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Abstract

In a standard general equilibrium model it is assumed that there are no price restictions and
that prices adjust infinitely fast to their equilibrium values. Price rigidities may cause that
a competitive equilibrium cannot be attained, and rationing on net demands or supplies
is needed to clear the markets. Bénassy, Dreze and Younes proved in the mid 1970s that
there exist equilibria with rationing. Moreover, rationing is such that not both demand and
supply of a good are rationed simultaneously, at least one commodity is not rationed at all,
and there is rationing on the net supply or net demand of a good only if the price of that
good is on its lower or upper bound, respectively. In the 1980s disequilibrium models with
only rationing on net supplies were introduced. In all these models prices are restricted by
positive lower and upper bounds.

In this paper the set of admissible prices is allowed to be an arbitrary convex set.
For such an arbitrary set it cannot be guaranteed that there exists a constrained equilib-
rium satisfying that a price will be on its upper or lower bound in case of rationing. We
introduce a more general equilibrium concept, called Quantity Constrained Equilibrium
(QCE). At such an equilibrium the levels of supply and demand rationing are completely
determined by the components of a direction in which the price system cannot be moved
further without leaving the set of admissible prices. When the set is compact, we show
the existence of a connected set of QCEs, containing two trivial no-trade equilibria. More-
over, the set contains for every commodity a generalized Dreze equilibrium, being a QCE
at which this commodity is not being rationed, and also a generalized supply-constrained
equilibrium without demand rationing. We apply this main result to several special cases,

including the case of an unbounded set of admissible prices.
Key words: exchange economy, price rigidities, equilibrium, rationing.

JEL-code: C62, C63, C68, D51.



1 Introduction

Perfect competition is a basic assumption in economic theory. All agents are assumed to
be price takers and therefore express their demand and supply at the prevailing prices on
the market. Trade takes place only at a price system for which for every commodity total
demand equals total supply. It is assumed that there is no restriction on the prices and
that prices adjust infinitely fast. Walras (1874) considered the problem of the existence of
a general competitive equilibrium, corresponding to a price system at which all markets
clear simultaneously. Under very general conditions the existence of such a Walrasian
equilibrium has been shown by Arrow and Debreu (1954).

Unemployment and excess supply on commodity and factor markets are apparently
serious problems in many countries. The literature has identified a variety of reasons why
prices might be prevented from adjusting to Walrasian values. Politically desired price
restrictions and regulations, such as price controls to reduce inflation, minimum wages, or
price indexation are mentioned by Cox (1980), Nguyen and Whalley (1986, 1990), Gins-
burgh and Van der Heyden (1988), Herings (1997) and Tuinstra (2000). Bénassy (1993)
considers non-competitive price systems resulting from models with imperfect competition.
When markets are incomplete, price regulations may be used to generate Pareto improve-
ments as stressed by Dreze and Gollier (1993), Herings and Polemarchakis (2000), and
Dreze (2001).

When trade occurs against disequilibrium prices, markets clear through quantity
adjustments, e.g. by imposing quantity rationing, queuing systems or production quota.
In the mid 1970s Bénassy (1975), Dreze (1975) and Younes (1975) independently devel-
oped market clearing mechanisms for economies with price restrictions by using quantity
rationing. In that approach, an agent chooses a most preferred consumption bundle, sub-
ject to both a budget constraint and quantity constraints on net demands and supplies.
To express the transparency of markets, quantity rationing is not allowed to affect excess
supply and excess demand simultaneously. When price rigidities are formulated by lower
and upper bounds on the prices of the commodities, Dreze (1975) proved the existence of
an equilibrium at which at least one a priori chosen commodity is not being rationed at all.
Further supply (demand) rationing on a commodity can only be binding when its price is
on its lower (upper) bound. Such an equilibrium is called a Dréze equilibrium.

In the 1980s both van der Laan and Kurz argued that in practice rationing on net
demand is rarely observed and difficult to implement. This motivated these authors to
consider equilibria with only rationing on the net supplies. In van der Laan (1980, 1982)
and Kurz (1982) the existence of an equilibrium with only rationing on the net supplies
and at least one commodity not rationed at all has been proven. Such an equilibrium is

called a supply-constrained or unemployment equilibrium.



In Herings (1998) the entire set of equilibria, called constrained equilibria, has been
characterized. There exists a connected set of constrained equilibria, containing two triv-
ial equilibria. In one trivial equilibrium, the trivial supply-constrained equilibrium, all
commodities are fully rationed in their supply and all prices are on their lower bound,
whereas at the other trivial equilibrium, the trivial demand-constrained equilibrium, all
commodities are fully rationed in their demand and all prices are on their upper bound.
The connected set also contains for every commodity a constrained equilibrium at which
that commodity is not being rationed at all. In particular, this implies the existence of
a Dreze equilibrium. Moreover, one of these equilibria is a supply-constrained equilib-
rium and another one a demand-constrained equilibrium. It is possible to compute this
connected set of equilibria by using the algorithm presented in Herings, Talman and Yang
(1996). For an interpretation of these results in terms of self-fulfilling coordination failures,
as well as for an extension to economies with production, see Dréze (1997) and Citanna,
Cres, Dreze, Herings and Villanacci (2001).

In Dehez and Dreze (1984) and van der Laan (1984), economies with price indexa-
tions are considered. It has been shown that there exists a supply-constrained equilibrium
without rationing on the numeraire commodity, when the set of feasible prices allows for
enough flexibility of the price level of the non-numeraire commodities. Weddepohl (1987)
discusses extensively linkages between prices through index functions and shows that a
supply constrained equilibrium in which at least one commodity is not rationed exists if
the system of indexes is non-circular, i.e. no commodity is directly or indirectly indexed
by itself. In these papers it is also argued that the equilibrium condition that rationing of
a commodity is not allowed unless its price restriction is binding, cannot be maintained
when prices are tied to each other through index functions.

In this paper we consider the general case where price restrictions lead to an ar-
bitrary convex set of nonnegative prices. This set could be a point as in the fix-price
literature, a cube with lower and upper bounds for the prices as in the model of Dreze
(1975), a slice of a convex cone in case of price indexation as in the models of Dehez
and Dreze (1984) and Weddepohl (1987). For the general case it cannot be assured that
there is only rationing for a commodity if its price is equal to its minimum or maximum
value. Therefore we generalize the equilibrium concept to the one of Quantity Constrained
Equilibrium. At such an equilibrium, commodities may be rationed only in case the price
system lies on the boundary of the set of admissible prices. Rationing is determined by a
direction in which the prices cannot adjust, i.e. by a vector in the normal cone of the set
of admissible prices. A negative component of this vector induces supply rationing on the
related commodity, and, likewise, a positive component induces demand rationing.

We will show that in case the set of prices is compact and only contains positive price



vectors, there exists a connected set of Quantity Constrained Equilibria (QCE) containing
two trivial equilibria, a trivial supply-constrained equilibrium with full rationing on the
supply of all commodities and prices such that the value of the total initial endowments is
minimized, and a trivial demand-constrained equilibrium where all commodities are fully
rationed in their demand and the value of the total initial endowments is maximized.
The connected set also contains for every commodity a generalized Dreze equilibrium,
being a QCE at which that commodity is not being rationed at all, a generalized supply-
constrained equilibrium, at which there is no demand rationing and at least one commodity
is not rationed at all, and a generalized demand-constrained equilibrium, at which there
is no supply rationing and at least one commodity is not rationed at all. This existence
result is proved by using the fixed point theorem of Browder (1960). The main result is
applied to several special cases.

We also consider cases in which the set of admissible prices is not bounded or
contains zero prices, allowing for models in which some prices can vary freely and others
are tied by index systems. In case the set of prices is unbounded, the connected set of
QCEs is also unbounded with some of the prices going to infinity, while simultaneously
for any commodity with price bounded from above, its relative price tends to zero and
eventually the commodity becomes fully constrained in its demand, implying no trade for
this commodity. In the limit the economy reduces to an economy with trade only in the
commodities with prices unbounded from above. When the prices of these commodities are
not tied to prices of other commodities, these prices tend to Walrasian equilibrium values
for this reduced economy. In case this holds for all commodities, there is a connected
set of QCEs leading from the trivial full supply constrained equilibrium to a Walrasian
equilibrium without rationing.

The paper has been organized as follows. Section 2 describes the model and intro-
duces the general concept of Quantity Constrained Equilibrium. For the compact, convex
case with positive prices the existence results are given in Section 3. Specific cases are

discussed in Section 4, as well as extensions, including the unbounded case.

2 The model

We consider an exchange economy £ = ({X% =% w'}  P). In this economy there are
m consumers, indexed ¢ = 1,...,m, and n commodities, indexed j = 1,...,n. For k a
positive integer, we denote I, = {1,...,k}. Each consumer i € I, is characterized by a
consumption set X, a preference preordering >=* on X, and a vector of initial endowments
w'. The total endowment w is defined by w = Y ;c; w’. We assume that the admissible

price systems in the economy £ are described by the set P C IR}. The following standard



assumptions X, U and W with respect to the economy £ are made.

Assumption X
For every consumer i € I,,,, the consumption set X* is a closed and convex subset of R}
and X'+ R’ C X"

Assumption U
For every consumer i € I,,, the preference preordering = on X* is complete, continuous,

strongly monotonic, and strictly convex.

Assumption W

For every consumer ¢ € I,,,, the vector of initial endowments w® belongs to the interior of X*.

The assumption of strict convexity allows us to work with demand functions instead of
demand correspondences and thereby simplifies our notation. All our results carry over to
the case of convex preferences. Also the assumption of strongly monotonic preferences is
made for the sake of simplicity and can be relaxed considerably.

The set P of admissible prices may or may not contain a Walrasian price system
for the economy £. In general this is not the case, and one needs an equilibrium concept
involving vectors of quantity constraints on the net demands and the net supplies of the
commodities. In this paper, we analyze the case of uniform rationing systems, meaning
that rationing constraints are the same for all households. Our results carry over to a
variety of other rationing systems, see Herings (1996a) for a general treatment of rationing
systems.

Given a price system p € P, a rationing scheme on supply £ € —IR’}, and a rationing

scheme on demand u € RY}, the constrained budget set of consumer i € I,, is given by
B'(p,lyu) ={z" € X' |p-2' <p-w'and { <z}, —w}, < uy, Yk € L,,}.

The number ¢ (uy) is the net amount of commodity k& that a consumer can sell (buy)
at most. These constraints are determined endogenously and serve to equilibrate markets
when, because of price restrictions, the price mechanism is not capable of doing so.

The corresponding constrained demand d'(p, £,u) of consumer i is defined as the
best element for = in B¥(p, ¢, u). Because of the strict convexity and strong monotonicity
assumptions, this element is unique and lies on the budget hyperplane, i.e. p-d(p, £, u) =

p-w'.

LA preference preordering >=* is said to be strongly monotonic if Z!,2' € X, 7° < 7', and T # 7°
implies % = T'. A preference preordering =’ is said to be strictly convex when for any pair 7', z¢ € X,
such that T # 2%, T ~% 7, it holds that AT* + (1 — A\)z? = & for A € (0, 1).
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A well-known case discussed in the literature is when the set P is given by
"= {p S RTHBk < Pk < Tjkv ke In}:

where p, and P, are a priori given lower and upper bounds for the price pg of good k € I,,,
satistying 0 < p, < P;. In Dreze [10], a rationed equilibrium with respect to such a cubic

set of admissible price systems and a uniform rationing system is defined as follows.

Definition 2.1 (Constrained Equilibrium)
A Constrained Equilibrium for the economy & = ({X*, =", w'}™,,C") is a price system
p* € C", a rationing scheme (¢*,u*) € —R" x R, and, for every consumer i € I, a

consumption bundle z** € X' such that
(i) foralli € I, x* = d'(p*,{*, u*);
(11) moTt = w;

(iii)  for all k € I,: 3t — wl = 0% for some h € I, implies z}* — wt < u}, Vi € I, and,
analogously, xi" — wt = u} for some h € I,,, implies x}! — wi > 0}, Vi € I,;
(iv)  for all k € I, if there is i € I, such that (; = x}' —wj, then pj = p, and if there

is 1 € I, such that uj, = x}' — wi, then p} = Py.

Condition (i) requires that the consumption of each consumer equals his constrained de-
mand, while Condition (ii) is the market clearing condition. Condition (iii) implies that
there is not simultaneously rationing on both sides of a market. Condition (iv) precludes
supply rationing in the market of some commodity as long as its price is not on its lower
bound, whereas demand rationing in the market of a commodity does not take place if its
price is not on its upper bound. Observe that there exist two trivial equilibria. One is the
trivial supply-constrained equilibrium, with full rationing on the supply of all commodities,
so ¢* = 0", price system p* = p and allocation z** = w’, i € I,,,. The other is the trivial
demand-constrained equilibrium, with full rationing on the demand of all commodities, so
u* = 0", price system p* = p and allocation z*' = w’, i € I,,.

It has been shown in Herings (1998) that there exists a connected set of constrained
equilibria that contains both trivial equilibria. This result admits very simple proofs of
a number of special cases that were treated in the literature before, like the existence
of a Dreze equilibrium with respect to commodity & (Dréeze (1975)) and the existence
of a supply-constrained equilibrium (van der Laan (1980, 1982)). A Dreze equilibrium
with respect to commodity k is a constrained equilibrium without rationing in the market
for commodity k. A supply-constrained equilibrium is a constrained equilibrium without

rationing on the demand, and without rationing on the market of at least one commodity.



An algorithm to compute the connected set of constrained equilibria has been proposed in
Herings, Talman and Yang (1996).

Constrained equilibria with different rationing schemes may well yield the same
constrained equilibrium allocation. When there is no rationing on the supply side of a
market, the precise specification of ¢} is immaterial, as long as ¢; < z}' — wi for all
1 € I,,. Analogously, when there is no rationing on the demand side of a market, any
rationing scheme u} satisfying uj > 2}’ —wj, for all ¢ € I,,, is compatible with a constrained
equilibrium. The freedom in the specification of a non-binding rationing scheme can be
used to simplify notation and proofs by making a particular choice for a non-binding
rationing scheme. We focus on rationing schemes (I, u) that are represented by a single
vector r € [—w, w], called the rationing vector, where [—w,w] = {z € R"| — w < z < w}.

A rationing vector r € [—w, w| induces a rationing scheme (I, u) given by
l=—w—-—r<0" and u=w—7r > 0".
We modify the definition of a constrained equilibrium as follows.

Definition 2.2 (Constrained Equilibrium)

A Constrained Equilibrium for the economy & = ({X*, =", w'}™,,C") is a price system
p* € C", a rationing vector r* € [—w,w|, and, for every consumer i € I, a consumption
bundle z** € X such that

(i) foralli€ I, x* = d'(p*, —w — r*,w — 1*);
(i) Y7 x*=w;

(iii)  for all k € I, if there is i € I, such that —wy, — rj = x}' — wi, then p} = p, and if

there is i € I, such that wy — rj = x' — w}, then p; = Py.

Since 0" < 2* < w and 0" < w® < w and therefore —w < 2** < w for any i, a negative
value of r; implies that there can be only rationing on the supply of commodity k, while the
opposite holds in case of a positive value of r;. When r; = 0, there can be neither rationing
on the demand side nor on the supply side of the market for commodity k. Therefore
Condition (iii) replaces both Condition (iii) and Condition (iv) of Definition 2.1.

In this paper we allow for a general set P of admissible prices, for instance when
some of the prices are tied to prices of other commodities through indexation. Because
in such cases P may not be a cube, and thus there may be no independently given lower
and upper bounds for the prices, we have to modify the complementarity Condition (iii) of

Definition 2.2. For some special cases this issue was raised already by Chetty and Nayak



(1978), Kurz (1982), Dehez and Dreze (1984), van der Laan (1984) and Weddepohl (1987).

As a simple example, consider the set P given by

P:{pERprlZO; Z;pj:LQjSijpj?jEJ}v (1)
j€

where I C I,,\ {1} is a set of index commodities and J = I, \ (/U{1}) is the set of indexed
commodities. Commodity 1 is the numeraire commodity. In van der Laan (1984) and
Weddepohl (1987), it has been shown that there exists a supply-constrained equilibrium
without rationing on the numeraire commodity, while simultaneously all commodities in
I are unrationed or at least one of the commodities in J is unrationed. In the latter
case, Condition (iii) of Definition 2.2 is not satisfied. In general there is rationing on all
commodities in I, although because of the fact that >=;.; p; = 1, at least one of the prices
pj, 7 € I, is positive and is not downwards rigid. It has been proved that in this case
there exists a constrained equilibrium such that the level of rationing on each of these
commodities is given by the same fraction of the initial endowment.

An equilibrium concept for general price restrictions should contain the concept of
Definition 2.2 as a special case and should also deal with a set of prices as in (1) in a
satisfactory way. In our equilibrium concept we require that rationing is not allowed when
the equilibrium price vector p* lies in the interior of the set P, because then the price
system can move freely into any direction and p* is a Walrasian equilibrium price vector.
In case in equilibrium the price vector p* does not lie in the interior of the set P, which is
always the case when P is not full-dimensional, there are vectors that point outwards to
P at p* and which are directions in which the price system cannot move without leaving
the set of admissible prices P. The collection of all these directions forms the normal cone

at p* to P. For any p* € P, the normal cone G(p*) to P at p* is given by
Gp*)={reR"p-r <p"-rfor any p € P}.

The normal cone gives information on the directions in which the price system is restricted
to move, and therefore on the kind of rationing that occurs in equilibrium. In our equi-
librium concept we require that in equilibrium the normal cone G(p*) contains an element
r* € [—w,w] which completely determines the levels of supply and demand rationing.
When 77 is positive (negative), in which case the price of commodity j cannot be increased
(decreased) without leaving P when moving in the direction r*, we allow only for demand
(supply) rationing on commodity j. The level of rationing is determined by the value of

r7. The higher the absolute value of 7}, the tighter the rationing will be. When r} = 0,

in which case the price of commodity j is not changing when moving in the direction of

*

r*, no rationing is allowed on commodity j. This gives us the following definition of the

general concept of a Quantity Constrained Equilibrium.



Definition 2.3 (Quantity Constrained Equilibrium)
A Quantity Constrained Equilibrium (QCE) for the economy € = ({X%, =", w'}™,, P) is
a price system p* € P, a rationing vector r* € [—w,w], and, for every consumer i € I, a

consumption bundle z** € X' satisfying

(i)  forallie I, x*=d(p*,—w—r*,w—r*);
(i) S, a = w;

i) 1 € G,

As motivated above, Condition (iii) links the rationing vector to the price restrictions. The
rationing scheme is completely determined by a vector r* in the normal cone G(p*) at the
equilibrium price p*.

Since 0 < 2" < w and 0 < w' < w, it holds that in a QCE —w, < z}* — wi < wy
for all k € I, and 7 € I,,. Hence, in a QCE, a consumer ¢ € I, can only be rationed in his
demand for good k if rj = wy, — (x}' — w}) > 0. Analogously, some consumer ¢ € I, can
only be rationed in his supply of good k if r} = —wy — (2}’ — w},) < 0. Hence there cannot
be rationing simultaneosly on both sides of any market. Notice that the rationing on the
supply (demand) of commodity k is tighter, the closer r is to —wy (wg, respectively). In
particular, there is full supply rationing if r; = —wy and there is full demand rationing if
ry = wy. When p* is in the interior of P, then r* = 0", in which case the rationing scheme
on demand equals w and the rationing scheme on supply —w, implying that none of the
rationing constraints can be binding.

Summarizing, in a QCE consumers maximize their utility in their constrained bud-
get sets, total demand equals total supply, there is no simultaneous rationing on both
supply and demand, and a vector in the normal cone to P determines the tightness of
rationing. In case P = C", rj < 0 implies pj = p, and ry > 0 implies p; = Py, yielding
precisely Condition (iii) of Definition 2.2.

For the set P given in (1), it holds for any positive price vector p and any r € G(p)
that r, = rp, for every two indices k£ and h in the index set I. Hence, if there is rationing
on these commodities, then according to Condition (iii) of Definition 2.3, the amount of
rationing is the same for all commodities in 1.

From an economic point of view, it is of crucial importance that our equilibrium
concept is independent of the units of measurement that are used in the definition of a
commodity. Suppose that the unit of measurement used in the definition of commodity
k is multiplied by a positive constant oy, k = 1,...,n. An economy &(«) with initial

endowments w'(a) given by wi(a) = wy/ag, k =1,...,n, set of admissible prices
P(a) ={p € R" | pr = axpx, k=1,...,n, for some p € P}

8



and appropriately redefined consumption sets X'(«) and preference relations =¢ (a) should
have an equivalent set of QCEs as the economy &. More precisely, for each QCE (p*, 7*, z*)
of £ there should be a QCE (p*(«),r*(a),z*(a)) of £(a) and vice versa, where p*(«) is
obtained from p* by componentwise multiplication by «, and 7*(«) and x*(«) are obtained
from r* and z* by componentwise division by «. The following result claims that equivalence
holds.

Theorem 2.4
The set of equilibria of €& = ({X%, =", w'}™,, P) is equivalent to the set of equilibria of
E(a) = {X(a), =" (a),w (a)}™,, P(a)) for any choice of a>> 0.

Proof.

It is obvious that (p*,r*,z*) satisfies Conditions (i) and (ii) of Definition 2.3 of a QCE of
€ if and only if (p*(a),r*(«), x*(a)) satisfies Conditions (i) and (ii) of Definition 2.3 of a
QCE of £(a). It is easily verified that r* € G(p*) if and only if r*(a) € G*(p*(«)), where
G denotes the normal cone at P(«). This shows that (p*,r*,z*) satisfies Condition (iii)
of the definition of a QCE of £ if and only if (p*(a), 7*(«), z*(«)) satisfies Condition (iii)
of the definition of a QCE of £(«). Q.E.D.

3 Existence results

To consider the existence of QCEs, in this section we restrict ourselves to the case that P
satisfies the following Assumption P. In the next section we will also allow for zero prices

and an unbounded set of admissible prices.

Assumption P

The set P of admissible prices is a non-empty, convex and compact subset in the interior
of RY}.

We first show that there are two trivial no-trade QCEs with full rationing on the
supply, respectively the demand. Let P° and P! be given by

P’={pc Plw-p<w-pforal pc P}
and

P'={pc Plw-p>w-pforall pc P}

Notice that the intersection of P° and P! is either empty or equal to P. Prices in P° are

such that the value of total income p - w is minimized, and prices in P! such that this

9



value is maximized. The next result claims that there is a trivial no-trade QCE with full
rationing on the supply at any price in P° and a trivial no-trade QCE with full rationing

on the demand at any price in P*.

Theorem 3.1
For any p € P° there is a trivial supply-constrained equilibrium with rationing vector

r* = —w and allocation x** = w', i € I,,. For any p € P! there is a trivial demand-

constrained equilibrium with rationing vector r* = w and allocation x** = w*, i € I,,.

Proof.
Take any p € P°. Clearly, p € bnd(P). By definition of P° we have that —w € G(p).
Taking r = —w gives for any i € I, that B*(p,0,2w) = {w'} and hence d'(p, 0, 2w) = w’,
implying that markets clear and thus a no-trade equilibrium with full rationing on supply
is obtained.

Analogously, take any p € P!. It holds that w € G(p). We have for any i € I,,, that
Bi(p, —2w,0) = {z' € Xi|z* < w'} and hence by Assumption U that d‘(p, —2w,0) = w,
implying that markets clear and thus a no-trade equilibrium with full rationing on demand
is obtained. Q.E.D.

The existence of non-trivial equilibria follows from the next result saying that there is a
connected set C' of QCEs containing both the trivial supply-constrained equilibrium and

the trivial demand-constrained equilibrium.

Theorem 3.2

Let & = ({X%, =%, w'}™,, P) be an economy satisfying Assumptions X, U, W and P. Then
there exists a connected set of Quantity Constrained Equilibria of the economy £, containing
a trivial supply-constrained equilibrium (p, —w,w', ..., w™) for any p € P°, and a trivial

demand-constrained equilibrium (p,w,w', ..., w™) for any p € P.

We continue this section with the proof of Theorem 3.2. We first focus on the equilibrating
mechanism to find a QCE. To do so, we introduce a set Q C IR" containing P and define
for every q € @ a price p(q) € P and a rationing vector r(q) € [—w, w]. The set @ is taken
to be

Q={q€R"||lg—pl2 <1 for some p € P},

so @ is the set of elements in R"™ lying at most at a distance 1 from P, using the Euclidean
norm, and thus includes the set P. In the sequel bnd(Q) denotes the boundary of @) and
int(Q) its interior. Further, for ¢ € @, define the projection p(q) of ¢ on P by

p(q) = arg min [lp — qf..
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Since by Assumption P, the set P is convex and compact, for every ¢ € @ it holds that p(q)
is uniquely defined and continuous in ¢, and ¢ —p(q) € G(p(q)). Moreover, ||¢g—p(q)|l2 < 1,
with equality if and only if ¢ € bnd(Q). It holds that p(¢) = ¢ when ¢ € P. The set @) has
the following properties.

Lemma 3.3

(i) The set Q is a convex, compact, full-dimensional subset of R™ and contains P in its
nterior;

(ii) The boundary of @ is smooth.

Proof. The compactness follows from the compactness of P. That () is full-dimensional and
contains P in its interior follows immediately from its definition. To prove convexity, take
any ¢*,¢*> € Qand 0 < A < 1, and let g(\) = A\g'+(1—-X)¢? and p(\) = A\p(g!)+(1-N)p(¢?).
Since P is convex, we know that p(\) € P. Moreover, |lg(A) — p(A)|2 < A|l¢* — p(¢h)]l2 +
(1 = N)|l¢®> = p(¢®)|l2 < 1. Therefore, q()\) € Q.

Property (ii) follows from the use of the 2-norm in the definition of Q). Take any
¢* € bnd(Q). Then ||¢* — p(¢*)||]2 = 1 and any g with ||¢ — p(¢*)||2 < 1 belongs to Q. Hence,
the normal cone at ¢* contains at most one vector with length one. Since () is convex,
we know that the normal cone at ¢* is non-empty and upper-semicontinuous. Hence, the
normal cone at any boundary point ¢ of ) contains a unique vector with length one and

this vector is continuous in ¢, i.e. the boundary of () is smooth. Q.E.D.

We define the function r : Q — R" by
r(q)=0" qeP

and, for k € I,,

rila) = (min - @ = @)l — pl@lla, 0 € Q\P

Since ||g — p(q)||2 goes to zero when g — p(q) goes to 0" and —wy, < (minjey, ‘qj—_u;,m)(% -
pr(q)) < wy, it follows that r(g) goes to 0™ when ¢ converges to a point in P. This implies
that r(q) is continuous in ¢q. The other properties below immediately follow from Lemma
3.3.

Corollary 3.4

The function r : Q — R" satisfies the following properties:
(i) r is continuous;

(11) —wy, < ri(q) < wy for all g € Q;

(iii) r(q) = wy if and only if m minjey,

and q € bnd(Q);

Wi
lg;—pj(a)l
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(v) re(q) = —wy if and only if — ks = min;

(v) r(q) € G(p(q)) for all q € Q.

and q € bnd(Q);

I,
€n Jgj—p;i(9)l

We now define for any consumer i € I,,, the reduced budget correspondence B* : Q — R"
by

B'(q) = B'(p(q), —w —r(q),w —r(q)), q€Q.

Finally, for any consumer i € I,,, we define the reduced demand correspondence d* : Q —
R" by

d'(q) = {z' € B'(q)|z" =" ¢, for all y' € B'(q)}.

Because the set P is in the interior of R"}, we have that for any ¢ € @ the price vector p(q) €
P is strictly positive. Notice that since —w — r(q) can be equal to zero, the cheaper point
assumption that is usually required to show continuity of the budget correspondence, is
violated. Nevertheless, it follows from Theorem 2.2 in Herings (1996b) that B is continuous
at any ¢ € Q. With Assumption U it then follows that d’ is a continuous function and so
is the reduced excess demand function z : Q — IR" defined by
2q) =) d'(q) —w.
i€l

By Assumption U the budget constraint p(q) - d*(q) < p(q) - w® is always satisfied with
equality and hence Walras’ law holds, i.e. p(q) - 2(q) = 0 for all ¢ € Q. The function z

satisfies the following properties.

Lemma 3.5 Under Assumptions X, U, W and P, the reduced excess demand function
z: Q — R" satisfies the following:

(i) z is continuous;

(i1) Walras’ law holds: p(q) - z(q) =0 for all ¢ € Q;

(111) 1(q) = —wy implies z,(q) > 0 and r¢(q) = wy, implies z,(q) < 0.

The next theorem shows that a zero point of z on () induces a QCE.

Theorem 3.6
Let ¢* be a zero point of z on Q, i.e. z(q*) = 0". Then (p(q*),r(q*),d* (¢*),...,d™(q*)) is

a Quantity Constrained Equilibrium.

Proof.
We have to show that Conditions (i), (ii) and (iii) of Definition 2.3 hold. Clearly, Condi-

tions (i) and (ii) hold by construction of the reduced excess demand function. By property
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(v) of Corollary 3.4 we have that r(¢*) is an element of G(p(q*)), which shows that Con-
dition (iii) of Definition 2.3 holds. Q.E.D.

From Theorem 3.6 it follows that the question of existence of a QCE reduces to the existence
of a zero point of z. Before stating our general result on the connected set of constrained
equilibria in terms of the parameter ¢, we first show that () contains two zero points that
yield trivial supply-constrained and demand-constrained equilibria. Let Q° and Q! be

given by

Q" ={q€Qlw-q<w-glorall je Q)

and

Q' ={geQlw-q>w-gforall g€ Q}.

Clearly, since @ is compact, the sets Q° and Q' are both non-empty. Moreover, the

intersection of Q° and Q' is empty, since @ is full-dimensional.

Theorem 3.7

Each element in Q° or Q' is a zero point of z and yields a trivial equilibrium:

(1) Any q € Q° induces the trivial supply-constrained QCE (p(q), —w,w", ..., w™) with
plq) € P°.

(ii) Any q € Q' induces the trivial demand-constrained QCE (p(q),w,w", ..., w™) with
p(q) € P

Proof.

Take any ¢ € Q°. Clearly, ¢ € bnd(Q). By definition of Q° we have that 7(¢) = —w and

p(q) € P°. Tt follows that, for any i € I,,, B'(q) = {w'} and hence d'(q) = w’, implying

that z(q) = 0™ and thus ¢ induces a no-trade equilibrium with full rationing on supply.
Analogously, take any ¢ € Q. Then r(¢) = w and p(q) € P'. It follows that, for any

i € I,, B(q) = {x' € X'|z' < w'} and hence by Assumption U that d’(¢) = w’, implying

that z(q) = 0™ and thus ¢ induces a no-trade equilibrium with full rationing on demand.

Q.E.D.

The existence of non-trivial equilibria follows from the next result saying that () contains a
connected set C' of zero points of z having a non-empty intersection with both Q° and Q*,
i.e. there is a set C' C Q of zeroes of z being a connected subset of Q satisfying CNQ° # 0
and C N Q' # (). This implies that there exist a trivial supply constrained equilibrium and
a trivial demand constrained equilibrium, which are connected to each other through a set
of QCEs.
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Theorem 3.8
Let £ = ({X', =", w'}™,, P) be an economy satisfying Assumptions X, U, W and P. Then
there exists a connected set C C Q of zero points of z such that CNQ° # 0 and CNQ* # 0.

Proof.

Let vo and ; be such that 37, wrqr = 70 when ¢ € Q° and >-7_, wrqr = 1 when ¢ € Q.
Notice that 7 and ~; are well-defined, v; > v9 and 79 < X1 _; wrqr < 71 for all ¢ € Q. For
some M > 0, define X° Cc R" by

n
0 n
= = <
X {xE]R |kglwkxk Y0, %éz}ka M}

and, for 0 < a <1, X* C R" by

X*={zeR"z=2"+ (71 — vo)w, 2° € X},

>kt Wh
Clearly, for z € X 0 < a < 1, we have that >}, wpxr = (1 — @)y + a1, and thus
St wrry = Yo when z € X? and Y7_, wiry, = 71 when z € X', Further, define

X = Uqep,n X

and take M sufficiently large that Q C X and that any ¢ € Q\ (Q°UQ") lies in the interior
of X. Notice that Q° = QN X% and Q' = Q N X1

We define the set X~ = {z € R"|X}_;wpxr = Y0}. Let 7(x) be the orthogonal
projection of z € R"™ on 70, ie. 7(x) = x — Aw for some A € R. Next, let the set X0 be
defined by

X0 ={zeX |z =1(qg+2(q), g€ Q}U{z e X'|z = r(p(q)), ¢ € bnd(Q)}.

Since () is compact and z and 7 are continuous functions, it follows that X0 is a bounded
subset of X_ and thus M can be taken so large that X° contains X0 in its relative interior.
For z € X% and « € [0,1], denote 2% = z + ﬁ(”yl —Y)w € X and define the
k=1 "k
point-to-set mapping ¢ : X° x [0,1] — X by
{7(z* + z(z%))} if 2~ € int(Q),
p(z,a) = § Conv({r(z® + z(z%))} U{7(p(z*))}) if 2 € bnd(Q),
{r(p(q(z%)))} if 2% € X\ @,
for all (z,a) € X° x [0,1], where Conv(.) denotes the convex hull of a set and ¢(z) is the
orthogonal projection of x € IR" on Q. Clearly, X" is compact and convex, the mapping ¢

is upper semi-continuous, and for every (z,a) € X°x [0, 1] it holds that (z, a) is compact,

convex and non-empty. According to Browder’s theorem, see Browder (1960), there exists
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a connected set C of fixed points of ¢ in X° x [0,1] such that C N (X° x {0}) # 0 and
CN(X%x{1}) #0, i.e. there exists a connected set C in X° x [0, 1] satisfying

z € ¢(z,a), for all (z,a) € C,

containing a point in X° x {0}, and containing a point in X° x {1}. Hence, the set C C X
defined by

C={7TeXT=2" (r,a) € C}

is a connected set in X such that C' N X° # () and C N X! # (. It remains to be shown
that every element of C' lies in () and is a zero point of z.

Take any T € C, then T = 2 for some (z,a) € C. Suppose first that 2* € X \ Q.
From the definition of ¢ it then follows that

r = 7(p(q(z*))).

Since 7(7) is the projection of T on X, there exists A € R such that z = 7(p(q(z®))) =
p(g(z*)) — Aw. Since z* — q(z*) = B(q(z*) — p(q(z®))) for some B > 0, it follows that

(B+1D)(q(z”) — plg(z))) = 2% — p(q(x®))

= 2% — (Aw+ 1)
Q
= (2221 w? (71 =) — Mw.

This implies that g(z*) — p(q(z®)) = dw for some 6 € {—m, m

and 2% € Q°, or « = 1 and z® € Q. This contradicts that z* € X \ Q. Consequently,
x® € Q for every x* € C.

Next, suppose that z* € int(Q). Then z* — ﬁ(% —Yo)w =z = 7(z* + z(x*)).
Since T7(z® + z(z%)) = x* 4+ z(z*) — Aw for some A € R, it follows that

}. Hence, either a = 0

2(z%) = (A — (71— 0))w.

n 2
D k=1 W
Because of Walras’ law, we obtain

«
ST
k=1 "k
(6]

Hence, since p(z®)-w > 0, we have that A = ST (71 —"0) and thus z(z*) = 0", showing
k=1 "k

p(x) - 2(z%) = (A =

(71— 7))p(x) - w = 0.

that x* is a zero point of z.
Finally, suppose 2% € bnd(Q). Then there exists #; > 0 and G > 0 with 51+ = 1
such that

Bir(@® + 2(2%)) + Bor (p(x®)) = & = 2* — ﬁw — o).
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Using that 7(Z) is the projection of T on X?, it follows that this can be rewritten as
o

Br1x® + Brz(x%) + Gop(x®) — pw = % — S (71 Yo)w
k=1 W

for some p € R. With 81 + 82 = 1 and letting A = p — Z (fyl 7o) we obtain
k:l
Brz(x®) = Bo(z® — p(x®)) + Mw.

First, suppose 31 = 0. Then, as before, it follows that * — p(z*) = éw for some § €
{— ||wl||2 Hsz} implying that 2% € Q° U Q'. Hence, according to Theorem 3.7, z(z®) = 0"
and thus x® is a zero point of z. Second, suppose 3; > 0. Then

B2 A o . A

T — —w=—=rx" )+ zw
5\ THEN =g+
for some 6§ > 0. Since z* € bnd(Q), we have that there is k such that |r;(x®)| = wy. When

ri(z®) = —wy it follows that

z(x%) =

)
2p (%) = ——=wp + —wp > 0,
) = = et g
so A > 6. Hence, —6 + A > 0 and thus
) A )
zn(z®) = =1 —wy > ——wp + —=—wp >0
W) = Zrrnla®) - gren 2 =g G

for all h € I, and therefore z(z®) = 0" due to Walras’ law. Similarly, when ry(z%) = wy, it
follows that

) A
2k (%) = —wi + —wy, <0,
") = g s
for some 6 > 0 and thus 6 + A < 0. Then
) A ) A
zp(x®) = =1 —wp < —wp + —=—wp <0
W) = Grla®) + grun < e+ g
for all h € I, and therefore z(z*) = 0™ due to Walras’ law. Q.E.D.

The theorem guarantees that there is a connected set of QCEs connecting two trivial equi-
libria. Each QCE in this set is induced by some ¢* € C and is equal to (p*,r* x*) =
(p(¢*),r(q*),z(q*)), where z(q*) is the demand allocation induced by ¢*. One trivial equi-
librium is induced by some ¢° € Q° and the other one by some ¢' € Q'. At ¢° we have
r(q°) = —w and so p(¢°) € PP, full rationing on the supply and no rationing on the demand.
At ¢! we have r(¢') = w and so p(q') € P!, no rationing on supply, and full rationing on
demand. Hence, at p° = p(¢°) the prices within P cannot be decreased further in the direc-
tion —w, i.e. —w is in the normal cone G(p°), and this vector —w determines the rationing

scheme (¢ u%) with (° = 0" and «° > w. Similarly, at p' = p(q'), the prices within P

16



cannot be increased further in the direction w, and this vector determines the full demand
rationing scheme (¢*,u') where u! = 0" and ¢! = —2w. A non-trivial QCE is induced by
any ¢ € C not in Q° or Q. If ¢ € P, then p(q) = ¢ is a Walrasian equilibrium price vector,
r(q) = 0™, and the induced rationing scheme given by (¢,u) = (—w, w) is not binding, i.e.
no consumer is rationed in his demand or supply of any of the goods. If ¢ is not in P and
so p(q) # q, then p(q) lies on the boundary of the set P of admissible prices, the vector
q—p(q) lies in the gradient G(p(q)) at p(q) to P and so the prices at p(q) cannot be moved

further in the direction ¢—p(q) without leaving P. We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2
Take the function f:Q — P X R" x [[;¢,, X defined by

f(@) = ((q),r(q), 2" (q),...,2™(q)), q€Q.

Consider the connected set C of zero points of z as defined in Theorem 3.8. It follows
by Theorem 3.6 that any point in C' induces a QCE of £. Since f is continuous and C'
is connected by Theorem 3.8, it follows that f(C) is connected. By Theorem 3.7, it fol-
lows that f(q) is a trivial supply-constrained equilibrium whenever ¢ € Q° and f(q) is
a trivial demand-constrained equilibrium whenever ¢ € Q'. Since C intersects both Q°
and Q', f(C) contains both a trivial supply-constrained equilibrium and a trivial demand-

constrained equilibrium. Q.E.D.

Having proved that there exists a connected set of QCEs containing both a trivial supply-
constrained equilibrium and a trivial demand-constrained equilibrium, it is easy to show
that this set contains several elements inducing QCEs with some specific properties. These
properties are most easily stated in terms of the parametrization by the set @), with each
q € Q inducing a price p(q), a rationing vector r(q), and an allocation (z'(q),...,2™(q)).

First of all, notice that for any ¢ € C'N Q° it holds that r(¢") = —w and that for
any ¢ € C'NQ* it holds that r(¢') = w. Therefore, since C' connects Q° and Q' and r is a
continuous function on @, for any a priori chosen k € I,, there exists a q(k) € C' satisfying
rt(q(k)) = 0. Such a ¢(k) induces a rationing scheme (¢,u) with ¢, = —wj and u = wy.
The point ¢(k) in @ therefore induces a QCE at which no consumer is being rationed in
commodity k. We call such an equilibrium a generalized Dreze equilibrium with respect

to commodity k.

Corollary 3.9

For any k € I,,, there exists a generalized Dréze equilibrium with respect to commodity k.

The corollary implies that if commodity k is the numeraire, there exists a QCE at which the

numeraire is not being rationed. Similarly, there exists a ¢~ € C satisfying max; r;(¢~) = 0.
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This element of C' induces a QCE at which at least one commodity is not rationed and
all other commodities are rationed only in their supply and therefore is a generalized
supply-constrained equilibrium. Similarly, there exists a QCE at which consumers are
only rationed in their demand and at least one commodity is not rationed, a generalized
demand-constrained equilibrium. Such an equilibrium is induced by a point ¢* in C for
which min; r;(¢*) = 0. Notice that both types of equilibria are QCEs at which at least
one commodity is not rationed, but it cannot be said in advance which commodity is not

rationed.

Corollary 3.10
There exists a generalized supply-constrained equilibrium and there exists a generalized

demand-constrained equilibrium.

4 Applications and extensions

Let us consider the case that P is a ball with center a given price system p. Without loss
of generality, we assume that py > 1 for any k € I,, and that the radius of the ball is 1, so
that any price vector in the set is strictly positive. Therefore the set of admissible prices

P is given by
B ={peR[p—pl. <1}

Clearly, the set () is a ball around p with radius 2 and for any ¢ € @ it holds that r(q) = 0"
if ¢ € B and r(q) = p(q)(p(q) — p) for some positive number p(q) when ¢ € Q \ B.
Moreover, for any p € bnd(P), we have that G(p) = {r € R"|r = A(p — p), A > 0}. Then
both sets Q° = {p — mw} and Q' = {p + mw} contain one element. From Theorem
3.8 it follows that there exists a connected set of zero points of z connecting the unique
element ¢° = p — mw of Q° with the unique element ¢* = p+ mw of Q'. Hence, there
exists a connected set of QCEs connecting the unique trivial equilibrium with full supply
rationing and price vector p— mw induced by ¢ with the unique trivial equilibrium with
full demand rationing and price vector p + mw induced by ¢'. According to Corollary
3.9 this connected set contains a generalized Dreze equilibrium with respect to commodity
k for any k € I,,. In case the point ¢(k) inducing this equilibrium does not belong to B, it
must hold that r,(q(k)) = 0 and 7(q(k)) = px(p(q(k)) — p) for some py > 0, implying that
the price pi(q(k)) of commodity & must be precisely equal to pg. In case q(k) lies in B,

q(k) is a Walrasian price system. Summarizing we have the following corollary.

Corollary 4.1

Suppose P is a ball of positive prices with center p and radius 1. Then there exist a
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connected set of QCEs connecting the unique trivial supply-constrained equilibrium with
price p — mw to the unique trivial demand-constrained equilibrium with price p + mw.
The connected set contains for every k € I,, a generalized Dreze equilibrium with respect to

k. Such a Dreze equilibrium is a Walrasian equilibrium or has py = Dg.

As a second example we consider the case

P={pe R} |p, <p;<pj, jel, mj(p)) <p; <T;(ps), j € J} (2)

where I C I, is a set of index commodities and J = I,,\ I is the set of indexed commodities
with prices bounded from below and above by index functions depending on the prices of
the commodities in I. This set generalizes the set of admissible prices considered in Dehez
and Dreze (1984) and satisfies the so-called noncircularity condition of Weddepohl (1987),
saying that the prices may not be indexed directly or indirectly by themselves. We assume
that for any j € I it holds that 0 < P, < P; < oo and that for any j € J, the lower
bound function m; is convex, the upper bound function 7; is concave and that for all
feasible p; it holds that 0 < z;(pr) < T;(pr) < oo, so that P satisfies Assumption P. To
give a characterization of a QCE, for simplicity we assume that all index functions are
continuously differentiable.

Suppose ¢ € @ induces a QCE and thus z(q) = 0™. Since r(q) € G(p(q)), we have
that p(q) - 7(¢) = max,epp - r(¢). From the first-order Kuhn-Tucker conditions it then

follows that there exists nonnegative numbers A; and Xj, J € I, such that

i) =%, — 4y + 30 3, 22 oy, TP e, )

ri(a) =X =2, 5 €, (4)
and

Ai(pi(q) _2]') =0, Xﬂ(pj pi(q)) =0, AJXJ =0, jel, (5)

Ai(pi(a) — z;(pr(q)) = 0, X;(F;(p1(q)) — pi(q)) =0, AN =0, j€J (6)

Recall that in a QCE Condition (iii) of Definition 2.3 is satisfied, but not necessarily
Condition (iv) of Definition 2.1. So, when a commodity is rationed in its supply (demand),
its price is not necessarily on its lower (upper) bound. To make this more precise, first
take an indexed commodity j € J. From (4) and the last complementarity condition in
(6) it follows that

A; = —ri(q) > 0if rj(q) <0, and A; = r;(q) > 0 if r;(g) > 0.
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It follows with the first two complementarity conditions in (6) that p;(q) = z;(pr(q)) if
commodity j € J is rationed in its supply and that p;(q) = 7;(ps(q)) if commodity j € J
is rationed in its demand, i.e. in case of supply (demand) rationing the price of an indexed
commodity is on its lower (upper) bound given the prices p;(q) of the index commodities.
For an index commodity j € I, in general such a clear link does not exist. However,
suppose that all index functions are monotonically increasing in p; and all the derivatives
are positive. Now, if pr(q) > m,(pr(q)) for all k& € J, then A\, = 0 for all £ € J and it
follows from equation (3) that for all j € I it holds

n@ =% -3 - SR o3y
keJ Op;j
and thus A\; > 0 if r;(¢) > 0. Hence, if the prices of the indexed commodities are all
above their lower bound, rationing on the demand of an index commodity can only occur
when its price is on its upper bound. Clearly, when the price of an indexed commodity is
on its lower bound, demand rationing of an index commodity may occur, caused by the
fact that the prices of the indexed commodities cannot be decreased further. Similarly, if
the prices of the indexed commodities are all below their upper bound, rationing on the
supply of an index commodity can only occur when its price is on its lower bound. In
particular, at a trivial supply-constrained (demand-constrained) equilibrium the prices of
all the indexed commodities are on their lower (upper) bound given p;(¢q), and thus also
the prices of all the index commodities are on their lower (upper) bounds. Summarizing

we have the following corollary.

Corollary 4.2
Let P be given as in (2) and let ¢ € Q be such that z(q) = 0™. Then, for all j € J,

pi(a) = z;(pi(q)) 1f rj(q) <0 and p;j(q) =7;(p1(q)) f r5(q) >0
When all index functions are monotonically increasing, then, for all j € I,
pi(q) = p; if ri(q) <0 and for all k € J, pr(q) <Tr(pr(q)),

and
pi(q) =D; if rj(q) > 0 and for all k € J, pi(q) > my(pr(q))-

Next we consider an extension allowing that the set of admissible prices is unbounded. We
show that there is an unbounded connected set of QCEs with at least one of the prices
going to infinity. Let P be a convex, closed, unbounded set of admissible prices in the
interior of R} and define Q = {q € R"|||]q — p||2 < 1, for some p € P}. Notice that Q° is
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non-empty, while Q! is empty. For ¢ € Q, let p(q), r(q), and 2(q) be defined as before. Let
Yo = Sp_; wrqy for any g € Q°, define for s > vy the set Q(s) by

Q(s) = {q € QX i wraqr < s},

and for any s > 79, Q(s) = {q¢ € Q(s)| Xp_; wrqr = s} as the upper boundary of Q(s).
Applying Theorem 3.8 to Q(s) and using the fact that Q(s) N X? = Q% and Q(s) N X! =
Q(s), it follows that there exists a connected set of zero points of z in Q(s) containing a
point in Q° and a point in Q(s) for any s > sg. Clearly, a zero point in Q° induces again
a trivial supply-constrained equilibrium. However, in general a zero point in the upper
boundary Q(s) is not a trivial demand-constrained equilibrium. The next theorem says

that there exists an unbounded connected set of zero points of z in () containing a point

in Q°.

Theorem 4.3 Let £ = ({X', =%, w'}™,, P) be an economy satisfying Assumptions X, U
and W, and let P be a non-empty, convex, closed, unbounded set in the interior of R .
Then there exists an unbounded connected subset C' of Q such that C N Q° # 0 and each

point in C' is a zero point of the reduced excess demand function z.

Proof

For s > s, let C(s) be a connected set of zero points of z in Q(s) containing a point in Q°

and a point in Q(s). Take C' = Q° U (Uy»5,C(s)). Since any point in Q° is a zero point of

2z, the set C is an unbounded connected set of zero points of z in @ such that C N Q° # 0.
Q.E.D.

As a specific example we consider, for some arbitrarily small € > 0, the set P given by

jel
where M, I and J form a partition of I,.> This set generalizes sets of admissible prices
considered in Kurz (1982), van der Laan (1984) and Weddepohl (1987), where M is the set
of numeraire commodities whose prices can move freely above ¢, I is a set of index com-
modities with sum of the prices normalized to one, and J is a set of indexed commodities
with lower and upper bounds on the prices. We assume that for any 5 € I U J it holds
that 0 < p; < p; < oo and Zjelgj <1 < Xjerp;- Without loss of generality, we may
assume that [ = {1,...,|I|} and w11 > w;, j = 1,...|I| — 1. Moreover, for the sake of

simplicity, we restrict ourselves to the generic case that there is no partition I, I? of I

2For simplicity we take prices bounded away from zero. The analysis can be extended to € = 0 by
generalizing the concept of constrained equilibrium to quasi-constrained equilibrium as has been discussed
in Kurz (1982).
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such that >>.cp p; + > jer2P; = 1. Then, let j" € I be such that Z;:/:l}_oj + Z'Q-I:‘j,ﬂ p; <1

Suppose ¢ € @ induces a QCE and thus z(q) = 0". Again, r(q) € G(p(q)) implies
p(q) - r(q) = max,epp - r(g). From the first-order Kuhn-Tucker conditions it then follows
that there exist nonnegative numbers A;, j € M, nonnegative numbers Aj,xj, je€luUJ,

and a number A; such that

ri(q) = —X;, j € M, (8)
TJ(Q):AI_A]’“'XJ': Jjel, 9)

and furthermore the following complementarity conditions hold

Ai(pi(q) =€) =0, j € M, (11)
Ai(pi(a) —p;) =0, X;(B; —pi(@) =0, 4% =0, j€TU. (12)
At a trivial supply-constrained equilibrium we have that r(¢) = —w, so that A\; = w; and

hence p;(q) = ¢ for all j € M, )\; = wy, ); = 0 and hence p;(q) = p; for all j € J, while
for j € I it holds

)\I —Aj +Xj = —W;j.

We claim that \; = —wj/, forall j = 1,...,j'—1 it holds that \; = 0 and Xj = wy—w; > 0,
Ay =Xy =0, and for all j = j/+1,...,|I| it holds that A\; = 0 and ); = w; — wy > 0. It
then follows immediately that prices of commodities j = 1,...,5" — 1 satisfy p; = p;, and
prices of commodities j = j' + 1,...,|I| satisfy p; = p;- Intuitively, from the properties
that p(q) - r(¢) = maxpepp - r(q), r(q) = —w and > ,;c;p; = 1, it follows that the prices
of the commodities with the larger total endowments are set on their minimum level, and
the prices of commodities with the smaller total endowments on their maximum level.

To formally show our claim, consider a commodity k € {1,...,|I|} = I such that
p, < pr(q) < Pr. Such a commodity k exists, since we consider the case that there is
no partition I', I of I such that > ;cp p; + XjerP; = 1. It follows immediately that
Ay = A = 0, so A\ = —wy. Consider any commodity j € {1,...,k — 1}. Then it follows
from equation (9) that A; —A; = A\; — r;(q) = A\ + w; = —wy, +w; < 0, so that \; =0
and \; = wy, — w; > 0. Similarly, for any commodity j € {k + 1,...,|I|} it follows from
equation (9) that A; —Xj = —wi+w; > 0, so that Xj = 0and \; = —wy, +w; > 0. Together

with the complementarity properties given in (12) it follows that

k1 1| k—1 ]
Sopi(@) +o@)+ Y pi(@) =2 P +m@)+ Y p =1
j=1 j=k+1 j=1 j=k+1
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Therefore,

Jj=1 j=k+1
k—1 7]
2.7+ p <],
j=1 j=k

so k = j'. Summarizing, at a trivial supply-constrained equilibrium, the prices of all the
numeraire and indexed commodities are on its lower bound, while the price of precisely
one index commodity is not bounded and the prices of the index commodities with larger
total endowments are set on their minimum level, and the prices of the index commodities
with smaller total endowments on their maximum level.

From the equations (8)-(12) it follows that at any QCE it holds that a numeraire
commodity can only be rationed in its supply, which only occurs when its price is €, while
an indexed commodity can only be rationed in its supply (demand) when its price is on its
lower (upper) bound. For an index commodity j € I rationing can also occur when its price
is not binding, due to the restriction that the sum of the prices of the index commodities is
equal to one. For all commodities j € I with non-binding prices we have that r;(q) = A;.
Therefore, all these commodities are either not rationed (A; = 0), or rationed with the
same amount on either their demands (A\; > 0) or their supplies (A\; < 0). At a QCE
induced by a point g satisfying > ;c;¢; = 1, it holds that A; = 0 and a commodity in [
can only be rationed in its supply (demand) if its price is on its lower (upper) bound. The

existence of such a point follows as a corollary from the next theorem.

Theorem 4.4 Let £ = ({X%, =%, w'}™,, P) be an economy satisfying Assumptions X, U,
W and let the set P be as specified in (7). Then there exists an's > so such that for all
zero points g € Q of z with Y_}_; qx > 5 it holds that rj(q) = w; for all j € IUJ, p;(q) > ¢
and ri(q) =0 for all j € M.

Proof.

From Theorem 4.3 it follows that there exists a sequence (¢");en in Q, satisfying S°7_; gt >t
and z(q") = 0™ for all t € IN. Since P and thus also @ is bounded in any j € U J, without
loss of generality it follows that g, — oo for some k € M. It is obvious that 7 (¢") = 0. Now,
define I' = {j € I|rj(¢") < wy}, J* ={j € JIrj(¢") < w;} and M* = {j € M|p;(d') = e}.
Then, for any j € I U JU M" we have that ( % goes to zero. Moreover, for all 7 € [,,, and
j € I, the demand d}(q") is bounded from above by w + (w; — 7j(¢")), while r¢(¢") = 0
implies net supply equal to —wy, is possible for commodity k. For ¢ sufficiently large, for
any 1 € I,,, for any j e ItuJtU M, it follows from the monotonicity of the preferences
that d’(q") = w} + (w; —r;(¢")) > w}, contradicting z(¢") = 0". Hence I' U J* U M"' = .
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So, for ¢ sufficiently large it follows that r;(¢") = w; and that p;(¢*) > € and r;(¢") = 0 for
all j € M. Q.E.D.

The theorem implies that there exists a connected set of QCEs containing a trivial supply-
constrained equilibrium and an equilibrium with full rationing on the demand of the com-
modities in I U J and no rationing at all on the commodities in M with prices above ¢.
Clearly, at the latter equilibrium it must hold that for every consumer the consumption of
the commodities in I U J is equal to its initial endowments of these commodities. Hence
the prices of the commodities in M are Walrasian equilibrium prices for a reduced economy
with only commodities in M and preferences on this reduced commodity space obtained
from the preferences in £ with consumption of the commodities in I U J equal to the initial
endowments. At any ¢° inducing a trivial equilibrium we have that r(¢°) = —w, while at
any ¢ inducing an equilibrium with full rationing on the demand of commodities in I U J
and Walrasian prices for the commodities in M, it holds that r;(q) = w; for all j € U J,
and r;(g) = 0 for all j € M. Observe that 7;(¢°) = —w, for all j € I implies that for some
p® >0

Yo a3 = (10r(a°) + pi(a") = =1 Y wi + D pi(e”) = —p0 Y w1 <1

jeEI jel jeI jel je€I
and that r;(q) = w; for all j € I implies that for some 7z > 0

20 = (Ari(@) +pi(@) =Fd_wi+ 3 pi@ =AY wj+1>1

jEI jel jeI jel jeI

From this we obtain the following corollary.

Corollary 4.5 Let £ = ({X', =", w'}™,, P) be an economy satisfying Assumptions X, U,
W and let the set P be as specified in (7). Then there exists a connected set of QCEs,
containing a trivial supply-constrained equilibrium and the following types of equilibrium.:

(i) For any j € 1 U J, an equilibrium induced by a point q satisfying rj(q) = 0, i.e. a
generalized Dréze equilibrium with respect to commodity 7 € 1 U J;

(11) An equilibrium induced by a point q satisfying r;(q) = 0 for allj € M, i.e. a generalized
Dreéze equilibrium in which no commodity j € M 1is rationed;

(i1i) An equilibrium induced by a point q satisfying maxjer, 7;(q¢) = 0, i.e. a supply-
constrained equilibrium, so at least one of the commodities is unconstrained;

(iv) An equilibrium induced by a point q satisfying max,cruyri(q) = 0, i.e. a supply-
constrained equilibrium in which at least one of the commodities in I U J is unconstrained;
(v) An equilibrium induced by a point q satisfying Y- ;c;q; = 1, i.e. a commodity in I can
only be rationed on its supply (demand) if its price is on its lower (upper) bound;

(vi) An equilibrium with full rationing on the demands on the commodities in I U J and

Walrasian prices for the reduced economy with commodities in M.
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At an equilibrium of type (iv) it may hold for some j € M that r;(q) < 0 and hence supply
rationing occurs on some of the commodities in M. At such an equilibrium we have that
for some h € T U J, r4(q) = 0 and px(q) > p, > 0 and thus py(q)(—wn — rr(g)) < 0. Now,
suppose that 7;(¢) < 0 and thus p;(¢) = ¢ for some j € M. From the monotonicity of the
preferences it then follows for sufficiently small e that d’(q) = w} + (w; — r;(q)) > w} for
all i € I,,,, contradicting that z;(¢) = 0. Hence we must have that r;(¢) =0 for all j € M,

implying that all commodities in M are unconstrained.

Corollary 4.6 Let £ = ({X', =", w'}™,, P) be an economy satisfying Assumptions X, U,
W and let the set P be as specified in (7). Then for € sufficiently close to zero, there exists
a supply-constrained equilibrium in which none of the commodities in M are rationed and

at least one of the commodities in I U J is not rationed.

This corollary generalizes the results of van der Laan (1984) and Weddepohl (1987) ob-
tained for the case with one money commodity in M and no lower and upper bounds for
the index commodities in . Finally, if TUJ = (), the equilibrium of type (vi) is a Walrasian
equilibrium for the economy &£ with price set P = {p € R} |p; > ¢, j € I,} and thus in
this case there is a connected set of equilibria connecting the trivial no-trade fully supply

constrained equilibrium with a Walrasian equilibrium.
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