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Fast simulation of a queue fed by a superposition of many

(heavy-tailed) sources

Nam Kyoo Boots� and Michel Mandjes y

Abstract

We consider a queue fed by a large number, say n, of on-o� sources with generally distributed on-

and o�-times. The queueing resources are scaled by n: the bu�er is B � nb and link rate is C � nc.

The model is versatile: it allows us to model both long range dependent tra�c (by using heavy-tailed

distributed on-periods) and short range dependent tra�c (by using light-tailed on-periods). A crucial

performance metric in this model is the steady-state bu�er over
ow probability.

This over
ow probability decays exponentially in the number of sources n. Therefore, if the

number of sources grows large, naive simulation is too time-consuming, and we have to use fast

simulation techniques instead. Due to the exponential decay (in n), importance sampling with an

exponential change of measure essentially goes through, irrespective of the on-times being heavy-tailed

or light-tailed. An asymptotically optimal change of measure is found by using large deviations

arguments. Notably, the change of measure is not constant during the simulation run, which is

essentially di�erent from many other studies (usually relying on large bu�er asymptotics).

We provide numerical examples to show that the resulting importance sampling procedure indeed

improves considerably over naive simulation. We present some accelerations. Finally, we give short

comments on the in
uence of the shape of the distributions on the loss probability, and we describe

the limitations of our technique.

Key words: long-range dependence, importance sampling, queueing theory, large deviations asymp-

totics, bu�er over
ow, heavy-tailed random variables
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1 Introduction

In communication networks it is important to predict the performance of a network element fed by a

given set of tra�c sources. It eases the task of doing adequate resource allocation, admission control,

and dimensioning of bu�ers and link rates. A particularly interesting issue is the impact of the tra�c

characteristics on the performance. This matter attracted renewed attention after the discovery that a

wide variety of tra�c types show long range dependence (LRD), i.e., burstiness on a wide variety of time

scales [13]. A LRD tra�c stream is characterized by a correlation function of which the decay is slower

than exponential in time. This is in stark contrast with short range dependent (SRD) input, where the

correlation decays exponentially.

A large body of work on short range dependent models were already available. Particularly, accurate

methods for the computation of loss and delay performance of queues with SRD input were developed,

see for instance the seminal work [1]. For LRD sources, this queueing analysis could clearly not be used

anymore. Assuming that network tra�c could be long-range dependent, the logical question is: does

this extreme burstiness signi�cantly degrade the performance (usually measured in terms of packet loss

and delay)?

Performance evaluation of queues with LRD and SRD tra�c. A partial answer is given in the studies of

Ryu and Elwalid [21], Heyman and Lakshman [10], and Grossglauser and Bolot [9]. They argue that in

realistic scenarios and for stringent delay requirements (i.e., bu�ers typically not very large), only short

term correlations play a role, and hence the better analyzed models based on SRD tra�c can be reused.

To assess this issue in greater detail, we use the versatile tra�c model of on-o� sources. These sources

alternate between transmitting at a certain peak rate (commonly called a `burst') and being silent. The

activity and silence periods are random variables. The sources feed into a queue with constant capacity.

The versatility of the model is re
ected by the fact that it covers both LRD and SRD tra�c, by using

speci�c choices of the burst and silence distributions. The aggregate of the sources generates LRD tra�c

if the burst size has a heavy-tailed distribution [13], whereas light-tailed on-periods lead to SRD tra�c.

In models with heavy-tailed on-times hardly any analytical results exist. The known results describe

asymptotics of the loss probability for large values of the bu�er size; there are no results that explicitly

give the entire bu�er content distribution. From a practical point of view, the regime of large bu�ers is

probably not the most relevant, as many (real-time) applications require some delay bound. For these

applications a more relevant asymptotic regime could be the one with many sources, since in practice,

many relatively small sources will share the network elements.

Roughly the model is as follows. There are a large number, say n, of on-o� sources feeding into the

queue. The resources bu�er and bandwidth are scaled accordingly: bu�er B � nb, and link rate C � nc:

In this regime there are a number of strong large deviations results available [4, 14, 17]. Notably the

probability of over
ow pn decays exponentially in the number of sources n; the corresponding decay

rate is the solution of a variational problem. Here for ease the sources are assumed to be independent

and statistically identical.
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An obvious drawback of this large deviations approach is that some of the above mentioned many-

sources asymptotics [4, 17] are rough, in that only the exponential decay rate, say I is derived. The

`subexponential part' f(n) (with log f(n) = o(n), where n!1) of the expansion is not found. There-

fore, the resulting naive estimate pn = exp(�nI) is not always accurate, even if the number of sources

is large. In other words: the asymptotics of the log of the over
ow probability are found, rather than

the asymptotics of the probability itself. The results in [14] are more precise: there a (subexponential)

function f(�) is provided such that pnf(n) exp(nI) ! 1. However, for given n, still the error made by

approximating pn � exp(�nI)=f(n) is not known.

Simulation. A natural alternative to exact calculations and asymptotic approximations is stochastic

simulation. However, the probabilities involved are typically small, which makes them hard to estimate:

consequently a considerable amount of simulation e�ort is required to obtain reliable estimates. This

explains the interest in variance reduction techniques, commonly known as `fast simulation'.

A commonly used fast simulation technique is importance sampling, which is often based on an expo-

nential change of measure (also called exponential twisting). This technique can be explained easily by

considering a random walk (�i)i2N , where the �i are i.i.d. with density g. Assume a negative drift:

E�i < 0. We are interested in the probability that this random walk ever exceeds level x, say P(x).

Because of the negative drift P(x) will be small, particularly for large x, and naive (direct) simulation

will typically be slow. The idea of importance sampling based on an exponential change of measure is to

replace the density g by an exponentially twisted density g�(x) = g(x) exp(�x)=M�(�), where M�(�) is

the moment generating function E exp(��i). The tilting parameter � has to be chosen positive, and large

enough to make sure that the mean under the new density is positive. To compensate for the change

of measure (and the increased likelihood of the rare event), the simulation output has to be adapted by

using likelihood ratios. Details on this procedure are found in [11].

It is emphasized that the above exponential change of measure does not work for heavy-tailed (�i)i2N .

The reason is that for heavy-tailed �i the normalizing constant M�(�) is in�nite for all positive � and

thus exponential twisting is infeasible. Similarly for on-o� sources with heavy-tailed on-times, it can be

argued that we cannot construct an exponential twisting of burst and silence distributions. A general

statement is: as long as the loss probability is exponentially decaying in the bu�er size B, a variant of the

above twisting procedure works, if there is subexponential decay it does not (like in the case of heavy-

tailed on-times [16]). This makes the problem of importance sampling with heavy-tailed distributions

hard, although some partial results are available [2, 3].

Importance sampling in the many-sources domain. However, in the regime of many sources we do have an

exponential decay, albeit in the number of sources n rather than in the bu�er size B. As we show in this

paper, this implies that exponential twisting is possible, since it does not involve exponential twisting

of the (possibly heavy-tailed) on-times. However, the resulting change of measure is more complicated

than in the traditional random walk type of models: it is not constant during the path to over
ow. This

is the essential di�erence with exponential twisting in the large bu�er domain [11, 12, 18, 20].
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The choice of our change of measure results from large deviation theory. We show that the average path

under this measure equals the optimal path to over
ow identi�ed by Wischik [27]. We are also able to

bound the variance of the resulting estimator such that the number of simulation replications (required

to get an estimate with prede�ned accuracy) grows subexponentially in n, whereas pn decays essentially

exponentially.

The main contributions of this paper are twofold. First, we propose an e�cient simulation technique

to estimate the over
ow probability in a queue with n on-o� sources. This model is generic in that

it captures both LRD and SRD scenarios. Second, our work is among the �rst papers that describes

importance sampling for a model with heavy-tailed on-o� sources, cf. [2, 3]. Also fast simulation in the

many sources regime is relatively new; in [19] this is considered in a much more restrictive model.

The organization of this paper is as follows. Section 2 presents the model and some preliminaries.

Then Section 3 gives our importance sampling procedure, which is evaluated in Section 4. Section 5

gives some considerations on the implementation, simulation results, and discusses the limitation of our

recipe. Section 6 contains some remarks and outlook.

2 Model and preliminary results

This section prepares the exposition of our fast simulation procedure (Section 3), and its theoretical as-

sessment (Section 4). In Subsection 2.1 we present the model. Subsection 2.2 provides a number of large

deviation asymptotics (both the decay rate of the loss probability and sample path large deviations).

These results are needed to construct the importance sampling technique. A scheme for the numerical

computation of the decay rate and the optimal path to a bu�er over
ow are given in Subsection 2.3.

2.1 Model

Tra�c. We consider n i.i.d. on-o� sources feeding into a bu�ered resource. This resource is modeled as

a queue with in�nite bu�er size, drained at a constant rate C. The tra�c rate of each source alternates

between a peak rate, say 1, and 0. The activity periods constitute an i.i.d. sequence of random variables,

each of them distributed as a N-valued random variable A. The silence periods are also an i.i.d. sequence,

distributed as a N-valued random variables S. Both sequences are mutually independent. De�ne also

A(k) := Tra�c generated by a single source in steady state in a time interval of k time slots.

Later in our analysis we need the following assumption on the on- and o�-times:

Assumption 2.1 The random variables A and S are such that EA1+�
<1 (for some positive �) and

ES <1.
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This assumption has several implications { for details we refer to Section 2.1 of [8]. In the �rst place,

the fact that both EA and ES are �nite ensures that the long-run fraction of time the source spends in

the on-state is

p :=
EA

EA + ES
;

and the fraction spent in the o�-state is its complement 1 � p. Also, the residual activity period A
? is

well-de�ned: conditioned on the process being in the on-state, A? has distribution

FA?(k) := P(A?
> k) =

1

EA

1X
`=k

P(A > `);

the distribution of S? is given analogously.

Performance measure. We are interested in the steady-state probability of the bu�er content exceeding

level B. Hence, we follow a conventional approach in inferring �nite-bu�er performance from an in�nite-

bu�er model with a threshold at the �nite bu�er size. As emphasized in the introduction, we focus on the

asymptotic regime in which the number of sources grows large and the resources are scaled accordingly

[25]. To be more precise, we rescale the resources by the number of sources: C � nc and B � nb. This

scaling was �rst introduced by Weiss [25] and has proven to be very powerful, see e.g. [4, 6, 22]. It is

assumed that the system is stable and non-trivial:

� := p < c < 1:

In the above de�ned scaled model we de�ne

pn := steady-state probability that the bu�er content exceeds level nb.

Throughout this paper we use the representation

pn = P (9k 2 N : An(k)� nck > nb) ; (1)

where An(k) denotes the amount of tra�c generated in f1; : : : ; kg by the aggregate of the n sources. In

this paper, our goal is to estimate this probability by simulation, with some prede�ned accuracy. Since

we use representation (1) for the bu�er over
ow probability, we simulate the process fAn(k)�nck; k 2 Ng
which we allow to take any value in the interval (�1; B].

Dependence structures. The model presented above o�ers a high degree of versatility, as it allows us to

model a broad variety of dependence structures. Importantly, it covers both short-range dependent and

long-range dependent input. To model SRD tra�c input streams, we could use light-tailed on-periods.

We call a random variable light-tailed if its distribution function has a tail that decays at an exponential

or faster rate. We call this class E . Examples are the Exponential distribution, or, more generally, the

class of phase-type distributions.

To model tra�c with a dependence structure that ranges over a longer time, we use heavy-tailed on-

periods. Examples we consider in this work are the Pareto distribution and the Weibull distribution.
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Notably, in [26] it is shown that the superposition of many on-o� sources with Pareto sojourn-times

converges to fractional Brownian motion (with an appropriate scaling of the number of sources as well

as time), which exhibits the desired LRD features. The heavy-tailed distributions that we use in this

paper are in the class of subexponential distributions S:

De�nition 2.2 Suppose X1 and X2 are i.i.d. copies of the random variable X. If

lim
x!1

P(X1 +X2 > x)

P(X1 > x)
= 2;

the X is said to be subexponential. We write: X 2 S:

2.2 Large deviation results for the loss probability

This subsection focuses on the calculation of rough characteristics of the over
ow probability pn. Later

in this paper we use these asymptotics to �nd the change of measure of our importance sampling

procedure, and to establish a number of structural properties of the resulting simulation method. We

present two theorems: Theorem 2.3 �rst describes the asymptotics of pn, Theorem 2.5 describes the

system's most likely way to develop from an empty queue towards the rare event of bu�er over
ow.

For any value of the bu�er size b, under fairly general conditions, the probability pn decays exponentially

in n. In Theorem 2.3 below it is stated how to compute the corresponding exponential decay rate

I := � lim
n!1

1

n
log pn;

which implies the following rough approximation:

pn � e
�nI

; n large.

Theorem 2.3 has a long history. Botvich and Du�eld [4] proved it under very mild conditions on the

sources, whereas related results were derived in [6, 22]. An improvement was made by Likhanov and

Mazumdar [14]. The version that we use in this paper follows relatively directly from the result in [14].

Theorem 2.3 Under Assumption 2.1, and for A? 2 fE [ Sg,

I = inf
k2N

sup
�

�
�(b+ ck) � log Ee�A(k)

�
: (2)

Proof. As the proof is given in Mandjes and Borst [16], we limit ourselves to a short sketch. First de�ne

Ik := sup
�

�
�(b+ ck)� log Ee�A(k)

�
:

� Likhanov and Mazumdar [14] show that decay rate (2) applies if

lim inf
k!1

Ik

log k
> 0: (3)

Or, in other words, if there is an � > 0 such that Ik > � log k eventually.
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� Proposition 3.3 of [16] proves that EA1+�
< 1 implies, both for A 2 S and A 2 E , that for any

� 2 (0; 1 � p) there is an � > 0 such that for k large enough

P(A(k) > k(p+ �)) < k
��

:

In [14] it is shown that this implies (3). 2

A corollary that follows from the proof of Theorem 2.3 is the following.

Corollary 2.4 Under Assumption 2.1, and for A? 2 fE [ Sg, there is an � > 0 and a kmin 2 N such

that for k � kmin,

Ik > � log k: (4)

As is well-known from the theory of importance sampling, an optimal (i.e., zero variance) estimator

for the rare event probability is obtained if we would sample from the unknown distribution of the

stochastic process conditioned on the occurrence of the rare event [11]. In this paper we use importance

sampling techniques based on large deviations results to mimic this conditional distribution.

Importantly, decay rate (2) implicitly provides us the time-scale of a typical path to over
ow: the

optimizing k, say k
?, is the `most likely' duration of the busy period preceding over
ow, given over
ow

occurs. The relevance of this time-scale is clear: To obtain variance reduction, the importance sampling

parameters should be chosen such that they `mimic' the system's `most likely path to over
ow'.

To achieve this, clearly knowledge of time-scale k? is not enough; more detailed knowledge of that `most

likely path to over
ow' is required. This path, say f , is given by a sample path large deviation result

by Wischik [27]. Of course, f reaches over
ow at time k?:

Let us state Wischik's [27] result a little more precisely. Given that, for some k, An(k)=n� ck exceeds

b, Wischik [27] essentially proves that any deviation (according to some speci�c metric) of the process

(An(k)=n)k2N from the most likely path f (given below in Theorem 2.5) has an exponentially decreasing

probability (in n).

Theorem 2.5 The most likely path to over
ow is given by

f(j) =
EA(j) exp(�k?A(k

?))

E exp(�k?A(k?))
; (5)

j 2 N: Speci�cally, f(k?) = b+ ck
?
:

As said, we may interpret k? as the `most likely epoch of over
ow', as it turns out to be the �rst time

f(k)�ck attains level b. In fact, the bu�er starts to �ll at time 1, in f1; : : : ; k?g the bu�er level increases
to level b, whereas after k? the net input rate is negative.

The exact statement of Theorem 2.5 is found in [27]. Notably, a number of assumptions on the input

tra�c have to be ful�lled for this statement to hold. For a discussion on these we refer to Section 2 of

[27]. It is noted that they are stronger than our Assumption 2.1.
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2.3 Calculation of the decay rate and the optimal path to over
ow

As we saw, Theorems 2.3 and 2.5 present analytic expressions of both the decay rate I and the most

likely path to over
ow f . In our fast simulation procedure we need the numerical value of the decay

rate. In this subsection we indicate how this can be found. We also indicate how we can compute the

most likely path to over
ow numerically.

Abbreviate

ak := P(A = k);

a
?

k
:= P(A? = k);

sk := P(S = k);

s
?

k
:= P(S? = k):

First we point out how to compute moment generating function E exp(�A(k)). This can be done

recursively, as follows. Clearly, in evident notation,

Ee�A(k) = p � EA? e
�A(k) + (1� p) � ES? e

�A(k)
:

Both terms can be evaluated as follows:

EA? e
�A(k) =

k�1X
i=1

a
?

i
e
�iES e

�A(k�i) +

1X
i=k

a
?

i
e
�k
; ES? e

�A(k) =

k�1X
i=1

s
?

i
EAe

�A(k�i) +

1X
i=k

s
?

i
;

where

EAe
�A(j) =

j�1X
i=1

aie
�iES e

�A(j�i) +

1X
i=j

aie
�j
; ES e

�A(j) =

j�1X
i=1

siEAe
�A(j�i) +

1X
i=j

si:

It follows directly that Ee�A(`) (` = 1; : : : ; k � 1) have to be computed to obtain Ee�A(k) . Now it is

not hard to see that the complexity of computing Ee�A(k) is O(
P

k

`=1O(`)) = O(k2). In Section 3 it is

explained that we need to compute this moment generating function for k = 1 to k = k0, for some �xed

positive integer k0 (larger than k
?).

Having a procedure to �nd the moment generating function Ee�A(k) , it is not hard to �nd Ik, because

of the convexity in �; we call the optimizing argument �k. To �nd I, we compute the in�mum over k.

In order to compute the optimal path to over
ow (5), we need to compute EA(`) exp(�A(k?)) for

` = 1; : : : ; k?. This can also be done recursively as follows:

EA(`)e�A(k) = p � EA?A(`)e�A(k) + (1� p) � ES?A(`)e�A(k)
:

Both terms can be evaluated as follows:

EA?A(`)e�A(k) =

`�1X
i=1

a
?

i e
�i

h
iES e

�A(k�i) + ESA(`� i)e�A(k�i)
i
+ `

k�1X
i=`

a
?

i e
�iES e

�A(k�i) + `

1X
i=k

a
?

i e
�k
;

ES?A(`)e�A(k) =

`�1X
i=1

s
?

i EAA(l � i)e�A(k�i)
;
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where

EAA(`)e
�A(j) =

`�1X
i=1

aie
�i

h
ESA(l � i)e�A(j�i) + iES e

�A(j�i)
i
+ `

j�1X
i=`

aie
�iES e

�A(j�i) + `

1X
i=j

aie
�j
;

ESA(`)e
�A(k) =

`�1X
i=1

siEAA(j � i)e�A(j�i)
:

3 Fast simulation procedure { importance sampling

This section describes the importance sampling procedure. In Section 3.1 we review the general frame-

work of rare event simulation and importance sampling. Then we formalize our algorithm in Section

3.2. Section 3.3 presents the required change of measure.

3.1 Rare event simulation and importance sampling

Let Un be the event of a bu�er over
ow, i.e., pn = P(Un) with

Un = f9k 2 N : An(k)� nck > nbg:

Since we assume many sources n and because pn # 0 (n!1) (cf. Theorem 2), we are in setting of rare

event simulation. Rare event simulation has an intrinsic problem, as will be explained below.

Infeasibility of naive methods. Let p̂n be an estimator of pn. In order to guarantee its accuracy, one aims

for a small relative error (RE), de�ned as the ratio of the standard deviation of p̂n and the estimated

quantity pn.

Requirement 3.1 The relative error RE of the simulation experiment should be below �.

Naive simulation, i.e., just simulating sample paths and estimating pn by the fraction of sample paths

that lie in Un, is not e�cient: with Nn de�ned as the number of simulation replications, then [24, page

335-336]

Nn �
1

�2 � pn
:

In other words, the number of samples needed is inversely proportional to the probability to be estimated.

Consequently, since the bu�er over
ow probability decays exponentially (in n), Nn blows up at an

exponential rate (keeping the relative error RE �xed). This explains why naive simulation is not a

feasible method for estimating rare events. Clearly, variance reduction is needed. To assess the quality

of variance reduction techniques, a number of optimality criteria have been developed.

Optimality notions. If the number of needed simulation replications stays bounded for a �xed relative

error as n goes to in�nity, then one says that the simulation estimator has a bounded relative error.
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Usually it is not easy to develop simulation algorithms with a bounded relative error, and hence one

settles for some weaker optimality notion. A commonly used benchmark is asymptotic optimality (also

known as asymptotic e�ciency), see e.g. Heidelberger [11]. In the setting of probabilities which decay

at an exponential or faster rate, we have the following de�nition:

De�nition 3.2 We call an estimator p̂n of pn asymptotically optimal if

lim
n!1

1

n
log
�
E p̂2

n

�
= 2 lim

n!1

1

n
log pn: (6)

In Section 4 we show that our proposed method is asymptotically optimal.

From Var p̂2
n
= E (p̂2

n
)� (pn)

2 � 0 it is easy to verify that the left hand side in (6) is not smaller than the

right hand side. Hence, the best possible estimator achieves equality. Informally, asymptotic optimality

entails that the number of simulation replications that are needed to obtain a �xed relative error may

grow as n grows, but this growth is at a smaller than exponential rate.

Variance reduction. The variance reduction technique we use to improve over ordinary Monte-Carlo

simulation is importance sampling, see the survey paper [11] for an extensive treatment. The idea

of importance sampling can be explained as follows. Let in our original stochastic model all random

variables be de�ned on a probability space, corresponding to measure P. Then, in the simulations the

system is simulated under measure Q (with P absolutely continuous relative to Q). The new measure Q

should be chosen such that the rare event under consideration occurs more frequently. To get an unbiased

estimate, the observations are weighed by a likelihood ratio, measuring the di�erence in likelihood of the

simulation output in both models.

More formally, the procedure can be described as follows. Denote in the sequel expectation with respect

to P by E (�), and expectation with respect to Q by E (Q)(�). Simulate the queue until it is decided

whether event Un occurs or not; in the former case I(Un) := 1, in the latter case I(Un) := 0: Then it is

a standard result that unbiasedness is recovered if the observation I(Un) is weighed by likelihood ratio

dP=dQ (!) =: L(!):

pn = P(Un) = E (Q)
�
I(Un)

dP

dQ

�
:

This L is determined by the sample paths ! generated in the individual simulation experiment: L(!) is

de�ned as the ratio of the probability density of ! under the original measure P, and the density under

the importance sampling measure Q . Details on the calculation of these likelihood ratios are given in

Section 3.2 and 3.3.

Large deviations. A convenient choice of Q can be obtained by using large deviation theory. The theory

of sample path large deviations, cf. Theorem 2.5, provides us the most likely path f to a bu�er over
ow.

The idea is to construct the change of measure Q such that typical sample paths drawn under Q resemble

this f . In Section 3.3 we give our new measure Q , in Section 4.3 we show that it follows on average the

path given in Theorem 2.5.
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If we use this change of measure, it turns out that we can bound the likelihood ratio of over
ow at time

k
? with e

�nI { such bounds are typically required to prove asymptotic optimality, see also Section 4.

However, the likelihood ratio of over
ow at another time k 6= k
? is not bounded so tightly. We solve this

problem by partitioning Un into several disjoint subsets (Un(k))k2N , and to estimate the probabilities

P(Un(k)) separately by suitable changes of measure Qk .

Partitioning of the over
ow event. Truncation. Let K := inffk 2 N : An(k) � nck > nbg be the

epoch of (the �rst) bu�er over
ow. Then the event of over
ow for the �rst time at time k is given by

Un(k) := fK = kg: De�ning pn(k) := P(Un(k)), and noticing that the events (Un(k))k2N are disjoint, it

is clear that

Un =

1[
k=1

Un(k) and pn =

1X
k=1

pn(k):

Notice that over
ow is only possible for k larger than b=(1 � c) (all sources send at peak rate all the

time). Hence, the above summation does not necessarily start at k = 1. However, for notational ease

we neglect this issue.

As said above, in our simulation procedure we use a sequence of measures Qk to estimate the probabilities

pn(k) by estimators p̂n(k), with k 2 N. Since the bu�er over
ow probability is the sum of in�nitely

many of such probabilities we truncate at k0: pn is estimated by p̂n :=
P

k0

k=1 p̂n(k) for some large k0.

Obviously, epoch k0 should be chosen such that the error made is small, where the error is de�ned as

the relative bias (RB):

RB =
pn � E p̂n

pn
:

Obviously RB is larger than zero, since p̂n underestimates pn(b; c). In this paper we impose the require-

ment that the RB is smaller than some small prede�ned �:

Requirement 3.3 For any �xed � > 0, k0 is chosen such that the relative bias RB is below �. Equiva-

lently: E p̂n � pn � E p̂n=(1� �).

Notice that our estimator is biased: E p̂n 6= pn. However, we are not loosing much if we choose � small.

From a practical point of view there is not much di�erence between an unbiased estimator with 10%

RE on the one hand, and a biased estimator (� = 0:05) with 5% RB.

3.2 The algorithm

In this section we give a description of our algorithm in pseudo code. Here � is the relative error and �

is the relative bias.

Find decay rate I [See Section 2.3].

Determine k0 such that RB < epsilon [See Section 4.1].

11



M := 0

FOR k in {1,...,k0} DO

Calculate change of measure Q(k) [see Section 3.3].

END

REPEAT

FOR k in {1,...,k0} DO

Simulate realization w under Q(k)

Determine if I = 1 or 0

Determine likelihood ratio L(w) [see Section 3.3].

Update mean M(k) and variance V(k) of kth estimator

END

Update mean M and variance V of estimator

UNTIL RE = sqrt(V)/M < delta

For the sample means and sample variances we use the standard formulas. In the above algorithm, we

need for all k 2 f1; : : : ; k0g the change of measure Qk . The calculation of this importance sampling

distribution is the subject of the next subsection.

3.3 The exponential change of measure

As explained in Section 3.1, we estimate pn by estimating the individual pn(k), all of them with a speci�c

change of measure. As pn(k) decays exponentially, it is a natural choice to use an exponential twist of

A(k) :

Qk (A(k) = x) =
e
�kxP(A(k) = x)

E exp(�kA(k))
; (7)

where �k is the optimizing � in

sup
�

�
�(b+ ck) � log Ee�A(k)

�
:

We will use the abbreviation Q for Qk? . We say that we twist the distribution of A(k) by an exponential

amount of �k. Unfortunately, the new measure Qk does not provide us immediately the change of

measure of the on-times and o�-times during the time interval f1; : : : ; kg. Below we will propose a

change of measure of these random variables; later we will show that this change of measure coincides

with the desired distribution (7).

Change of measure. For any of the n sources, we propose the following change of measure. Like

under the original measure P, the source alternates between on and o�, but the on- and o�-times are

time-dependent:

12



� First we draw the `initial state', i.e., active or silent. The source is on with probability

�k :=
�AEA? e

�kA(k)

Ee�(k)A(k)
;

and o� with probability 1� �k:

� The durations of the initial on or o�-state are twisted as follows:

Qk (A
? = i) =

a
?

i
e
�kiES e

�kA(k�i)

EA? e�kA(k)
; Qk (S

? = i) =
b
?

i
EAe

�kA(k�i)

ES? e�kA(k)
:

for i < k and

Qk (A
? = k) =

P
1

i=k
a
?

i
e
�kk

EA? e�kA(k)
; Qk (S

? = k) =

P
1

i=k
b
?

i

ES? e�kA(k)
:

� Similarly, a burst or silence starting at time ` is twisted as follows:

Qk (A = i j `) = aie
�kiES e

�kA(k�`�i)

EAe
�kA(k�`)

; Qk (S = i j `) = biEAe
�kA(k�`�i)

ES e
�kA(k�`)

:

for i < k � ` and

Qk (A = k � ` j `) =
P

1

i=k�`
aie

�k(k�`)

EAe
�kA(k�`)

; Qk (S = k � ` j `) =
P

1

i=k�`
bi

ES e
�kA(k�`)

:

Let X(j) = 1 (0) represent the event that the source is in the on (o�) state at time j, and introduce the

short notation P(i1; : : : ; ik) := P(X(1) = i1; : : : ; X(k) = ik); de�ne Qk (i1; : : : ; ik) analogously (replace P

by Qk ). It is not hard to verify that

Qk (i1; : : : ; ik) =
P(i1; : : : ; ik)e

�(k)
P

k

j=1
ij

Ee�kA(k)
;

as required. Thus we arrive at the following Proposition:

Proposition 3.4 The above change of measure coincides with the desired new distribution (7).

We now point out how to calculate the likelihood ratios, to be used in the algorithm of Section 3.2.

Suppose the n i.i.d. values of A(k) are sampled, and have values !1; : : : ; !n: Then it can be checked

that the likelihood ratio of the experiment is

L(!1; : : : ; !n) :=
dP

dQk

(!1; : : : ; !n) = e
��k

P
n

i=1
!i

�
Ee�kA(k)

�
n

: (8)

It is important to observe that, using the above change of measure, the likelihood ratio is small in the

regions of interest, which is a desirable property of importance sampling distributions. This is because

An(k) > nb+ nck implies that LI(Un(k)) is bounded from above by e
�nIk :

LI(Un(k)) � e
�n�k(b+ck)

�
Ee�kA(k)

�
n

= e
�nIk : (9)
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Notice that the exponential change of measure changes during the simulation run. This is essentially

di�erent from many earlier studies [12, 18, 20]. In those studies a constant exponential change of measure

is derived. The main di�erence with our work is that we look at the many-sources regime, whereas there

it is focused on large-bu�ers asymptotics. Importantly, the techniques of [12, 18, 20] do not allow for

heavy tails, whereas our many-sources-based approach does.

4 Optimality properties of the importance sampling procedure

In this section we prove that the proposed change of measure has a number of desirable properties.

First we analytically derive an expression for the `simulation horizon', k0, given Requirement 3.3. In

Section 4.2 we show that this choice of k0 implies that the proposed procedure is asymptotically optimal.

We conclude this section by proving that our change of measure follows the optimal path identi�ed by

Wischik [27].

4.1 Derivation of simulation horizon k0

As explained in Section 3, the simulation is truncated at epoch k0. In this section we describe how to

choose this k0. Recall that k0 has to be chosen such that the relative bias of p̂n is smaller than some

small preselected number �, i.e., k0 has to be chosen such that

RB =
pn �

P
k0

k=1 pn(k)

pn
=

P
1

k0+1 pn(k)

pn
< �:

We �nd an upper bound on RB by deriving an upper bound on
P

1

k=k0+1 pn(k) and a lower bound on

pn. This gives us a procedure to �nd a k0 that guarantees that the relative bias RB does not exceed �.

� First we �nd a lower bound on pn. Obviously,

pn = P(9k <1 : An(k)� nck > nb) � P(An(k
?) > nb+ nck

?) � P(An(k
?) = dnb+ nck

?e):

Notice that the A(k?) are distributed on f0; : : : ; k?g. Because of this �nite state space, we may

invoke Inequality (2.1.13) of Dembo and Zeitouni [7]. It implies that the latter probability is not

smaller than

(n+ 1)�(k
?+1) exp

�
�nJ

�
1

n
dnb+ nck

?e
��

; with J(x) := sup
�

�
�x� log Ee�A(k)

�
:

We could use this lower bound in our calculation of k0, but we might wish to replace it by a cleaner

expression. This is done as follows. Clearly, for large n,

nJ

�
1

n
dnb+ nck

?e
�
� nJ

�
b+ ck

? +
1

n

�
� nJ(b+ ck

?) + J
0(b+ ck

?):

In the last expression J(b+ ck
?) equals Ik? = I. Also J

0(b+ ck
?) reduces to �k? , due to Exercise

5 of [5, pag. 74].
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� Now we look for an upper bound on
P

1

k0+1 pn(k). In Corollary 2.4 we showed that Ik > � log k for

some positive constant � and all k � kmin. Noticing that pn(k) is smaller than P(An(k)�nck > nb);

a Cherno� bound argument implies that

pn(k) � e
�nIk :

Suppose k0 is larger than kmin. Then, with n larger than 1=�,

1X
k=k0+1

pn(k) �
1X

k=k0+1

e
�nIk �

1X
k=k0+1

e
�n(� log k)

�
Z
1

k0

x
�n�dx =

k
�n�+1
0

n�� 1
:

We are left with the task of �nding the smallest k0 such that

k
�n�+1
0

n�� 1
� (n+ 1)k

?+1 � enI � e�k? < �:

A straightforward calculation gives that k0 could be chosen as the smallest integer larger than

exp

�
nI + �k?

n�� 1

�
�
�
(n+ 1)k

?+1

(n�� 1)�

� 1

n��1

: (10)

Call this `simulation horizon' k0(n). It is not hard to see that the �rst factor tends to a constant as

n ! 1, whereas the second factor tends to 1. It is not hard to see that k0(n) is bounded. A fortiori,

log k0(n) = o(n), a property that we need in Section 4.2.

Our numerical experiments showed that, to reduce k0, it is often bene�cial to use bounds of the form

Ik > � log k � � (with �; � > 0), instead of bounds like Ik > � log k. Then the k0(n) looks as in

(10), but with I replaced by I + �. In order to �nd the best � and � (i.e., the ones that minimize

the value of k0), the following heuristic procedure can be followed: (1) choose a k, and solve � and �

from Ik = � log k � � and Ik � Ik�1 = (d=dk)� log k. (2) Compute the resulting value of k0 with the

procedure described above and check whether � and � are feasible, i.e. n > �
�1 and I` � � log ` � �

for ` = k0; : : : ; kmax for some large kmax. (3) Repeat this for a sequence of values of k, and use the one

that minimizes k0 (provided that the corresponding � and � are feasible).

In Figure 1 we applied the algorithm above for a typical example. We present the graph of the functions

Ik and � log k � � for the optimal � and �. Note that the latter function lies just above Ik, especially

for larger values of k. This indicates that we have chosen � and � and thus k0 economically.
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Figure 1: Computation of �, � and k0 for A �Pareto
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4.2 Asymptotic optimality

We now prove that our simulation procedure is asymptotically optimal, given the simulation horizon

k0(n) derived in the previous subsection.

Proposition 4.1 The proposed procedure is asymptotically optimal if log k0(n) = o(n): In particular,

choosing k0 according to (10) is su�cient for asymptotic optimality.

Proof. From (9), for all j 2 N, it holds that E (Q)
�
L
j
I(Un(k))

�
� e

�jnIk : This immediately gives

E (Q)

0
@
 

k0X
k=1

LI(Un(k))

!2
1
A �

k0X
k=1

e
�2nIk + 2

k0X
k=1

k�1X
`=1

e
�nIk�nI` � k

2
0e
�2nI

;

using I � Ik for k 2 N. This immediately gives that p̂n is an asymptotically optimal estimator of pn if

log k0 � log k0(n) is o(n), cf. Condition (6). 2

In De�nition 3.2 we focused on estimators with a subexponentially growing number of `experiments'

that is required to get a certain RE (in the scaling parameter n). Here, an experiment is de�ned as the

e�ort that is done to get a single observation, so in fact k0(n) `runs' (where the ith run has a length of

i epochs). This aspect is not taken care of by our `asymptotic optimality' notion. This problem can be

solved by using more sophisticated versions of the asymptotic optimality criterion. We could consider

estimators for which the amount of `work' (expressed for instance in CPU time) grows subexponentially

in n. Clearly, from a practical point of view, this seems a fairer notion. However, because k0(n) is

bounded, it is straightforward that our procedure will also be optimal in that sense.

Although it is not re
ected in the above optimality notions, our importance sampling algorithm still

consumes considerable simulation time if k0(n) turns out to be large, because of the k0(n) runs per
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experiment. Clearly, this plays an important role if b is large. In Subsection 5.1 we describe a heuristic

to reduce the number of these runs as a method to speed up the simulation algorithm.

4.3 Relation to the optimal path

In Proposition 4.1 we established the asymptotic optimality property of our importance sampling pro-

cedure. We now present our second proposition supporting the choice of our change of measure. We

prove that the average path under the importance sampling measure Q corresponding to k
? coincides

with the optimal path to over
ow that was identi�ed by Wischik [27].

Proposition 4.2 The average path of the process under the importance sampling measure corresponding

to k = k
? coincides with the most likely path identi�ed by Wischik [27].

Proof. The probability that, under Q , a source is in the on-state at time j 2 f1; : : : ; k?g is given by

X
ik ;k 6=j

Q(i1 ; : : : ; ij�1; 1; ij+1; : : : ; ik?) =
X

ik;k 6=j

P(i1; : : : ; ij�1; 1; ij+1; : : : ; ik?)
e
�k?

�P
k
?

`=1;`6=j
i`+1

�

Ee�k?A(k?)

=
X

i1;:::;ik?

P(i1; : : : ; ij�1; 1; ij+1; : : : ; ik?)ij
e
�k?

�P
k
?

`=1
i`

�

Ee�k?A(k?)

=
EX(j)e�k?A(k?)

Ee�k?A(k?)
:

So the mean amount of tra�c sent by a single source in f1; : : : ; jg is
jX

i=1

EX(i)e�k?A(k?)

Ee�k?A(k?)
=
EA(j)e�k?A(k?)

Ee�k?A(k?)
= f(j);

where the last equation is due to (5). 2

The path to over
ow depends on the distributions of the on- and o�-times. These are treated in detail

in [15]. We will re
ect on some of them here. As demonstrated in [15], the shape of the o�-times

does not really a�ect the qualitative behavior of the queue (i.e., I(b) as a function of b), whereas the

shape of the on-times does. For that reason, in the experiments below, we leave the distribution of the

o�-times constant (Geometric). The on-times are chosen respectively Geometric (light tail), Weibull

(`moderately' heavy tail), and Pareto (heavy tail). The exact de�nitions of these distributions are given

in Section 5.2.

I. Distribution of activities and silences during path to over
ow. We here focus on the distributions of

the residual bursts (silences), given that the source is on (o�) at time 0, under the new measure.

As follows implicitly from [17], for small b there is hardly any di�erence between the new distributions.

However, there are signi�cant di�erences for larger b as can be seen in Figure 2, 3 and 4 where we

plotted the distributions of A? and S
? under both the original and the importance sampling measure.

We use EA = 5, ES = 10 and c = 0:37 in all the �gures in this subsection.
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� We see that for Geometric on-times, the residual silences (bursts) are relatively short (long) under

Q , compared to P. The probability that a sources stays in the on-state (or o�-state) during the

entire path to over
ow is extremely small. The intuition is that under Q the sources alternate

between on and o�, but with a longer on-time and shorter o�-time than under P:

� For Weibull and Pareto on-times, the o�-times under the importance measure show almost no

deviant behavior from their normal statistical law, but the bursts are relatively large: There is

a relatively large fraction of sources that transmits during the entire path to over
ow. Here the

intuition is that there are essentially two types of sources: a number of them has one single huge

on-time during the entire path to over
ow, whereas the remaining sources alternate like they would

do under P:
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Figure 2: Distributions of the residual on- and o�-times for A �Geometric

P(A? � k)
Q(A? � k)
P(S? � k)
Q(S? � k)
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Figure 3: Distributions of the residual on- and o�-times for A �Pareto

P(A? � k)
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Figure 4: Distributions of the residual on- and o�-times for A �Weibull

P(A? � k)
Q(A? � k)
P(S? � k)
Q(S? � k)

An alternative technique for rare event simulation is ReSTART. This variance reduction technique

can roughly be explained as follows. Suppose the chance on the bu�er over
ow over level B must

be estimated. In this setting ReSTART (in its most simple form) is implemented by introducing a

threshold at, say, B=2. Each time a sample path reaches level B=2 for the �rst time it is split into

several subpaths which evolve independently from then on. For ReSTART to be successful as a variance

reduction technique it is necessary that the rare event is split into two parts: One part involving unlikely

realizations of random variables that are drawn before the threshold B=2 has been reached, and the

other part involving unlikely realizations of random variables that are drawn after level B=2 has been

reached.
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As we saw above, for heavy-tailed on times, a bu�er over
ow is likely to be caused by a fraction of

sources which transmit during the entire path to over
ow. In other words: a bu�er over
ow is likely to

be caused by the fact that a fraction of the sources have to transmit during the entire path to over
ow,

in particular during the part of the path to over
ow where the threshold B=2 has not yet been reached.

This explains why ReSTART does not work so well here.

II. Path to over
ow: number of transmitting sources, and time to over
ow. We review some of the

results from [15, 16, 17]. Consider the optimal epoch of over
ow k
?(b) as a function of the bu�er size.

For small b, k?(b) is more or less invariant in the distribution, for given means EA and ES. For larger b,

the value of k?(b) increases linearly for Exponential and Weibull on-times, and in a superlinear way for

Pareto on-times (like b log b). This implies that for Pareto bursts the net input rate during the path to

over
ow is small if b is large: it looks like (log b)�1: The o�-time distribution does not play an essential

role other than via its �rst moment.

In Figure 5 and 6 we plotted the evolution of the fraction of the sources which are in the on-state during

the optimal trajectory to over
ow for a typical example. These graphs can be obtained easily from

the optimal paths (to be calculated numerically as described in Section 2.3). For very small b there

is hardly any di�erence between the fraction of sources in the on-state during the optimal trajectories

for the di�erent on-time distributions. In Figure 5 we plotted these fractions for b = 0:5 (which is in

the intermediate bu�er range). The net rate of sources is positive if the fraction of the sources in the

on-state is larger than 0.37. We see that during the optimal trajectory to over
ow the bu�er starts to

�ll immediately, �rst very slowly, later the sources begin to conspire and at the end of the trajectory

the net input rate of the bu�er process drops down to almost zero.

In Figure 6 we raised the bu�er capacity to b = 5 (large b). Here we see a clear di�erence between

Geometric (light-tailed) on-times on one hand and Weibull and Pareto (heavy-tailed) on-times on the

other hand. For Geometric on-times the fraction of sources in the on-state is constant during the largest

part of the trajectory to over
ow. This is because all the sources conspire to �ll the bu�er; during the

path to over
ow they alternate between on and o�. On the other hand, for Weibull and Pareto on-times

the bu�er �lls because of the deviant behavior of some of the sources: they have very long bursts during

the optimal trajectory to over
ow, as we saw in Figure 3 and 4.
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Figure 5: Fraction of the sources in the on-state during the optimal trajectory to over
ow for b = 0:5

A �Geometric
A �Pareto
A �Weibull
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Figure 6: Fraction of the sources in the on-state during the optimal trajectory to over
ow for b = 5

A �Geometric
A �Pareto
A �Weibull

5 Implementation issues and numerical results

This section focuses on the practical implementation and numerical results. In Section 5.1 we point out

how to reduce the number of simulation runs per experiment from k0 to a considerably lower value. We

also point out how we can obtain a smaller value of k0 heuristically. Section 5.2 assesses the speed up,

compared to naive simulation. We conclude this section by discussing the limitations of our method.
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5.1 Accelerations

Reducing the number of runs per simulation experiment. In realistic scenarios, simulation horizon k0 can

be pretty large, particularly for large b. Since each simulation replication consists of k0 sample paths,

importance sampling can be rather time consuming. We discuss a heuristic to accelerate the simulation

algorithm described in Section 3.2 by reducing the simulation e�ort per simulation replication. A

disadvantage of this heuristic is that the variance of the simulation estimate is bounded less tightly. In

this case we cannot prove asymptotic optimality anymore. In the simulation procedure as described in

Section 3.2, each probability P(Un(k)) is estimated separately using its own simulation runs with its

own change of measure. The change of measure corresponding to a bu�er over
ow that occurs for the

�rst time at time k can also be used to estimate P(Un(`)) for ` < k. We use this fact in the following

way to reduce the number of runs per simulation experiment:
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ij = k0 for some positive integer �. A way to reduce the simulation time is to simulate for
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in one simulation experiment using the change of measure corresponding to ij+1. Of course, more

sophisticated versions of the procedure described above are possible.

One run per simulation experiment. In order to reduce the number of runs per simulation experiment

to one, we can simulate for pn by using the change of measure corresponding to k?. Since this change of

measure is only de�ned for A(k) for k � k
?, we have to extend this change of measure for residual bursts

and silences that end after k? and for bursts and silences that start after k?. We do this as follows for

the residual bursts and silences:
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for i � k
?. Similarly, a burst or silence starting at time ` is twisted as follows:
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for i � k � `. The intuition behind the above change of measure is that till k? it gives on average the

optimal path to over
ow and after k? we `stop' using importance sampling. We have not been able to

prove asymptotic optimality of this procedure.
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Cutting down the simulation horizon. The simulation horizon k0 can be very large in many practical

scenarios. Therefore, it makes sense to use heuristic methods to cut down k0 without violating the

maximum relative bias condition of the estimator for pn.

We propose a heuristic to derive a higher lower bound on pn than derived in Section 4.1. According

to the Bahadur-Rao theorem (see, e.g., Theorem 3.7.4 of [7]), 
pn(k
?) � p

n
�1

exp(�nI) (n ! 1) for

a constant 
. The inequality pn > pn(k
?) suggests to use the heuristic bound pn >

p
n
�1

exp(�nI).
We can compare

p
n
�1

exp(�nI) with the on simulation based estimator of pn to check whether this

inequality is justi�ed. Similarly to (10), we can choose

k0 =

&�
exp(n(I + �))

p
n

(n�� 1)�

� 1

n��1

'
: (11)

5.2 Results

In this subsection we present numerical results. We compare the importance sampling algorithm (with

and without accelerations) with naive simulation and with two asymptotic approximations. We use

the asymptotic approximation pn � exp(�nI(b)) which is induced by the large deviations results from

Section 2.2 and the asymptotic approximation pn �
p
n
�1

exp(�nI) which is induced by the Bahadur-

Rao theorem (see also Section 5.1).

Comparison between the estimates of pn. The standard e�ort of any simulation algorithm is de�ned as

the the variance per simulation replication times the CPU time per simulation replication. For standard

simulation the variance per simulation replication is pn(1� pn) and this variance is estimated by using

the accurate estimate for pn obtained by importance sampling (without the acceleration described in

Section 5.1). The e�ciency ratio of a simulation technique is de�ned as the ratio of the standard e�ort

of naive simulation upon the standard e�ort of the simulation algorithm. We use the e�ciency ratio to

compare the e�ciency of the di�erent simulation algorithms with each other.

To compare the asymptotic approximations with the simulation algorithms, we compute the relative

deviation of the asymptotic approximations from the on simulation based estimates.

The on- and o�-time distributions. The on- and o� times are N-valued random variables. Like in Section

4.3, we choose Geometrically distributed o�-periods. For the on-periods we choose the Geometric(q1)

distribution (light tail) with

P(A = k) = (1 � q1)
k�1

q1 (0 < q1 < 1);

the Weibull(�; �) distribution (`moderately' heavy tail) with

P(A = k) = e
�[�(k�1)]� � e

�[�k]� (0 < � < 1; � > 0);

and the Pareto(�; �) distribution (`very' heavy tail) with

P(A = k) = [�=(� + k � 1)]� � [�=(� + k)]� (�; � > 0):
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It is not hard to develop procedures that give, for a given value of EA, q1 (Geometric), � (Weibull, for

given �), and � (Pareto, for given �).

Values of the parameters. We choose n = 200, EA = 5, EB = 10, c = 0:4, � = 2:5 and � =

0:4. We choose the maximum relative bias � equal to 0.05. This results in the Pareto(2.5,6.707),

Weibull(0.4,0.7688) and the Geometric(0.2) distribution. We compute k0 from the formula (11).

Results. The results are presented in Table 1, 2 and 3. First we give the simulation results using three

di�erent algorithms. The algorithm based on one simulation run per simulation replication is denoted

with `1 run', the simulation algorithm that simulates for each P(Uk) separately is denoted with `many

runs', and the simulation that reduces the number of runs per simulation replication is denoted with

`some runs' (we use � = 10). The percentages denote the relative half-width of their 99% con�dence

intervals (based on the Normal distribution). The numbers between parentheses denote the e�ciency

ratio (we use the estimate of pn from algorithm `some runs' as an approximation for the true value

of pn). We compute the variance per simulation replication for naive simulation via the well-known

formula pn(1� pn).

We also give two approximations. Here the number between the brackets denotes the ratio of the approx-

imation and the (estimated) true value of pn. For each scenario we use 10,000 simulation replications

for the algorithms `many runs' and `some runs', and we use 1,000 simulation replications for algorithm

`1 run'. We choose a �xed number of simulation replications rather than simulating till the relative

error has decreased beneath some pre�xed level �. In this way the computer program does not need to

memorize all the changes of measure.

Table 1: Estimates of p200 for Geometric(0.2) on-times

b = 0:1 b = 0:5 b = 1

k0 = 30, k? = 5 k0 = 41, k? = 13 k0 = 52, k? = 20

1 run 1:16E�3� 12:3% (55) 2:04E�7� 13:7% (2:6E5) 1:05E�11� 21:1% (1:9E9)

many runs 1:06E�3� 12:3% (1:9E2) 2:30E�7� 13:3% (6:2E5) 1:21E�11� 12:8% (1:1E10)

some runs 1:19E�3� 15:3% (10) 2:39E�7� 19:4% (2:8E4) 1:26E�11� 26:4% (1:8E8)

exp(�nI) 5:23E�3 (440%) 1:23E�6 (516%) 6:47E�11 (514%)p
n
�1

exp(�nI) 3:70E�4 (31%) 8:73E�8 (36%) 4:58E�12 (36%)

Table 2: Estimates of p200 for Pareto(2.5,6.707) on-times

b = 0:1 b = 0:5 b = 1

k0 = 65, k? = 6 k0 = 98, k? = 19 k0 = 131, k? = 32

1 run 1:58E�3� 9:5% (80) 4:01E�6� 10:5% (2:4E4) 1:67E�8� 15:3% (2:8E6)

many runs 1:68E�3� 11:4% (99) 4:21E�6� 12:8% (2:0E4) 1:82E�8� 13:3% (3:4E6)

some runs 1:61E�3� 7:6% (23) 4:12E�6� 6:8% (7:6E3) 1:84E�8� 7:3% (1:2E6)

exp(�nI) 6:69E�3 (478%) 1:96E�5 (477%) 8:86E�5 (481%)p
n
�1

exp(�nI) 4:73E�4 (30%) 1:93E�6 (34%) 6:26E�9 (34%)
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Table 3: Estimates of p200 for Weibull(0.4,0.7688) on-times

b = 0:1 b = 0:5 b = 1

k0 = 177, k? = 9 k0 = 243 , k? = 26 k0 = 292, k? = 43

1 run 3:44E�3� 7:7% (60) 1:02E�4� 7:8% (2:0E3) 5:52E�6� 9:0% (2:8E4)

many runs 3:49E�3� 11:7% (16) 1:05E�4� 13:5% (2:7E3) 6:45E�6� 13:3% (3:9E3)

some runs 3:45E�3� 4:9% (10) 1:14E�4� 5:2% (1:6E2) 6:02E�6� 7:1% (1:4E3)

exp(�nI) 1:31E�2 (486%) 4:91E�3 (491%) 2:75E�5 (456%)p
n
�1

exp(�nI) 9:26E�3 (34%) 3:47E�5 (35%) 1:94E�6 (32%)

All three importance sampling algorithms produce accurate estimates for pn. The time needed is

considerably smaller than under naive simulation { of course, the smaller the probability to be estimated,

the larger the e�ciency ratio. The e�ciency ratio is typically in the order 104� 105 if pn is about 10�6,

and in the order of 107 if pn is about 10�8: There is no clear-cut answer to the question which method

works best, since this seems to depend on the speci�c scenario.

We see that the asymptotic approximations are not very accurate, but they seem to be o� by almost

a constant factor. This can be helpful to �nd (relatively) accurate approximations for pn for scenarios

with parameter values for which even importance sampling is time consuming.

5.3 Discussion

Although our importance sampling procedure clearly outperforms naive simulation, the method has

some limitations. Some of these are `general' limitations that arise when estimating the bu�er over
ow

probability via equation (1).

� For some scenarios, given some pre�xed relative bias, the simulation horizon k0 is way too large

to guarantee that a simulation replication will end in a reasonable amount of time. In some cases

deriving a smaller k0 using tighter (heuristic) bounds will help, but in other cases not. Particularly

for heavy-tailed on-times, k0 tends to be large.

� The value of k0 can also be large for large b or highly loaded queues (the latter means that the

drift of the process fAn(k)� ckgk is, even under the new measure, hardly positive).

� When the number of sources grows large, the simulation e�ort per replication grows proportionally.

Obviously, relying on equation (1), this is hard to prevent.

6 Remarks and outlook

For the model with a large number of on-o� sources, we found the change of measure that `mimics' the

most likely path to over
ow. However, this most likely path is given in Wischik [27] for many other

input processes (for instance Gaussian inputs). For these input processes it would be interesting to �nd

the change of measure that goes with the optimal path.
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Also the extension to networks (for instance tandems, or feedforward networks) in the many-sources

regime is not explored yet. Finally, we could consider other service disciplines: in the present study we

focused on FIFO service, whereas in real networks also priority disciplines and generalized processor

sharing may be implemented.
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