
Pelsser, Antoon

Working Paper

Pricing and Hedging Guaranteed Annuity Options via
Static Option Replication

Tinbergen Institute Discussion Paper, No. 02-037/2

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Pelsser, Antoon (2002) : Pricing and Hedging Guaranteed Annuity Options via
Static Option Replication, Tinbergen Institute Discussion Paper, No. 02-037/2, Tinbergen Institute,
Amsterdam and Rotterdam

This Version is available at:
https://hdl.handle.net/10419/86055

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/86055
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


�����������	��

�
����������
�����
�����
��������

   

����������	�
�	�������������	�

���������������������������������

����������� 

 

����������		�
��
 

����
����������������������
������������
����������������������	���
	��	������
	����

�����
������������
���� �	�������

 



 
 

Tinbergen Institute 
The Tinbergen Institute is the institute for economic research of  the 
Erasmus Universiteit Rotterdam, Universiteit van Amsterdam and  
Vrije Universiteit Amsterdam.  
 
 
Tinbergen Institute Amsterdam 
Keizersgracht 482 
1017 EG Amsterdam 
The Netherlands 
Tel.: +31.(0)20.5513500 
Fax: +31.(0)20.5513555 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31.(0)10.4088900 
Fax: +31.(0)10.4089031 
 
 
 
Most TI discussion papers can be downloaded at  
http://www.tinbergen.nl  

 



  

 
1

 
 

Pricing and Hedging Guaranteed Annuity Options via Static 
Option Replication1 

 
 
 
 
 

Antoon Pelsser 
 
 
 

Head of ALM Dept Professor of Mathematical Finance 
Nationale-Nederlanden Erasmus University Rotterdam 

Actuarial Dept Econometric Institute 
PO Box 796 PO Box 1738 

3000 AT  Rotterdam 3000 DR  Rotterdam 
The Netherlands The Netherlands 

Tel: (31)10 - 513 9485 Tel: (31) 10 - 408 1259 
Fax: (31)10 - 513 0120 Fax: (31)10 - 408 9162 

E-mail: antoon.pelsser@nn.nl E-mail: pelsser@few.eur.nl 
 
 
 
 
 

First version: January 2002 
This version: 12-Mar-2002 13:27 

 
 
 

                                                 

1 This article expresses the personal views and opinions of the author. Please note that ING Group 
or Nationale-Nederlanden neither advocates nor endorses the use of the valuation techniques 
presented here for its external reporting. The author would like to thank Pieter Bouwknegt for 
valuable insights and comments. 



  

 
2

Pricing and Hedging Guaranteed Annuity Options via Static 

Option Replication  

 

 

 

 

 

Abstract 
 

In this paper we derive a market value for Guaranteed Annuity Option using martingale modelling 

techniques. Furthermore, we show how to construct a static replicating portfolio of vanilla interest 

rate swaptions that replicates the Guaranteed Annuity Option. Finally, we illustrate with historical 

UK interest rate data from the period 1980 until 2000 that the static replicating portfolio is 

extremely effective as a hedge against the interest rate risk involved in the GAO, that the static 

replicating portfolio is considerably cheaper than up-front reserving and also that the replicating 

portfolio provides a much better level of protection than an up-front reserve. 

 

JEL Codes: G13, G22 
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1. Introduction 
Recently, considerable publicity is drawn to life-insurance policies with Guaranteed Annuity 

Options (GAO’s). Equitable, a large British insurance office, had to close for new business as a 

portfolio of old insurance policies with GAO’s became an uncontrollable liability. In this paper we 

want to propose a hedging methodology that can help insurance companies to avoid such 

problems in the future. 

 

During the last few years, many authors have applied no-arbitrage pricing theory from financial 

economics to calculate the value of embedded options in (life-)insurance contracts. Initially, the 

work was focussed on valuing return guarantees embedded in equity-linked insurance policies, see 

for example Brennan and Schwartz (1976), Boyle and Schwartz (1977), Aase and Persson (1994), 

Boyle and Hardy (1997) and Bacinello and Persson (2002). In equity-linked contracts, the 

minimum return guarantee can be identified as an equity put option, and hence the “classical”  

Black-Scholes (1973) option pricing formula can be used to determine the value of the guarantee. 

 

More life-insurance policies are not explicitly linked to the value of a reference equity fund. 

Traditionally, life-insurance policies promise to pay a nominal amount of money to the 

policyholder at expiration of the contract. In order to compensate the policyholder for the 

relatively low base-rates which are used for premium calculation, various profit-sharing schemes 

have been employed by insurance companies. Through a profit-sharing scheme, part of the excess 

return (i.e. return on investments above the base rate) that the insurance company makes is being 

returned to the policyholders. However, since only the excess return is being shared with the 

policyholders and not the shortfall, having a profit-sharing scheme in place is equivalent to giving 

a minimum return guarantee (at the level of the base rate) to the policyholders. This type of 

embedded return guarantees has only recently been analysed in the literature, see for example 

Aase and Persson (1997), Grosen and Jørgensen (1997), (2000a) and (2002), Miltersen and 

Persson (1999) and (2000) and Bouwknegt and Pelsser (2002).  

 

Guaranteed Annuity Options are another example of minimum return guarantees, but in the case 

of GAO’s the guarantee takes the form of the right to convert an assured sum into a life annuity at 

the better of the market rate prevailing at the time of conversion and a guaranteed rate. Many life-

insurance companies in the UK issued pension-type policies with GAO’s in the 1970’s and 

1980’s. During this time UK interest rates were very high, above 10% between 1975 and 1985. 
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Hence, adding GAO’s with implicit guaranteed rates around 8% was considered harmless at that 

time due to the fact that these option were so far “out-of-the-money” . Due to the fall of UK 

interest rates far below 8% (currently UK interest rates are at a level of 5%), the GAO’s have 

become an uncontrollable liability which caused the downfall of Equitable in 2000. The issue of 

determining the value of GAO’s has been addressed recently by Yang (2001), Lee (2001) and 

Balotta and Haberman (2002). 

 

As is evident from the literature overview provided here, the main focus has been given to 

determining the value of embedded options. With the downfall of Equitable it has, in our view, 

become apparent that not only the valuation should be addressed, but also the hedging of 

embedded options. Although the hedging issue seems trivial at first sight: any derivative can be 

replicated by executing a delta-hedging strategy. However, the options written by insurance 

companies have such long maturities and the insured amounts are so high that executing a delta-

hedging strategy can have disastrous consequences.  

 

Typically, an insurance company has sold put options to its policy holders. To create a delta-

neutral position the insurance company has to buy the underlying asset of the put option. If 

markets fall, the insurance company has to sell off part of its asset position to remain delta-neutral. 

This will create more downside pressure on the asset prices, especially if the insurance company is 

trying to rebalance a large position. Hence, executing a delta-hedging strategy for a short put 

position can create dangerous “ feedback loops”  in financial markets which can have disastrous 

consequences. Similar feedback loops were present in Portfolio Insurance strategies which used 

delta-hedging to create synthetic put options and were very popular during the 1980’s. Automated 

selling orders generated by computers trying to follow blindly the delta-hedging strategy have 

been blamed for triggering the October 1987 crash. After the 1987 crash, Portfolio Insurance 

strategies very quickly lost their appeal and are hardly used nowadays. A second complication 

with executing a delta-hedging strategy is that delta hedging required frequent rebalancing of the 

hedging assets in order to remain delta-neutral. Especially for long maturity options, this can be 

quite expensive because of the transactions costs involved. 

 

We want to propose the use of static option replication as a viable alternative for insurance 

companies to hedge their embedded options. A static option replication can be set up if a portfolio 

of actively traded options can be found that (approximately) replicates the payoff of the derivative 

under consideration. Once the payoff of the derivative has been replicated, the no-arbitrage 
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condition implies that also for all prior times the value of the derivative is replicated by the static 

portfolio. Static replication hedging techniques for exotic equity options have been introduced by 

Derman, Ergener and Kani (1995) and Carr, Ellis and Gupta (1998). The advantages of static 

replication are obvious: once the initial static hedge has been set up, no rebalancing is needed in 

order to keep the derivative hedged. In practice, it is not always possible to find a set of actively 

traded options that perfectly replicates the payoff of a given derivative. However, if the 

approximation is close enough the static replication portfolio will track the value of the derivative 

under a wide range of market conditions. 

 

In this paper we want to show how Guaranteed Annuity Options can be statically replicated using 

a portfolio of vanilla interest rate swaptions. Interest rate swaptions are actively traded for a wide 

variety of maturities and single trades can be executed for large notionals amounts. Using the 

history of UK interest rates, we demonstrate that a judiciously chosen static portfolio of swaptions 

can hedge GAO’s over a long time horizon and under a wide range of market conditions. Hence, 

we illustrate that static replication offers a realistic possibility for insurance companies to hedge 

their exposure to embedded options in their portfolios. 

 

The remainder of this paper is organised as follows. In Section 2 we describe the payoff of 

Guaranteed Annuity Options and we derive a pricing formula using martingale modelling. In 

Section 3 we construct the static replication portfolio consisting of vanilla swaptions. In Section 4 

we illustrate the effectiveness of the static portfolio with a historic test using UK interest rate data 

from 1980 until 2000. Finally, we conclude in Section 5. 

 

2. Guaranteed Annuity Options 

Let us consider the market value of annuities at the moment when they are bought. An annuity is 

financed by a single premium, in our case this single premium equals the lump sum payment of 

the capital policy. Suppose the annuity is bought at time T by a person of age x. Conditional on the 

survival probabilities npx from the mortality table we can write the market value of the annuity 

äx(T) with an annual payment of 1 as 

 

  ∑
−

=
+=

x
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ω
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,       (2.1) 
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where npx denotes the probability that an x year old person survives n years and DT+n(T) denotes 

the market value at time T of a discount factor with maturity T+n. Also note that, the sum is 

truncated at age ω, the maximum age in the mortality table. Given the market value äx(T), the 

market annuity payout rate rx(T) over an initial single premium of 1 is given by 

 

rx(T) = 1/äx(T).        (2.2) 

 

This approach to market values is fully consistent with the construction of a portfolio of default 

free bonds that match exactly the expected cash flows of the annuity. 

  

Note, that we assume that the lump sum payment L at time T is a deterministic quantity. This may 

seem inconsistent with the fact that GAO’s have been issued on unit-linked contracts and with-

profit contracts, because in these types of contracts the value of the capital policy at time T is 

unknown. For unit-linked contracts this is definitely true, and in a recent paper by Ballotta and 

Haberman (2002) they attempt to address this issue.2 On the other hand, many of the policies 

offered, especially the policies of Equitable, are with-profits policies. In this case, there is a 

minimum capital payment L that is known to be paid out at time T. Via the profit-sharing 

mechanism, the amount L can only increase. Hence, each year of profit-sharing will add an 

additional “ layer”  to the contract with an additional GAO. But this implies that the analysis we 

offer in this paper is valid for with-profits policies, since each layer of profit-sharing can be valued 

and hedged independently. 

 

Suppose that an x year old policyholder has an amount of money L at his disposal at time T which 

is the payout of his capital policy. The GAO option gives the policyholder the right to choose 

either an annual payment of Lrx(T) based on the current market rates (see formula (2.2)) or an 

annual payment Lrx
G using the Guaranteed Annuity rx

G. A rational policyholder will select the 

highest annuity payout given the current term structure of interest rates. Therefore, we can rewrite 

the value of the GAO at the exercise date T as 

 

                                                 
2 Note that Ballotta and Haberman (2002) use the a single Brownian Motion that drives the 
uncertainty in both the equity fund and the Heath-Jarrow-Morton (1992) model. Due to this 
modelling assumption, it is still the case that all the uncertainty in the GAO is essentially only 
interest rate driven. Hence, their paper offers no generalisation over the results derived in this 
paper. 
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  L max(rx
G , rx(T)) Σ npx DT+n(T) = 

L ( rx(T) Σ npx DT+n(T) ) + L max(rx
G – rx(T) , 0) Σ npx DT+n(T) = 

L + L max(rx
G – rx(T) , 0) äx(T)        (2.3) 

 

Hence, the market value of the GAO policy at the exercise date is equal to the lump sum payment 

L plus L times the value of the GAO put-option.  

 

In the remainder of this paper we will focus only on the value VG of the GAO put-option 

 

  VG(T) = max(rx
G – rx(T) , 0) äx(T)      (2.4) 

 

To calculate the market value VG(0) of the GAO put-option today at time 0, we can proceed along 

several paths. The uncertainty about the value of the option is due to the fact that the discount 

factors DS(T) at time T are unknown quantities at time 0. One possible approach therefore, is to 

model the complete term-structure of interest rates with a term-structure model, like the Heath-

Jarrow-Morton (1992) model, to obtain an option value. The disadvantage of such an approach is 

that the option price cannot be determined analytically; results have to be obtained through 

numerical approximations which provide us with relatively little insight in the behaviour of the 

GAO. 

 

To obtain a better handle on the behaviour of the GAO, we draw an analogy between the GAO 

and a bond option. A bond option gives the holder of the option the right, but not the obligation, to 

buy a bond for a given price. As the value of a bond depends on the term-structure of interest 

rates, we could use a term-structure model to determine the value of the bond option. In the case 

of a bond, all uncertainty about the term-structure of interest rates is reflected in a single quantity: 

the price of the bond. Hence, the value of a bond option can be determined more direct by 

modelling the bond-price itself as a stochastic process. This is exactly the approach that bond-

option traders adopt to calculate the prices of bond-options with the Black (1976) formula. 

 

In the case of the GAO put-option, all the uncertainty about the term-structure of interest rates is 

reflected in the market annuity payout rate rx(T). Hence, if we model the market annuity payout rx 

directly as a stochastic process, we have sufficient information to price the GAO option. The 

approach of using market rates, such as LIBOR rates and swap rates, has been applied in recent 
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years with great success to term-structure models. This type of models, which have become 

known as market models, was introduced independently by Miltersen, Sandmann and Sondermann 

(1997), Brace, Gatarek and Musiela (1997) and Jamshidian (1998). 

  

The main mathematical result on which this modelling technique is based is the martingale 

pricing theorem which states that, given a numeraire (i.e. a reference asset that is used as a new 

basis to express all prices in the economy in terms of this asset), an economy is arbitrage-free and 

complete if and only if there exists a unique equivalent probability measure such that all numeraire 

rebased price processes are martingales under this measure. For a proof of the martingale pricing 

theorem and general introduction into the mathematics involved we refer to Musiela and 

Rutkowski (1997); the books by Hunt and Kennedy (2000) and Pelsser (2000) focus more 

explicitly on interest rate derivatives. 

  

In the economy we are considering, the traded assets are the discount bonds DS for the different 

maturities S. A particular convenient choice of the numeraire for the GAO put-option is the 

annuity äx = Σ npx DT+n. Note, that under the assumption that the survival probabilities npx are 

deterministic, this is a portfolio of traded assets (the discount bonds) and hence a permissible 

choice as numeraire. 

 

The annuity payout rx(T) rate for time T was defined in (2.2). At times t prior to T we can consider 

the value of the portfolio of discount bonds that replicates the cash flows of an annuity starting 

from T. A person that will be x years old at time T, has at time t an age of x-(T-t). Hence, the 

market value at time t of a forward annuity starting at T is given by 

 

  )()()( )()(
0

)()(
0

)()( taptDpptDp xtTxtT

x

n
nTxntTxtT

x

n
nTtTxtTn

��

−−−

−

=
+−−−

−

=
+−−−+ == ∑∑

ωω

, (2.5) 

 

where we have used the actuarial identity n+mpx = mpx npx+m (see, e.g., Bowers et al. (1997), 

Chapter 3). 

 

At time t, an insurance company can finance the forward annuity by borrowing money from time t 

until time T. Only in the cases the insured survives until time T, will the insurance company have 

to repay the loan. Hence, the market value at time t of this loan is given by 
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  )()()( tDp TtTxtT −−− .        (2.6) 

 

Combining equations (2.5) and (2.6), we can define the forward annuity rate as 

 

  rx(t) = DT(t) / äx(t),        (2.7) 

 

where we see that the survival probability factor (T-t)px-(T-t) in the numerator and the denominator 

has cancelled. Note, that if t=T this definition coincides with (2.2) since DT(T)≡1. Also note that 

the forward annuity rate rx is the numeraire rebased price of the discount bond DT using the 

numeraire äx.  

 

The martingale pricing theorem can now be applied as follows. Under the assumption that the 

interest rate economy admits no arbitrage opportunities, the martingale pricing theorem states that 

there exists a martingale probability measure QA associated with the numeriare äx, such that all äx-

rebased price processes are martingales. Hence, also the price process for the forward annuity rx is 

a martingale under the measure QA.  

 

Furthermore, the numeraire rebased market value VG/äx of the GAO put-option must also be a 

martingale process under the probability measure QA. Using equation (2.4) which gives the value 

of the GAO put-option at time T, the value of the GAO option for any time t ≤ T can be expressed 

as 
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   (2.8) 

 

where EA[] denotes an expectation under the probability measure QA. Multiplying both sides of 

equation (2.8) by äx(t) leads to the following expression for the market price of the GAO: 

 

  [ ])0),(max()()( TrrtatV x
G
x

A
x

G −= E�� .     (2.9) 

 

Once we know the probability distribution for rx(T) under the measure QA, we can use expression 

(2.9) to calculate the value of the GAO option explicitly. The market standard assumption for 
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pricing interest rate options is to assume that the forward rate process has a lognormal probability 

distribution, which leads to the Black (1976) option pricing formula. 

 

If we examine the definition (2.2) of the annuity payout rate rx(T) in more detail, we see that the 

payout rate decreases if the discount bond prices increase, i.e. if the market interest rates become 

lower. If the market interest rates all fall to zero, the discount bonds all have a market value equal 

to 1 and the insurance company can still offer a positive payout rate rx*   to its policyholders: 

 

  

∑
−

=

=
x

n
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x

p
r ω

0

* 1
.         (2.10) 

 

With positive market interest rates, the annuity payout rate will always be higher than the 

minimum rate rx* . Hence, a more realistic distributional assumption for the annuity payout rate 

rx(T) is the assumption that the shifted random variable rx(T)-rx*  has a lognormal distribution. 

Based on this shifted lognormal distribution, the price for the GAO put-option is given by 
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     (2.11) 

 

where σr denotes the volatility of the (shifted lognormal) process rx(T)-rx* . 

 

3. Static Replicating Portfolio 

The GAO put-option we have discussed in the previous section, is not a standard interest rate 

option. To hedge the risk of such a non-standard option, an insurance company can execute a 

dynamic replication strategy (delta hedging). This replication strategy requires continuous 

rebalancing of a portfolio of discount bonds. Executing such a trading strategy in practice can be 

problematic, especially over the long time periods that are typically involved in life-insurance 

products. 

 

We therefore want to propose a static options replication strategy that can be used to hedge the 

risk of GAO’s. In a static options replication strategy one sets up a portfolio of actively traded 
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options such that the payoff of the GAO at maturity is exactly replicated. Due to the fact that this 

portfolio matches the payoff of the GAO at maturity, the portfolio will also accurately track at all 

previous times the value of the GAO. Were this not the case, an arbitrage opportunity would arise. 

Hence, once the initial portfolio of options is bought, its composition never needs to be adjusted 

until the time that the GAO expires. 

 

In the remainder of this section we show how a static replication portfolio of vanilla interest rate 

swaptions can be set up for GAO’s. In interest rate markets, interest rate swaptions are the most 

actively traded options contracts and can be traded in large quantities for a wide variety of 

maturities and exercise prices. The construction we propose for GAO’s is inspired by the static 

replication strategy proposed by Hunt and Kennedy (2000, Ch. 15) for irregular swaptions. 

 

At the exercise date T, the GAO put-option gives the holder the right, but not the obligation, to 

enter into an annuity at the guaranteed rate rG: 

 

( ) 
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where we have substituted the definition äx given in equation (2.1). Hence, the GAO gives the 

right to obtain a series of cash payments npx rx
G at the different dates T+n for the price of 1 at time 

T. Note that, due to the fact that the annuity payments are made at the beginning of each year, at 

time T one has to pay 1 but one receives rx
G immediately so that the net cash flow at time T is 

equal to 1- rx
G. 

 

A vanilla interest rate swaption gives the right, but not the obligation, to enter at time T into an 

interest rate swap in which during N years the floating LIBOR interest rate is exchanged for a 

fixed interest rate KN. It is well known that the market value SN of a receiver swap in which the 

fixed rate is received annually is given by (see, e.g. Hull (2000, Ch. 5)) 
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Hence, the market value VN of a receiver swaption that gives the right to enter into an N-year 

receiver swap at time T can be expressed as 

 

( ) .0,1)()1()(max0,)(max)(
1

1
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From expression (3.3) we see that, similar to the GAO, a swaption also gives the right to obtain a 

series of cash payments for a price of 1. However, the pattern of the cash payments is very 

different in the two options. The cash flows npx rx
G associated with the guaranteed annuity are 

gradually decreasing over time due to the survival probabilities npx. The cash flows associated 

with an N-year swap follow a very different pattern: the first N-1 years one receives an amount of 

KN, whereas in the Nth year, a cash amount of (1+KN) is received. 

 

By combining positions in receiver swap contracts all starting at date T with different maturities N, 

it is possible to replicate the cash flow pattern npx rx
G of the guaranteed annuity for all dates T+n. 

To find the right amounts that has to be invested in each swap, we proceed backwards from time 

T+(ω-x) to time T+1. To replicate the cash flow ω-xpx rx
G we have to enter into the (ω-x)-year 

receiver swap Sω-x with fixed rate Kω-x. At time T+(ω-x) this swap has a cash flow of (1+Kω-x). 

Hence, if we invest an amount Lω-x = ω-xpx rx
G / (1+Kω-x) in swap Sω-x we replicate the cash flow of 

the guaranteed annuity at time T+(ω-x). 

 

One year earlier, at time T+(ω-x-1), the guaranteed annuity pays out a cash flow of ω-x-1px rx
G. 

From the position Lω-x in swap Sω-x we already receive a cash flow of Kω-x Lω-x = ω-xpx rx
G - Lω-x. 

Hence, if we invest an amount Lω-x-1 = (Lω-x + rx
G (ω-x-1px - ω-xpx)) / (1+Kω-x-1) in swap Sω-x-1 we 

replicate the cash flow of the guaranteed annuity at time T+(ω-x-1). 

 

Continuing this backward construction, we find that we can replicate the cash flow of the 

guaranteed annuity at a general date T+n by investing an amount Ln = (Ln+1 + rx
G (npx – n+1px)) / 

(1+Kn) in swap Sn. Proceeding backwards in this fashion, we continue to match all the cash 

payments of the guaranteed annuity up until time T+1. 

 

However, there is a catch. From equation (3.2) we see that at the start date T of the swap contract 

we require an initial cash payment of 1. Hence, the total portfolio of receiver swaps constructed 
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above to replicate the cash flows of the guaranteed annuity requires an initial cash payment of 

∑
−

=

x

n
nL

ω

1

. But in equation (3.1) we derived that the GAO put-option gives the right to enter the 

guaranteed annuity for an initial net cash payment of 1-rx
G. Fortunately, we can adjust the amounts 

Ln by considering receiver swaps with different fixed rates Kn. This implies that we have to choose 

a set of fixed rates Kn*  for all the swaps Sn such that the invested amounts Ln*  satisfy 

G
x

x

n
n rL −=∑

−

=

1
1

*
ω

. 

 

With the portfolio of swaps Σ Ln*  Sn we have replicated all the cash flows of the guaranteed 

annuity with rate rx
G. Hence, the GAO which gives the right, but not the obligation, at time T to 

enter into the guaranteed annuity is equivalent to the option to enter into the portfolio Σ Ln*  Sn. 

This implies that the value VG(T) at time T of the GAO can be expressed in terms of swaptions Vn 

as: 
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,  (3.4) 

 

where the inequality stems from the fact that the value an option on a portfolio of swaps is less 

than or equal to the value of the portfolio of the corresponding swaptions. An intuitive explanation 

for this fact is that in the option on the portfolio you have only an “all-or-nothing”  choice to obtain 

all underlying swaps at once or none at all, whereas in the portfolio of swaptions you can “cherry 

pick”  the individual swaps that have positive market values at time T. 

 

If all the interest rates in the economy are perfectly correlated, i.e. all interest rates move all the 

time in perfect lockstep, then there exists only one single set of market swap rates Kn*  for which 

the swaps Sn exactly replicate the cash flow stream of the guaranteed annuity. Due to the perfect 

correlation of the interest rates, all market swap rates will either be simultaneously above the rates 

Kn*  or simultaneously below. Hence, in the case of perfectly correlated interest rates, the 

inequality in equation (3.4) becomes an equality for the set of swaptions with strikes Kn* .3 But this  

                                                 
3 This remarkable result was derived for the first time by Jamshidian (1989) where he showed that 
in a one-factor interest rate model an option on a coupon bearing bond can be expressed as a 
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implies that in the case of perfectly correlated interest rates, we have replicated the payoff of the 

GAO via a portfolio of vanilla interest rate swaptions and, a fortiori, that we have identified a 

static options replication for the GAO. 

 

In practice we know that the interest rates in the economy are not perfectly correlated, and 

therefore that the portfolio of swaptions has a higher price than the GAO due to the inequality in 

equation (3.4). However, GAO’s typically are products with a very long maturity. Therefore, their 

value depends mainly on the behaviour of interest rates with long maturities and these interest 

rates are very highly correlated. We therefore conjecture that the price of the static hedge 

replication will be very close to the true price of the GAO.  

 

4. Historical Test 

To test the performance of the static replication strategy we have proposed in Section 3, we have 

conducted an historical test using UK interest rate data. We have downloaded from Datastream 

UK Government Bond yields with maturities 2, 3, 5, 7, 10, 15, 20 and 30 years. We have used the 

data at the last trading day of each year from 1980 until 2000. In each year we used a Nelson-

Siegel (1987) parameterisation of the zero-curve. In each year the Nelson-Siegel parameters were 

obtained by a least squares fit of the yields implied by the zero-curve to the observed yields. The 

results of the parameter fits are reported in Table 1. (Table can be found at the end of this paper.) 

Note that, in order to stress-test our static hedge, we have also allowed the “ time-scale”  parameter 

tau to vary over time, to obtain as much as possible variation in the interest rates with long 

maturities. Practitioners usually keep the value of tau constant to stabilise the long end of the yield 

curve.  

 

Given the Nelson-Siegel parameterisation, we have zero-rates available for all possible maturities. 

Using the mortality table GBM8590 from the Dutch Actuarial Institute, we can determine the 

forward annuity rate using formula (2.7). In Figure 1 below, we have plotted the forward annuity 

rates for a male that was 45 years old in 1980 and that would retire at age 65 in 2000. Initially, the 

forward annuity rate is well above the guaranteed level of 11.1%. However, due to the falling 

interest rates at the end of the 1990’s, we see that the forward annuity rate drops below the 

guaranteed level after 1997.  

                                                                                                                                                                

portfolio of options on zero coupon bonds. Note also, that in the case of perfectly correlated rates 
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Figure 1: Forward annuity rate for UK data and Dutch mortality table 

 

From the mortality table, we calculate that the minimum annuity rate r65*  is equal to 6.78%. From 

the time-series of the forward annuity rates, we estimate the volatility of the (shifted lognormal) 

forward annuity rate process at 21.22%. Substituting the volatility in formula (2.11), we can 

calculate the market value of the GAO put-option. 

 

GAO put-option (value per 1£ capital)

0.0000
0.0200
0.0400
0.0600
0.0800
0.1000
0.1200
0.1400
0.1600
0.1800

D
ec

-8
0

D
ec

-8
2

D
ec

-8
4

D
ec

-8
6

D
ec

-8
8

D
ec

-9
0

D
ec

-9
2

D
ec

-9
4

D
ec

-9
6

D
ec

-9
8

D
ec

-0
0

 

Figure 2: Market value of GAO put-option. 

 

                                                                                                                                                                

the apparent ambiguity in choosing the rates Kn*  is resolved. 
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The calculated market values of the GAO put-option have been plotted in Figure 2. Again, we see 

that the value of the GAO put-option increases dramatically in value with the falling interest rates 

during the late 1990’s. In fact, the value of the GAO increases almost a factor 30: from 0.45% in 

1980 until 13.22% in December 2000.  

 

This already indicates what the disadvantages are of “only”  reserving for maturity guarantees 

instead of replication: reserving is very expensive and does not give complete protection. See, for 

example, the results reported by Yang (2001). Yang calculates, on the basis of the Wilkie model, 

that the reserve at a 99% level that would have to be set aside in 1980 for the policy with term 20 

is equal to 12.06%. As Yang shows in Table 10 of his paper, the actual value of the GAO at the 

end of the 20-year period is even higher than this 99% reserve. Hence, even reserving at a 99% 

probability-level would not have provided sufficient protection against the explosive growth in 

value of the GAO put-option during the 20 year period from 1980 until 2000. 
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Figure 3a: Forward swap rates and static hedge fixed rates in Dec-1980 

 

Setting up the static replication portfolio of vanilla swaptions is considerably cheaper than “only”  

reserving, and does provide better protection. In 1980, the insurance company should have 

forecasted the annuity payments for a then 45 year old person which would reach the retirement 

age 65 in the year 2000. In Figure 3a we have plotted the forward swap rates the prevailed in Dec-

1980. All swap rates are 20 year forward rates, with various swap maturities. We see that the 

forward swap rates slowly decrease from 12.79% for the 20-year forward 1-year swap rate, until 

10.25% for the 20-year forward 45-year swap rate. 
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As was explained in Section 3, to set up the static replicating portfolio, we have to select a set of 

fixed rates Kn* . If all the interest rates are correlated perfectly, this will be the swap rates for 

which the GAO will be exactly “at-the-money” . To construct the static hedge portfolio, we have 

made the assumption that all interest rates are perfectly correlated and also that all interest rates 

move exactly parallel. Hence, we have shifted all the rates by the same amount until the invested 

amounts Ln*  satisfied 889.0111.01
45

1

* =−=∑
=n

nL . We found that this was achieved for a downward 

shift of 4.92%-point. The set of fixed rates Kn*  obtained by this parallel shift of the  swap rates has 

also been depicted in Figure 3a. 
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Figure 3b: Static Replication Portfolio of Annuity cash flows 

 

In Figure 3b, we have plotted the projected cash flows for the annuity for the years 2001 until 

2045. Also, we have plotted the weights Ln*  that have to be invested in all the swaps with fixed 

rates Kn*  for n=1 to 45. Hence, with the weights Ln*  the insurance company could have bought the 

portfolio of vanilla swaptions Σn Ln*  Vn. This portfolio of swaptions would cost 0.0047 per 1£ 

capital in 1980, which is only 0.0002 per 1£ capital more expensive than the true market value of 

the GAO put-option. Once this portfolio of swaptions would have been attained, no further buying 

or selling would have been necessary until December 2000, when the portfolio would have been 

unwound to cover the cost of the GAO put-option. 
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Figure 4: Performance of Static Hedge Portfolio vs. GAO put option 

 

In Figure 4 we have plotted the value of the static replicating portfolio against the market value of 

the GAO put option for the period Dec-1980 until Dec-2000. The blue and purple lines depict the 

market value per 1£ capital of the static replicating portfolio and the market value of the GAO put-

option respectively. We see that the value of the static replicating portfolio tracks the market value 

of the GAO extremely closely during the whole period of 20 years. 

 

5. Summary and Conclusion 

In this paper we have derived a market value for Guaranteed Annuity Option using martingale 

modelling techniques. Furthermore, we have shown how to construct a static replicating portfolio 

of vanilla swaptions that replicates the Guaranteed Annuity Option. Finally, we have shown with 

historical UK interest rate data from 1980 until 2000 that the static replicating portfolio is 

extremely effective as a hedge against the interest rate risk involved in the GAO, and that the 

static replicating portfolio is considerably cheaper than up-front reserving and also that the 

replicating portfolio provides a much better level of protection than a fixed reserve. 
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Table 1: Nelson-Siegel zero-curves 

 beta0 beta1 beta2 tau 

12/31/80 0.0000 0.1255 0.2242 20.2

12/31/81 0.0000 0.1412 0.2675 12.0

12/31/82 0.0374 0.0622 0.1396 10.0

12/30/83 0.0649 0.0269 0.1068 5.0

12/31/84 0.0291 0.0669 0.1696 7.0

12/31/85 0.0873 0.0295 0.0275 3.0

12/31/86 0.0566 0.0524 0.0582 10.0

12/31/87 0.0417 0.0452 0.0993 12.7

12/30/88 0.0531 0.0628 0.0243 10.0

12/29/89 0.1059 0.0252 -0.0852 10.0

12/31/90 0.0845 0.0324 0.0095 10.0

12/31/91 0.0878 0.0100 0.0238 3.0

12/31/92 0.1005 -0.0139 -0.0867 1.6

12/31/93 0.0657 -0.0256 0.0252 4.1

12/30/94 0.0806 -0.0123 0.0430 3.0

12/29/95 0.0644 -0.0087 0.0643 10.0

12/31/96 0.0778 -0.0195 0.0157 3.0

12/31/97 0.0616 0.0106 -0.0064 3.0

12/31/98 0.0440 0.0224 -0.0252 1.5

12/31/99 0.0367 0.0201 0.0552 2.3

12/29/00 0.0241 0.0293 0.0233 10.0
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