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Time Series Modelling of Daily Tax Revenues

Siem Jan Koopman and Marius Ooms

2 February 2001

vrije Universiteit amsterdam, The Netherlands

Abstract

We provide a detailed discussion of the time series modelling of daily tax revenues.

The main feature of daily tax revenue series is the pattern within calendar months.

Standard seasonal time series techniques cannot be used since the number of banking

days per calendar month varies and because there are two levels of seasonality: between

months and within months.

We start the analysis with a periodic regression model with time varying parameters.

This model is then extended with a component for intra-month seasonality, which is

specified as a stochastic cubic spline. State space techniques are used for recursive

estimation and evaluation as they allow for irregular spacing of the time series.

The model is recently made operational and used for daily forecasting at the Dutch

Ministry of Finance. For this purpose a front-end for model configuration and data input

is implemented with Visual C++, while statistical tools and graphical diagnostics are

built around Ox and SsfPack. We present the current model and forecasting results up

to December 1999. The model and its forecasts are evaluated.

Address for correspondence: Marius Ooms, Department of Econometrics and Opera-

tions Research, Free University Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The

Netherlands, E-mail: mooms@econ.vu.nl



1 Introduction

The production of daily forecasts of tax revenues is an important task of day-to-day cash

management at the Treasury in the Netherlands. The main purpose of a statistical daily

time series model is to process information of revenues of previous days systematically and

efficiently. Dutch central government outlets are usually known at least one day ahead.

Therefore, several days ahead forecasts of revenues can also be used to monitor the targets

for the budget.

Daily economic time series often have properties that make them harder to model and

to forecast than monthly or quarterly data for which numerous standard solutions exist. In

addition to the well known features typical of monthly data - trend, season, trading day

and calendar effects - there are two major problems with daily data. First, the number

of observations varies per month and per year which leads to a time series with irregular

spacing. Second, we need to take account of daily heteroskedasticity since the variance may

depend on the day-of-the month. Many aggregate economic transactions have patterns with

a clear peak once a month, e.g. salary payments, money circulation, and tax revenues. It is

often not easy to stabilise the variance by taking logs: the (persistently changing) seasonal

pattern is not simply multiplicative and the irregular component is not either. Moreover,

very small (or even negative in cases of net series) values can be part of a daily time series.

The problem of irregular spacing can be mitigated by an auxiliary time transformation.

We transform the data to regularly spaced data with the inclusion of missing values, such

that standard Kalman Filter techniques can be applied. The features of a periodically

varying variance of seasonal and irregular components are incorporated using a time-varying

Kalman Filter in a way similar to Burridge and Wallis (1990).

Other problems for daily economic time series are, surprising as it may seem at first

sight, small sample problems. Daily patterns show usually more structural breaks, due to

institutional changes in the financial and tax system than monthly or yearly data. These

breaks are often so large, that it does not make sense to combine pre-break and post-break

data for the daily model. Since there are usually not many years of homogeneous daily data

available, we cannot estimate long-term trends and monthly patterns very precisely. This

means that a model for daily data is not well suited for long-term forecasting.

We illustrate daily time series features using a series for Dutch aggregate tax revenues.

Frequent changes in the tax collection system occurred up to 1993. Therefore, our series

starts in March 1993. It contains a (negative) component of tax restitutions up to 1997

which means that values close to zero and even negative values can occur. Tax revenues are

only received on bank days: Mondays to Fridays.

Dutch total national daily tax revenues consist of several major components like income

tax, social security premiums, corporate tax, value-added tax and a number of smaller

categories, like special duties on gas and alcohol. All of these revenues are compiled per

category on a yearly basis, while many revenue categories are compiled on a monthly basis.

However, these figures are not immediately available after the turn of the period and they

are mostly compiled on a net basis, i.e. revenues minus restitutions. On a daily basis only

total gross tax revenues are available. Yesterday’s figures can be used to forecast today’s
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revenues. Restitution payments are currently exactly known a few days in advance. We

lack relevant information from tax assessments on taxes that are due on a daily basis.

However, monthly data on expected tax revenues are available and can be used to evaluate

the (forecasts of) net monthly sums of revenues and restitutions.
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Figure 1: Daily Dutch national tax Revenues in millions of euro

Figure 1 for the daily Dutch central tax revenues in May and June of 1996 and 1997

illustrates the main features. The aim is to model the conditional mean and variance of this

series for short-term forecasting. Many taxes are due on the last bank day of the month.

The majority of revenues is collected on the last bank day, but the revenues on the four

days leading up to this day are also substantial. The revenues on the last bank days vary

clearly from May to June. Tax income on the first day of the month is also important, but

here the seasonal effect is less pronounced, as we shall see below. The intra-monthly income

pattern on the remaining days is not nearly as variable.

The mean of income clearly depends on the number of bank days that remain until the

turn of the month and on the number of bank days after the turn of the month. The basic

intramonthly pattern in the middle of each month is similar across months. This pattern

does not seem to be affected by the number of bank holidays. The data for May illustrate

this for the bank holidays on Ascension day (Thursday) and Whit Monday.

The original data, indexed by the calendar-day of the month, as in Figure 1 are irregu-

larly spaced. Straightforward application of splines (depending on the calendar-day-of-the

month) to fit the intramonthly pattern is not a good idea. This is illustrated by the esti-

mated natural cubic splines (with 5 knot parameters) in Figure 1, see Doornik and Hendry
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(1999) for computational details.

The splines describe most of the data well and they pick up a local maximum in revenues

around the middle of the month. The pitfalls of this approach become apparent towards

the ends of the months. The fitted income patterns for May and June vary across 1996 and

1997, whereas the observed pattern on the last bank days of the month is much more similar:

the irregular spacing leads to an exaggerated time-variation across years. The estimated

splines, which minimise the sum of squared deviations across all observations subject to a

smooth penalty, also show that we want to vary the weights of the observations and the

smoothness within the month. Smoothness can be imposed in the first half of the month,

but the income pattern around the turn of the month is not smooth. In practice this means

that we set up a prespecified “mesh” for a cubic spline function with some points in the first

half of the month but more points around the turn of the month, cf. Harvey, Koopman,

and Riani (1997).

We like to set up a model for regularly spaced observations that share the basic pattern

within the month, so that the time distance between two turns of the month becomes

constant. This hopefully enables us to model the data for months with varying numbers

and spacing of bank days in a relatively parsimonious way.

Therefore we need a two-way mapping between our irregularly spaced observations in

calendar time, yτ , and approximately regularly spaced observations, yt, for our model.

These regularly spaced observations will be modelled in a discrete time linear state space

model. We index these “model observations” by t = 1, . . . , n. The mapping t(τ) defines

the model index as a function of calendar time τ = 1, . . . , T . In our case we use the

following functions of calendar time: Yτ is Calendar Year; 1993, . . . , 1999, dτ is Day of the

Month, 1, . . . , 31; mτ is Month of the Year, 1, . . . , 12; wτ is Day of the Week, 1, . . . , 7; hτ
is (non)bank holiday, 0, 1. The function hτ can vary over time and has to be known in

advance for forecasting. The other functions of τ are deterministic. In our case Saturdays

and Sundays are bank holidays: hτ = 0 if wτ = 1 or wτ = 7.

Figure 2 presents the time transformation of the data of Figure 1 where we have chosen

a constant underlying grid of 23 points each month. The pattern is now much more regular,

both across years and across months. We have created other missing observations, but

this should not present theoretical problems for our estimation procedure, see §3. A finer

grid, leading to more missing observations, can be considered, at the cost of an increase in

computation.

Figure 3 presents a complete picture of the revenues on the 1461 bank days used to

specify the model of this paper. The period covers 2132 calendar days in 70 months, March

1993-December 1998.

We plot daily revenues against the year to indicate the presence of trends. The evidence

for trends is not significant at first sight. We plot daily revenues against month-of-the year

to show the month-of-the year effect. The variance does not seem to depend on the year or

on the month of the year. The variance does depend on the day of the month. The figures

for the last day of each month, which are seen in the upper half of the plots, are clearly

more volatile than the other days with lower revenues, as shown in the lower half of the
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Figure 2: Daily Dutch national tax Revenues in millions of Euro after time transformation
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Figure 3: Daily Dutch national tax revenues in millions of Euro against year and against month-

of-year.
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plots. In the sequel of this paper we use “seasonal” to describe the month-of-the-year effect.

A seasonal difference means the difference with the corresponding value one year before.

We use “periodic” to describe the day-of-the-month effects in the mean, the variance and

the autocovariances. Periodicity refers to the pattern that occurs once a month.

The upper graph of figure 4 illustrates the seasonal and the periodic movements of

the tax revenues in one graph. It also shows the one-step-ahead out-of-sample forecasting

performance of our model over 1998. The basic patterns are well matched and the coverage

probability of the forecast intervals seems satisfactory. The lower graph shows the mean of

the stochastic intramonthly spline function of our model as computed at the end of 1997,

based on parameter estimates presented in Table 4 below.
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Figure 4: Top graph: 1998: One step ahead forecasts (dashed), 95% confidence intervals (dotted)

and realisations (solid), Bottom graph: mean of intramonthly spline as computed at the end of 1997.

The remainder of this paper is structured as follows. In the next section we specify a

simple periodic regression model to capture seasonal and periodic properties, before going

into the details of the time transformation for Figure 2. Section 3 addresses the basic

ideas of structural time series modelling, with the notation corresponding to the SsfPack

documentation of Koopman, Shephard, and Doornik (1999), the state space formulation

for trend and seasonal components, filtering, estimation and forecasting. In our case the

treatment of time varying cubic splines, the occurrence of (artificial) missing observations,

and the generation of several-steps-ahead forecasts deserve special attention. In section 4

we discuss the modelling strategy and its implementation in modern software. Section 5

presents the empirical results. We describe our model and present estimates for data up
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to 1997 which we used to produce on-line forecasts for 1998 of Figure 4 We adjust the

model using these results, estimate it up to 1998, and produce online forecasts for 1999. We

evaluate our model forecasts against naive predictions. Section 6 suggests some extensions

to our approach and concludes.

2 Initial regression analysis

So far, we have mainly looked at the unconditional mean of the series as a periodic function

of calendar time. In this subsection we use flexible regression models to summarise the

main properties of this unconditional mean function. We use the residuals to estimate the

periodic variances we would like to exploit in our statistical forecasting model.

The initial analysis shows a clear periodic variation in the mean of the series. The

dominating effects are due to the month of the year and the bank day of the month. It is

possible there is a nonstationary trend component. The variation from month to month is

partly caused by a quarterly effect from corporate tax revenues, that one could label month

of the quarter effect. This leads to a higher average for January, April, July and October,

see Figure 3. In addition there is a yearly effect due to extra salary payments prior to the

summer holidays. This additional month of the year effect is most clearly seen for June.

As discussed above and shown in Figure 2 there is a clear banking day of the month

effect which displays clear similarities across months. The mean of the series is mainly

determined by the number of days before the turn of the month.

We suggest a simple regression procedure to identify the main periodicities in the mean of

the series. For the purpose of this preliminary analysis we introduce the following notation,

based on calendar time τ and the position of bank days within a each month.

The bank-day index bτ = −15,−14, . . . , 14, 15 equals the number of bank days from the

beginning of the sample, rτ = 1, . . . , R, minus the number of bank days up to the nearest

turn of the month lτ = 1, . . . , L, with lτ = 0 for τ < 15. Therefore, bank days leading up

to the turn of the month have a negative bτ , bank days after the turn of the month have a

positive bτ and the last bank day of each month has index bτ = 0.

In our sample each month has at least 18 bank days. So each month has observations

with index bτ = 1, 2, . . . , 9 and bτ = −8,−7, . . . ,−1, 0. In order to analyse the variance

and covariance function of these 70 × 18 = 1260 observations we regress them on 12 × 18

dummy variables, each dummy measuring the mean of yt for a particular combination of bτ
and month of the year index mτ . However, we do not pool all observations. We construct

18 monthly subseries for each bank-day index and regress each series on a constant and 11

centred seasonal dummies. In this way we allow automatically for periodic heteroskedastic-

ity depending on bτ . We present results in Table 1. In order to facilitate comparison with

later results we present the regression in the order of our model-day-of-the-month index

p(t), where p(t) is related to bτ as: p(t) = bτ + I[−P/2,0](bτ ) · P , with I[]() an indicator

function that equals 1 for negative bτ . See also equation (1) below. The first 9 bank days

of each month correspond to p(t) = 1, . . . , 9, whereas p(t) = 15, . . . , 23 for the last 9 bank

days.
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Table 1: Descriptive statistics tax income by bank day of the month

p(t) bτ mean σ̂b R̂b c(1, b) c(2, b) c(3, b) c(4, b) c(5, b) c(6, b) c(7, b) c(8, b) c(9, b)

1 1 685 208 0.52 -0.14 -0.09 -0.02 -0.11 -0.25 -0.06 -0.16 -0.17 -0.02

2 2 175 52 0.58 0.05 0.10 -0.05 0.02 -0.17 -0.24 -0.12 -0.03 0.07

3 3 115 36 0.44 0.14 -0.01 0.27 0.26 0.14 0.02 0.09 0.06 0.00

4 4 99 35 0.52 0.18 0.39 0.20 0.11 0.25 0.04 0.03 -0.06 0.02

5 5 88 36 0.39 0.49 0.32 0.18 0.18 0.32 0.25 -0.15 0.13 0.15

6 6 99 32 0.51 0.22 -0.08 0.04 -0.27 0.12 0.34 0.29 -0.03 0.32

7 7 91 40 0.47 -0.07 0.08 0.11 0.08 -0.05 -0.09 0.22 0.34 -0.10

8 8 101 41 0.42 0.25 0.01 0.25 0.27 0.30 -0.06 -0.04 0.20 0.59

9 9 102 43 0.36 0.45 0.43 0.34 0.36 0.18 0.36 -0.21 0.10 0.36

15 -8 111 44 0.49 0.09 0.22 0.05 0.11 0.22 0.20 0.01 0.20 -0.08

16 -7 127 45 0.76 0.30 0.38 0.25 0.19 0.17 0.40 0.32 0.40 0.32

17 -6 152 72 0.63 0.56 0.14 0.44 0.43 0.12 0.15 0.33 0.40 0.46

18 -5 193 75 0.69 0.56 0.60 0.14 0.42 0.39 0.31 0.02 0.23 0.48

19 -4 280 95 0.74 0.56 0.51 0.63 0.27 0.40 0.43 -0.03 0.19 0.23

20 -3 406 125 0.72 0.60 0.61 0.55 0.50 -0.02 0.52 0.39 0.21 0.25

21 -2 672 168 0.72 0.28 0.33 0.28 0.14 0.37 -0.14 0.12 0.00 0.06

22 -1 1167 248 0.65 0.28 0.68 0.66 0.70 0.60 0.66 0.25 0.59 0.47

23 0 5221 592 0.85 0.43 -0.19 0.29 0.24 0.09 0.20 0.14 0.19 0.34

p(t) Model-day-of-the-month index, see equation (1) below
bτ indexes position with respect to last bank day of the month.
mean: Estimate of constant in regression model per bank day with centred seasonal dummies
for daily tax revenues with index bτ .

σ̂b: regression standard error. Measurements in 106 Euro. Sample 1993.3-1998.12: 70 observations.

R̂b: correlation of fitted and dependent variable, 5% critical value: 0.53
c(j, b) is a so-called periodic correlation at daily lags, cf. McLeod (1994): corr(εt,εt−j ,bτ ),
where we assume there are 18 bank days in each month, so that modulo 18 arithmetic
applies. The correlation depends only on the distance between the observations in bank days
and on the index bτ of the leading observation.

The third column of Table 1 summarizes the periodic mean function across all months.

It reproduces the pattern seen in Figure 2 above. The function seems smooth except at

the exact turn of the month. The fourth column averages the residual periodic variance

function across all months. This function is also rather smooth. The periodic standard

deviation is clearly not proportional to the periodic mean. For b = 1 and b = −2 one

observes similar means, but very different variances. For b = 1 and b = −1 we observe

similar variances but very different means. The fifth column shows the multiple correlation

coefficient of each regression, which provides an estimate of (deterministic) seasonality for

each bank day. Since there are 12 regressors and 70 observations, one could use a 5% critical

value for R̂ of 0.53, to test the null hypothesis of no seasonality. It is clear that the process

generating the revenues is more seasonal towards the end of the month.

The last columns of Table 1 contain the estimated serial correlation coefficients at daily

intervals. These are large for the days at the end of each month. This could indicate the

systematic presence of local trends within the months. A consistent series of negative (but

small) correlations corresponds to revenues of the first day of each month. These revenues

show a negative correlation with all 8 previous banking days. The results of Table 1 motivate
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a periodic analysis.

Figures 1 and 2 show that time transformation may simplify the statistical model for

our data, in the sense that we are better able to exploit the intermonthly similarity of

the intramonthly pattern. The timing intervals for the statistical (state space) model will

differ from the timing interval of the observations, not only when the distance between

observations is measured in calendar days, but also when these are measured in bank days.

Let yt denote the observations for the model. Since we have daily data and both seasonal

and intramonthly effects, each observations has a three-way index: j(t) is the year, s(t) is

the month of the year, and p(t) is the day of the month. In our case, j(t) = J1, . . . , Jn,

s(t) = 1, . . . , S, p(t) = 1, . . . , P , where j(t) and s(t) are functions of the calendar indexes:

j(t) = Yτ and s(t) = mτ . The choice of the function p(t) varies from application to

application. In general we do not have p(t) = dτ . The index p(t) serves as the explanatory

variable of the periodic spline function. In general the series yt will have more missing

observations than the series yτ . Table 2 summarises the information on all the indices and

calendar variables for our sample. Next we discuss our time transformation choice.

Table 2: Indices and their Ranges, in Model Time and Calendar Time

Index Name Range Sample 1993.3.1-1998.12.23

t model time 1, . . . , n n = 1610

j(t) year J1, . . . , Jn J1 = 1993, Jn = 1998

s(t) month of the year 1, . . . , S S = 12

p(t) day of the month 1, . . . , P P = 23

M(t) number of working 18, . . . , 23

days in a month

τ Calendar time

Yτ year 1993, . . . , 1998

mτ month of the year 1, . . . , 12

dτ calendar day of the month 1, . . . , 31

bτ bank day of the month −13, . . . , 9

wτ day of the week 1, . . . , 7

hτ working day 0, 1

The time transformation leads to different timing intervals for the model and the ob-

servations. The timing interval for the model can be shorter than the observation interval.

Harvey (1989) discusses statistical solutions to the problems of estimation and prediction

for components of a linear dynamic model in the context of mixed timing intervals.

We first delete the weekends and (bank) holidays (hτ=0) from our sample. Next we

choose the number of days per month in model time P = 23: the maximum number of

bank days in any month in our remaining sample. This introduces a minimal number

missing values for the model data around the middle of the month. The timing interval

for the observations and for the model is then still equal to one bank day, except for the

observations in the middle of each month, where the timing interval for the model may vary

8



from 1 to 6:

p(t) = bτ + I(−∞,0)(bτ ) · P, (1)

with I()() an indicator function that equals 1 for negative bτ and is zero elsewhere. The

transformation is determined by the end conditions p = 1 if bτ = 1 and p = P if bτ = 0

and the break near middle of the month where bτ turns negative. For some months we have

missing values for p = 10, . . . , 14.

For different kinds of data sets a different time transformation function p(t) may apply in

connection with the observed intra-monthly pattern and its changes from month to month

and from year to year. Note that we use p(t) as the basis for our intramonthly spline

function. This spline function is the basis for interpolation of the artificial missing values

and for the forecasting of future values. We treat our data as a stock variable: the spline

estimates the value of our variable at p(t). If yj(t),s(t),p(t) corresponds to an observation, the

spline will estimate yYτ ,mτ ,dτ .

The simple time transformation with P = 23 and an equal timing interval for model and

observations for the majority of the data does not pose major technical problems. Given the

state space form of the dynamic regression model one can start forecasting from each non-

missing observation, both one-step-ahead and multi-step-ahead, both for single days and

for time aggregates. The next section presents more details. In the most simple case where

we have white noise homoskedastic errors, and where we treat all regression coefficients as

fixed this boils down to the application of recursive regression, where both one-step and

multi-step forecast intervals take into account the parameter uncertainty due to estimation

of the regression coefficients.

In the final stages of our analysis we want to translate non-missing model data back

to observations in calendar time. We first translate p(t) back to bτ . Given the bank day

number of the month, bτ , and the calendar variables, wτ and hτ indicating the position of

holidays, it is then straightforward to compute the calendar day of the month dτ .

3 State space time modelling of time series

The purpose is to build a model for short-run-forecasting. The main problem is to estimate

the recurring but persistently changing pattern within the months, averaging across months

and across years in an efficient way for forecasting. Structural time series models provide

a convenient statistical framework to solve this problem. Further, for our purposes it suits

two aims: firstly, it decomposes the observed series into unobserved stochastic processes

which provide (after estimation) a better understanding of the dynamic characteristics of

the series; secondly, it generates optimal forecasts straightforwardly using the Kalman filter.

The estimation of components and the forecasting of the series require first the estimation

of parameters associated with unobserved components such as trend, seasonal and irregular.

For this analysis we will use the SsfPack library of Koopman, Shephard, and Doornik (1999)

which provides all Kalman filter related algorithms and is implemented for the object-

oriented matrix language Ox of Doornik (1998). The basic aspects of structural time series

modelling and the corresponding notation are introduced below.
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3.1 Structural time series models

A univariate structural time series model is suitable for many economic time series data

sets and is given by

yt = µt + γt + εt, εt ∼ NID(0, σ2
ε), t = 1, . . . , n, (2)

where µt, γt and εt are trend, seasonal and irregular components, respectively. The trend

and seasonal components are modelled by dynamic processes which depend on disturbances.

These components are formulated in a flexible way and they are allowed to change over time

rather than being deterministic. The various disturbances are independent of each other

and of the irregular component, εt. The definitions of the components are given below,

but a full explanation of the underlying rationale can be found in Harvey (1989, Chapter

2). The effectiveness of structural time series models compared to ARIMA type models,

especially when messy features in time series are present, is shown in Harvey, Koopman

and Penzer (1998).

The trend component is defined here as

µt = µt−1 + βt−1 + ηt, ηt ∼ NID(0, σ2
η),

βt = βt−1 + ζt, ζt ∼ NID(0, σ2
ζ),

(3)

where the level and slope disturbances, ηt and ζt are mutually uncorrelated. When σ2
ζ is

zero, we have a random walk plus drift, and when σ2
η is zero as well, a deterministic linear

trend is obtained. A relatively smooth trend, related to a cubic spline, results when a zero

value of σ2
η is coupled with a positive σ2

ζ ; Young (1984) calls this model an ‘integrated

random walk’.

3.2 State space analysis

The state space form provides a unified representation of a wide range of linear Gaussian

time series models including the structural time series model; see, for example, Harvey

(1989) and Kitagawa and Gersch (1996). The Gaussian state space form consists of a

transition equation and a measurement equation; we formulate it, following De Jong (1991),

as adopted inKoopman, Shephard, and Doornik (1999) as

αt+1 = Ttαt +Htεt, α1 ∼ N
(

ā, P
)

, t = 1, . . . , n, (4)

yt = Ztαt +Gtεt, εt ∼ NID (0, I) , (5)

where NID(µ,Ψ) indicates an independent sequence of normally distributed random vectors

with mean µ and variance matrix Ψ, and, similarly, N(·, ·) indicates a normally distributed

variable. We treat the observed tax series yt as a univariate time series for t = 1, . . . , n. The

m× 1 state vector αt contains unobserved stochastic processes and unknown fixed effects.

The state equation (4) has a Markovian structure which is an effective way to describe the

serial correlation structure of the time series. The initial state vector is assumed to be

random with mean ā and variance matrix P but some elements of the state can be diffuse
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which means that it has mean zero and variance κ where κ is large. The measurement

equation (5) relates the observation yt in terms of the state vector αt through the signal

Ztαt and the vector of disturbances εt. The deterministic matrices Tt, Zt, Ht and Gt are

referred to as system matrices and they usually are sparse selection matrices.

The Kalman filter is a recursive algorithm for the evaluation of moments of the normal

distribution of state vector αt+1 conditional on the data set Yt = {y1, . . . , yt}, that is

at+1 = E(αt+1|Yt) , Pt+1 = cov (αt+1|Yt) ,

for t = 1, . . . , n; see Anderson and Moore (1979, page 36) and Harvey (1989, page 104).

The Kalman filter is given by

vt = yt − Ztat
Ft = ZtPtZ

′
t +GtG

′
t

Kt = (TtPtZ
′
t +HtG

′
t)F

−1
t

at+1 = Ttat +Ktvt
Pt+1 = TtPtT

′
t +HtH

′
t −KtFtK

′
t

(6)

for t = 1, . . . , n, and with initialisations a1 = ā, and P1 = P , and where vt is the innovation

and Ft is its variance. The derivative of the forecast function for the state with respect to

the current innovation is the Kalman gain Kt. The initial state variance matrix P is given

by

P = P∗ + κP∞,

where κ is large; for example, κ = 106. The matrix P∗ contains the variances and covari-

ances between the stationary elements of the state vector (zeroes elsewhere) and P∞ is a

diagonal matrix with unity for nonstationary and deterministic elements of the state and

zero elsewhere. The number of diffuse elements (that is the number of unity values in P∞),

is given by d.

The prediction error decomposition is the key result for computing the log-likelihood

function for models in state space form, that is

l = log p (y1, . . . , yn;ϕ) =
n

∑

t=1

log p (yt|y1, . . . , yt−1;ϕ)

= −n− d

2
log (2π)− 1

2

n
∑

t=d+1

(

log |Ft|+ v′tF
−1
t vt

)

(7)

where ϕ is the vector of parameters for a specific statistical model represented in state

space form (6). The innovations vt and its variances Ft are computed by the Kalman filter

for a given vector ϕ. Note that the summation in (7) is from d + 1 to n, since the first d

summations will be approximately zero as F−1
t will be very small for t = 1, . . . , d.

Estimation of the unobserved components is usually referred to as signal extraction.

The computation of α̂t = E(αt|Yn) and its variance matrix Vt = var(αt|Yn) is referred to as
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moment state smoothing. The state smoothing algorithm we will employ is based on the

work of De Jong (1988) and Kohn and Ansley (1989) and is given by

α̂t = at + Ptrt−1, Vt = Pt − PtNt−1Pt, t = n, . . . , 1, (8)

where rt−1 and Nt−1 are evaluated by the backwards recursion

et = F−1
t vt −K ′

trt
Dt = F−1

t +K ′
tNtKt

rt−1 = Z ′
tF

−1
t vt + L′

trt
Nt−1 = Z ′

tF
−1
t Zt + L′

tNtLt

(9)

for t = n, . . . , 1.

3.3 Diagnostic checking

The assumptions underlying a Gaussian model are that the disturbance vector εt is normally

distributed and serially independent with unity variance matrix. On these assumptions the

standardised one-step prediction errors

et =
vt√
Ft
, t = d+ 1, . . . , n, (10)

are also normally distributed and serially independent with unit variance. To diagnose

whether the normality assumption for et holds for a given model and a particular time

series yt, we usually compute

N = n{S
2

6
+

(K − 3)2

24
},

where S is the sample skewness and K is the sample kurtosis. This test statistic has an

asymptotic χ2 distribution with 2 degrees of freedom. A simple test for heteroskedasticity

is obtained by comparing the sum of squares of two exclusive subsets of the sample. For

example, the statistic

H(h) =

∑n
n−h e

2
t

∑h−1
t=1 e

2
t

,

is Fh,h-distributed for some preset positive integer h, under the null hypothesis of ho-

moskedasticity. Also, the standardised forecast errors should be serially uncorrelated.

Therefore, the correlogram of the one-step prediction errors must not reveal serial correla-

tion. A standard portmanteau test statistic for serial correlation is the Box-Ljung statistic

and is given by

Q(p) = n(n+ 2)

p
∑

j=1

c2j
n− j

,

for some preset positive integer p where cj is the sample autocorrelation of lag j. This test

is asymptotically χ2 distributed with p − q degrees of freedom, where q is the number of

estimated parameters in φ.
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Diagnostic tests can also be applied component by component using auxiliary residuals.

Auxiliary residuals are constructed using the recursions in (9) and are defined by

Gtε̂t = Gtet, Var(Gtε̂t) = GtDtG
′
t,

Htε̂t = Htrt, Var(Htε̂t) = HtNtH
′
t,

for t = 1, . . . , n. The auxiliary residual Gtε̂t can be used to identify outliers in the time

series. Large values in Gtε̂t indicate that the behaviour of the observed value cannot be

appropriately represented by the model under consideration. The usefulness ofHtε̂t depends

on the interpretation of the state elements in αt. For the trend model (3) it is clear that

ηt is the change of the trend for time t. It follows that structural breaks in the series yt
can be identified by detecting large values in the series for η̂t. Harvey and Koopman (1992)

have formalised these ideas further for structural time series models and they constructed

additional diagnostic tests for the auxiliary residuals.

3.4 Missing values and forecasting

When observations yt for t = t0, . . . , t1 − 1 are missing, the vector vt and the matrix Kt

of the Kalman filter are set to zero for these values, that is vt = 0 and Kt = 0, and the

Kalman updates become

at+1 = Ttat, Pt+1 = TtPtT
′
t +HtH

′
t, t = t0, . . . , t1 − 1; (11)

similarly, the backwards smoothing recursions become

rt−1 = T ′
trt, Nt−1 = T ′

tNtTt, t = t1 − 1, . . . , t0. (12)

Other relevant equations for smoothing remain the same. This simple treatment of missing

observations is one of the attractions of the state space methods for time series analysis.

Out-of-sample predictions, together with their mean square errors, can be generated by

the Kalman filter by extending the data set y1, . . . , yn with a set of missing values. When

yn+j is missing, the Kalman filter step reduces to

an+j+1 = Tn+jan+j , Pn+j+1 = Tn+jPn+jT
′
n+j +Hn+jH

′
n+j ,

which are the state space forecasting equations for j = 1, . . . , J where J is the forecast

horizon; see also the treatment of missing observations in the previous section. The multi-

step forecast of yn+j is simply given by

ŷn+j = Zn+jan+j , Var(ŷn+j) = Zn+jPn+jZ
′
n+j , j = 1, . . . , J.

A sequence of missing values at the end of the sample will therefore produce a set of multi-

step forecasts.
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4 Methodology and implementation

Structural periodic models for daily data offer a wide range of possibilities for the online

modeller and forecaster. Each specification produces different forecasts and forecast inter-

vals. The identification of the model, i.e. the choice for the specification for a particular

application, is done in several cycles. After a basic model is implemented and tested, the

analysis of forecast errors and other diagnostics will lead to improvements. When suffi-

ciently many new data points have been observed it is likely that the model has to be

tuned again, either by reestimating it using a new sample, or by changing a number of its

components. We present two stages of the model in this section.

In the implementation of a model for the Dutch ministry of Finance we found that

a kind of integrated developer environment, IDE, for structural time series modelling is

crucial if the model is to be used effectively on a day-to-day basis. The modelling and

forecasting is performed simultaneously at different levels of sophistication using tools with

different levels of user-friendliness. Today’s software makes it possible to develop such an

environment with a small number of people with a limited amount of programming time.

The next subsection recapitulates the tasks of the online modeller and forecaster of daily

time series. Subsection 4.2 discusses the implementation of the developer environment for

this task.

4.1 Methodology

Sections 2 and 3 described several aspects of structural time series modelling of daily time

series. Here we recapitulate the modelling methodology. At each stage the forecaster has

to choose from several options.

(a) Time transformation

It may be necessary to transform the timing interval of the observations from calendar

time to a more “operational” model time. If there is a clear intramonthly pattern it

is useful to work with three indices, where the last 2 indices are strictly periodic,

indicating the model month and the model day respectively. This will often introduce

artificial missing observations. Section 2 described some options.

(b) Model for the mean of components

One must specify models for the intra-monthly mean, i.e. a periodic component, a

model for the intrayearly mean, i.e. a seasonal component, a model for the interyearly

mean, i.e. a trend component, and finally a model for the irregular. The seasonal

and periodic components can be modelled using deterministic or stochastic dummies,

splines or trigonometric terms. The stochastic trends can have a fixed or a varying

slope.

(c) Knot positions of the spline

Given the use of splines one must choose the number and positions of the knots. The

choice depends on a priori ideas on local smoothness of the spline and on the familiar
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trade-off of bias and efficiency.

(d) Variances and autocovariances of components

A proper specification of the (time-varying variance) function for the innovations of

the different components is needed to produce efficient estimators for the mean func-

tion and it is also required to provide realistic forecast error variances. In practice

only a limited number of parameters modelling these variances can be estimated si-

multaneously. In the end it may be necessary to specify the “irregular” as a, possibly

periodic, stationary ARMA-process to whiten the innovations of the measurement

equation.

(e) Additional regressors for different components

Some variables may be available to explain changes in the different components. Ef-

fects for a single day of the week, or for single holidays may be captured in extra

regressors. Innovation outliers can be modelled using single dummies. Dummies in

the level or slope equation can model deterministic structural breaks.

(f) Estimation and Diagnostics

Estimation of the so-called hyperparameters, i.e. the free variances of the innovations

of the different components, is performed by maximising the (prediction error decom-

position) of the Gaussian likelihood. The current states of the conditional means and

variances of the different components are available from the Kalman Filter output.

The moments for previous time periods are estimated by smoothing. See §3 above.

One can check for nonnormality, heteroskedasticity and serial correlation for the inno-

vations, or for the auxiliary residuals of the different components, both intramonthly,

intermonthly and interyearly. All other familiar and newly developed regression diag-

nostics can easily be programmed using a few lines of code.

Figure 5 presents two main in-sample diagnostics: autocorrelation function and density of

one-step-ahead standardised forecast errors for the period 1993-1997.

4.2 Implementation

Many components of the menu of the previous section have been implemented in various

well documented and tested software packages. The best known program is STAMP, see

Koopman, Harvey, Doornik, and Shephard (2000), which is optimised for “standard” struc-

tural modelling of quarterly and monthly data. Although one can produce many useful

results with STAMP, e.g. by specifying monthly models for the separate days of the week

it is not really fit for day-to-day forecasting. First, it does not allow for data with 3 indices,

therefore it does not allow for periodic models of the kind we are looking for. Second, it

does not allow for the specification of time-varying splines. More importantly, it can only

be used at one level of sophistication and user-friendliness.

Daily online forecasting requires programs at three levels of sophistication and user-

friendliness. At the lowest level one needs a program to import and check new data and to
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Figure 5: Diagnostics for standardised forecast errors in sample 1993-1997: F̂
−1/2

t v̂t. Top panel:

Autocorrelation up to lag 46. Bottom: histogram and normal density.

forecast using an existing model. The user records the observed revenue, puts it in an easily

accessible database, which is specified in calendar time and updates the forecasts together

with confidence intervals for the next few days. The forecasts are presented in calendar

time and compared with the most relevant previous values (last month, or last year) and

forecasts from other sources. Basic computer skills should suffice to operate at this level.

We labelled this program ETE, Econometric Tax Estimator.

At the second level one may want to see more diagnostics, perform sensitivity analysis,

and be able to fine-tune the model. This requires access to time series plots of components,

standard errors, residuals, historical forecast records. The estimation sample and forecast

sample for the states (in model time) can be changed. Standard components can be intro-

duced or deleted and be made stochastic or deterministic. The number of knots and their

positions can be changed. Individual observations may be downweighted or deleted. The

hyperparameters can be reestimated occasionally. Regressors can be added. Basic computer

skills and a practical knowledge of basic statistics and time series analysis should suffice to

operate at this level. We labelled this program STSM, Structural Time Series Modeller.

At the highest level one may want to change the structure of the model, say a model

with a strong intraweekly pattern, instead of a intramonthly pattern, introduce periodic

seasonal heteroskedasticity, or a seasonal or periodic AR component, extend to forecasting

for multivariate series, or introduce non-Gaussian errors. This level requires advanced

practical and theoretical statistical knowledge and programming experience.
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5 Empirical results

The project we describe in this paper first focussed on modelling and forecasting only the

days around the turn of the month, since those are the day with the largest mean and

variance and therefore the most relevant from a financial point of view. Even this first

stage model performed at least as good as the existing method. That method was based

on the distribution of the (remaining part) of a predicted value of the monthly total over

the (remaining) days of the month, where monthly aggregate predictions were based on

projections for the growth of the economy and (changes) in the different tax rates and

collection policies. The parameters describing proportions were derived from a weighted

average of the distribution measured for the same bank days, bτ , in the same months, mτ ,

in previous years, Yτ − 1, Yτ − 2, Yτ − 3.

Following the methodology described above, we have made the following modelling

choices. First, for the time transformation from yτ to yt = yj(t),s(t),p(t), we picked P = 23 as

described and motivated in §2. Second, we chose the following components. For the periodic

intramonthly mean we chose a time-varying spline. For the periodic seasonal intrayearly

movement we selected 3×2 deterministic dummy variables, 2 variables for each of the 3

days around the turn of the month, p(t) = 22, 23, 1: bτ = −1, 0, 1. An extra (long) spline

function across the whole year, in our case depending on P ∗ (s(t)− 1) + p(t), see Harvey,

Koopman, and Riani (1997), turned out to be insignificant. We also selected a nonperiodic

stochastic trend, i.e. a trend that does not depend on p(t), so that it can be taken to mea-

sure the overall level of tax revenues at a daily frequency. It was taken to have a fixed slope.

Third, for the intramonthly spline we chose 10 knots at p = (1, 2, 3, 5, 9, 15, 20, 21, 22, 23),

thereby imposing smoothness only for the middle part of the month. Together with the 6

periodic seasonal dummies this makes a state vector of dimension 16 to describe the entire

intrayearly pattern.

Fourth, we could identify four innovation variances, the so-called hyperparameters of the

model, two for the intramonthly spline as discussed below, one for the level component and

one for the irregular. The irregular itself has a periodic variance pattern as described below.

This pattern was estimated using the residuals of the periodic regression model of Table

1, extended with a deterministic trend for each day of the month, for the sample 1993.3.1-

1997.12.23. Fifth, we added three nonperiodic day-of-the week dummies wτ = 3, 4, 5, see

Table 2 and a dummy measuring the length (in bank days) of the previous month,M(t−P ).
The latter dummy could measure a trading day effect for VAT-revenues, which are collected

after the month in which the value added is created. Sixth, we chose 1993.3.1 – 1997.12.23

as our estimation sample for the hyperparameters and 1997.1.1 – 1998.12.23 as a forecast

period for one-step-ahead forecasts. Seventh, we estimated the model using maximum

likelihood. The results are in the first row of Table 3.

Eighth, we present the following diagnostics: time series plots of in sample and out-

of-estimation-sample one-step ahead forecasts errors, v̂t, and standardised forecast errors,

F̂
−1/2
t v̂t, both in the estimation sample and in the forecast sample, and the corresponding

(nonperiodic) in-sample ACF, a normality test for the innovations and a CUSUM plot. The

diagnostic graphs are presented in Figures 5 and 6.

17



Except for a single outlier in June 1998, our model fared very well up to the middle of

October 1998, when an unexpected change in the pattern around the centres of the month

appeared. This example illustrates that one should be able to make small but relevant

changes to the model in a case like this, e.g. by changing the variances of the knots

around the middle of the month. Figure 4 also illustrates the most important aspects of

the component analysis: a plot of the intramonthly component at the end of 1997. This is

the spline we wanted to identify when we started to look at time series plots like Figure 1.

The state space analysis also allows us to estimate changes in the components over time.
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Figure 6: One-step (standardised) forecast errors in sample 1993.1.1-1997.12.23: (F̂
−1/2

t )v̂t. Top

graph: nominal errors in 109 Euro. Bottom graph: standardised errors.

Periodic and seasonal heteroskedasticity tests and normality tests for auxiliary residuals

of level and irregular, not reproduced here, indicate that this basic model does not fit all

days and all months equally well. The variance seems to have increased during the sample

period on some days of the month. Overall, the performance of mean and interval forecasts

around the end of the month seems satisfactory. We can formulate the estimated model for

yt, t = 1, . . . , n, up to 1998 as:

yt = w′
tλt + µt + x′tδ +Gtεt, εt ∼ N(0, σ2

ε),

where the daily revenues yt, are now measured in 109 Euro, where λt contains the 10

stochastic knots for intramonthly spline and where xt contains 10 explanatory variables,

6 based on s(t) = mτ for p = 22, 23, 1, 3 based on wτ , and one based on M(t − 23), see

also Table 4 below. All regressors, except for the level, are demeaned such that they to
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have mean close to zero over the span of a year. The level component can therefore be

interpreted as the current value of the mean across all bank days of the year.

The state space form of § 3 for knots of the spline is

λt+1 = λt + νt, νt ∼ N(0,Σν),

diag(Σν) = (σ2
1, σ

2
1, σ

2
1, σ

2
2, σ

2
2, σ

2
1, σ

2
1, σ

2
1, σ

2
1, 0).

The innovation variance for the last knot is also put to zero to avoid an identification

problem for the level component. The level component is

µt = µt−1 + βt−1 + ηt, ηt ∼ NID(0, σ2
η),

βt = βt−1.

The periodic heteroskedasticity vector for the innovations with “basic” length P = 23 is

estimated by periodic regression and normalised on the variance for p(t) = 22.

(G2
1 . . . , G

2
23) = (2.593, 0.153, 0.060, 0.072, 0.090, 0.059, 0.082, 0.068, 0.051, 0.1,

0.1, 0.1, 0.1, 0.1, 0.121, 0.039, 0.079, 0.167, 0.250, 0.378, 1.123, 1, 5.766)

The variances for p(t) = 10, . . . , 14 were interpolated from neighbouring values. We did not

attempt full information maximum likelihood estimation of Gt. Sensitivity analysis did not

show large effects of small changes in Gt on the other outcomes.

The variance estimates in Table 3 indicate a low variability of the spline near the middle

of the month, a larger variability towards the end of the month, as expected from the results

of Table 1. The moment estimates for the states of the different components at the end

of 1997 are presented in Table 4. The estimate for the level of .65 · 109 Euro per day

is larger than the sample average, indicating an upward trend, which helped the Dutch

government to reduce the budget deficit significantly. The recursive estimate of this trend

(not reproduced here, but naturally available in the graphical output of the program) is

relatively straight.

Table 3: Estimated hyperparameters

Sample σ2
1 σ2

2 σ2
η σ2

ε

1993.3.1 – 1997.12.23 2.82e-6 7.33e-7 3.69e-5 0.0179

1993.3.1 – 1998.12.23 4.62e-6 1.11e-6 7.20e-5 0.0186

Observations measured in 109 Euro. Variances normalised for the penultimate day

of the month p(t) = 22, bτ = −1, Last row presents estimates for extended model
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Table 4: Estimated states at 1997.12.23

State mean t-value

λ(p = 1) 0.205 5.048

λ(p = 2) -0.305 -14.86

λ(p = 3) -0.380 -23.77

λ(p = 5) -0.395 -26.43

λ(p = 9) -0.361 -35.06

λ(p = 15) -0.350 -34.16

λ(p = 20) 0.004 0.21

λ(p = 21) 0.125 5.24

λ(p = 22) 0.765 24.40

µ 0.652 15.35

β 1.02e-4 0.561

Tuesday -0.019 -5.47

Wednesday -0.015 -4.36

Thursday -0.012 -3.39

M(t− P ) -0.004 -2.26

p(t) = 1, s(t) mod 3 = 1 0.098 1.59

p(t) = 22, s(t) mod 3 = 1 0.186 4.83

p(t) = 23, s(t) mod 3 = 1 0.708 7.63

p(t) = 1, s(t) = 6 0.166 1.61

p(t) = 22, s(t) = 6 0.366 5.67

p(t) = 23, s(t) = 6 1.284 8.19

Estimation sample 1993.3.1 – 1997.12.23
λ: spline (see also Figure 4), µ: level, β: slope

5.1 Model evaluation

Residual serial correlation in Figure 5 at lag 1 points to richer dynamics within the months

and the residual serial correlation at lag 23 points to richer dynamics across months than

allowed for by the model. From the analysis of §1 we know the extension of the model is likely

to be of a periodic nature: the correlations are only important for some bank days of the

month. Rather than switching to a complete periodic structure we included estimates of past

forecast errors as extra periodic regressors in the model. These regressors are extended as

time progresses, but past values are not revised. The parameter estimates of the coefficients

of these regressors can be considered as first-step estimates of a periodic moving average

structure in the error term, see Table 5. In this table p(t) = 1, v(t− 23) denotes a regressor

consisting of one-step-ahead forecast errors, vt, from the Kalman Filter, lagged one month,

only applied to the first bank day of each month. The most important extra regressors

are applied for the last bank day of each month, p(t) = 23. One regressor captures the

correlation with cumulative forecast errors of the previous two days: v(t − 1) + v(t − 2).

The other captures the correlation with the the forecast error one month before, v(t− 23).

The second row of Table 3 presents the hyperparameters for the updated model, using

data up to 1998.12.23. The variance ratios change considerably compared to the previous

sample and corresponding model. The relative variance of the spline component and the

level component increased.
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5.2 Forecast results

The top graph of Figure 7 presents the forecasts for 1999 using the hyperparameter estimates

up to 1998. A patch of huge outliers stands out around the end of April 1999. These outliers

were caused by the introduction of the opening of the bank system and tax collection Queens

day, the 30th of April, formerly a bank holiday, which was not anticipated by the taxpayers.

The model produced forecast errors (realization - forecast) of 0.4, 1.0 and 3.3 billion Euro

on the days leading up to the 30th and a “compensating” forecast error of -4.7 billion Euro

on the 30th. The corresponding standardised forecast errors were about 4, 7, 20 and -13.

Automatic indexing of these observations was clearly not appropriate, but simply ignoring

April the 30th and treating it as missing would not have been adequate either. Two other

very large standardised forecast errors are observed for the 16th of June and the 9th of July.

These observations were also adjusted in order to reduce their influence on our subsequent

forecast evaluation.

Figure 7 also presents the forecasts for 1999 using the outlier corrected data, which were

obtained by subtracting the rounded forecast errors on the last four bank days of April.

Similar corrections were made for June 16, 17 and 18 (-0.3 0.15, 0.15 billion) and for July

9 (-0.5 billion).

Table 5 shows the estimates of the state vector at the end of 1999, both with and

without outlier correction. The effect of the outliers is largest for the state-variables that

relate closely to the observations with p(t) = 21, 22, 23. There is a significant effect of the

outliers on the coefficient of quarterly regressors for p(t) = 22 and p(t) = 23, positive and

negative respectively. Note that the effective number of available observations for each of

these regressors is only 27. There is a negligible effect of the outliers on ût. Comparing

Table 4 with Table 5 one notes that the overall tax level, ût, increased considerably from

1998.12.23 to 1999.12.23

The bottom graph of Figure 7 shows that the outlier correction leads to good forecasts

for p(t) = 22 and p(t) = 23 in July and October. Table 5 also shows that the estimates of

the time-varying spline for the knots λ(p = 21) and λ(p = 22) are significantly affected by

the outlier, even 8 months after they occurred.

Comparing the forecast errors of 1998 in Figure 4 and the forecast errors of 1999 in

Figure 7, we see a reoccurrence of the positive deviations towards the middle of October

and November. The pattern is less prominent in 1999, so without external information on

the change in the tax collection procedures, such as a continued increase in the amount of

tax revenues due around the middle of the month, it is not clear that this already merits a

change in the model.

5.3 Comparison with naive forecasts

Table 6 compares our model forecasts over the years 1998 and 1999 with simple seasonal

random walk forecasts. We use our model as specified and estimated up to 1997.12.23. We

use the outlier corrected data.
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Figure 7: Forecasts for 1999 of Model with hyperparameters of second row of Table 3. Left hand

side graphs: Top: One step ahead forecasts, 95% forecast intervals, realisations. Middle: nominal

forecast errors. Bottom: standardised forecast errors. Right hand side graphs: as Left hand side,

but with outliers in 1999 corrected

In the seasonal random walk (SRW) forecast we consider seasonality with period

S · P = 12 · 23 = 276, ŷ(t+S·P ) = yt.

The estimated revenues equal those of the corresponding day in the previous year, provided

the relevant observations are not missing. The underlying model consists of 276 indepen-

dent random walk processes. The seasonal random walk forecasting procedure is robust to

permanent changes in the tax level and its seasonal patterns. It provides competitive fore-

casts for most days of the year, although the effective forecast horizon is one year, instead

of one day.

Comparing the root mean-squared-errors in Table 6 we see that the one-day-ahead

forecast errors of the model outperform the one year ahead forecast errors of the seasonal

random walk model by twelve percent.

Figure 8 presents the out-of-sample forecast errors by day of the month. Each graph

shows the forecast errors for January 1998 to December 1999. It shows how the variance

differs from day to day. These plots can be used to detect model misspecifications at monthly

lags. They show that the model was slow to pick up a “local” trend in 1999 for days 21

and 22 of the month, (p = 22), which is reflected in the large forecast RMSE for these days,

presented in Table 6. The seasonal random walk did not do better in this respect, since it

adjusts its trend only with a lag of 12 months.
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Table 5: Estimated states at 1999.12.23

With outliers in 1999 Outlier corrected

State mean t-value mean t-value

λ(p = 1) 0.164 3.56 0.171 3.70

λ(p = 2) -0.344 -14.51 -0.344 -14.50

λ(p = 3) -0.418 -22.28 -0.412 -21.98

λ(p = 5) -0.428 -24.57 -0.428 -24.54

λ(p = 9) -0.348 -29.77 -0.344 -29.43

λ(p = 15) -0.354 -30.36 -0.356 -30.59

λ(p = 20) 0.063 3.07 0.058 2.80

λ(p = 21) 0.304 11.07 0.251 9.13

λ(p = 22) 1.306 36.57 1.175 32.89

µ 0.759 14.47 0.767 14.64

β 1.09e-4 0.56 1.08e-4 0.55

Tuesday -0.018 -5.94 -0.016 -5.10

Wednesday -0.019 -6.37 -0.017 -5.71

Thursday -0.015 -5.12 -0.014 -4.66

M(t− P ) -0.006 -3.05 -0.007 -3.24

p(t) = 1, s(t) mod 3 = 1 0.114 2.13 0.116 2.15

p(t) = 22, s(t) mod 3 = 1 0.306 9.25 0.183 5.53

p(t) = 23, s(t) mod 3 = 1 0.523 6.47 0.687 8.50

p(t) = 1, s(t) = 6 0.138 1.55 0.144 1.62

p(t) = 22, s(t) = 6 0.402 7.22 0.405 7.27

p(t) = 23, s(t) = 6 1.26 8.80 1.422 9.87

p(t) = 1, v(t− 23) -0.174 -2.62 -0.177 -2.64

p(t) = 21, v(t− 23) -0.365 -4.91 -0.523 -5.82

p(t) = 23, v(t− 1) + v(t− 2) 0.052 2.28 -0.028 -1.17

p(t) = 23, v(t− 23) 0.003 3.10 0.002 2.36

Estimation sample states 1993.3.1–1999.12.23. See also Table 4
Estimation sample hyperparameters 1993.3.1–1998.12.23.

6 Summary and Conclusion

In this paper we have presented a modelling strategy for daily time series with a clear

intramonthly pattern and a changing number of observations per month. We have applied

the strategy and implemented an online one-step-ahead forecasting model for daily tax

revenues.

The methodology consists of three stages. First, we need to choose an appropriate time

indexing with three levels: year, season, and period within the season. Second, we require

to specify a regression model with time-varying parameters that captures the year-to-year,

seasonal and periodic movements. In our case the dominating periodic movements are mod-

elled using time varying cubic splines and the seasonal movements are modelled by standard

techniques. Third, recursive estimation and forecasting using state space techniques is car-

ried out together with extensive graphic diagnostic analysis.

We have applied the technique to Dutch tax revenues and have produced out-of-sample

forecasts for 1998 and 1999 with satisfactory results. However, the diagnostics indicate

that our model can be extended. For example, modelling of cumulative sums of daily tax

revenues can be considered. This extension is technically more demanding and requires a

treatment based on flow variables. It allows external information on monthly totals to be
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Figure 8: One-step-ahead recursive forecast errors for outlier corrected data 1998.1-1999.12,

monthly intervals, by day of the month p

incorporated: first, by adjusting the forecasts over longer horizons; second by testing the

viability of these external forecasts online; and third by examining to what extent daily

modelling can improve forecasts for monthly totals and vice versa.
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Table 6: Out-of-sample recursive forecasts RMSE

p STSM n (STSM) SRW n (SRW)

1 209 24 275 24

2 64 24 46 24

3 42 24 54 24

4 44 24 34 24

5 28 24 38 24

6 36 24 34 24

7 33 24 41 24

8 39 24 46 24

9 44 24 44 24

10 84 23 116 21

11 112 13 95 7

12 15 2 5 1

13 60 19 78 15

14 49 24 54 24

15 50 24 47 24

16 72 24 51 24

17 96 24 83 24

18 72 24 65 24

19 73 24 71 24

20 98 24 120 24

21 180 24 181 24

22 321 24 382 24

23 360 24 384 24

overall 133 513 151 500

pτ indexes model day of the month.
Measurements in 106 Euro.
Estimation sample: 1993.3-1997.12.23.
Forecast sample 1998.1.1-1999.12.23.
STSM: Model forecasts errors: see Tables 3 and 4
n: number of forecasts
SRW: Forecasts errors Seasonal Random Walk

Appendix

Time varying cubic splines

The regression spline function is defined as a smooth function through the data points yt
which are a response to the scalar series xt, for which xt < xt+1 and t = 1, . . . , N . In

the daily tax model, xt is the day of the month, p(t), and N is chosen as P . Harvey,

Koopman, and Riani (1997) used the calendar day of the year as explanatory variable. In

our notation, see Table 2, this would correspond to setting x(t) = (s(t)− 1) · P + p(t) and

selecting N = S · P . The spline model is

yt = θ(xt) + εt, E (εt) = 0, Var (εt) = σ2,

where θ (·) is a smooth function which is based on k + 1 knot points (x†0, y
†
0), . . . , (x

†
k, y

†
k).

The smoothness of θ (·) is created by setting its second derivative with respect to x as a
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linear function of k + 1 coefficients, that is

θ′′i (x) = [(x†i − x)/di]ai−1 + [(x− x†i−1)/di]ai

with di = x†i − x†i−1 and θ(x) = θi(x) for x†i−1 < x < x†i and i = 1, . . . , k. The k +

1 coefficients ai are assumed fixed and they can be identified by solving a linear set of

equations.

These unknown coefficients are obtained as follows: (i) consider θ′′i (x) and use standard

integration rules to obtain expressions for θi(x); (ii) enforce the spline function θi(x) at

x = x†i to be equal to its known value of y†i ; (iii) restrict the first derivative to be continuous

by enforcing θ′i(x
†
i ) = θ′i+1(x

†
i ) for i = 1, . . . , k− 1. Step (ii) leads to a linear expression for

θi(x) in terms of y†i and ai, for i = 0, . . . , k. Step (iii) leads to k−1 linear equations of k+1

coefficients a0, . . . , ak in terms of y†0, . . . , y
†
k. The ‘natural’ restrictions a0 = ak = 0 allow

solving this linear system with respect to the remaining coefficients ai for i = 1, . . . , k − 1.

The spline function can now be written in terms of y†0, . . . , y
†
k by

θ(xt) = θi(xt) = w0,ty
†
0 + . . .+ wk,ty

†
k, x†i−1 < xt < x†i , , t = 1, . . . , N,

where the weights w0,t, . . . , wk,t depend on the knot positions x†0, . . . , x
†
k and the value for

(or implicitly the position of) xt. For a given set of values y†0, . . . , y
†
k, the spline function

can be computed for any x†0 < x < x†k. The regression spline also can be expressed as

θ(xt) = w′
ty

†,

where wt = (w0,t, . . . , wk,t)
′ and y† = (y†0, . . . , y

†
k)

′.

In the case that y†0, . . . , y
†
k are not known, we can replace them by the coefficients

λ0, . . . , λk which may be estimated by least squares methods. For a given set of data points

and a set of knot positions x†0, . . . , x
†
k, the spline model can be expressed by the standard

regression model

yt = w′
tλ+ ξt,

where the parameter vector λ = (λ0, . . . , λk)
′ is estimated by (

∑

(wtw
′
t))

−1 ∑wtyt and

standard regression inference applies. Poirier (1976) gives more details.

The generalisation of time-varying regression splines within the state space framework

is developed by Harvey and Koopman (1993). Time-varying splines are obtained by letting

parameter vector λ evolve slowly over time, for example

λt+1 = λt + νt, νt ∼ N(0,Σν),

where Σν is a diagonal variance matrix.

The spline function can be used as a seasonal component within the structural time series

model. A periodic variance function for the error term can be added. The summing-to-zero

constraint, which eliminates the collinearity with the trend component, for a time-varying

spline can also be implemented; details are given by Harvey and Koopman (1993). See

Figure 4 for an example.
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