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Abstract

Market share models for weekly store-level data are useful to understand com-
petitive structures by delivering own and cross price elasticities. These models
can however not be used to examine which brands lose share to which brands
during a specific period of time. It is for this purpose that we propose a new
model, which does allow for such an examination. We illustrate the model
for two product categories in two markets, and we show that our model has
validity in terms of both in-sample fit and out-of-sample forecasting. We also
demonstrate how our model can be used to decompose own and cross price
elasticities to get additional insights into the competitive structure.
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1 Introduction and motivation

This paper deals with the analysis of, say, weekly observed store-level scanner data,

with the purpose of linking market shares with marketing instruments like price and

promotion. A typical format of such analysis is a regression type model, which, in

the case of market shares, is often a market share attraction model, see Cooper and

Nakanishi (1988) and Cooper (1993) for detailed early treatments and Fok, Franses

and Paap (2002) for a recent review of its econometric properties. Such an attraction

model delivers, amongst other things, estimates of own and cross price elasticities,

which in turn can be used to draw inference on the competitive structure. With

these elasticities, one can infer, for example, what might happen to the own brand

market share if the own price is lowered or when competitors lower their prices.

Market share models are useful to sketch competitive structures. However, there

is one thing these models cannot do, and that is, to help to understand which brands

lose share to which brands. To make this statement more precise, think about the

following situation. There are two brands, A and B, and we observe weekly sales of

these brands. Suppose for the moment that the same number of households visits

the store in each week. If the price of, say, A is lowered in a certain week, we might

observe more sales of A and less of B. This information might be useful to see if

lower prices generate more sales, but it is insufficient to understand whether the

change in sales of A can be fully attributed to households who change from B to A,

or whether some buyers of A have also switched to B. Hence, the question where

the new sales come from cannot be addressed by simply looking at weekly sales or

at shares data.

Alternatively, one might turn to a micro analysis using household scanner panel

data to get insight into brand-switching. These micro data are more detailed than

macro store-level data, but for household scanner panel data there are some problems

too. One of these is the availability, that is, scanner panel data are relatively scarce,

and it is often expensive to acquire them. A second problem is the representativeness

of these data, which depends on the size of the panel and on the way participating
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households have been selected. Moreover, even if a household panel is representative,

the effective sample which is eventually considered in the analysis might not be

representative, as it is often necessary to exclude households. A reason for exclusion

might be that households do not make enough purchases during a specific time

period, see for example Bucklin and Lattin (1991) and Guadagni and Little (1983).

The representativeness issue for household scanner panel data is addressed by Gupta,

Chintagunta, Kaul and Wittink (1996). Russell and Kamakura (1994) propose an

integrated approach which takes advantage of both the information richness of micro

data and the representativeness of macro data. However, their approach does not

avoid the availability of scanner panel data.

The aim of this paper is therefore to develop a method to infer share-switching

from widely available store-level scanner data. Share-switching is related to aggre-

gated market shares in a similar fashion as brand-switching is related to individual

brand choice behavior. Our model can be used to construct share-switching maps,

which are useful to get a better understanding of the competitive structure. For

example, consider again two brands A and B. It might happen that the cross price

elasticities suggest that A and B are not strong price competitors, while at the

same time much switching does occur between these two brands. In that case, com-

petition between A and B might be due to low customer loyalty for both brands.

An explanation for such a competition is that households might behave as variety-

seekers, that is, households might derive utility from brand-switching itself, besides

the utility resulting from the selected brand. McAlister and Pessemier (1982) pro-

vide a classification scheme of the variety-seeking literature. In this case, increasing

customer loyalty should be more important than pricing strategies.

A second contribution of our model is that it allows for a decomposition of own

and cross price elasticities. For example, a decrease of the own price is likely to result

in an increase of the own market share. This increased market share is a result of

(i) retaining more of the own share (less switching away from the own brand) and

(ii) gaining additional share from the other brands (more switching towards the
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own brand). The decomposition from our model makes it possible to quantify these

partial effects. This is an additional insight which cannot be obtained from market

share attraction models.

The structure of our paper is as follows. In Section 2, we outline in a little

more detail the situation, which was already briefly touched upon above, concerning

weekly sales of brands and week-to-week share-switching. Next, in Section 3, we put

forward our model, and in Section 4, we explain how the model can be used to get

insight into the competitive structure. In Section 5, we discuss parameter estimation.

In Section 6, we apply our method to four store-level data sets concerning two

product categories, each having four brands. Finally, in Section 7, we conclude with

a discussion of the implications of our method.

Insert Figure 1 about here.

Insert Figure 2 about here.

2 On store-level data and share-switching

Consider the case where we have weekly store-level scanner data, for t = 1, . . . , T .

For the moment, we assume that T = 2. Figure 1 sketches a possible situation

involving the market shares of three brands A, B and C. At t = 1 the three brands

have shares of 30%, 50% and 20%, while the shares at t = 2 are given by 36%,

38% and 26%, respectively. These observed changes in market share from t = 1 to

t = 2 are the result of unobserved share-switching from and to each of the three

brands, which is represented by the arrows. The numbers on the arrows indicate

which fraction of the market share at t = 1 is transferred. So, in the left panel

of the figure, brand A retains 80% of its market share, it loses 10% of its share to

brand B, and it loses another 10% to brand C. Similarly, brand B retains 70% of its

share, and it loses 20% and 10% to brand A and brand C, respectively. It is further

seen that brand C retains 90% of its share, whereas the remaining 10% moves to

brand A. It is easily checked that these switching fractions indeed give the market
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shares at time t = 2. For example, at t = 2 brand A has a share of 36%, which is

0.80 × 30% + 0.20 × 50% + 0.10 × 20%.

However, these share-switching fractions do not uniquely determine the market

shares at t = 2, and the right panel gives another set of share-switching fractions

resulting in the same shares. The issue is that there are only three observations

(three market shares at t = 2), whereas there are six free parameters to be estimated

(nine switching arrows of which three are restricted such that outgoing arrows sum

to unity). So, more than two periods have to be considered.

Figure 2 illustrates share-switching when T = 4 weeks are considered. The share-

switching arrows between t = 1 and t = 2 are assumed to be the same as the share-

switching arrows between t = 2 and t = 3 and those between t = 3 and t = 4, so that

the number of free parameters is still six. In principle, the number of market share

observations is now sufficient to estimate the values of the share-switching arrows.

We note that the share-switching fractions can be correlated to marketing actions

through time-invariant response parameters. For example, if a brand decreases its

price, this might induce additional switching towards this brand. Clearly, if the

switching fractions are correlated with time-varying marketing variables, they are

not time-invariant anymore.

3 The model

In this section we develop our share-switching model. To this end, we define the

market share of brand j at time t by Mj,t, j = 1, . . . , J , t = 1, . . . , T . Furthermore,

we define the fraction of the market share Ml,t−1 of brand l moving to brand k at

time t by λl,k,t. It is convenient to collect the market shares observed at time t in

the vector Mt = (M1,t, . . . ,MJ,t)
′ and to collect the share-switching fractions at time

t in the matrix

Λt =















λ1,1,t · · · λ1,J,t

...
. . .

...

λJ,1,t · · · λJ,J,t















.
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For example, in the left panel of Figure 1 we would have

Mt−1 =















0.30

0.50

0.20















, Mt =















0.36

0.38

0.26















, Λt =















0.80 0.10 0.10

0.20 0.70 0.10

0.10 0 0.90















.

The share-switching fractions as contained in Λt satisfy two conditions. First,

these share-switching fractions just redistribute each brand’s market share, so that

they have to sum to one for each given brand, that is,

J
∑

k=1

λl,k,t = 1, l = 1, . . . , J, (1)

or in matrix notation,

Λt ιJ = ιJ , (2)

where ιJ denotes the J × 1 vector consisting of ones. Second, by definition, the

current market share of each brand is the sum of the portions carried over to that

brand from each brand’s previous market share. This leads to the Markov equation

Mk,t =
J
∑

l=1

λl,k,tMl,t−1, k = 1, . . . , J, (3)

which is also the key equation in the aggregated Markov model of Leeflang (1974),

see also Leeflang et al. (2000). In matrix notation, it is given by

Mt = Λ′
tMt−1. (4)

In Appendix A we outline the model of Leeflang (1974) and how it fundamentally

differs from ours in various respects.

We have already mentioned that the share-switching fractions λl,k,t might be

correlated to marketing activity. However, even if such observable variables are

included, it cannot not be expected that share-switching is fully explained. In order

to account for this, we decompose the share-switching matrix Λt into a deterministic

component Λ̃t and a random component Et, that is,

Λt = Λ̃t + Et, (5)
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where

Λ̃t =















λ̃1,1,t · · · λ̃1,J,t

...
. . .

...

λ̃J,1,t · · · λ̃J,J,t















, Et =















e1,1,t · · · e1,J,t

...
. . .

...

eJ,1,t · · · eJ,J,t















.

All elements of the error matrix Et are assumed to have expectation zero, so that

the expectation of the share-switching matrix Λt is Λ̃t. Substituting (5) into (4)

gives

Mt = Λ̃′
tMt−1 + E ′

tMt−1, (6)

decomposing market shares into an explained and an unexplained component. This

constitutes the first part of our model.

In order to interpret the elements of Λ̃t (which have to be estimated using actual

data) as share-switching fractions, we require that the “redistribution condition” is

maintained, that is,

Λ̃t ιJ = ιJ . (7)

By postmultiplying both sides of (5) by ιJ and substituting (2) and (7), it follows

that the rows of the error matrix Et have to sum to zero, that is,

Et ιJ = 0, (8)

or
J
∑

k=1

el,k,t = 0, l = 1, . . . , J. (9)

Next, by transposing (6), postmultiplying both sides by ιJ , and incorporating the

conditions (7) and (8), it follows that

M ′
t ιJ = M ′

t−1Λ̃t ιJ + M ′
t−1Et ιJ

⇔ M ′
t ιJ = M ′

t−1 ιJ + M ′
t−1 0

⇔ 1 = 1 + 0. (10)

So, both the observed market shares Mt = Λ′
tMt−1 and the predicted market shares

Λ̃′
tMt−1 sum to unity, which is an important feature of a model for market shares.

Furthermore, it follows from (10) that one of the J market share equations in (6) is

redundant, so that only the parameters of J − 1 equations have to be estimated.
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In order to complete the model, we specify the elements of Λ̃t and we assume a

distribution for the elements of the error matrix Et. We define the elements of Λ̃t

by

λ̃l,k,t =
exp(αl,k + x′

k,tβ)
∑J

j=1 exp(αl,j + x′
j,tβ)

, l = 1, . . . , J, k = 1, . . . , J, (11)

so that the redistribution condition (7) is indeed satisfied. Similar to the conditional

logit model of McFadden (1974), not all intercept parameters αl,k are identified. For

identification purposes, we set αl,J = 0, l = 1, . . . J . These parameters correspond

to the redundant J-th market share equation. It is seen from (11) that each share-

switching fraction λ̃l,k,t from brand l to brand k has its own intercept with parameter

αl,k, and that λ̃l,k,t depends on the marketing-mix variables of the receiving brand

k through the shared response parameters β. We note that it is not affected by

the marketing-mix of the supplying brand l. This is consistent with the brand-

switching models of Givon (1984) and Seetharaman and Chintagunta (1998) which

aim to describe variety-seeking behavior and habit persistence in brand choice. The

marketing-mix variables in xk,t are in first-differences, as share-switching corresponds

to changes in market shares, rather than absolute market share levels. We emphasize

that, as in the conditional logit model, the estimation results of our share-switching

model are invariant with respect to which brand is taken as the base brand J .

For the share-switching errors el,k,t, we would want to consider a distribution

which is, on one hand, parsimonious in its parameterization, and which, on the

other hand, is flexible enough to reflect uncertainty patterns in share-switching.

Hence, we assume that the el,k,t are distributed independently as N(0, σ2
k,t) with

σ2
k,t = σ2Mγ

k,t−1, where σ2 and γ have to be estimated. So, the share-switching

errors obey a normal distribution, and they are allowed to be heteroscedastic in the

sense that the variance might depend on the market share of the receiving brand k.

In fact, we expect that γ > 0, as it entails that if the receiving brand has a small

market share, it is probably able to take over only relatively small fractions of the

other market shares, and hence uncertainty shall be limited. On the other hand,

anything can happen when the receiving brand is a powerful brand with a large
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market share.

In Appendix B we show that if the elements el,k,t of Et are independently

N(0, σ2Mγ
k,t−1) distributed before imposing the error summation restrictions (9),

the restriction in (9) implies that our final model reads as

M̃t =















M1,t

...

MJ−1,t















∼ N( µt, σ
2Vt ), (12)

where

µt =















∑J
l=1 λ̃l,1,tMl,t−1

...

∑J
l=1 λ̃l,J−1,tMl,t−1















, (13)

and

Vt =
J
∑

l=1

M2
l,t−1















−
1

∑J
j=1 Mγ

j,t−1















Mγ
1,t−1

...

Mγ
J−1,t−1















(

Mγ
1,t−1 · · ·Mγ

J−1,t−1

)

+ diag
(

Mγ
1,t−1, . . . ,M

γ
J−1,t−1

)















.

(14)

It is seen from (14) that the restriction in (9) induces that the market shares are

negatively correlated. This is a desirable feature, as, by definition, a larger market

share for one brand results in a smaller total market share for all other brands.

4 Interpretation

In this section we discuss how our share-switching model can be used to get insight

into the competitive structure. The well-known market share attraction model is

often used to compute own and cross price elasticities which indicate how the own

brand market share reacts to a small price decrease of the own brand or a compet-

itive brand. Our model can be used to obtain such elasticities as well. In order

to derive the elasticities, we first introduce some additional notation. We recall
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that λ̃l,k,t is interpreted as the fraction of the share of brand l moving to brand

k at time t. So, λ̃l,k,t corresponds to share-switching conditional on the supply-

ing brand l, that is, the share-switching fractions away from l sum to unity, or

∑J
k=1 λ̃l,k,t = 1. As an additional measure, we define the share-switching portion

λ̄l,k,t = Ml,t−1λ̃l,k,t, which relates switching from brand l to brand k to the total

market. Clearly,
∑J

l=1

∑J
k=1 λ̄l,k,t = 1. The share-switching portion λ̄l,k,t is an un-

conditional measure, which is in contrast with the share-switching fraction λ̃l,k,t.

We define the share-switching price elasticity δl→k,j,t as

δl→k,j,t =
∂λ̄l,k,t

∂pj,t

pj,t

λ̄l,k,t

=
∂λ̃l,k,t

∂pj,t

pj,t

λ̃l,k,t

, (15)

where pj,t denotes the price of brand j at time t. The interpretation of (15) is that

a one percent price increase of brand j at time t results in δl→k,j,t percent additional

share-switching from brand l to brand k. We note that δl→k,j,t is not necessarily zero

if j 6= l, k, that is, when the price adjustment concerns a brand different from the

two brands l and k for which share-switching is considered. For example, if brand

j lowers its price, it might gain some share from brand l which would have gone

to brand k otherwise. The brand-switching mechanisms, underlying the aggregate

response of share-switching to price adjustments, are discussed below.

Basically, if k 6= l, brand j might take over some variety-seeking customers of

brand l which would otherwise have chosen to switch to brand k, as brand j becomes

more attractive relative to brand k with its price being unaltered. This idea is in

accordance with the brand-switching model of Seetharaman and Chintagunta (1998)

which assumes that variety-seekers select the brand which maximizes their utility

after excluding the previously purchased brand from consideration. Furthermore,

households switching to brand j might also be pure utility maximizers, which is the

second group identified in the model of Seetharaman and Chintagunta (1998). In

the alternative case that k = l, δl→k,j,t measures the effectiveness of a price reduction

of brand j to take over customers which would otherwise have stayed with brand l.

Such switching customers are neither involved in variety-seeking (they are willing

to buy brand l again) nor habit persistence (they are willing to switch). Note that

10



other households might also feature habit persistence, that is, they might stick to

brand l and this choice is not affected by the price reduction of brand j. These

households form the third and most important group in the model of Seetharaman

and Chintagunta (1998). The presence of this group decreases the aggregate effect

of a competitive price reduction.

If price is one of the marketing-mix variables included in (11), with response

parameter βp, then it can be shown that

δl→k,j,t =











βp pk,t (1 − λ̃l,k,t) if k = j

−βp pj,t λ̃l,j,t if k 6= j
. (16)

These share-switching price elasticities resemble the price elasticities for the condi-

tional logit model. We note that, although prices are considered in first-differences

in (11), pj,t in (15) and (16) is defined as the absolute price.

The share-switching price elasticities, derived above, determine the reaction of

market shares to price changes, as market shares are eventually the result of share-

switching. For our model, it can be shown that the elasticity of the expected market

share E(Mk,t) =
∑J

l=1 λ̄l,k,t with respect to the price pj,t is given by

δk,j,t =
∂E(Mk,t)

∂pj,t

pj,t

E(Mk,t)
=

∑J
l=1 λ̄l,k,t δl→k,j,t
∑J

i=1 λ̄i,k,t

. (17)

This market-share price elasticity can also be written as

δk,j,t =
J
∑

l=1

ηl→k,j,t with ηl→k,j,t =
λ̄l,k,t

∑J
i=1 λ̄i,k,t

δl→k,j,t, (18)

where ηl→k,j,t is the contribution of share-switching from brand l to brand k in

the overall effect of a price adjustment of brand j on the market share of brand

k. So, (18) provides a decomposition of the reaction of market share into compo-

nents attributable to changes in share-switching from each of the brands towards

the brand whose market share is affected. This decomposition provides interesting

insights, which cannot be obtained from market share attraction models. For ex-

ample, a decrease of the own price can be expected to result in an increased market

share by (i) retaining a larger part of the own current share (own customers have
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a smaller incentive to switch away) and (ii) taking over additional share from com-

peting brands (customers of competing brands have a larger incentive to switch).

The part of the increased market share attributable to retaining more of the own

share is ηk→k,j,t/δk,j,t with j = k, whereas the part attributable to gaining more of

the competitive share is given by 1 − (ηk→k,j,t/δk,j,t). In other words, the decompo-

sition can give insight into which part of the reaction of the own market share to

an own price reduction is caused by increased customer retention, and which part is

not. We note that each component ηl→k,j,t in the decomposition (18) consists of the

share-switching price elasticity δl→k,j,t multiplied by a weight proportional to the cor-

responding share-switching portion λ̄l,k,t. So, contributions are determined by both

the price-sensitivity and the relative magnitude of corresponding share-switching.

The price elasticities defined by (17) amount to a generalization of a result es-

tablished by Bucklin, Russell and Srinivasan (1998). This result is a relationship

between price elasticities and aggregate brand-switching, which has been derived on

the basis of the conditional logit model. Basically, it states that1

δk,j,t =











βp pk,t (1 − λ̃k,k,t) if k = j

−βp pj,t λ̃k,j,t if k 6= j
, (19)

which, using (16), boils down to

δk,j,t = δk→k,j,t. (20)

So, in terms of our model, this relationship states that the reaction of market share

on a price adjustment is only caused by the effect on customer retention, and not by

the effect on share-switching from competing brands. This is more restrictive than

our price elasticity specification.

Our model gives insights into the effects of price adjustments on share-switching

and market shares. Furthermore, the model can also be used to infer the magnitude

of share-switching across brands. In order to fully understand the price elasticity

and share-switching patterns, it is useful to visualize them in two-dimensional maps.

1Bucklin, Russell and Srinivasan (1998) actually consider the logarithm of price in the condi-
tional logit model, so that the price term disappears in their result.
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A competitive map for price elasticities can be constructed as described in Cooper

(1988, 1993). Complementary, a share-switching map can be constructed using the

multidimensional unfolding technique of Constantine and Gower (1978) or using

the multidimensional scaling methodology of DeSarbo and Manrai (1992). In the

empirical section we discuss these visualization methods in greater detail.

5 Parameter estimation

The parameters of our share-switching model can be estimated using maximum like-

lihood [ML]. The parameter estimates result from maximization of the log-likelihood

function, which is given by

ln L = −
(T − 1)(J − 1)

2

[

ln(2π) + ln(σ2)
]

+
1

2

T
∑

t=2

log det(V −1
t )

−
1

2σ2

T
∑

t=2

(M̃t − µt)
′ V −1

t (M̃t − µt), (21)

where µt and Vt are defined by (13) and (14), respectively. We note that the inverse

of Vt is given by V −1
t = 1

∑J

l=1
M2

l,t−1

[

M−γ
J,t−1 ιJ−1 ι′J−1 + diag(M−γ

1,t−1, . . . ,M
−γ
J−1,t−1)

]

,

see also the Appendix. Standard errors are obtained by taking the square roots

of the diagonal elements of the estimated covariance matrix, which, in turn, can

be computed as minus the inverse of the Hessian of (21) evaluated for the opti-

mal parameter values. Numerical techniques, such as the BFGS algorithm or the

Newton-Raphson algorithm, have to be used to get the ML parameter estimates.

Insert Table 1 about here.

6 Empirical analysis

In this section we apply our model to weekly store-level scanner data, drawn from the

ERIM data base (GSB, University of Chicago) for catsup and peanut butter in the

Sioux Falls SD market (henceforth referred to as market 1) and the Springfield MO

market (henceforth referred to as market 2). The considered period consists of 124

weeks from 1985 to 1988. The last 20 weeks are used for out-of-sample forecasting.
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For each product category, the number of brands is restricted to four by considering

the three largest brands and a “rest brand”. This Rest brand represents several

smaller brands as well as private labels. We allow for marketing-mix effects by

including price and 0/1 display variables. Table 1 contains a few summary statistics.

We note that the prices of the Rest brands have been computed by taking the ratio

of the aggregated sales in dollars and the aggregated sales in units. The market

shares correspond to the number of units sold. It is seen that in general the price

of the Rest brand is lower than the prices of the other three brands. Furthermore,

the table shows that for both catsup and peanut butter the Rest brand has more

displays and a larger market share in the Springfield area than in the Sioux Falls

area.

Insert Table 2 about here.

6.1 Parameter estimates

Table 2 reports the estimates of the response parameters β1 and β2 for price and

display and the two variance parameters σ2 and γ. These parameters are invariant

with respect to the base brand J . For the sake of brevity, we do not report the twelve

intercept parameters αl,k, l = 1, . . . , 4, k = 1, . . . , 3. These intercept parameters are

sensitive to which brand is taken as the base brand (compare with the conditional

logit model), and they are not of particular interest.

The effect of price on market share is significant at a 1% level and has the

expected sign for both catsup and peanut butter in the two markets. Display has a

significant effect (at a 5% level) with the expected sign for the two catsup markets,

but the effect is not significant for the two peanut butter markets. Furthermore,

it is seen that the heteroscedasticity parameter γ is positive and significant for all

four category-market combinations. So, as hypothesized, uncertainty about share-

switching is related to the size of the market share of the receiving brand.
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6.2 Model fit and predictive performance

In order to investigate how well our model performs in terms of in-sample fit and

out-of-sample forecasting, we compare it with two attraction models. The first

competing model is the full effects attraction model in which the attraction of brand

k at time t is defined by

Ak,t = exp

(

αk +
S
∑

s=1

J
∑

j=1

β(s)j,k ln(x(s)j,t) + εk,t

)

. (22)

Here αk is a brand-specific intercept, x(s)j,t is the value of marketing-mix variable s

for brand j at time t (in our case, s = 1 corresponds to price and s = 2 corresponds

to display), β(s)j,k is the involved response parameter, and εk,t is a disturbance

term. The εk,t are distributed independently as N(0, σ2
k,t). We note that, in this full

effects specification, the attraction of a brand may be affected by the marketing-mix

variables of each of the considered brands.

Bell, Keeney and Little (1975) show that under certain axioms the market share

of a brand is proportional to its attraction, so that

Mk,t =
Ak,t

∑J
i=1 Ai,t

. (23)

The full effects attraction model is given by (22) and (23). We note that in case

the variables x(s)j,t are considered in levels instead of logarithms, the model above

is often referred to as an MNL model for market shares.

The second model we consider is the differential effects specification in which

competition is restricted in the sense that the attraction of a brand is only affected

by its own marketing-mix, that is, β(s)j,k = 0 if j 6= k. The differential effects

attraction model is defined by (23) and

Ak,t = exp

(

αk +
S
∑

s=1

β(s)k ln(x(s)k,t) + εk,t

)

. (24)

As our share-switching model is dynamic by definition, we include lagged market

shares in (22) and (24) in the same way as price and display are included. The

literature often considers one common lagged market share parameter for all brands,

see for example Brodie and De Kluyver (1984), Chen, Kanetkar and Weiss (1994),
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Kumar and Heath (1990) and Naert and Weverbergh (1981). However, we find that

this does not improve the predictions.

Finally, for comparability with our share-switching model, we consider the MNL

specifications of the attraction models described above, that is, lagged market share

is in logarithms but price and display are in levels. The impact on in-sample fit and

out-of-sample forecasting turns out to be negligible, and conclusions are unaffected.

Insert Table 3 about here.

We estimate the parameters of the two attraction models by considering a base

brand, as outlined in Fok, Franses and Paap (2002). Next, we generate appropriate

market share predictions using the simulation approach, described in Fok, Franses

and Paap (2002). Table 3 shows the in-sample fit and out-of-sample forecasting

performance of the three considered models. It reports the in-sample and out-of-

sample values for the Root Mean Squared Prediction Error [RMSE] and the Mean

Absolute Prediction Error [MAE].

It is seen from Table 3 that our model has either the best or the second best

in-sample fit. For the Sioux Falls catsup market, the fit of our share-switching model

(containing 16 parameters) is comparable to the fit of the differential effects model

(also containing 16 parameters), but it is worse than the fit of the more flexible full

effects model (containing 43 parameters). Furthermore, the fit of our model is in

between those of the two other models for the Springfield catsup and the Sioux Falls

peanut butter markets. Our model fits the data better than the two attractions

models for the Springfield peanut butter market.

Perhaps more interesting than the in-sample fit is the out-of-sample forecasting

performance of the three models. It is seen that our share-switching model gives

better predictions for three of the four category-market combinations. Our model

is only outperformed by the differential effects model for the Sioux Falls catsup

market.

In sum, for the considered data our model has a reasonable fit and a good fore-

casting performance. This demonstrates that our model has predictive validity. Now
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we have established that our model is equally good, or even better than alternative

models, we can focus on the fact that our model allows for much more managerially

relevant inference.

Insert Table 4 about here.

Insert Table 5 about here.

6.3 Price elasticity analysis

Table 4 and Table 5 contain the estimated market-share price elasticities δk,j,t for

the catsup and peanut butter markets. These elasticities are decomposed into com-

ponents ηl→k,j,t attributable to changes in share-switching from each of the brands l

towards the brand k whose market share is affected when brand j changes its price.

For example, Table 4 indicates that in the Sioux Falls catsup market a one percent

decrease of the price of Heinz can be expected to result in a 2.27% increase of the

own market share because of increased customer retention. Furthermore, additional

switching from Hunts, Del Monte and Rest towards Heinz increases the market share

of Heinz by another 1.10%, 0.77% and 0.30%, respectively. The total gain in market

share is 4.44%. About 50% (≈ 2.27/4.44×100%) is caused by customer retention.

The remaining 50% is attributable to switching from the three competing brands

towards Heinz.

The above example illustrates that the elasticity decompositions, reported in

Table 4 and Table 5, can give interesting insights into which part of the reaction

of the own market share to an own price reduction is caused by increased customer

retention and which part is not. Such insights cannot be obtained from market share

attraction models. For the catsup and peanut butter brands in the Sioux Falls and

Springfield markets, we find that increased customer retention accounts for 28% to

51% of the total increase of the own market share when the own price is lowered.

On average, this is about 42%. So, we find that the majority of the gain in market

share is caused by gaining additional share from competing brands, and not so much

by increasing own customer retention.
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As a second example, we mention that Heinz is expected to lose 2.03% of its

market share in the Sioux Falls market if Hunts decreases its price by one percent.

Here 1.06% of the loss is attributable to switching from Heinz to Hunts, that is,

decreased customer retention of Heinz, and 0.70 is attributable to additional share

retained by Hunts which would have gone to Heinz in case there would not have been

a price reduction. Furthermore, 0.22% is attributable to share of Del Monte going to

Hunts, which would have gone to Heinz otherwise. Finally, 0.05% is attributable to

switching from Rest to Hunts. So, about 50% (≈ 1.06/2.03×100%) of the total effect

of a price reduction of Hunts on the market share of Heinz is caused by decreased

customer retention for Heinz. The remaining 50% is attributable to share-switching

in which Heinz is not directly involved.

For the catsup and peanut butter brands in the Sioux Falls and Springfield mar-

kets, we find that the part of the decrease in own market share when a competitive

brand lowers its price, attributable to decreased own customer retention, is mostly

between 20% and 60% (44 out of 48 cases). On average, this is about 40%. We find

that in most cases (39 out of 48 cases) the majority of the loss in own market share

is caused by share-switching in which the own brand is not directly involved. There

exists substantial variation, though, in particular in the two catsup markets.

6.3.1 Asymmetric price competition

Table 1 shows that for all four category-market combinations the prices of the three

national brands are comparable, whereas the price of the Rest brand is substantially

lower. It therefore seems reasonable to assume that the perceived quality of brands

summarized in the Rest group is also lower than the perceived quality of the national

brands, as otherwise Rest should have an enormous market share. A finding, which

is due to Blattberg and Wisniewski (1989), predicts that price promotions are more

effective for higher-price higher-quality [HPHQ] brands than for lower-price lower-

quality [LPLQ] brands. This means that HPHQ brands can gain more share from

LPLQ brands by offering a price reduction than vice versa. Kamakura and Russell

(1989) and Allenby and Rossi (1991) provide additional empirical support for this
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asymmetric price competition result. Sethuraman, Srinivasan and Kim (1999) make

it an empirical generalization that asymmetric price competition holds in terms of

cross-price elasticities.

The literature offers several explanations for this phenomenon. Blattberg and

Wisniewski (1989) argue that asymmetric price competition can result from a U-

shaped heterogeneity distribution for the quality preferences concerning any two

brands with regular prices such that the indifference point is located towards the

lower quality end of this distribution. This implies that customers of LPLQ brands

are more price sensitive than customers of HPHQ brands. Allenby and Rossi (1991)

propose an alternative explanation that price reductions induce positive income

effects which stimulate switching from low-quality brands to high-quality brands.

They formalize this through rotating utility indifference curves. Hardie, Johnson and

Fader (1993) consider reference effects and loss aversion concerning the prices and

qualities of brands. They explain asymmetric price competition from the notion that

losses in terms of price or quality, incurred by brand-switching, are weighted more

heavily than resulting gains. Bronnenberg and Wathieu (1996) conditionally support

the result of Blattberg and Wisniewski (1989). They state that it holds if and only

if the quality gap between an HPHQ brand and an LPLQ brand is sufficiently

large compared to the price gap. If this condition does not hold, asymmetric price

competition is reversed.

The market-share price elasticities in Table 4 and Table 5 indicate that asym-

metric price competition holds for both catsup and peanut butter in the Sioux Falls

market. For example, in the Sioux Falls peanut butter market, Rest loses 2.12% of

its share when Skippy lowers its price by one percent, whereas this is only 1.18% in

the oppositive case. However, it is also seen from the tables that the asymmetric

price competition effect is sometimes reversed in the Springfield market. For catsup,

a one percent price reduction of Del Monte turns out to be less effective than a one

percent price reduction of the Rest brand. For peanut butter, the asymmetric price

competition effect of Blattberg and Wisniewski (1989) is reversed for Skippy and Jif
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relative to the cheaper Rest brand. The explanation of Bronnenberg and Wathieu

(1996) would be that, in the Springfield market, the perceived difference in qual-

ity between these national brands and the Rest brand is insufficient to account for

the price difference. We note from Table 1 that the price gap between the national

brands and the Rest brand is larger in the Springfield market than in the Sioux Falls

market, and that in the Springfield market the Rest brands also have larger market

shares. This indicates that the Rest brands offer “good value” in the Springfield

market, which is consistent with the Bronnenberg-Wathieu finding.

6.3.2 Price elasticity maps

In order to better understand the underlying patterns of the asymmetric market-

share price elasticities δk,j,t in Table 4 and Table 5, these elasticities can be displayed

in two-dimensional competitive maps, see Cooper (1988, 1993). The main compu-

tational step to deduce such a map from the J × J elasticity matrix ∆ = (δk,j,t)

consists of finding a matrix of rank 2 such that it approximates ∆ as good as pos-

sible. This rank-2 approximation can be written as V C ′, where both V and C are

J × 2 matrices. The matrices V and C can be obtained using the singular value

decomposition, see Golub and Van Loan (1989) and Magnus and Neudecker (1999)

for textbook discussions on this decomposition.2

As the elasticity matrix ∆ is approximated by V C ′, the effect of the price of

brand j on the market share of brand k, that is δk,j,t, is approximated by the inner

product of the k-th row of V and the j-th row of C. If these two rows are displayed

as two vectors from the origin, the inner product (representing the elasticity δk,j,t)

is determined by both the vector lengths and the angle between the two vectors.

The sharpness of the angle can be interpreted as indicating the influence of a price

reduction of brand j on the market share of brand k compared to the influence of this

2The elements of V and C can be computed using the singular value decomposition of ∆, that
is, ∆ = SWU ′, where W is a diagonal matrix containing the singular values of ∆ (the square roots
of the eigenvalues of ∆∆′, or equivalently, the square roots of the eigenvalues of ∆′∆), S contains
the eigenvectors of ∆∆′ such that S′S = IJ , and U contains the eigenvectors of ∆′∆ such that
U ′U = IJ . Now, we can define V = S̃W̃ 1/2 and C = ŨW̃ 1/2, where the submatrices S̃ (J × 2), Ũ

(J × 2) and W̃ (2 × 2) correspond to the two largest singular values in W .
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price reduction on the other brands. Furthermore, the vector length corresponding

to the k-th row of V indicates the overall extent to which the market share of brand

k is influenced by competitive price reductions, that is, the vulnerability (V ) of

brand k. Similarly, the vector length corresponding to the j-th row of C indicates

the overall ability of brand j to affect the market shares of competitive brands by

lowering the own price, that is, the clout (C) of brand j.

Insert Figure 3 about here.

Figure 3 contains the price elasticity maps for the considered store-level data.

The top-left map indicates that, in the Sioux Falls catsup market, Heinz and Rest

are the most direct price competitors in the sense that they affect each other more

than they affect the other competing brands. On the other hand, price competition

between Del Monte and Rest is relatively weak. The asymmetric price competition

effect, which is present in this market, is illustrated by the large vulnerability of the

Rest brand relative to its clout. The bottom-left map for the Sioux Falls peanut

butter market displays price competition between Skippy and Jif, and price com-

petition between Peter Pan and Rest. However, the asymmetric price competition

effect, which is weaker than in the previous case, is now less evident. The top-right

map in the figure does not give an obvious price competition pattern for the Spring-

field catsup market. However, the limited clout and vulnerability of the Rest brand

might be considered as an indication that “the map is not very convinced about

the position of the Rest brand”. This might be caused by a strong violation of

the asymmetric price competition effect. Finally, also the bottom-right map for the

Springfield peanut butter market does not show a clear price competition pattern.

However, the small clout of the Rest brand and the even much smaller vulnerability

can be seen as an indication that, in this case, the asymmetric price competition

effect of Blattberg and Wisniewski (1989) is mainly, but not entirely, reversed.

Insert Table 6 about here.
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6.4 Share-switching analysis

Our model can be used to analyze share-switching patterns. Also this yields insights

which cannot be obtained from market share attraction models. Table 6 shows the

share-switching estimates, averaged over the in-sample period, for the considered

markets. It reports the row-conditional share-switching fractions λ̃l,k,t and the ab-

solute share-switching portions λ̄l,k,t = Ml,t−1λ̃l,k,t.

A casual inspection of the share-switching fractions λ̃l,k,t in Table 6 indicates that

Heinz has the most loyal customer base in the two catsup markets, whereas Peter

Pan can be regarded as having the most loyal customer base in the two peanut but-

ter markets. Furthermore, it can be seen that, compared to the Sioux Falls market,

customers in the Springfield market are more loyal to the Rest brand, representing

several smaller brands and private labels, than they are loyal to the more expensive

national brands. This holds for both catsup and peanut butter. Finally, the share-

switching portions λ̄l,k,t show some strong asymmetries. For example, in the Sioux

Falls peanut butter market, on average 5.9% of the total market switches from Jif

to Skippy, whereas on average only 3.7% switches from Skippy to Jif. However, for

all brands the average total share coming in (the sum of column elements) and the

average total share going out (the sum of corresponding row elements) are approx-

imately equal. This is a necessary condition for stationarity of market shares. So,

although we find asymmetries in share-switching, our model seems to support the

finding of Lal and Padmanabhan (1995) that market shares are mostly stationary.

6.4.1 Share-switching maps

It is instructive to visualize the share-switching estimates in Table 6, so that switch-

ing patterns can be recognized more easily. In order to do so, we apply the multi-

dimensional unfolding technique of Constantine and Gower (1978). This method is

suitable to display asymmetric share-switching in a two-dimensional map. Alterna-

tively, one might consider the multidimensional scaling methodology of DeSarbo and

Manrai (1992). Their method is based on the distance-density model of Krumhansl
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(1978). Basically, it posits that asymmetries in brand-switching are caused by the

locations of the involved brands on the map, that is, it matters whether a brand is

located in a dense region with many competing brands nearby (little differentiation)

or in a relatively sparse region (much differentiation). In this paper we apply the

technique of Constantine and Gower (1978), and not the methodology of DeSarbo

and Manrai (1992), for two reasons. First, we do not want to restrict ourselves to

the condition that asymmetries in share-switching are only determined by brand

differentiation relative to all competing brands. Second, the method of Constan-

tine and Gower (1978) is more compatible with the price elasticity maps from the

previous subsection.

Similar to the price elasticity maps, we identify a share-switching vulnerability

point and a share-switching clout point for each brand. The vulnerability of brand

l is given by the l-th row of the J × 2 matrix V , that is, Vl,·. Similarly, the clout

of brand k is given by the k-th row of the J × 2 matrix C, that is, Ck,·. The

matrices V and C are constructed such that, for all brands l and k with l 6= k, the

distance between Vl,· and Ck,· in the two-dimensional map represents the amount

of share-switching from brand l to brand k as good as possible. Here a larger

distance between the vulnerability point of brand l and the clout point of brand k

indicates stronger share-switching from l to k. We obtain V and C by minimizing

the sum of squared errors
∑J

l=1

∑

k 6=l (||Vl,· −Ck,·|| −
¯̄λl,k,t)

2, where ¯̄λl,k,t = λ̄l,k,t/λ̄l,l,t

are normalized share-switching portions, and || · || denotes the Euclidean norm. We

consider the normalized share-switching portions ¯̄λl,k,t, instead of λ̃l,k,t or λ̄l,k,t, for

the following reasons. First, the absolute share-switching portions λ̄l,k,t are preferred

over the row-conditional share-switching fractions λ̃l,k,t, as the former account for

variation in the size of the market share of brand l over time. This means that share-

switching, which might be substantial relative to the supplying brand l but which at

that moment is negligible compared to the whole market, is assigned less importance

than share-switching, which is also substantial at the market level. Second, the

normalization from λ̄l,k,t to ¯̄λl,k,t = λ̄l,k,t/λ̄l,l,t implies that share-switching away
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from brand l is related to the retained share of brand l. This makes the share-

switching measure invariant with respect to the sizes of the various brands. We

note that the normalization of all share-switching portions λ̄l,k,t implies that the

normalized retained portions ¯̄λl,l,t, which are not considered in the construction of

V and C, all have value one.

Insert Figure 4 about here.

Figure 4 contains the share-switching maps for the considered store-level data.

The top-left map shows that, in the Sioux Falls catsup market, the leading brand

Heinz poses a threat to all other brands. In the opposite direction, Heinz mainly

loses share to Hunts. We further see that substantial share-switching occurs between

Hunts and Del Monte. However, Del Monte suffers more from Hunts than vice versa.

The top-right map displays share-switching in the Springfield catsup market. Similar

to the Sioux Falls market, Heinz gains substantial share from all three competing

brands, while there is little share-switching between Del Monte and Rest. Actually,

the central location of the clout of Del Monte, with the vulnerability points of the

three competing brands nearby, indicates that Del Monte does not gain much share

from any competitor. There is relatively much share-switching between Hunts and

Rest.

Finally, the bottom two maps show a strong asymmetry in share-switching be-

tween Skippy and Peter Pan in the Sioux Falls and Springfield peanut butter mar-

kets. Skippy suffers much more from Peter Pan than vice versa. In both markets,

Peter Pan loses relatively much share to the Rest brand. Share-switching between

Peter Pan and Rest is asymmetric in favor of the Rest brand.

7 Conclusions

In this paper we proposed a model for market shares which can be used to infer

share-switching across brands from store-level scanner data. These insights cannot

be obtained from market share attraction models, although these models could be
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taken as competitors when it comes to out-of-sample forecasting of shares. A second

contribution of our model is that it allows for a decomposition of own and cross price

elasticities into components attributable to changes in share-switching from each of

the brands towards the brand whose market share is affected. This decomposition

can, for example, be used to investigate which part of the reaction of the own market

share to an own price reduction is caused by increased customer retention, and which

part is not.

We illustrated our model for store-level scanner data concerning the catsup and

peanut butter categories in the Sioux Falls SD and Springfield MO markets. For

these data sets, our model performed well compared to the familiar market share

attraction model, both in terms of in-sample fit and out-of-sample forecasting. The

elasticity decompositions from our model showed that the majority of the increased

market share after an own price reduction is caused by gaining additional share

from competing brands, and not so much by increasing own customer retention.

Furthermore, the elasticity decompositions indicated that in most cases the majority

of the loss in own market share after a competitive price reduction is caused by

share-switching in which the own brand is not directly involved, and not so much

by decreased own customer retention.

Next, we investigated whether the resulting price elasticities were consistent

with the finding of Blattberg and Wisniewski (1989) that higher-price higher-quality

brands can gain more share from lower-price lower-quality brands by offering a price

reduction than vice versa. This result was supported for both catsup and peanut

butter in the Sioux Falls market, but it was not supported in the Springfield market.

An explanation for the disparity, which seems consistent with the considered data,

is that in the Springfield market the perceived quality gap between the expensive

national brands and the cheaper Rest brand is not always sufficient to account

for the price difference. This explanation would be in accordance with a result in

Bronnenberg and Wathieu (1996).

Finally, we inferred share-switching across brands from our model. The share-
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switching estimates indicated that Heinz has the most loyal customer base in the

two catsup markets, whereas Peter Pan can be regarded as having the most loyal

customer base in the two peanut butter markets. Although the estimated share-

switching portions showed some strong asymmetries, the resulting market shares

seemed balanced in the sense that for each brand the total share coming in and the

total share going out were approximately equal. By considering two-dimensional

share-switching maps, we discovered some interesting patterns in share-switching.

We found that in both the Sioux Falls and Springfield catsup markets Heinz gains

substantial share from all competing brands, while there is little share competition

between Del Monte and the Rest brand. Furthermore, we found some strong asym-

metries in both markets for peanut butter. Skippy loses much more share to Peter

Pan than vice versa, and Peter Pan loses relatively much share to the Rest brand.

A limitation of our analysis is that it does not account for primary demand ef-

fects, that is, we considered how category sales are distributed across brands, but we

did not consider whether the total market expands or shrinks over time. For exam-

ple, it might well be that absolute sales of a brand decrease while the market share

increases. In this case, the secondary demand effect (larger market share) is domi-

nated by the primary demand effect (smaller total market). Van Heerde, Gupta and

Wittink (2002) put forward a unit sales decomposition for primary and secondary

demand effects that accounts for increased category volume after a price promo-

tion. This decomposition is complementary to the frequently considered primary-

secondary demand elasticity decomposition, which assumes that total category sales

are held constant. By accounting for category expansion effects, Van Heerde, Gupta

and Wittink (2002) find that the primary demand effect is larger than was previously

believed. An interesting extension of our model would therefore be to include non-

purchase behavior in order to account for changes in primary demand. In principle,

this can be done by representing all non-purchases by an “outside good”, which is

just regarded as another brand. Its market share is then modelled together with

the market shares of the considered brands. However, a practical complication of
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this extension is that it requires information on the size of the total market. When

one would have information on unit sales for each brand, the total number of store

visits and the average purchase quantity, it should be possible to obtain the size of

the outside good, see for example Chintagunta (2000).

27



Appendix A

The model in Leeflang (1974) amounts to the following. Suppose there are N house-

holds in a market for a product category for which J brands are available. House-

holds have homogeneous preferences and each household purchases precisely one

unit per period. To be more specific, at time t, each household chooses brand k,

k = 1, . . . , J , with probability pk,t, which might depend on the marketing activity

of the brand. Under these assumptions, total unit sales per brand, denoted by Nk,t,

k = 1, . . . , J , are multinomially MN(N, p1,t, . . . , pJ,t) distributed. That is,

Pr(N1,t = n1,t, . . . , NJ,t = nJ,t) =
N !

n1,t! . . . nJ,t!
p

n1,t

1,t . . . p
nJ,t

J,t . (A.1)

It follows from the properties of the multinomial distribution that

E(N1,t, . . . , NJ,t) = (Np1,t, . . . , NpJ,t), (A.2)

Cov(N1,t, . . . , NJ,t) = NΩt, (A.3)

where the (i, j)-th element of Ωt is defined by

ω(i,j),t =











pi,t(1 − pi,t) if i = j

− pi,t pj,t if i 6= j
. (A.4)

By definition, the market share of brand k at time t is given by Mk,t = Nk,t/N ,

k = 1, . . . , J , so that it immediately follows from (A.2) and (A.3) that

E(M1,t, . . . ,MJ,t) = (p1,t, . . . , pJ,t), (A.5)

Cov(M1,t, . . . ,MJ,t) =
1

N
Ωt. (A.6)

The brand choice probabilities pk,t, k = 1, . . . , J , are unconditional on the past.

They can be related to the previous period as follows, that is,

pk,t =
J
∑

l=1

λ̃l,k,t pl,t−1, (A.7)

where λ̃l,k,t denotes the probability that brand k is chosen given that brand l was

chosen during the previous period. So, λ̃l,k,t is the conditional probability of moving

from brand l to brand k. By replacing the unobserved brand choice probability pk,t
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in (A.7) by the observed market share Mk,t, the relationship still holds, but now

only approximately. Recall that E(Mk,t) = pk,t. One obtains that

Mk,t =
J
∑

l=1

λ̃l,k,tMl,t−1 + ek,t, (A.8)

where ek,t is a disturbance term. Now, it follows from (A.6) and (A.8) that

Cov(e1,t, . . . , eJ,t) =
1

N
Vt, (A.9)

where the (i, j)-th element of Vt is defined by

v(i,j),t =











pi,t −
∑J

l=1 λ̃2
l,i,t pl,t−1 if i = j

−
∑J

l=1 λ̃l,i,t λ̃l,j,t pl,t−1 if i 6= j
. (A.10)

It can further be shown that the disturbances are uncorrelated over time.

The model is completed by specifying the transition probabilities λ̃l,k,t. They are

defined in a linear fashion under the conditions that λ̃l,k,t > 0 and
∑J

k=1 λ̃l,k,t = 1.

At least, the λ̃l,k,t depend on the marketing instruments of brand l and brand k at

time t and time t − 1.

One of the J market share equations is redundant. In the model, the last equa-

tion is simply disregarded in the estimation procedure. Leeflang (1974, p. 134) calls

this “a workable but not very elegant solution”. The estimation method is essen-

tially Feasible Generalized Least Squares [FGLS], where the probabilities pk,t in the

covariance matrix Vt have been replaced by the corresponding market shares Mk,t.

However, as the parameters have to satisfy inequality restrictions, the estimation

procedure involves optimization under inequality restrictions. Furthermore, the co-

variance matrix is not necessarily positive definite, as this depends on the estimated

λ̃l,k,t.

How does the model in Leeflang (1974) differ from the one we propose in this

paper? First, the estimation results are not invariant with respect to which equation

is disregarded. This is contrary to our model. Second, estimation of the parameters

in the Leeflang model is more complicated, as it amounts to optimization under

inequality restrictions, instead of simply maximizing the likelihood. Furthermore,
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positive definiteness of the involved covariance matrix depends on the values of λ̃l,k,t.

We note that our model accounts for the inequality restrictions through the func-

tional form, and that in our model the covariance matrix is positive definite by

construction. Third, both the Leeflang model and our model imply a negative cor-

relation between market shares. This makes sense. However, in the Leeflang model

this negative correlation originates from the second moment of the multinomial dis-

tribution, whereas in our model it originates from accounting for the “redistribution

condition” that
∑J

k=1 λ̃l,k,t = 1. Finally, we note that in our model λ̃l,k,t is only

influenced by the marketing instruments of the receiving brand k, and not by the

marketing instruments of the supplying brand l. This is in accordance with the

brand-switching models of Givon (1984) and Seetharaman and Chintagunta (1998).
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Appendix B

In this Appendix we derive the distribution of the market shares Mt = Λ̃′
tMt−1 +

E ′
tMt−1 after imposing the restrictions

∑J
k=1 el,k,t = 0, l = 1, . . . , J on the error

matrix Et. Before imposing these restrictions, the share-switching errors el,k,t are

independently N(0, σ2
k,t) distributed with σ2

k,t = σ2Mγ
k,t−1.

We first derive the distribution of (el,1,t, . . . , el,J,t)
′, given

∑J
k=1 el,k,t = 0, l =

1, . . . , J . Without imposing the summation restriction, the density of (el,1,t, . . . , el,J,t)
′

is given by

f(el,1,t, . . . , el,J,t) ∝ exp

(

−
1

2

J
∑

k=1

e2
l,k,t

σ2
k,t

)

, (B.1)

where ∝ denotes “is proportional to”. In order to impose that
∑J

k=1 el,k,t = 0, we

make a transformation of variables from (el,1,t, . . . , el,J−1,t, el,J,t)
′ to (el,1,t, . . . , el,J−1,t, z)′

with z =
∑J

k=1 el,k,t. Note that el,J,t = z −
∑J−1

k=1 el,k,t. As the Jacobian matrix of

this transformation has determinant one, the transformed density becomes

f(el,1,t, . . . , el,J−1,t, z) ∝ exp

(

−
1

2

[

J−1
∑

k=1

e2
l,k,t

σ2
k,t

+
(z −

∑J−1
k=1 el,k,t)

2

σ2
J,t

])

. (B.2)

Now, imposing the restriction z =
∑J

k=1 el,k,t = 0 gives

f(el,1,t, . . . , el,J−1,t, 0) ∝ exp

(

−
1

2

[

J−1
∑

k=1

e2
l,k,t

σ2
k,t

+
(
∑J−1

k=1 el,k,t)
2

σ2
J,t

])

= exp
(

−
1

2
ẽ′l,t Γt ẽl,t

)

(B.3)

with ẽl,t = (el,1,t, . . . , el,J−1,t)
′ and Γt = 1

σ2

J,t

ιJ−1 ι′J−1+diag( 1
σ2

1,t

, . . . , 1
σ2

J−1,t

), where the

diag operator transforms a vector into a diagonal matrix with the vector elements

on the diagonal. It follows from (B.3) that (el,1,t, . . . , el,J−1,t)
′ ∼ N(0, Ωt) with

Ωt = Γ−1
t

= −
1

∑J
j=1 σ2

j,t















σ2
1,t

...

σ2
J−1,t















(

σ2
1,t · · · σ

2
J−1,t

)

+ diag
(

σ2
1,t, . . . , σ

2
J−1,t

)

, (B.4)

l = 1, . . . , J . We note that it is easily verified that ΩtΓt = IJ−1, the (J −1)× (J −1)

identity matrix, so that Ωt is indeed the inverse of Γt. By substituting σ2
k,t =

31



σ2Mγ
k,t−1 into (B.4), it is obtained that

Ωt = σ2















−
1

∑J
j=1 Mγ

j,t−1















Mγ
1,t−1

...

Mγ
J−1,t−1















(

Mγ
1,t−1 · · ·Mγ

J−1,t−1

)

+ diag
(

Mγ
1,t−1, . . . ,M

γ
J−1,t−1

)















.

(B.5)

Finally, as Mt = Λ̃′
tMt−1 + E ′

tMt−1, so that















M1,t

...

MJ−1,t















=
J
∑

l=1

Ml,t−1















λ̃l,1,t

...

λ̃l,J−1,t















+
J
∑

l=1

Ml,t−1















el,1,t

...

el,J−1,t















, (B.6)

and (el,1,t, · · · , el,J−1,t)
′, l = 1 . . . , J , are independently distributed, it follows that

M̃t =















M1,t

...

MJ−1,t















∼ N( µt, σ
2Vt ), (B.7)

where

µt =















∑J
l=1 λ̃l,1,tMl,t−1

...

∑J
l=1 λ̃l,J−1,tMl,t−1















, (B.8)

and

Vt =
J
∑

l=1

M2
l,t−1















−
1

∑J
j=1 Mγ

j,t−1















Mγ
1,t−1

...

Mγ
J−1,t−1















(

Mγ
1,t−1 · · ·Mγ

J−1,t−1

)

+ diag
(

Mγ
1,t−1, . . . ,M

γ
J−1,t−1

)















.

(B.9)

We note that by analogy with Ωt = Γ−1
t , the inverse of Vt is given by V −1

t =

1
∑J

l=1
M2

l,t−1

[

M−γ
J,t−1 ιJ−1 ι′J−1 + diag(M−γ

1,t−1, . . . ,M
−γ
J−1,t−1)

]

.
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Table 1: A summary of the data, that is, the average values and the standard devi-
ations (given in parentheses) of the market shares, prices and 0/1 display variables.

mshare price display

catsup 1

Heinz 0.51 (0.22) 1.16 (0.10) 0.41 (0.49)

Hunts 0.26 (0.19) 1.09 (0.09) 0.54 (0.50)

Del Monte 0.17 (0.16) 1.09 (0.09) 0.40 (0.49)

Rest 0.07 (0.08) 0.87 (0.05) 0.09 (0.28)

catsup 2

Heinz 0.37 (0.16) 1.34 (0.07) 0.68 (0.47)

Hunts 0.22 (0.14) 1.34 (0.11) 0.75 (0.43)

Del Monte 0.10 (0.09) 1.37 (0.09) 0.56 (0.50)

Rest 0.30 (0.11) 0.84 (0.07) 0.88 (0.33)

pbutter 1

Skippy 0.31 (0.19) 1.68 (0.12) 0.39 (0.49)

Jif 0.25 (0.13) 1.72 (0.11) 0.17 (0.38)

Peter Pan 0.25 (0.16) 1.68 (0.16) 0.35 (0.48)

Rest 0.19 (0.11) 1.36 (0.12) 0.19 (0.39)

pbutter 2

Skippy 0.10 (0.06) 1.78 (0.21) 0.10 (0.31)

Jif 0.16 (0.07) 1.81 (0.20) 0.10 (0.30)

Peter Pan 0.36 (0.16) 1.70 (0.25) 0.67 (0.47)

Rest 0.37 (0.13) 1.23 (0.13) 0.66 (0.47)
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Table 2: Estimates of the marketing-mix response parameters and the variance
parameters. The estimated standard errors are given in parentheses.

catsup 1 catsup 2 pbutter 1 pbutter 2

β1 (price) −0.860∗∗∗ −1.099∗∗∗ −0.686∗∗∗ −0.406∗∗∗

(0.110) (0.145) (0.079) (0.040)

β2 (display) 0.452∗∗∗ 0.383∗∗ −0.046 0.129

(0.108) (0.166) (0.148) (0.108)

σ2 0.291∗∗∗ 0.171∗∗∗ 0.103∗∗∗ 0.102∗∗∗

(0.058) (0.040) (0.026) (0.022)

γ 0.870∗∗∗ 1.043∗∗∗ 0.419∗∗∗ 0.987∗∗∗

(0.081) (0.115) (0.145) (0.111)

** significant at 5%.
*** significant at 1%.
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Table 3: In-sample fit and out-of-sample forecasting performance.

catsup 1 catsup 2 pbutter 1 pbutter 2

in-sample

RMSE our model 0.142 0.098 0.116 0.078

full effects 0.132 0.094 0.104 0.090

diff. effects 0.143 0.103 0.123 0.111

MAE our model 0.101 0.069 0.083 0.055

full effects 0.092 0.068 0.075 0.064

diff. effects 0.099 0.076 0.090 0.078

out-of-sample

RMSE our model 0.147 0.103 0.120 0.084

full effects 0.162 0.119 0.146 0.111

diff. effects 0.139 0.116 0.160 0.213

MAE our model 0.105 0.083 0.098 0.062

full effects 0.114 0.087 0.112 0.075

diff. effects 0.099 0.089 0.127 0.154
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Table 4: Estimated market-share price elasticities δk,j,t for the two catsup markets,
decomposed into components ηl→k,j,t attributable to each of the supplying brands.
The reported values amount to averages over time. The index j indicates the brand
whose price is changed, the index k indicates the brand whose market share is af-
fected, and the index l indicates the supplying brand in the elasticity decomposition
(1 = Heinz, 2 = Hunts, 3 = Del Monte, 4 = Rest). The market-share price elastici-
ties are written in bold.

catsup 1 catsup 2

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

j = 1

l = 1 −2.27 2.10 2.30 2.12 −2.00 1.29 1.56 1.05

l = 2 −1.10 1.57 0.62 0.78 −0.92 1.32 0.39 0.21

l = 3 −0.77 0.46 1.46 0.20 −0.49 0.12 1.77 0.00

l = 4 −0.30 0.12 0.00 2.02 −0.71 0.14 0.12 0.94

−4.44 4.25 4.38 5.13 −4.13 2.86 3.84 2.21

j = 2

l = 1 1.06 −2.53 0.63 0.58 0.82 −1.57 0.22 0.17

l = 2 0.70 −2.30 0.84 1.09 0.69 −3.10 1.45 0.84

l = 3 0.22 −1.00 0.79 0.11 0.07 −0.51 0.96 0.00

l = 4 0.05 −0.19 0.00 0.30 0.08 −1.46 0.12 1.05

2.03 −6.03 2.27 2.09 1.65 −6.63 2.76 2.07

j = 3

l = 1 0.77 0.42 −2.95 0.41 0.25 0.06 −2.10 0.05

l = 2 0.19 0.58 −1.53 0.28 0.07 0.45 −2.24 0.07

l = 3 0.46 0.56 −2.24 0.23 0.43 0.39 −2.97 0.01

l = 4 0.00 0.00 −0.00 0.00 0.02 0.03 −1.14 0.20

1.42 1.55 −6.73 0.91 0.77 0.93 −8.45 0.32

j = 4

l = 1 0.18 0.10 0.10 −2.38 0.55 0.13 0.13 −0.80

l = 2 0.06 0.20 0.07 −1.69 0.09 0.79 0.17 −0.73

l = 3 0.01 0.02 0.05 −0.43 0.00 0.00 0.02 −0.01

l = 4 0.18 0.06 0.00 −1.74 0.39 0.80 0.53 −1.45

0.43 0.36 0.23 −6.24 1.05 1.72 0.85 −2.99
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Table 5: Estimated market-share price elasticities δk,j,t for the two peanut butter
markets, decomposed into components ηl→k,j,t attributable to each of the supplying
brands. The reported values amount to averages over time. The index j indicates
the brand whose price is changed, the index k indicates the brand whose market
share is affected, and the index l indicates the supplying brand in the elasticity
decomposition (1 = Skippy, 2 = Jif, 3 = Peter Pan, 4 = Rest). The market-share
price elasticities are written in bold.

pbutter 1 pbutter 2

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

j = 1

l = 1 −2.48 0.99 1.07 0.79 −1.61 0.31 0.20 0.10

l = 2 −1.87 1.53 0.28 0.23 −0.82 0.29 0.06 0.03

l = 3 −0.51 0.08 0.29 0.09 −0.86 0.05 0.15 0.05

l = 4 −1.04 0.19 0.13 1.01 −1.21 0.08 0.04 0.25

−5.90 2.79 1.78 2.12 −4.49 0.72 0.45 0.43

j = 2

l = 1 0.90 −1.49 0.26 0.20 0.52 −0.47 0.04 0.02

l = 2 1.48 −2.86 0.71 0.55 0.51 −1.71 0.42 0.20

l = 3 0.10 −1.30 0.99 0.34 0.09 −1.04 0.37 0.12

l = 4 0.21 −1.00 0.15 1.02 0.14 −1.23 0.09 0.49

2.69 −6.65 2.11 2.12 1.25 −4.44 0.93 0.83

j = 3

l = 1 0.98 0.28 −1.50 0.24 0.65 0.09 −0.26 0.03

l = 2 0.26 0.73 −1.04 0.11 0.19 0.84 −0.54 0.08

l = 3 0.30 0.90 −2.30 1.21 0.53 0.69 −1.34 0.74

l = 4 0.13 0.13 −0.73 0.71 0.16 0.17 −0.64 0.58

1.67 2.04 −5.58 2.28 1.53 1.79 −2.79 1.42

j = 4

l = 1 0.42 0.13 0.14 −0.99 0.25 0.03 0.02 −0.11

l = 2 0.12 0.35 0.07 −0.70 0.07 0.31 0.06 −0.22

l = 3 0.08 0.21 0.79 −1.32 0.14 0.17 0.59 −0.67

l = 4 0.56 0.52 0.37 −2.24 0.62 0.66 0.38 −1.00

1.18 1.20 1.36 −5.25 1.08 1.18 1.05 −1.99
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Table 6: Share-switching estimates, that is, the row-conditional share-switching
fractions λ̃l,k,t from brand l to brand k and the absolute share-switching portions
λ̄l,k,t = Ml,t−1λ̃l,k,t from brand l to brand k. The reported values amount to averages
over time.

k k

share-switching fractions share-switching portions

catsup 1

Heinz 0.692 0.157 0.116 0.035 0.333 0.086 0.063 0.018

l Hunts 0.270 0.567 0.113 0.049 0.079 0.134 0.033 0.013

Del Monte 0.277 0.174 0.533 0.015 0.056 0.035 0.083 0.003

Rest 0.518 0.087 0.000 0.396 0.034 0.005 0.000 0.025

catsup 2

Heinz 0.849 0.063 0.019 0.069 0.318 0.029 0.009 0.031

l Hunts 0.112 0.739 0.038 0.111 0.033 0.163 0.010 0.027

Del Monte 0.183 0.098 0.716 0.003 0.017 0.009 0.058 0.000

Rest 0.078 0.086 0.016 0.821 0.023 0.027 0.005 0.243

pbutter 1

Skippy 0.677 0.117 0.136 0.070 0.185 0.037 0.044 0.025

l Jif 0.211 0.626 0.102 0.062 0.059 0.154 0.029 0.017

Peter Pan 0.035 0.119 0.719 0.127 0.010 0.037 0.175 0.038

Rest 0.135 0.134 0.095 0.637 0.029 0.030 0.019 0.113

pbutter 2

Skippy 0.605 0.131 0.175 0.090 0.060 0.013 0.019 0.009

l Jif 0.074 0.592 0.224 0.110 0.013 0.097 0.041 0.019

Peter Pan 0.029 0.068 0.745 0.158 0.012 0.029 0.263 0.066

Rest 0.047 0.090 0.113 0.750 0.018 0.034 0.044 0.264

42



Figure 1: A numerical example of share-switching.
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Figure 2: Illustration of share-switching for multiple periods.
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Figure 3: Price elasticity maps for the catsup and peanut butter categories in the
Sioux Falls SD market and the Springfield MO market.
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Figure 4: Share-switching maps for the catsup and peanut butter categories in the
Sioux Falls SD market and the Springfield MO market.
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