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Testing Parameters in GMM without assuming that
they are identified

Frank Kleibergen*
July 10, 2001

Abstract

We analyze the limiting behavior of the first order derivative of the GMM objective
function in an alternative manner. It allows us to obtain novel statistics for testing
hypothezes on the parameters in the moment equation whose limiting distributions are
robust to violation of the rank condition for identification of the parameters. The de-
grees of freedom of these chi-squared limiting distributions are equal to the number of
parameters on which the hypothezes are specified. Because our statistics result from
the first order derivative, they attain their (zero) minimum at the estimator that results
from the first order condition for a minimum of the GMM objective function. These
statistics therefore offer a more robust way of conducting inference that is still centered
around the estimator that results from the first order condition. The robustness can be
further extended by using HAC covariance matrix estimators. We give expressions of the
statistics and verify the plausibility of the assumptions for linear instrumental variables,
dynamic rational expectations and panel AR(1) models.

1 Introduction

The Generalized Method of Moments (GMM) of Hansen (1982) offers a flexible estimation
framework in which many econometric models can be cast. This alleviates statistical infer-
ence in these models because we can use the estimators and test statistics developed for the
GMM. Many econometric models can only be estimated using GMM when we evoke a set of
instrumental variables. Ideally, these instrumental variables are uncorrelated with the involved
moment equation but correlated with those parts of the moment equation that contain the
parameters. Unfortunatedly, in practice, the latter correlation is often quite small. Simulation
experiments of these instances show that the empirical distributions of GMM estimators and
test statistics are then quite different from their normal or x? limiting distributions, see e.g.
Tauchen (1986), Nelson and Startz (1990), Hansen et. al. (1996) and the other papers in that
issue of the Journal of Business and Economics Statistics. Also the limiting distributions
themselves of GMM estimators and test statistics eventually change when this correlation
becomes negligible, which is also referred to as the case of “weak instruments”, see Staiger
and Stock (1997) and Stock and Wright (2000). This is an important inconvenience for ap-
plied work. It shows that the usual GMM test statistics are not asymptotically pivotal which
implies that we can not always interpret them in the standard way.
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A solution could be to conduct pre-tests for instrument validity, as suggested by, for ex-
ample, Bound et. al. (1995) in case of the instrumental variables regression model. Simulation
experiments, however, show that these pre-testing procedures perform poorly with respect
to size and power, see Hall et. al. (1996). These properties can partly be attributed to the
difference between the number of instruments and the number of parameters in the moment
equation that is estimated using the GMM. In practice, this difference is often quite large. The
degrees of freedom parameter of the limiting distribution of the pre-test then strongly exceeds
the number of parameters in the moment equation which affects the power of the pre-test.

We follow an alternative approach and propose the K-statistic for testing joint hypothezes
on the parameters in the moment equation. The K-statistic is asymptotically pivotal and
the degrees of freedom of its x? limiting distribution is equal to the number of parameters in
the hypothesis. The K-statistic results from the first order derivative of the GMM objective
function and therefore attains its (zero) minimum at the estimator that solves the first order
condition for a minimum of the GMM objective function, i.e. the continuous updating estima-
tor (CUE) of Hansen et. al. (1996). The limiting distribution of the CUE depends on nuisance
parameters when the rank condition for identification of the parameters in the moment equa-
tion is violated. Since the limiting distribution of the K-statistic is robust to violation of the
rank condition, it thus leads to a more robust kind of inference than the limiting distribution
of the CUE, that is, however, still centered around the CUE. When the rank condition is
satisfied for a sub-set of the parameters, we can adapt the K-statistic to test hypothezes on
the remaining sub-set of parameters. The limiting distribution of this K-statistic is robust to
violation of the rank condition for the set of parameters on which the hypothesis is specified.

The outline of the paper is as follows. In the second section, we discuss the GMM. We
make an assumption about the joint limiting distribution of the moment equation and its
derivative with respect to the parameters that differs from the assumptions that are made
traditionally. In the third section, we analyze the limiting behavior of the first order derivative
of the objective function and use it to propose the asymptotically pivotal K-statistic. The K-
statistic results from an orthogonal decomposition that was initially proposed in Kleibergen
(2000). Tt can be used to test joint hypothezes on all parameters and hypothezes on sub-
sets of the parameters. In section 4, we show how to incorporate consistent estimators of
the covariance, correlation and Jacobian parameters in the K-statistic. We also show how
heteroscedasticity autocorrelation consistent covariance matrix estimators are incorporated.
For expository purposes, the fifth section shows the expressions of the K-statistic and verifies
the plausibility of its assumptions for moment equations that result from linear instrumental
variables regression and dynamic rational expectations models. The sixth section extends the
K-statistics to GMM applied to panels of moment equations. As an example, we show the
expression of the K-statistic to test hypothezes in the panel AR(1) model with individual
specific constants. Finally, the seventh section concludes.

We use the following notation throughout the paper: vec(A) stands for the column vec-
torization of the matrix A, vec(A) = (a} ...aly) when A= (a1...ay), Pa = A(A’A)"* A’ and
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My = Iy — P4 for a full rank 7' x k matrix A, |, stands for evaluated in a, “—” indicates

P
convergence in probability, “—” indicates convergence in distribution and “=" means that the
d a

equality holds for a large number of observations (asymptotically).



2 Generalized Method of Moments Estimation

We consider the estimation of the m x 1 parameter vector 6§, whose parameter region is the
R™ for which the [ x 1 dimensional equation

Elp(0o,Yy)| 1] = 0, (1)

where [ is the information set at time/individual ¢ and E is the expectation operator, holds.
The data vector Y; is observed at time/individual ¢. The [ x 1 dimensional vector function ¢
of 6 is finite for finite values of #, continuous and twice continuous differentiable. The specific
true value of 0, at which (1) holds, is equal to ;. To estimate the parameter ¢ in (1), we
use Hansens (1982) GMM framework and involve the k-dimensional vector of instruments X,
kl > m, that are in the information set I; and uncorrelated with (6, Y;),

E[Xip(60,Y2)'|1t] = 0. (2)

For the data-set (Y;, Xy, t = 1,...,T), the objective function in the GMM framework then
becomes

Q(G) = fT(97 Y)/V(e)ilfT(‘ga Y)a (3)
where f7(0,Y) =3, fu(0),
fi(0) = vec (Xup(6, V1)), (4)
and V() is the covariance matrix of fr(0,Y),
V() = g {25, S0 (60) - EGOU ) - EGOL)Y.  6)

We leave the covariance matrix at this moment unspecified. Lateron, we specify some estima-
tors for it. In order to construct our test statistics, we make an assumption that differs from
the ones that are made traditionally:

Assumption

1. The joint limiting behavior of the sums of the martingale difference series f;(6y) and
pi(00) — E [pi(6o)|1;] , with

pi(Bo) = 2LLed |, - kil x m, (6)

accords with the central limit theorem

LV (0072 S (£i(00) pl00) = Elp(00)|1] )} A — (0 vy ) &
VIV (00) % ( 2 fr(60,Y) Lpr(60,Y) — Jo(00) ) A(6) 2 ~ (Y vYos)
(7)
where pr(0,Y) = Zthl JACHE

Jo(0p) = limy_o B {% ZtT:1 E [Pt(90)|]t]} ;
— hmT—)oo E {% Z?:l E {( (%) )90 ® Xt) ‘It] } 9



Yy kl X1, g ¢ Kl X m,

( Yy ey ) ~ N(0, Lny1 ® Ii), 9)

and

with Aff(e) 11X 1, Aff(e) = 1, Agf(e) = Afg(g)/ m X 1, Agg(e) m Xm,

Ago(0) = limroe B3 0, 5, (f0) = ELf(O)|L]) V(6)~
Ago(0) = limg oo B 35301 300, (0:(0) — E [pe(0)[L]) V(0) (s

—
—
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Assumption 1 is an extension of the traditional assumptions, with respect to the limiting
distribution, because it also assumes a limiting distribution for the derivative of the martingale
difference series f;(#). The traditional assumptions only deal with a limiting distribution for
% fr(0,Y) (= % ST, f(60)) while we also assume a limiting distribution for %pT(G,Y)
(= % S pi(8o)), see e.g. Hansen (1982), Hamilton (1994), Newey and McFadden (1994)
and Stock and Wright (2000). Unlike these traditional assumptions, we make no full rank
assumption about Jy(fp) and it is therefore allowed to be equal to zero or another lower rank
value.

Assumption 1 is a standard central limit theorem for martingale difference series and is
therefore satisfied under rather weak conditions for f;(6y) and p;(y). Conditions that ensure
such convergence are that f;(6y) and p;(6y) result from covariance stationary stochastic pro-
cesses with parameters that are absolutely summable, see e.g. Hamilton (1994), Newey and
McFadden (1994). We note that A(#) in assumption 1 is defined to make (7) hold. Assump-
tion 1 does therefore not imply identical covariance matrices for the limiting distributions of
ﬁfT(QO,Y) and ﬁpT(GO,Y)

Assumption 1 implies a limiting distribution for the derivative of % fr(00,Y), % pr(00,Y).
The expectations that are taken in this limiting expression, to construct the location and
variance of the limiting distribution, are conditional on the value of the instruments at time ¢
(2). Hence, when the derivative of p(6,Y;) is completely spanned by the instruments at time
t, the limiting distribution of %pT(Go, Y') is degenerate and has zero variance. The elements
of A(#) that are associated with these parameters are then equal to zero. For example, when
©(0,Y;) =y, —xh,ac— h(wy, B), and the instruments are such that X, = («}, x,)’, the derivative
of ¢(0,Y;) with respect to « is x1; and is completely spanned by the instruments X;. Hence, the

limiting distribution of %M

5o ) o, is degenerate and has zero variance which is reflected by
zero elements in A sy(0) and Agg(6) in (10). The equations for the statistics, that we construct,
however, still apply. In case when the derivatives of ¢(0,Y;) with respect to all elements of
6 are completely spanned by X;, because of the zero-values of the elements of As(6) and

Ago(00), the specifications of our statistics correspond with the standard ones.



3 The First Order Derivative and the K-statistic

3.1 Testing hypothezes on all parameters

In order to obtain an estimator for 6, it is customary to minimize the objective function Q(6)
with respect to 0,

0 = arg grenﬂi{r% Q). (12)

The optimal value for # is then obtained by use of the first order condition (FOC):

FOC: 22001, = 0. (13)
Instead of analyzing the first order derivative of Q(6) in 0, we analyze (3 times) it in the true
value of 6, 6y. This first order derivative reads,

5507 00 = fr(00, Y YV (00)pr(00,Y) = (fr(00, Y YV (00) ™ © fr(0, Y YV (00) ™) =502

06’ 06’
(14)

The traditional construction of the limiting distribution of estimators and test statistics only
involves the first element of the first order derivative (14). The second element is left aside
because it, when Jp(6) has a fixed full rank value, vanishes asymptotically when we scale by
the appropriate factor of T. When Jp(6) does not have a fixed full rank value, it, however,
does not vanish asymptotically and influences the limiting distribution. In order to obtain a
statistic whose limiting distribution is insensitive to the value of Jy(6), we therefore use all
elements of the first order derivative (14).
The first order derivative (14) depends on the derivative of V' (8) (5) with respect to 6

vec . o[f;(0)— i(0)|1;
2 (‘)(X(a)) ‘9 - hmTHoo %E Z?:l Z?:l ([ft(e) — E(ft(e)‘]—t)] ® Ikl) |: [fj( ) 6E€(/fj( )‘IJ)]i| }
= limpo 28 {30, X7 (11(0) = BUO)L)) © L) [p5(6) = E[p,(0) 1]}
(15)
When we substitute this expression in (14), we obtain the value of the derivative of Q(¢) that

for large values of T" and evaluated in 6 is equal to, see the appendix for a derivation,

aQ(o
80(’ : |90

=

fr(00,Y)V(00)~" [pr(00,Y) — fr(00,Y)Asa(60)] - (16)

a

We analyze the limiting distribution of (16). To construct the limiting distribution of (16),
we use a consequence of assumption 1.

Lemma 1 When assumption 1 holds,
VT [%pT(me) — Jo(0) — %fT(QmY)AfG(QO)} - V(QO)%¢9_fA00.f(00)%7 (17)
where

Aog.£(00) = Ngo(6o) — Aoy (00)Ara(6o), (18)

and g ¢ 1s independent of .



Proof. see the appendix. m

Lemma 1 implies that the limiting behavior of a scaling factor that depends on T times
[pr(00,Y) — fr(00,Y)Ase(00)] is independent from the limiting behavior of % fr(00,Y), for
full rank, weak and zero values of Jy(6y).

Lemma 2 Under assumption 1, the limiting behavior of a scaling factor that depends on T
times [pr(0o,Y) — fr(0o,Y)Ase(60)] is independent from the limiting behavior of %f’f(&o, Y)
when:

1. Jy(0o) has full rank, rank(Jy(0o)) = m.

2. Jy(00) has a weak value such that Jy(0o) = Jor, Joo = %C’, C : kl xm and rank(C) = m.
3. Jy(0o) is equal to zero.

0
0

Proof. see the appendix. m

From lemma 2, we obtain the limiting behavior of the first order derivative of Q(f) in 6.

Theorem 3 Under assumption 1, the limiting behavior of the normalized first order derivative
of Q(0) in Oy reads

N

7 (%710,) (Ipr(00,Y) = fr(00,Y)Aso(00))' V(00) " [pr(60, Y) = (60, Y )Asa(60)])
7 ¢/Qd07
(19)

where Ygq9 = m X 1 and
@/dee ~ N (0, [m) . (20)
The limiting behavior in (19) is identical under cases 1-3 for Jo(6o) from lemma 2.

Proof. results directly from lemma 2 and assumption 1. m

We use the limiting distribution from theorem 3 to define a statistic to test Hy : 6 = 6. We
refer to this statistic as the K-statistic.

Definition 4 The K-statistic for testing Hy : 6 = 6y reads

K(00) = 3 (%8210, ) (pr(00,Y) = Fr(00,Y)Aso(00)) V (60) !

[pr(60,Y) — fT(Qo,Y)Afg(«go)]y1 (8?(9(/9)‘00)/ (21)
= +/(60)'V(60) 72 P, V(80)~2 fr(60)

V(60)~3 [pr(60,Y)—f1(80,Y)As4(00)]

and has under Hy and assumption 1 a x*(m) limiting distribution for all three cases of Jo(6o)
from lemma 2.

The K-statistic in definition 4 is an asymptotically pivotal statistic to test Hy : 8 = 6. It
becomes operational when we specify consistent estimators for Asy(6y) and V' (6p). In section
4, we discuss consistent estimators for these parameters.

Because of its relationship with the first order derivative, the K-statistic attains its (zero)
minimum at the value of 6, that is equal to the estimator that solves the FOC (13). It is

6



also invariant to the specification of Hy. An estimator that solves the FOC is the continuous
updating estimator (CUE) of Hansen et. al. (1996). Inference on 6 using the CUE is conducted
by constructing the limiting distribution of the CUE. As shown by Stock and Wright (2000),
the limiting distribution of the CUE depends on nuisance parameters in cases 2-3 of lemma
2. The K-statistic therefore offers an alternative more robust way of conducting inference on
0 because its limiting distribution is invariant under all cases of lemma 2. This inference is
still centered around the CUE since it leads to the minimal value of the K-statistic. Hence,
confidence sets of # obtained from the K-statistic, that are constructed by specifying a grid of
values of 6y and computing the K-statistic and its associated asymptotic p-value for each of
them, always contain the CUE.!

The K-statistic (21) is essentially a score or Lagrange multiplier statistic, see e.g. Engle
(1984). Tt differs from the traditional representation of score and Lagrange multiplier statistics
because it involves an alternative expression of the information matrix. Unlike the standard
expression of the information matrix, this expression leads to a statistic whose limiting distri-
bution is invariant to the specification of .Jy(9).

3.2 Testing hypothezes on sub-sets of the parameters

The K-statistic from definition 4 conducts a joint test on all elements of . When 6 contains
several elements, for example, 6 = (o/ '), with o : m, x 1 and 8 : mg x 1, m = mq + mg, we
can adapt the K-statistic to conduct a test on a sub-set of the parameters, Hj : 5 = [3,. In order
to construct the limiting distribution for this statistic, we make an additional assumption.

Assumption

2. The kl x m, dimensional Jacobian matrix

Ja(a7ﬁ) = hmT—»ooE {%pa,T(avﬁay)}
; a,B,Y: 22
_ hmT%E{%zZlEK(%)Lﬁ@%) |Jt]}, (22)

where

pr(a, B3,Y) = (pa,T(Oé,ﬁa Y) pﬁ,T(Oé,@Y) )7

Par(e, 8,Y) = %m (23)
pﬂ,T(a767Y): %‘a,ﬂa

is a continuous function of («, 3) and has full rank m,, in (ag, 3,)-

Under assumptions 1-2, the estimator that solves the FOC with respect to « given [, &(3,),
is a consistent estimator of oy and v/T'(&(3,) — a) has a normal limiting distribution, see e.g.
Stock and Wright (2000). We can therefore analyze the limiting behavior of the derivative
Q(0) with respect to 3 in 0y = (&(3,)" By)" that for large values of T is equal to®

aQ(0
B(ﬂ’O) ‘90

% o fT(QO)/V(GO)_%MV(GO)_%J(X(GO)V(GO)_% [ps.r(00,Y) — fr(00,Y )Ass(60)], (24)

1'We note that these confidence sets can be non-convex and can, for example, be discontinuous or infinite,
see e.g. Dufour (1997), Stock and Wright (2000) and Zivot et. al. (1998).

2This derivative results from noting that &(/3,) is obtained from the FOC such that fr (o) lies in the space
orthogonal to V(0) ! [pa,r(00,Y) — fr(0o,Y)Asa(60)] which for large T corresponds with T x V(6)~1.J,(6y).

7



where

AgsO0) = Ty oo B {5 S5 ST [£0060) = BULOI] V)M, Ly, o

1 (25)
V(06)# [pas(60) — Elpas(00) 1]}
with
pt(auﬁ) = ( pa,t(aaﬁ) p,@,t(awg) ) )
pa,t(aaﬁ) = %’a,ﬂ; (26)
poe(e f) = 552 ap.

Lemma 2 states that the limiting behavior of a scaling factor that depends on T times
[pr(00,Y) — fr(00,Y)As9(00)] is independent of % fr(0p). Since we can estimate g consis-
tently by means of &(/3,), a scaling factor that depends on 7" times [pg (0o, Y") — fr(60,Y)As5(60)]
with 0y = (&(8,)" B5)’, is also independent of % fr(0o). Hence, we can extend theorem 3.

Theorem 5 Under assumptions 1-2, the limiting behavior of the normalized first order deriva-
tive of Q(0) with respect to 8 in 0y = (&(B,) By) reads

_1 1
2

3T (agﬁ(?)‘eo) ([p'@’T(GO’Y) — fr(00,Y)As5(00)]" V(o) QMV(Go)f%Ja(GO)V(GO)i (27)
[por (60, Y) = Fr(80,Y)Ar(00)) 7 — Ulggs,

where Ygq5 1 mg X 1 and
Yaas ~ N (0, Im,) (28)

The limiting behavior in (27) is identical under cases 1-3 for Jz(0p) = limp o E {%%ﬂ’,ﬂ’y) ]90}

from lemma 2.

Proof. results directly from lemma 2 and assumptions 1-2. m

Theorem 5 allows us to define the K-statistic to test hypothezes on sub-sets of the param-
eters.

Definition 6 The K-statistic for testing Hj : 3 = 3, reads

K(B0) = 3 (%85 10.) (Ipar(00,Y) = fr(60,Y)Asa(00)) V (60)2

1 -1 1
My 4oV (607 (60, Y) = Fr(00,Y)Ag5(60)]) (%5210, )
= Lfr(00,Y)V(0y) 3P

1
Mo V(00)" 2 [pg,1(00,Y )~ fr(00,Y)As5(00)]
V(6g) 2Ja(bg)

V(eo)*%fT(QO,Y)
(29)

where 0y = (&(B,) By)', and has under Hy and assumptions 1-2 a x*(mg) limiting distribution
for all three cases of J3(6p) from lemma 2.



The K-statistic (29) becomes an operational statistic when we have specified estimators for
Ja(60), V(6p) and Ass(0p). We will pursue this in the next section. Given that assumption 2
holds, the limiting distribution of the K-statistic (29) does not depend on nuisance parameters
and does therefore not depend on the rank of Jz(6p), i.e. the rank of the derivative with
respect to the parameter on which the hypothesis is specified. Compared to K-statistic (21),
the limiting distribution of (29) has less degrees of freedom and shows that we can conduct
tests on those sub-sets of the parameters for which assumption 2 holds for the remaining
parameters. We note that when assumption 2 does not hold, the limiting distribution of (29)
depends on nuisance parameters and we should use (21) instead.

K-statistic (29) can be used to construct confidence sets for § only. Similar to the joint
confidence sets for (c, ) that result from K-statistic (21) also these confidence sets can be
non-convex. Identical to (21), K-statistic (29) attains its minimal zero value at the estimator
that satisfies the FOC for 3, i.e. the CUE for 3. Confidence sets for 3 therefore always contain
the estimate of 3 that results from the CUE.

4 Covariance and Jacobian Parameters

The functional expressions of K-statistics (21) and (29) depend on unknown parameters. When
we substitute consistent estimators for these parameters, the K-statistics become both appli-
cable for practical purposes and we preserve their limiting distributions. These estimators can
be either parametric or non-parametric.

4.1 Parametric estimators

When we make additional assumptions on the moment functions ¢(6,Y;), like, for example,
no correlation between ¢(6y,Y;) and ¢(6y, Y;) for ¢ # j, we can further specify the covariance
matrix V(). For this no correlation case, a consistent estimator for the covariance matrix

V(6) is
V(0) = (©2(0) ® Qux) (30
where
Qop(0) = 77 S0, (900, Y) = $(0)X0) (2(6, V3) — 2(6) X1, (31)

and Qxx = 7 >y XeX{, with $(0) = £ 30, (0, Vi) X{Qyx + 1 x k.
A consistent estimator of Jy(6) is obtained without any further assumptions,

Jo(0) = 330 (hh® Xo) %2552, (32)

The estimator for A (@) should be such that the estimator that it (implicitly) implies for
Ass(0) is equal to 1 for all 6. Under the no cross-correlation assumption, also the correlation
between f;(6) and p;(6o)—E (p;(0o)|I;) is equal to zero. This implies that all cross-correlations

in (11) are equal to zero. By combining these two results, we obtain the consistent estimator
for A fg(g) .

Rro(6) = 7 04 (0(6,Y) = 2(0)X1) 2 (6) ™ (2257210 — (10 X[Q3Y ) o(9))
(33)



The estimators for J, (), J3(6) and A;g(0) that are used in (29) result in a similar way,

J0) = YL (IeX,)28x),

A 34
) = L350, (e x,) 2400, (34)

and
Ara0) = 75 S0 (0(0,Y) = (00X [200(0) 7" = Qsp0) (228525

(2?1 (2421215 )' Qpp(0) (220220 0))1 (%m,ﬁ)’%ww] (33)

oo’
(22921 - (1 XiQx ) J(6)

The estimator (35) is a consistent estimator for Ayz(6) and is also such that the estimator for
Ass(0) that it implies, is equal to one for all §. The latter results because 8 = (&(8)" 3').

4.2 Non-parametric estimators

When we do not make assumptions about the specification for A(f) and V(#), we can use
non-parametric estimators. Especially convenient for this purpose are the heteroscedastic-
ity autocorrelation consistent (HAC) covariance matrix estimators that are based on kernel
functions, see e.g. Andrews (1991), Newey and West (1987) and White (1980) for conditions
that ensure convergence of these estimators to the true covariance matrix. A HAC covariance
matrix estimator is obtained by using a kernel function h(z) : R — [—1,1], with h(0) = 1,
h(—z) = h(2), [*2_|h(2)] dz < 0o, and h(z) continuous at zero and at all but a finite number of
points, see Andrews (1991). Both the covariance matrix V() and Ay(6) need to be estimated
using the same kernel function to preserve the property that A 77(0) = 1. HAC estimators for
V(0) and Afg(6) then result as

V(0) = X Sl — ) [£00) — 740)] [£:60) - Fie))]
[ |

Apl0) = XL ST bt =) VO [n6) - (12 X,X0:) )]
(30)

~

fi(8) = f:(6)

where f,(0) =vec(X, X/®(0)') = (¢(0) X;®X;) and Jp(0) is defined in (32). The HAC estimator
(36) is consistent and the estimator A;;(f) implied by Asg(6) (36) is always equal to one.
Different choices of the kernel function h lead to different estimators. One of the most
popular HAC covariance matrix estimators is the one proposed by Newey and West (1987).
It involves the choice of a band-with parameter b. Given b, the kernel function h(z) involved

in the Newey-West covariance matrix estimator reads
h(z) = max [O, 1-— %} . (37)

The Jacobian estimators J, (), J5(f) and Jp(f) are already non-parametric estimators
because they do not involve any parametric assumptions. A non-parametric estimator for
Asg(8) (25) is obtained as

A . ; ! _1 _1
Ara0) = £ X0 i bt = ) [F0) = Ju®)] VO M,y VO)

[pﬂ,j(g) - (fz ® XjX]’.Q;(lx) jﬂ(g)} , (38)
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where 0 = (a(8)" #'). The estimator (38) is also a HAC estimator and involves the kernel
function h(z). Furthermore, the estimator of As(#) that it implies is equal to one for all j3,
which results because 6 = (a(8) 3').

5 Examples

We show some examples of the applicability of K-statistics (21) and (29) for models that are
commonly estimated by means of the GMM. We therefore analyze the GMM when applied to
estimate linear intrumental variables regression models and a dynamic rational expectations
model with constant relative risk aversion.

5.1 Instrumental Variables Regression Model
The moment equation (1) for the linear instrumental variables regression model reads
E(ySt — Q{/YQt — ﬁl}qt’It) = 0, t= 1, Ce ,T, (39)

where Yy, : mg X 1, Yoy : mg x 1 and y3 : 1 x 1 such that [ = 1, m = m, + mg, and
o(a, 3,Y;) = y3 — 'Yy — 'Yy The variables Yy, Yo, and 3, are considered to be endogenous
and thus correlated with ¢(ayg, B, ;). We therefore use the k-dimensional vector X, of weakly
exogenous variables, see e.g. Engle et. al. (1983), as the vector of instruments at time ¢,
kE > mq 4+ my. The specification of fr(a,3,Y") then reads

fr(a,B,Y) = Zthl vee( Xy (yse — 'Yo — ﬁ/Yu)/) = Z;le Xi(yse — 'Yy — ﬁlylt)- (40)

We are interested in testing Hy : o = g, B = By and Hf : 3 = ;. We therefore make
assumption 1 with respect to (40) and for Hjj also assumption 2. Assumption 1 implies that

VIV (a0, 50) 2 [( § T Xewlao, B, Vo) 3 0 XiYs 530, XY, )
- ( 0 Ja Jﬁ )} ‘/\(0[0760)_§ (41)

7 ( ¢f @Z’a.f ¢ﬂ.f )7
where ¥, 0 k X 1, ¥, ¢ 1 kX mq, ¥g kX mg,

( Yy Yayp Vsy ) ~ N(0, L1 ® ), (42)

and
Jo= limp_o E {% ST Xtygt} , Js= limr_o B |27 X5 (43)
The covariance matrix A(c, () is specified as

App(a, B) Agale, B) Ags(e, B)
A(O‘7ﬂ): Aaf(aaﬁ) Aaa(aaﬁ) Aa,@(a7ﬁ) (44)
Aps(a, B) Apale, B) Ags(e, B)

with Aff(()é,ﬁ) 11 x 1, Aff(a,ﬁ) = 1, Aaf(a,ﬁ) = A’fa(a,ﬁ) My X 1, Aﬂf(a,ﬁ) = A’fﬁ(a,ﬁ) :
mp X 1, Aaal, B) : Mo X Ma, Aag(a, B) = A, (a, B) : ma X mp, Agg(a, B) : mp x mg.

11



Assumption 2 imposes the rank of J, to equal m,. When J, = 0, the instruments are
irrelevant to estimate o and estimators of o converge to random variables, see Phillips (1989).
Another important case occurs when the instruments are so-called weak, see e.g. Nelson and
Startz (1990), Staiger and Stock (1997) and Zivot et. al. (1998), which can be reflected as
a value of J, that depends upon T, J, = %C with C a fixed full rank £ x m, matrix. It
reflects the frequently observed combination of a large number of observations and a small but
(barely) significant F-statistic for instrument relevance. In this case, the limiting distributions
of the likelihood based statistics, Wald, likelihood ratio and Lagrange multiplier, to conduct
tests on a depend on nuisance parameters, see Staiger and Stock (1997).

The above shows that assumption 1 is typically satisfied and the K-statistic (21) can be
used to test Hy. Assumption 2 is only needed for K-statistic (29) that tests Hj;. Alongside these
assumptions, we assume that (o, 5y, Y;) is uncorrelated with ¢(ag, 5y, Y;) for j # t. This
implies that we can use (30)-(35) as estimators of the unknown parameters in the expressions
of the K-statistics.

The K-statistic K(ag, 8,) that tests Hy : a = g, 5 = B, and for which assumption 2 is
redundant, then reads, see Kleibergen (2000b),

P!

K (00, 8) = sy | S Xeplao, B0, Y| Q3% )
A1 45

P . . ) 2[T,X o, ,Y},

QX)%({( Ja Jﬁ )_(% ZthlXt<p(a07ﬁO,Yt))A(a0”80)}QXX Ztil tSO( 0 50 t)
where QXX = %Zthl XtX£7 ja = %Zthl Xthlta jﬂ = % Zthl XtYllw
Aag, By) = —+—-1 ST B, Y:) (1— X0 X,) (Y, Y.

(a0, By) D (@0,B0) T—F > i1 Plao, By, 1) (QxxXe) (Y Yy, )|, (46)

Bpol0, Bo) = 7 [ lao, By, Yo) (1= XIQA X, ) (a0, B, Vi) |

with A(ayg, 8,) obtained from (33). The K-statistic K(aq, 3,) (45) is an asymptotically pivotal
statistic and has a x?(mg 4+ mg) limiting distribution.
The specification of the K-statistic for testing Hf : 5 = 3, reads, see Kleibergen (2000c),

K(B,) = ww G (00) T |:Zt 1Xt90(‘90ayi)} QXX M oy {Jﬁ (£ X711 Xep(00,Y2))A(00) }

(47)
Q;g( {Zthl tho(Go,Yt)} )

o) Bo) and &(83,) minimizes (3) given a value of 3 equal to 3,. The specifi-

where 6y = (&(
Bo), Bo) results from applying (35),

- (a
cation of A(&(

Mbo) = =2 7ie [0 (9060, Y0) (1 - X103 X)) Vi (48)

The K-statistic (47) has a x?(mg) limiting distribution that does not depend on the value
of Jg. In Kleibergen (2000b,c) an elaborate discussion of the properties, like, for example,
their relationship with other statistics, of the K-statistics (45) and (47) is given. We therefore
refrain from a further discussion here.
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5.2 Dynamic Rational Expectations Model

In a dynamic rational expectations model with constant relative risk aversion, the moment
equation (1) reads, see e.g. Hansen and Singleton (1982),

-8
E {6 (Cé,—Jtrl) Rt+1 — Ll|L£| = O, t= 17 cee 7T7 (49)
where ¢; is a [ X 1 dimensional vector of ones, C; : 1 X 1 is consumption at time ¢, R; isa [ x 1
vector of asset returns at time ¢, 6 is a discount factor and (3 is the coefficient of risk aversion.
Instead of (49), we analyze the moment equation

-B
E (%)  Rui—ayll] =0, t=1,....,T, 50
Cy

with o = %, such that ¢(a, 3,Y;) = (Cé_tl) B Ri1 — ay and fi(a, B) =vec(Xip(a, B, Y)).

It is customary in the estimation of dynamic rational expectations models to use a constant
term and lagged values of consumption and asset returns in the k£ x 1 dimensional instrument
vector Xy, see e.g. Hansen and Singleton (1982). In that case, the derivative of p(«, 3, Y;) with
respect to « is completely spanned by the instruments because it is equal to ¢;. The estimator

of v, @(f) that maximizes (3) given a value of 3 reads

a0 = [Lvia@).oa]  avaEe (S (xir (%) 7)) oy

where J, = < ST (u®Xy).
In assumption 1, a joint limiting distribution for f(ay, 3y,Y) and its derivatives is speci-
fied,

\/TV(QOaﬁO)i% [( :lrfT(a()vﬁOvY) %pa,T(QOJﬁOJY) %pﬁ,T(amﬁo,Y) )
— (0 Ja Jslawo,Bg) )] Alw, By) 2 (52)
7 ( ¢f @Z}a.f ¢ﬂ.f )7

with ¢, Yo p, gp 1 kX 1,

(05 Vay Yos)~NOLS D), (53)
and
Jor= limgoo B3 550 (09 X0)
Joeo, B) = Timr—oe B{% 521, [log (%) | fulao, B0} i
Because
thar(on 00, T) = 550 (n e X), -

IR S e

)| fila,30).

the assumption of a joint limiting distribution for % fr(a,3,Y) and %pT(a,ﬁ, T) is as
stringent as the assumption of a limiting distribution for % fr(a, 3,Y) only. Assumption 1
is therefore satisfied. We note that the limiting distribution of %pavgp(a, B3,T) is degenerate.
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Assumption 1 specifies A(ay, 3,) as

Asp(a,B) Agala, B) Ags(e, B)
Ao, B) = | Aap(a,B) Asale,B) Aapla,B) |, (56)
Aps(a, B) Apal, B) Agsle, B)

where all the elements of A(a, ) are scalars, A(«, 3) is symmetric and Asf(a, 5) = 1. Because
the derivative of p(a, By, Y;) is spanned by the instruments, A, f(c, B), Aso(a, B), Aga(c, (),
Apo(a, B) and Ayq (o, B) are equal to zero.

We are interested in testing Hj : 8 = [(,. We therefore also make assumption 2 which
is satisfied since J, # 0. All the assumptions are thus satisfied and we can construct the
K-statistic for testing Hf : 8 = 3,. For this K-statistic, we do not make the assumption that
Ja(ao, By) # 0 that is traditionally made when conducting tests on 3. We construct the K-
statistic using the HAC estimators because dynamic rational expectations models are typically
estimated using HAC covariance matrix estimators. When we employ the expressions for these
estimators that result from (36)-(38), we obtain that

V(80) = 4 XL Sy bt = ) [£60) = £:00)] [£:00) — Fit60))] (57)
and

Aral0o) = 55200 X0yl — ) [ £i(00) - 7(60)] V(0) 72 M, 35 V(00)72

s 60) — (1 X, 5050 ) Jot6)] (59)

where 6o = (&(8o) Bo)'s fi(ao, Bo) =vec(XiX{@(0)), (0) = 31, ¢(0, Y1) X{Qxx, Oxx =
LT X X], and

Jalao, ) = % 5L [1og (S52)] filao, Bo). (59)

The expression for the K-statistic for testing Hf : 8 = 3, then becomes

K(By) = #fr(60.Y)'V(00) 72 P,,

V(90) ?Ja

]V(eo)_%fTwo,Y)-

(60)

V(60)"2 [ps.7(00,Y) = fr(00,Y)Az5(00)

The K-statistic (60) is an asymptotically pivotal statistic that only tests Hf : 8 = £,
and is straightforward to compute. Because of the close similarity of % fr(a,3,Y) and
%pﬁ;(a, B,Y), the correlation Ag,(f3,) is presumably different from zero. The K-statistic
(60) can therefore be quite different from the standard Wald statistics that are traditionally
used to test Hy. Another important difference between these statistics occurs when log(ct“)
is only minorly correlated with f.(&(5,), 5y)- In that case Jz(a, 3y) is close to zero and the
limiting distributions of the likelihood based statistics become invalid. This results because
these statistics are not asymptotically pivotal, see e.g. Dufour (1997). Since the K-statistic
(60) is asymptotically pivotal, its limiting distribution is not affected by the values of either
Ja(ow, By) or Asg(ag, By). We note also that when Jz(a, 3,) is very small, the asymptotic
confidence sets that result from (60) are likely to be infinite.
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6 Panels

6.1 General specification

The GMM framework discussed in section 2 is intended for the estimation of parameters in
either a cross-section or time-series of multiple equations. These models are one dimensional
with the cross-section or time series dimension as the only dimension. There are also panel
models which consist of two dimensions and have both a time series and a cross-section di-
mension. The GMM is also used to estimate the parameters in these panel models. With a
change of the notation, the K-statistics can also be used to test hypothezes on the parameters
in panel models.
The [-dimensional moment equation (1) for individual n at time ¢ is reflected as

Elp(0o, Yin)|1i] =0, (61)

where t = 1,..., T, and n = 1,... ,N. A difference with section 2 is that the number of
instruments can change over the time periods. When the k; dimensional vector X,, t =
1,...,T, contains the instruments for the period ¢ observation of equation ¢(0,Y;,,), we can
specify the cross-product of the instruments and ¢(6,Y;,,) for individual n as

() = vec (X,9,(0,Y,))

= (1 X )vee(®n (0, Y), (62)
where @,,(0,Y,,) = (¢(0, Y1) ... 0(0,Yr,)) : T x 1, and
X1, 0...0 0
X, = 0 - 0 ckxT, (63)

0 0...0 Xp,

with k = 3.1, k. The objective function (3) then becomes
Q(@) = fN(97Y)/V(9)71fN(‘9’Y)a (64)
where fy(0,Y) = 32N | £.(8) and V(8) is the kl x kI dimensional covariance matrix:

V(0) = Ty o B{E SN S0 (10) - BLOIDILO) - BHOI} (69

We consider that § = (o, 3), a : my X 1 and [ : mg x 1, and that we are interested to test
the hypothezes Hy : 8 = 6y and Hj; : 8 = 3. In order to test these hypothezes, we make
assumptions 1-2 with fr(«, 3,Y) replaced by fy(«,3,Y) and let the cross-section dimension
N instead of the time series dimension 7' converge to infinity. We note that the time series
dimension remains fixed (vice versa, with a fixed cross-section dimension and a time series
dimension that converges to infinity, is possible as well).

In matrix notation, the expressions of K-statistics (21) and (29) to test Hy : 8 = 6y and
Hf : B = [, then become

K(00) = vec(®(8o, Y)Y (I, ® X)V(6,) 2

a0’

P ) , I ® X) o6y,
V(@o)_5(11®X){ (—J—MVCC(<I> R )’00—ve(:(<I>(90,Y))Afg(90)}( L ) VeC( ( 0 ))7 (66)

K(Bo) = vee(®(61,Y))' (L @ X)V(6:) 72

P]V[

l vec (23
V(o1)73 Jawl){ (Zelg )| —vm-@(el,Y))Afg(el)}
1

(I; ® X)'vec(®(0,,Y)) (67)
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where 6, = (&(8,)" 35), X = (X1...Xy) : TN x k, and

®0,Y)= (2,(0,Y1) ... 25 (0,YN)") : TN x 1,

$,(0,Y,) = (ZnNzl XnX,g) 1 (ZnNzl X, ®,(0, Yn)) kx L. (68)
The K-statistic (66) is an asymptotically pivotal statistic and has under Hy a x*(mq + mg)
limiting distribution. Assumption 2 is redundant for this statistic. K-statistic (67) has under
H; a x?(mg) limiting distribution that does not depend on the rank of Js(c, G,).

Estimators for the unknown A(6), J(6) and V' (6) involved in (66)-(67) result from section
4. We note that, in order to obtained these estimators, it is typically assumed that there is
no cross-correlation between individuals.

We explicitly construct the expression of the resulting K-statistic and show the plausibility
of assumption 1 for a commonly analyzed panel data model; i.e. the panel autoregressive
model of order 1.

6.2 Panel AR(1) Model

An elaborate literature about panel autoregressive (AR) models exists, see e.g. Anderson and
Hsiao (1981), Arellano and Bond (1991) and Baltagi (1995). For expository purposes, we
consider the panel AR(1) model with individual specific constant terms. For individual n at
time ¢, this model reads

yt7n:,un+9yt—1,n+6t,n t:O,...7T, n:]_,...,N. (69)

The disturbances ;, are assumed to be ii.d. with mean zero and variance wg. We are
interested in the parameter 6. We therefore take first differences to delete the individual
specific constant terms

Ay = O0yi_1, + Degy, t=1,..., T, n=1,...,N. (70)

Contrary to &, the disturbances A¢;,, are not i.i.d. and have covariance matrix wg\If with

2 -1 0 0
0o . . =1
0O 0 -1 2

Estimation of the parameter 6 by means of least squares leads to a biased estimator in samples
with a finite value of 7', see e.g. Anderson and Hsiao (1981). We therefore estimate it using
the GMM. The specification of the moment equation (61) for the panel data AR(1) model
becomes

E(p(0, yin)l1t) = E(Aein|li) = E(Ayrn — 0Ay110|1:) = 0. (72)

The instrument vectors X, ,, that are used in the GMM to estimate 6 in (70) typically contain
all two period and more lagged level values of y; ,, i.e. Xt ,, = (Y4—2. - - - Y—1.n)’, See Arellano and
Bond (1991). We construct the different elements that are needed to obtain the asymptotically
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pivotal K-statistic (66) to test Hy : 6 = 0y. The specifications of ®(0,Y) and X for the panel
AR(1) model read

AN Ay — Ay 4 X
®0,Y) = : = : TN x1, X = : : TN xk, (73)
Aey Ayn — QAZ/N,—l XJIV
where Ay; = (Ay1y ... Ayry)'s Ayr 1 = (AYos - .- Ayr_1,)" and X, results from (63), such
that k=]t = iT(T +1). The derivative of ® with respect to 6 reads

Ay1,—1

6w*(‘((;}b(/9 Y)) _ ‘ (74)

A?JN,—1
As we conduct a test on all parameters, we do not make the assumption, i.e. assumption 2,
that

Ay, 1
Jo = plimy oo { X7 (2PN L — plimy 0§ EX | A0, (75)
Ayn, 1
which is identical to assuming that 6 # 1. Instead, we make assumption 1 which states that
Ay, 1
VNV(0)2 || £X'®(60,Y) LX' ; = (0 Jo )| AOo) 2 — (¥ Yy ),
Ayn, 1
(76)
where ¥, 1y ;2 k X 1 and
( Yy oy ) ~ N(0,I, ® I). (77)

Since (76) only contains linear expressions and 7 is finite, assumption 1 is satisfied.
Assumption 1 specifies A(0) as

w0 = (5 At >), s

where all elements of A(#) are scalars and Ass(6) = 1. The specification of V() in this case
corresponds with
V(0) = w?(f) [plimy_oc + X' VX] . (79)
The K-statistic (66) for testing Hy : 0 = 6, then becomes

K(0y) = ®(00,Y)XV(0p) 3P

_1
V(GO)_%X’(AY_l—é(GO,Y)Afg(GO))V(QO) 2® (6o, Y). (80)

K-statistic (80) is an asymptotically pivotal statistic to test Hy : @ = 6y and has a x*(1)
limiting distribution. This limiting distribution is invariant to the value of 6y and thus also
applies when 6y = 1. It becomes operational when we have substituted consistent estimators
for the unknown parameters, i.e. V(6y) and A(fy). Based on the previously made assumptions,
consistent estimators for these parameters are

[\ff(eo) = b ® (00, Y)Y MW My AY.,
V(0o) = wE(GO)X (In® V)X,
where (;)5(00) = ﬁ@(eo, Y)/MquilMXq)(Qo, Y)

(81)

17



7 Conclusions

We analyzed the limiting behavior of the first order derivative of the GMM objective function
in an alternative manner. We used it to construct a statistic, the K-statistic, to conduct tests
on the parameters in the moment equation. The K-statistic has a x? limiting distribution that
applies more generally than the y? limiting distributions of the standard GMM statistics. The
rank condition for identification of the parameters is, for instance, redundant to obtain the
limiting distribution of the K-statistic. The K-statistic conducts a test of a joint hypothesis
that is specified on all parameters in the moment equation. When the rank condition holds for
a sub-set of the parameters, we can specify a K-statistic that conducts a test of a hypothesis
that is specified on the remaining set of parameters. Its x? limiting distribution is robust to
violation of the rank condition for the parameters on which the hypothesis is specified. The
K-statistic allows for the use of HAC covariance matrix estimators. Examples of expressions
of it to test hypothezes that are specified on the parameters of the moment equations of linear
instrumental variables regression, dynamic rational expectations and panel AR(1) models, are
given.

In Kleibergen (2000b,c), the K-statistic to test parameters in the moment equation of in-
strumental variables regression models is applied and compared with likelihood-based statis-
tics. It reveals that, because of the close similarity of the power functions of the K-statistic
and a size-corrected likelihood ratio statistic, that the K-statistic is a (asymptotically) size-
corrected likelihood ratio statistic. It also shows that, in applications to data-sets from Angrist
and Krueger (1991) and Card (1995), the K-statistic can lead to considerably different asymp-
totic confidence sets of the involved parameters. This shows the importance of the use of
asymptotically pivotal statistics. In future work, we will also apply the K-statistics to the
other models for which we already constructed their expressions, i.e. the dynamic rational
expectations model and the panel AR(1) model with individual specific constant terms.
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Appendix
Derivation of Equation (16)

10Q(0)
2750 ’90
= [fr(00,Y)'V(00) " pr(60,Y) — vec [V (0o) ™ fr(00,Y) fr(00,Y)'V (6) ']

0

e 2 {2 S (Ui00) = 0] 2 o) s (0e) ~ B (00) 51}
= [F2(00, Y)YV (00) " p2(00,Y) = fr(60, Y)YV (00)™ fr(0, ¥ )vec [1X00 Ll lrGud) V0|
|

limg—oo B { [fv (60, Y) © L) = [p;(00) = E [ps(60)| L]}
. = I7(00,Y)'V(00)~ = (N (00,Y))

— ! -1 _ VT /N

= J2(60,Y)'V (o) [pT(eO’Y) fT(QO’Y)thH‘”E{ LI 0a Y YV 00) 17 05,Y) ]

Jelr(0.Y)YV(0) " o [pi(00) — B [Pj(9o)!fj]]} :

When T converges to infinity, because of the law of large numbers,

: 2 Fr(00Y )V (00) " (S TN £500))
JT VN 2=l _
limy— o0 { F f(00,Y)'V (00) =1 fr(00,Y) =1

and

limy - y—co i fr (00, Y)YV (00) ' S0 [25(60) — E [p; (B0)|L]] = Ago(6o).

As a consequence, when T is large,

3% 0 = (00, Y)YV (00) [pr(00,Y) = fr (00, Y)Aso(60)]

Proof of Lemma 1
Because A () = 1, we can specify A(6) 2 as

o< (3 ey (3 ) (3 0

where Agg_f(e) = Agg(g) - Agf(g)Afg(g) Hence,

(NI

VTV(0)~% ( Lfr(0,Y) Lpr(6,Y) — Jo(0) ) A(B)~F = |
VTV(O)72 (5 fr(6,Y) 4pr(6,Y) = Jo(8) — 3fr(6,Y)Az(6) ) ( (1) A%i(g) >_§
such that
%V(G)—%fT(Q,Y) | —

VTV(9) 2 (3pr(0,Y) = Jo(0) — .f7(0,Y)As0(0)) Ago.1(6) 2 — Yoy
and v, ; is independent of 1, since (¥, Wy ) ~ N(0, Ini1 ® Ix).
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Proof of Lemma 2
1. When Jp(6p) has full rank,

7 [pr(00,Y) — fr(00, Y ) A so(60)] =
Jo(60) + J {VT [[3pr(00,Y) = Ja(60)] = 4 F1(00, Y )Asa(60)] } = Jal0).

which shows that the limiting behavior of 7 [pr(00,Y) — fr(6o,Y)As(fo)] is independent of
the limiting behavior of % fr(60,Y).

2. Jo(fo) has a weak value such that Jo(6o) = Jor, Jor = -=C, C' : kl x m and
rank(C) = m.

ﬁ (907Y) Ir (‘9 )Afa(eo)] =
\/T Jor + [701(00,Y) — Jo(60)] — %fTwO,Y)AfG(QO)]} > C+ V(G)%we.fA%.f(‘g)%?

which shows that, because v ; is independent ¢, see lemma 1, that the limiting behavior of
% [pr(00,Y) — fr(60,Y)Ase(00)] is independent of the limiting behavior of %fT(QO, Y).
3. Jy(6y) is equal to zero.
= [pr(00,Y) — fr(0o,Y)Aso(00)] =
{\/T [[7pr(00,Y) — Jo(00)] — %fT(GmY)Af@(Qo)}} — V@ )24 Noo.s (0)7,

which shows that the hmltmg behavior of —= [pT(QO, ) — fr(60,Y)As9(60)] is independent of
the limiting behavior of \/_ fr(60,Y).

20



References

1]

2]

3]

[10]
[11]

[12]
[13]

[14]

[15]

[16]

Anderson, T.W. and C. Hsiao. Estimation of Dynamic Models with Error Components.
Journal of the American Statistical Association, 76:598-606, 1981.

Andrews, D.W.K. Heteroskedasticity and Autocorrelation Consistent Covariance Matrix
Estimation. Econometrica, 59:817-858, 1991.

Angrist, J.D. and A.B. Krueger. Does Compulsory School Attendance Affect Schooling
and Earnings? Quarterly Journal of Economics, 106:979-1014, 1991.

Arellano, M. and S. Bond. Some Tests of Specification for Panel Data: Monte Carlo
Evidence and an Application to Employment Equations. Review of FEconomic Studies,
58:277-297, 1991.

Baltagi, B.H. FEconometric Analysis of Panel Data. John Wiley and Sons, New York,
1995.

Bound, J., D.A. Jaeger and R. Baker. Problems with Instrumental Variables Estimation
when the Correlation Between the Instruments and the Endogenous Explanatory Variable
is Weak. Journal of the American Statistical Association, 90:443-450, 1995.

Card, D. Using geographic variation in college proximity to estimate the return to school-
ing. In L.N. Christofides, E.K. Grant and R. Swidinsky, editor, Aspects of Labour Market
Behaviour: essays in honor of John Vanderkamp, pages 201-222. University of Toronto
Press, Toronto, Canada, 1995. (NBER Working Paper 4483 (1993)).

Dufour, J.-M. Some Impossibility Theorems in Econometrics with Applications to Struc-
tural and Dynamic Models. Econometrica, 65:1365-388, 1997.

Engle, R.F. Wald, Likelihood Ratio, and Lagrange Multiplier Tests in Econometrics. In
7. Griliches and M.D. Intrilligator, editor, Handbook of Econometrics, Volume 2. Elsevier
Science (Amsterdam), 1984.

Engle, R.F., Hendry D.F. and Richard J.-F. Exogeneity. Econometrica, 51:277-304, 1983.

Hall, A.R., G.D. Rudebusch and D.W. Wilcox. Judging Instrument Relavence in Instru-
mental Variables Estimation. International Economic Review, 37:283-298, 1996.

Hamilton, J.D. Time Series Analysis. Princeton University Press, 1994.

Hansen, L.P. Large Sample Properties of Generalized Method Moments Estimators.
Econometrica, 50:1029-1054, 1982.

Hansen, L.P. and K. Singleton. Generalized Instrumental Variable Estimation of Nonlin-
ear Rational Expectations Models. Econometrica, 50:1269-1286, 1982.

Hansen, L.P., J. Heaton and A. Yaron. Finite Sample Properties of Some Alternative
GMM Estimators. Journal of Business and FEconomic Statistics, 14:262-280, 1996.

Kleibergen, F. On the Use of Orthogonal Statistics to construct Exact Tests and the
Density of the LIML estimator in the IV Regression Model. Tinbergen Institute Discussion
Paper TT 2000-039/4, 2000.

21



[17]

18]

[19]

[20]

21

22]

23]

[24]

[25]

[26]

[27]

Kleibergen, F. Pivotal Statistics for testing Structural Parameters in Instrumental Vari-
ables Regression. Tinbergen Institute Discussion Paper TT 2000-055/4, 2000b.

Kleibergen, F. Pivotal Statistics for testing Subsets of Structural Parameters in the IV
Regression Model. Tinbergen Institute Discussion Paper TI 2000-088/4, 2000c.

Nelson, C.R. and R. Startz. Some Further Results on the Exact Small Sample Properties
of the Instrumental Variables Estimator. Econometrica, 58:967-976, 1990.

Newey, W.K. and D. McFadden. Large Sample Estimation and Hypothesis Testing. In
R. Engle and D. McFadden, editor, Handbook of Econometrics, Volume 4, chapter 36,
pages 2113-2148. Elsevier Science B.V., 1994.

Newey, W.K. and K.D. West. A Simple Positive Semi-Definite Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix. Fconometrica, 55:703-708, 1987.

Phillips, P.C.B. Partially Identified Econometric Models. FEconometric Theory, 5:181—
240, (1989).

Staiger, D. and J.H. Stock. Instrumental Variables Regression with Weak Instruments.
Econometrica, 65:557-586, 1997.

Stock, J.H. and J.H. Wright. GMM with Weak Identification. Fconometrica, 68:1055—
1096, 2000.

Tauchen, G. Statistical Properties of Generalized Method-of-Moments Estimators of
Structural Parameters obtained from Financial Market Data. Journal of Business and
Economic Statistics, 4:397-425, 1986.

White, H. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct
Test for Heteroscedasticity. Econometrica, 48:817-838, 1980.

Zivot, E., R. Startz, and C. R. Nelson. Valid Confidence Intervals and Inference in the
Presence of Weak Instruments. International Economic Review, 39:1119-1144, 1998.

22



