experiments are conducted in the CREED

Experimental Laboratory of the University of Amsterdam.

There have been a number of earlier “cobweb experiments” related to our work. Holt

and Villamil (1986) and Hommes, Sonnemans and van Velden (2000) conducted individual

cobweb experiments, where price fluctuations are induced by decisions of a single individ-

ual. Carlson (1967) conducted hand-run experiments with subjects as cobweb suppliers.

Wellford (1989) conducted several computerized cobweb experiments, where market prices

are determined by subjects’ quantity decisions. A distinguishing feature of our approach is

that market prices are completely determined by forecasts made by a group of individuals,

everyting else being constant (only subject to small noise).

Using aggregate realized market prices from our experimental cobweb economy, three

important questions can be addressed:

1. Are subjects in the experiments ‘on average’ able to learn the unique RE steady state

price, or can realized market prices be significantly upward or downward biased?

2. Is there evidence of excess price volatility, that is, is the price volatility (as measured

by the variance) in the experiments significantly higher than the price volatility

under RE?

3. If prices do not converge to RE, is there still forecastable structure in realized market

prices that could be exploited by ‘smart’ agents?

The paper is organized as follows. Section 2 describes the design of the experiment.

Section 3 briefly recalls some benchmark expectation and learning models in the cobweb

framework. Section 4 presents the main experimental results, including statistics such as
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sample mean, sample variance and sample autocorrelations. Concluding remarks are given

in Section 5.

2 Experimental design

The well known cobweb or ‘hog cycle’ model describes price fluctuations in an independent

market for a perishable consumption good, such as corn or hogs, that takes one unit of

time to produce. Producers thus have to forecast the market price one period ahead. In our

cobweb experiments, subjects have to predict next periods price of a certain, unspecified,

good. The subjects have limited information about this market. Subjects are told that

they are advisors to producers of an unspecified good and that the price is determined by

market clearing, i.e. equality of demand and supply. Subjects are also informed that there

is some uncertainty with respect to the demand and/or supply of the good due to market

uncertainties, e.g. a possibly bad harvest because of extreme weather conditions. Subjects

do not know market equilibrium equations, nor are they informed about the distributions

of any exogenous shocks to demand and/or supply. Based upon this limited information

we ask the subjects to predict next periods market price for 50 consecutive periods. The

predicted price always has to be between 0 and 10 and the realized price is also always

between 0 and 10.

The subjects are also informed that their earnings are inversely related to their predic-

tion error: the better their forecast, the higher their earnings. They can earn a maximum

of 1300 points per period. The payment in each period is based upon the quadratic payoff

function

Πi,t = max{1300− 260(pt − pei,t)2, 0}, (1)

where pei,t is subject i’s prediction of the market price in period t, 1 ≤ t ≤ 50, and pt is
the realized market price in that period. The expected value of this function is maximized

by pei,t = Ept. Negative payoffs are not possible; earnings are 0 if (pt − pei,t)2 > 5. At the
end of the experiment the points are exchanged to Dutch guilders at a rate 1300 points

= 1 guilder (≈ 0.45 Euro).
After every period the subjects are informed about the realized price in the experiment.

Also time series of the subjects own past predictions and a time series of the past realized

prices are shown on the screen, as illustrated in Figure 1.

At the beginning of each session the subjects are asked to read the instructions care-
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Figure 1: Typical computer screen of a subject during the experiment. Time series of predictions

and realized values were plotted in different colors on the computer screen.

fully. Two control questions are put into the instructions to make sure the subjects un-

derstand the experiment and the calculation of their earnings. Each session lasts for 50

periods. In each period, the aggregate realized market price depends upon the individual

expectations of 6 participants. A small random shock is added to the market equilibrium

equation in each period. The composition of the groups remains the same during the entire

experiment. Subjects are not informed about the identity of other group members, the

size of the group or the market equilibrium equation. Participants are not informed that

the realized price depends upon their forecast of the price and/or upon other forecasts

and they are not allowed to communicate. In total there were 108 subjects participating,

divided over three different treatments, a stable, an unstable and a strongly unstable

treatment as discussed below. Each of the three treatments had 36 participants. Each

market of 50 periods consists of a fixed group of 6 subjects; for each treatment six mar-

kets were run. Subjects (mostly undergraduates in economics, chemistry and psychology)

were recruited by means of announcements on information boards in university buildings.

Subjects earned on average FL.26,- (≈ 12 Euro) in approximately 75 minutes.
Subjects in the experiments thus have very little information about the price generat-

ing process. The information in the experiment is similar to the information assumption

underlying much of the theoretical bounded rationality literature, namely that individuals

form expectations based upon time series observations.

The realized market price pt in the experiment is determined by the cobweb market

equilibrium equation demand equals total supply, i.e.

D(pt) =
KX
i=1

S(pei,t), (2)
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where D(pt) is the demand for the good at price pt, K is the size of the group, S(·) denotes
the supply curve and pei,t is the prediction of the price in period t, made at date t − 1
by subject i. In our experiment the number of subjects in one market is fixed at K = 6.

Solving (2) for the market equilibrium price yields

pt = D
−1(

KX
i=1

S(pei,t)). (3)

In the experiment the demand curve is fixed and simply linear:

D(pt) = a− bpt + ηt, a, b > 0, (4)

where ηt is a normally distributed random series representing a small demand shock in

period t. In all treatments, the parameters have been fixed to a = 13.8 and b = 1.5. For

the supply curve, we use the nonlinear specification:

S(pei,t) = tanh(λ(p
e
i,t − 6)) + 1, λ > 0. (5)

Supply is nonlinear, but increasing in producers’ expected price. It should be stressed

that since supply is increasing it is consistent with producers’ profit maximization with a

convex cost function. The parameter λ tunes the nonlinearity of the supply curve and the

stability of the underlying cobweb model. Each of the three treatments corresponds to a

different value of the parameter λ. A convenient feature of a nonlinear supply curve is

that, under naive or adaptive expectations, prices may diverge from the unstable steady

state, but remain bounded and converge to a (unique) stable 2-cycle, as will be discussed

below.

Given the (unknown) demand curve (4), the (unknown) supply curve (5) and the

individual forecasts of the market price by all participants, the realized market equilibrium

price is determined by:

pt =
a−PK

i=1 S(p
e
i,t)

b
+ ²t, (6)

where ²t = ηt/b is a (small) noise term proportional to the demand shock ηt. The shocks

²t may thus be interpreted as intrinsic uncertainty about economic fundamentals. The

shocks ²t are normally distributed with variance σ2² = 0.25; the 50 realizations ²t of the

random series were the same for each market.

We conducted three different treatments, a stable, an unstable and a strongly unstable

treatment, depending upon the value of the parameter λ tuning the nonlinearity of the

supply curve, as summarized in Table 1. Each of the three treatments represents a sta-

tionary experimental environment with a fixed and constant RE steady state p∗. Learning
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treatment stable unstable strongly unstable

parameter λ λ = 0.22 λ = 0.5 λ = 2

RE-price p∗ 5.57 5.73 5.91

σ = S 0(p∗)/D0(p∗) -0.87 -1.96 -7.75

# participants 36 36 36

Table 1: Design of the experiments for the three different treatments. The parameter λ tunes

the nonlinearity of the supply curve. The RE steady state price p∗ changes slightly with λ.

The coefficient σ = S0(p∗)/D0(p∗) determines the (local) stability of the cobweb model. As λ

increases, the cobweb model becomes more unstable. The number of subjects participating in

each treatment was 36.

this constant RE steady state over 50 time periods is made more difficult by the (small)

noise terms. Notice also that due to the different values of λ each treatment has a different

RE steady state price p∗.

The parameter λ affects the stability of the cobweb model. According to the classical

cobweb theorem (e.g. Ezekiel (1938)), under naive expectations the steady state p∗ is

(locally) stable if the ratio σ = S0(p∗)/D0(p∗) of marginal supply over marginal demand

at the steady state is between −1 and 1. For our choice of the demand and supply curves
the stability condition becomes

−1 < −16λe
2λ(p∗−6)

(1 + e2λ(p∗−6))2
< 1.

The experimental designs for the three different treatments are summarized in Table 1.

3 Benchmark models of expectations and learning

This section briefly summarizes aggregate price fluctuations in the cobweb model under

some benchmark models of expectations and learning, including rational expectations,

naive expectations, adaptive expectations and various adaptive learning schemes. In the

simulations, demand and supply curves are the same as in the strongly unstable treatment

of our cobweb experiments. In Section 4 we will compare our experimental results with

the benchmark cases to test which expectations hypothesis fits our experiments best.

Figure 2 shows realized market prices for the benchmarks of rational expectations

(RE), naive expectations (Naive), adaptive expectations (w = 0.2), ‘learning by aver-

age’ and sample autocorrelation (SAC) learning, as discussed below. Figure 3 shows the
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(a) RE (b) Naive

(c) AE (d) average

(e) SAC

Figure 2: Time series of realized prices for (a) RE, (b) Naive, (c) AE (w = 0.2), (d) learning by

average, and (e) SAC-learning for the strongly unstable treatment.

autocorrelations of realized market prices for each of these benchmark cases.

Recall that under RE, producers forecast the price to be equal to the steady state at

which demand and supply curves intersect, i.e. pet = p
∗. Given that all producers use the

RE forecast, realized market prices in (6) are given by

pt = p
∗ + ²t. (7)

Hence, under RE realized market prices fluctuate randomly around the RE price p∗, with
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(a) RE (b) Naive

(c) AE (d) average

(e) SAC

Figure 3: Autocorrelation plots (with Bartlett 5% significance bands) for benchmark cases of

RE, Naive, AE, learning by average and SAC-learning in the strongly unstable treatment, over

the full sample of 50 periods.

small amplitude determined by the variance of the noise term (σ2² = 0.25), as illustrated in

Figure 2a. The autocorrelation plot under RE in Figure 3a shows that price fluctuations

are indeed uncorrelated and do not exhibit unexploited (linear) predictable structure.

Naive expectations means that all producers use the latest observed price as their
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forecast, i.e. pet = pt−1. Figure 2b shows realized market prices under naive expectations.

This is the familiar ‘hog cycle’, with prices fluctuating up and down with large amplitude

over the entire admissable interval [0, 10]. Figure 3b shows the corresponding autocorre-

lation plot, exhibiting the regular (−,+,−,+, ...) autocorrelation pattern which is typical
for the regular up and down cobweb ‘hog-cycles’, with the first 13 lags being strongly

significant. Naive producers not only make large forecasting errors, but these errors are

also systematic, since when their forecast pet = pt−1 is low (high) the realized market price

pt is high (low).

Adaptive expectations (AE) means that all producers use the forecast

pet = p
e
t−1 + w(pt−1 − pet−1),

that is, producers adapt their forecast in the direction of the latest observed market price

with a constant fraction w. Adaptive expectations is therefore sometimes also called con-

stant gain error learning. Notice that w = 1 corresponds to naive expectations. Figure 2c

shows realized market prices under adaptive expectations for a small adaptive coefficient

w = 0.2. The amplitude of the price fluctuations is much smaller than under naive ex-

pectations but clearly larger than under RE. Due to the noise term ²t the price pattern is

somewhat irregular, but on the other hand, e.g. between periods 25-40, prices still exhibit

fairly regular up and down oscillations. Figure 3c shows the corresponding autocorrela-

tion plot of realized market prices under AE. The autocorrelations are not as strong as

under naive expectations, but still exhibit the regular (−,+,−,+, ...) pattern with the
first 7 lags being significant. As for naive producres, adaptive expectations producers are

thus irrational in the sense that observable forecastable structure in market prices is left

unexploited.

Another simple forecasting strategy is by the sample mean, i.e. pet = p̄, where

p̄ =
1

t

t−1X
i=0

pi

is the sample mean of all previously observed prices. We will refer to this simple rule

as learning by average. This forecasting rule is equivalent to running an ordinary least

squares (OLS) regression of prices on a constant, as studied in the cobweb context by

Bray and Savin (1986). Figure 2d shows realized market prices under learning by average.

The amplitude of the price oscillations quickly decreases, and prices seem to converge to

RE, with random fluctuations around the constant RE steady state price after 10 time

periods. The corresponding autocorrelation plot is shown in Figure 3d with hardly any

significant autocorrelations.
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A final learning rule, introduced recently by Hommes and Sorger (1998), is sample

autocorrelation learning (SAC-learning), where producers use a linear forecasting rule

pet = αt + βt(pt−1 − αt)

and update the parameters αt by the sample average and βt by the first order auto-

correlation coefficient. Figure 2e shows realized market prices under SAC-learning. The

amplitude of the price oscillations quickly decreases, and prices seem to converge to RE,

with random fluctuations around the constant RE steady state price after 10 time periods.

SAC-learning has significant negative autocorrelations at lags 2 and 3, but this is mainly

caused by the initial large amplitude price fluctuations; when restricted to the last 40

observations, i.e. after SAC-learning converges to the RE steady state, these significant

autocorrelations disappear.

Figure 2 and Figure 3 show that for our strongly unstable treatment of the cobweb

experiments, different expectations schemes and learning models lead to different types

of price fluctuations. Mechanical forecasting rules such as naive or adaptive expectations

lead to large amplitude price fluctuations with linear forecastable structure in market

prices. It is important to note that, even in the strongly unstable case, simple learning

schemes, such as learning by average, OLS-learning and SAC-learning, enforce conver-

gence to RE. Hence, even for a strongly unstable cobweb market producers may learn

the RE price from time series observations, without any information about underlying

market equilibrium equations. The goal of our experiments is to investigate whether this

theoretical observation is valid in our cobweb laboratory experiments.

4 Experimental results

This section reports the results of the experiment. In Subsection 4.1 the earnings of the

participants are discussed, whereas Subsection 4.2 focusses on the first two moments of

realized market prices namely the sample mean and the sample variance. We compare

these sample means and sample variances to the theoretical benchmark cases of Section 3

and in particular we investigate whether market prices are biased (i.e. whether the sample

mean deviates from the RE steady state) and excessively volatile (i.e. whether the sample

variance of realized market prices is significantly larger than the RE variance). Finally, the

predictability of realized market prices, as measured by sample autocorrelation patterns,

is investigated.
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4.1 Earnings

Table 2 summarizes the average earnings over the subjects and its standard deviation

for the stable, unstable and strongly unstable treatments as well as for the RE and AE

benchmarks. The AE earnings reported in the table were computed with the supply

curve as in the strongly unstable treatment and with adaptive coefficient w = 0.2. Notice

that the RE earnings reported in the table are equal for all treatments, since under RE

the forecasting errors are equal to the realizations of the shocks ²t in (7), which were

identical for all treatments. An immediate observation from the table is that the average

earnings in the stable treatment are higher than the average earnings in the unstable and

the strongly unstable treatment. For all treatments the average earnings in the last 25

periods are higher than in the first 25 periods. While the total average earnings of the

stable and the unstable treatments do not differ a lot (only 6000 points) the difference

between the unstable and the strongly unstable is much bigger (almost 20000 points). More

importantly, the average earnings in the stable treatment are close to the average earnings

in the RE benchmark, especially in the subsample of the last 25 periods. Furthermore,

the total average standard deviation in the stable treatment is smallest. In the last 25

periods of the stable treatment the standard deviation is almost three times smaller than

in the first 25 periods. For both the unstable and the strongly unstable treatments this is

not the case. To summarize, when the model becomes more stable the average earnings

of the subjects increase while the difference in earnings decreases.

Earnings

periods 1-25 periods 26-50 periods 1-50

Treatment mean SD mean SD mean SD

strongly unstable (λ = 2) 12224 5388 17616 5234 29840 8884

unstable (λ = 0.5) 22246 2572 27329 2822 49575 4940

stable (λ = 0.22) 25649 2756 29545 948 55193 3430

RE 30653 - 30589 - 61242 -

AE (w = 0.2) 18694 - 19256 - 37950 -

Table 2: Average earnings of the subjects and its standard deviation in points for the three

treatments, over the full sample of 50 periods as well as over the subsamples of the first 25 and

the last 25 periods. Note that 1300 points is equal to 1 guilder ≈ 0.45 Euro.
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4.2 Testing the rational expectations hypothesis

In this section we investigate whether the RE hypothesis is an accurate description of

realized aggregate market prices, with or without a learning phase. Stated differently, we

investigate whether realized market prices in the experiments converge to the RE steady

state. We investigate the validity of RE as a description of aggregate price fluctuations

by focusing on three important characteristics, namely whether realized market prices are

biased, whether price fluctuations exhibit excess volatility and whether realized prices are

predictable. It seems natural to measure these characteristics by the mean, the variance

and the autocorrelation patterns of realized market prices, and compare these to the

corresponding RE characteristics. We investigate and compare these characteristics for

all treatments.

4.2.1 Price dynamics

Figure 4 shows the realized prices for all treatments, with the strongly unstable treatment

in the left panel, the unstable treatment in the middle panel and the stable treatment

in the right panel. In all markets, prices seem to fluctuate irregularly without any clear

pattern. By eye inspection, it is immediately clear that in the strongly unstable treatment

the amplitude of the price fluctuations is much larger than in the unstable and the stable

treatments. In the stable treatment (right panel) the amplitude of the price fluctuations

is small and seems surprisingly close to the RE benchmark (cf. Figure 2a). In the unstable

treatment (middle panel) the amplitude of the price fluctuations is larger and decreases

somewhat over time. In the strongly unstable treatment (left panel) the amplitude seems

to be much larger than in the RE benchmark, suggesting excess price volatility. Only for

group 1 (top left) of the strongly unstable treatment the amplitude of the price oscillation

decreases over 50 time periods. This group thus shows some form of learning and at least

a tendency to converge to RE, although the convergence seems to be much slower than

e.g. in the SAC benchmark (cf. Figure 2d).

In order to investigate the validity of the RE hypothesis in our experiment, Table 3

shows the sample mean and sample variance of the realized prices for the stable, the

unstable and the strongly unstable treatment for the full sample of 50 periods as well

as for subsamples of the first 25 and the last 25 periods. For all treatments, the sample

average of realized market prices is surprisingly close to the RE benchmarks of 5.91,

5.73 and 5.57, respectively. Over the full sample of 50 periods, in the strongly unstable

treatment the sample variance ranges from 1.56 to 4.23, which is much higher than the
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strongly unstable unstable stable

Figure 4: Time series of prices of the six groups in the strongly unstable treatment (left panel),

the unstable treatment (middle panel) and the stable treatment (right panel).
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1-25 26-50 1-50

sample sample sample sample sample sample

average variance average variance average variance

Strongly unstable treatment (λ = 2)

RE 5.91 0.25 5.91 0.25 5.91 0.25

group 1 5.92 3.33 5.64 0.66 5.78 1.97

group 2 5.94 6.58 6.07 2.05 6.01 4.23

group 3 6.07 4.75 5.50 3.32 5.79 4.04

group 4 5.96 1.44 6.01 1.75 5.99 1.56

group 5 6.12 2.58 5.77 2.06 5.95 2.30

group 6 5.96 2.37 6.18 0.95 6.07 1.64

Unstable treatment (λ = 0.5)

RE 5.73 0.25 5.73 0.25 5.73 0.25

group 1 5.87 1.03 5.71 0.60 5.79 0.80

group 2 5.98 0.67 5.92 0.26 5.95 0.46

group 3 5.93 0.74 5.85 0.38 5.89 0.55

group 4 5.72 0.92 5.79 0.53 5.76 0.71

group 5 5.86 0.67 5.78 0.40 5.82 0.52

group 6 5.89 1.01 5.92 0.46 5.90 0.72

Stable treatment (λ = 0.22)

RE 5.57 0.25 5.57 0.25 5.57 0.25

group 1 5.59 0.44 5.66 0.29 5.63 0.36

group 2 5.61 0.37 5.65 0.30 5.63 0.34

group 3 5.67 0.45 5.61 0.32 5.64 0.38

group 4 5.69 0.50 5.69 0.32 5.69 0.41

group 5 5.68 0.37 5.65 0.32 5.66 0.35

group 6 5.63 0.34 5.57 0.30 5.60 0.31

Table 3: Mean and variance of realized market prices for the strongly unstable, the unstable

and the stable treatment over the full sample of 50 periods and over the subsamples of the first

25 and the last 25 periods.
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Strongly unstable treatment Unstable treatment

µ = 5.91 σ2 = 0.25 µ = 5.73 σ2 = 0.25

t-stat p-value var. ratio p-value t-stat p-value var. ratio p-value

group 1 -0.65 0.52 387 0.00 0.50 0.62 157.21 0.000

group 2 0.33 0.74 830 0.00 2.29 0.03 89.85 0.003

group 3 -0.43 0.67 791 0.00 1.53 0.13 107.54 0.000

group 4 0.43 0.67 306 0.00 0.23 0.82 139.03 0.000

group 5 0.17 0.86 451 0.00 0.88 0.39 102.49 0.000

group 6 0.86 0.38 321 0.00 1.45 0.15 140.70 0.000

Stable treatment

µ = 5.57 σ2 = 0.25

t-stat p-value var. ratio p-value

group 1 0.66 0.51 69.8 0.027

group 2 0.69 0.49 65.7 0.055

group 3 0.82 0.41 74.7 0.011

group 4 1.34 0.19 79.1 0.004

group 5 1.15 0.26 67.1 0.044

group 6 0.38 0.71 60.9 0.118

Table 4: Mean and variance test for the full sample of 50 periods.

variance 0.25 of the RE benchmark. In the unstable treatment the sample variance of

realized prices ranges from 0.46 to 0.80, which is also larger than the RE benchmark.

In the stable treatment, the sample variance of realized prices over the full sample of 50

periods ranges from 0.31 to 0.41, which is only slightly higher than the RE benchmark of

0.25. In the subsample of the last 25 periods, the sample variance in the stable treatment

ranges from 0.29 to 0.32, which is close to the variance under RE. In contrast, for the

unstable treatment and for the strongly unstable treatment in the subsample of the last

25 periods the sample variance ranges from 0.26 to 0.60 and from 0.66 to 3.32 respectively,

which is much higher than the variance under RE.

Table 4 shows the results for statistical tests comparing both the sample mean and

the sample variance of realized market prices to the theoretical RE-benchmarks. Using

the t-statistic, the null hypothesis that the sample mean of realized market prices is equal

to the RE steady state price can not be rejected for 17 out of 18 groups in the stable,

the unstable and the strongly unstable treatments. The only exception is group 2 of the

unstable treatment, for which the null hypothesis is rejected at the 5% level. Table 4
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Strongly unstable treatment Unstable treatment

µ = 5.91 σ2 = 0.25 µ = 5.73 σ2 = 0.25

t-stat p-value var. ratio p-value t-stat p-value var. ratio p-value

group 1 -1.64 0.11 63.6 0.00 -0.10 0.92 57.14 0.00

group 2 0.56 0.58 197 0.00 1.85 0.08 25.26 0.39

group 3 -1.12 0.27 319 0.00 0.94 0.35 36.20 0.05

group 4 0.38 0.71 167 0.00 0.42 0.68 50.66 0.00

group 5 -0.49 0.63 197 0.00 0.37 0.72 38.06 0.03

group 6 1.41 0.17 90.9 0.00 1.40 0.17 43.84 0.01

Stable treatment

µ = 5.57 σ2 = 0.25

t-stat p-value var. ratio p-value

group 1 0.83 0.41 28.0 0.26

group 2 0.71 0.49 29.4 0.21

group 3 0.38 0.71 31.5 0.14

group 4 1.09 0.29 31.3 0.15

group 5 0.73 0.47 31.6 0.14

group 6 0.02 0.99 28.8 0.23

Table 5: Mean and variance test for the subsample of the last 25 periods.

also shows the results for testing the null hypothesis that the sample variance of realized

market prices is equal to the variance under RE over the full sample of 50 periods. For

all groups in the unstable and the strongly unstable treatments the null hypothesis is

rejected at the 1% level. For two groups in the stable treatment (groups 2 and 6) we can

not reject the null hypothesis at the 5% level. The earlier observation that, over the full

sample, the amplitude of price fluctuations is larger than under the RE benchmark is thus

statistically significant in all unstable cases and even in 4 stable cases.

It seems reasonable however to allow for some learning phase in the unknown, station-

ary cobweb environment. Table 5 shows the results for the statistical tests comparing both

the sample mean and the sample variance of realized market prices over the subsample

of the last 25 periods to the theoretical RE-benchmarks. In all cases, the null hypothesis

that the sample mean of realized market prices equals the RE steady state price can not

be rejected. In this sense, subjects are thus able to learn the correct price level. For the

stable treatment also the null hypothesis that the sample variance of realized prices is

equal to the variance under RE can not be rejected. For the unstable treatment this null
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is rejected at the 5% level in 5 out of six cases, and for the strongly unstable treatment

in all cases. This suggests that in the stable treatment participants are on average able

to learn the RE steady state price. In the stable treatment, the first two moments of the

long run empirical distribution of realized market prices correspond to the first and second

moment of the RE benchmark. In the unstable and the strongly unstable treatments, only

the first moment, i.e. the mean, corresponds to the RE benchmark, whereas the second

moment, i.e. the sample variance, is significantly larger than for the RE benchmark. In

the unstable and the strongly unstable treatments, although subjects are able to learn the

correct price level, even after a learning phase of 25 periods, our cobweb experiments still

exhibit statistically significant excess volatility in prices.

4.2.2 Predictability of prices

Finally, we investigate whether there is still forecastable structure in realized market prices

that could have been exploited by smart subjects to improve their forecasts. The simplest

and perhaps most important form of predictability is linear predictability, as measured

by sample autocorrelations.

Figure 5 shows the sample autocorrelation plots for the strongly unstable treatment

(left panel) as well as for the stable treatment (right panel). An immediate and important

observation from Figure 5 is that realized market prices show no clear autocorrelation

pattern, with hardly any significant lags. The only group exhibiting a clear and regular

autocorrelation pattern is group 5 of the strongly unstable treatment, which is charac-

terized by the regular (−,+,−,+, ...) autocorrelation pattern that was also observed for
the AE benchmark. However, in contrast to AE, for group 5 only lags 1, 5, 7, 11, 15 and

16 are significant. In general, significant autocorrelations are rare, and in our cobweb ex-

periments realized market prices exhibit (almost) no linear predictable structure. In terms

of (linear) predictability the RE benchmark is thus a good description of our cobweb

experiments. Even in the unstable and the strongly unstable case where we have found

significant excess price volatility in subsection 4.2.1 and market prices keep fluctuating

with relatively large amplitude, participants in the experiment are not irrational in the

sense that there is no easily exploitable predictable structure in realized market prices.
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strongly unstable unstable stable

Figure 5: Autocorrelation plots over the full subsample of 50 periods (with Bartlett 5% sig-

nificance bands) for the six groups in the strongly unstable treatment (left panel) and the six

groups in the stable treatment (right panel)

20



5 Concluding remarks

We have investigated expectation formation and learning in cobweb experiments. The

realized market price is determined by aggregation over six individual price forecasts.

Market equilibrium equations as well as distributions of exogenous shocks are unknown

to subjects. Subjects can only rely upon past observations of realized prices in forming

expectations. Market equilibrium equations are fixed and thus stationary for 50 time pe-

riods, so that each market has a unique and constant RE price. A distinction is made

between a stable, an unstable and a strongly unstable treatment. In the stable treatment

under naive expectations prices will converge to the RE steady state price, whereas in

the unstable and the strongly unstable treatments under naive expectations prices diverge

from the RE steady state and converge to a 2-cycle. Simple benchmark models of learning,

such as learning by sample average, enforce convergence to the RE steady state price for

all three different treatments. An important motivation for our paper is to investigate in

a controlled stationary laboratory environment, which expectations hypothesis yields an

accurate description of aggregate realized market prices in a cobweb type commodity mar-

ket. In particular, we investigate whether the RE benchmark provides a good description

of long run market price fluctuations.

For all treatments the null hypothesis that the sample mean of realized market prices

is different from the RE steady state price can not be rejected. One thus can say that in a

stationary experimental cobweb economy the first moment, i.e. the mean, of the empirical

distribution of realized market prices corresponds to the RE steady state price. Without

any knowledge about market fundamentals, subjects are thus on average able to learn the

correct price level.

In the stable treatment the second moment, i.e. the sample variance, of realized mar-

ket prices also is very close to the variance under RE. In the stable treatment, the null

hypothesis that the sample variance in the last 25 periods is equal to the sample variance

under RE can not be rejected. In contrast, in the unstable and the strongly unstable treat-

ments the null hypothesis that the sample variance of realized market prices is (smaller

than or) equal to the sample variance under RE is strongly rejected. For all groups in

the strongly unstable treatment and five out of six groups in the unstable treatment real-

ized market prices exhibit statistically significant excess volatility, that is, a higher price

volatility than under RE.

For all treatments predictability of realized market prices was investigated by sample

autocorrelations. Typically, (almost) no significant sample autocorrelations are found,
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implying that there is little predictable structure left in realized market prices that could

have been easily exploited by ‘smart’ participants. Although in the unstable treatments

prices keep fluctuating with large amplitude, these fluctuations are irregular and fairly

unpredictable.

Which expectations hypothesis is a good description of aggregate realized market price

fluctuations in a cobweb economy? The answer to this question depends on the stabil-

ity of the model. If the market is stable (under naive expectations), RE is a fairly good

description, at least after a short learning phase. Hence, even when agents do not know

market equilibrium equations the RE equilibrium concept may be a useful description of

aggregate market outcome. If the market is unstable however, RE is not a good description

since we find significant and persistent excess price volatility. It is remarkable that the

validity of RE exactly coincides with the stability of the simple naive expectations rule.

Adaptive expectations is not a good description of the experiments, since this typically

leads to fairly regular up and down price oscillations with regular autocorrelation patterns

in realized market prices. Adaptive learning schemes such as learning by sample average

or ordinary least squares learning (OLS)-learning are neither good descriptions of our

experimental outcomes since these schemes always converge quickly to RE. The experi-

mental outcome for an unstable cobweb economy may be described as a boundedly rational

heterogeneous expectations equilibrium where subjects are on average able to learn the

correct price level but diversity of beliefs leads to excess price volatility. More work on

individual prediction strategies is needed to classify individual forecasting strategies.

Finally, we would like to discuss to which market institutions our results may apply. In

a cobweb type commodity market aggregate equilibrium prices are driven by producers’

individual price expectations. A key feature of the cobweb expectations feedback structure

is that it is self-reversing in the following sense. A high (low) price expectation of the

producers leads to high (low) production which, by market equilibrium of demand and

supply, leads to a low (high) realized market price. The cobweb commodity market is

thus a producers’ driven negative expectations feedback system. Our experiments show

that in a stationary environment with a negative expectations feedback structure, without

any knowledge about market equilibrium equations, subjects are able to learn the correct

price level. Apparantly, persistent under- or overvaluation does not arise in a commodity

market with a negative expectations feedback structure. This does not imply that prices

will converge to a steady state equilibrium price in such a market. The amplitude of

realized market price fluctuations depends heavily on the sensitivity of the realized market

22



equilibrium price to individual expectations. Our cobweb experiments provide an example

that in a market where the realized market price is very sensitive to expectations excess

volatility, with large amplitude fluctuations around the correct price level, may arise.

There is another, different expectations feedback structure that seems important and

particularly relevant in speculative asset markets. In a speculative asset market, expecta-

tions are typically demand driven and are often self-fulfilling in the following sense. The

aggregate demand of a risky asset depends upon traders’ individual expectations of future

prices of the asset. High (low) price expectations of individual agents lead to a high (low)

aggregate demand of the asset which, by market equilibrium of demand and supply, leads

to a high (low) realized market price. A speculative asset market is thus a demand driven

positive expectations feedback system. In a recent Ph-D thesis van de Velden (2001) shows

that in an experimental speculative asset market it is indeed much harder for subjects to

learn the correct price level and persistent over- or undervaluation and price bubbles seem

more likely than in the producers’ driven commodity market considered in this paper. The

market institution and in particular the nature of the expectations feedback structure,

whether it is producer or demand driven and whether the feedback is positive or negative,

seems to be a key element for the outcome of a learning process of market equilbrium

prices. More experimental work is needed to shed light on this key problem in dynamic

market phenomena.
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