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Abstract

We propose information theoretic tests for serial independence and linearity in time
series. The test statistics are based on the conditional mutual information, a general
measure of dependence between lagged variables. In case of rejecting the null hypothesis,
this readily provides insights into the lags through which the dependence arises. The
conditional mutual information is estimated using the correlation integral from chaos
theory. The signi¯cance of the test statistics is determined with a permutation procedure
and a parametric bootstrap in the tests for serial independence and linearity, respectively.
The size and power properties of the tests are examined numerically and illustrated with
applications to some benchmark time series.

Keywords: serial independence, linearity, bootstrap, permutation test, nonparametric
estimation, nonlinear time series analysis, correlation integral

1 Introduction

It is well known that processes with zero autocorrelation can still exhibit higher order de-
pendence or nonlinear dependence. This has motivated the development of tests for serial
independence with power against alternatives exhibiting general types of dependence. The
nonparametric approach avoids restrictive assumptions on the marginal distribution of the
process. Nonparametric measures of divergence between two distributions are of relevance,
since they can be used to develop one-sided tests for serial independence. This has led several
authors to consider nonparametric divergence measures in a time series context. For exam-
ple, Robinson (1991) considers the Kullback-Leibler information, while Skaug and Tj¿stheim
(1993a) study the Blum, Kiefer & Rosenblatt (1961) statistic. Some divergence measures
based on the probability density functions are compared in Skaug and Tj¿stheim (1993b).
Other recently proposed nonparametric tests for serial independence in time series can be
found, for example, in Chan and Tran (1992), Delgado (1996), Aparicio and Escribano (1998)
and Hong (1998). For a review on nonparametric testing for serial independence we refer to
Tj¿stheim (1996).
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Although evidence against the null hypothesis of independence for a particular time series
suggests the presence of structure in the time series, it usually provides little insight into
the nature of this structure. Since linear models are a benchmark class of models with
known properties, testing the hypothesis of linearity is a natural next step in practice. One
way of testing for linearity is by applying a test for independence to the residuals of an
estimated linear model. A rejection of the null hypothesis provides evidence suggesting that
some structure is left in the residuals upon removing linear dependence, and hence that
a linear model is not appropriate. Brock et al. (1996) have shown that this approach is
aymptotically consistent for their BDS test, provided that the model parameters are estimated
root-N consistently. An alternative approach to testing for linearity is to compare linear and
nonparametric statistics, such as estimators of the conditional mean and variance, as proposed
by Hjellvik and Tj¿stheim (1995) and Hjellvik et al. (1998). This avoids pre-whitening of
the time series (which typically leads to a reduction in power) and also preserves the order of
dependence in the time series.

Our test statistics are closely related to the ± statistic introduced by Wu et al. (1993) for
measuring conditional dependence. The ± statistic is de¯ned in terms of ratios of correlation
integrals. Correlation integrals originate from the study of chaotic systems, where they are
important means of characterizing the dynamics of deterministic processes. Their estimation
is relatively straightforward. The connection between generalized correlation integrals and
information theoretic quantities, established by Prichard and Theiler (1995), shows that our
statistics correspond to the second order conditional mutual information. The information
theoretic quantities used by Granger and Lin (1994) are also related to ours. However, their
test statistic is a generalisation of the autocorrelation function, while ours generalises the
partial autocorrelation function. This renders our statistics more suitable for investigating
the lag dependence, which may serve as a ¯rst step for model selection. Since the number
of parameters in a parametric nonlinear time series model (such as a TAR model) typically
increases fast with the number of lags selected, lag selection criteria are important for con-
structing parsimonious time series models. For some recent approaches to lag selection see:
Auestad and Tj¿stheim (1990), Cheng and Tong (1991), Tschernig and Yang (2000).

In this paper we employ bootstrap methods for determining the signi¯cance of the test
statistics. In the case of testing for independence this leads to an exact level-® test. The
main advantages, besides the bootstrap approach, are the following. i) The test statistics
are based on information theoretic quantities. Since these are nonlinear functionals of the
density function they can capture dependence in higher moments of the distribution, thus not
limiting the analysis to linear dependence. ii) The conditional mutual information provides
insights into the lag dependence in the time series. iii) In the linearity test we compare
nonparametric and linear parametric information-theoretic quantities for the original time
series. The advantage over comparing estimates of those for the residuals is that the lag
dependence in the time series is preserved. iv) The connections between information theory
and correlation integrals are used for e±cient nonparametric estimation.

In section 2 we brie°y review the information theoretic quantities, while section 3 describes
the estimation methods based on correlation integrals. Sections 4 and 5 discuss the test of
independence and linearity, respectively. In section 6 the size and power properties of the
tests are investigated numerically for a number of linear and nonlinear models. Section 7
illustrates our approach with applications to some empirical time series.
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2 Information theory

Information theory was introduced by Shannon and Wiener and its statistical application
pioneered by Kullback (1959). Since our approach is closely connected with information
theory we will give a brief overview here.

Let X be a continuous, possibly vector-valued, random variable with probability density
function fX(x). The Shannon entropy is de¯ned as

H(X) = ¡
Z

ln fX(x)fX(x) dx; (1)

which is just the expected value of ¡ ln fX , ¡E(ln fX). Note that the Shannon entropy is
scale dependent. For example, for the transformed variable aX, where a is a real constant,
the entropy becomes H(aX) = H(X) + m ln a where m is the dimension of x.

For a pair of random variables X, Y with joint probability density function fX;Y (x; y),
the joint entropy reads

H(X; Y ) = ¡
Z Z

ln fX;Y (x; y)fX;Y (x; y) dxdy: (2)

The conditional entropy of X given Y is the mean entropy of X, conditional on Y :

H(XjY ) = ¡
Z

ln fXjY (x j y)fX;Y (x; y) dxdy; (3)

where fXjY (x j y) denotes the conditional probability density function of X , given Y = y. It
can be easily veri¯ed that H(XjY ) = H(X;Y ) ¡ H(Y ). Note that H(X jY ) is not invariant
under changing its arguments. However, the mutual information, de¯ned as

I(X;Y ) =

Z Z
ln

µ
fX;Y (x; y)

fX(x)fY (y)

¶
fX;Y (x; y) dxdy; (4)

is a symmetric measure of dependence between X and Y . The mutual information measures
the average information contained in one of the random variables about the other. The
symmetry follows directly from the de¯nition and also becomes obvious after expressing it in
terms of entropies: I(X;Y ) = H(X) ¡ H(X jY ) = H(X) + H(Y ) ¡ H(X;Y ). The mutual
information is invariant not only under scale transformations of X and Y , but more generally,
under all continuous one-to-one transformations of X and Y .

The mutual information is non-negative, I(X;Y ) ¸ 0, with equality if and only if fX;Y =
fXfY . This property makes it a useful quantity for testing independence hypotheses. The
mutual information is a special case of the Kullback-Leibler information, de¯ned for two pdf's
f(x) and g(x) as:

IKL =

Z
ln

µ
f(x)

g(x)

¶
f(x) dx: (5)

Robinson (1991) proposed a test for independence based on the Kullback-Leibler information,
which in that case reduces to the mutual information.

For testing conditional independence of X and Y , given a third random variable Z, it is
useful to consider the conditional mutual information, de¯ned by

I(X; Y jZ) =

Z Z Z
ln

Ã
fXjY;Z(xjy; z)

fXjZ(xjz)

!
fX;Y;Z(x; y; z) dxdy dz: (6)
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The conditional mutual information quanti¯es the average amount of additional information
in Y about X , given the information about X already contained in Z. This can be seen by
expressing it as I(X; Y jZ) = H(X jZ) ¡ H(XjY; Z) = ¡H(X;Y; Z) + H(X;Z) + H(Y;Z) ¡
H(Z). Because the entropy does not increase upon conditioning on additional information,
I(X;Y jZ) ¸ 0, with equality if and only if X and Y are conditionally independent, given Z.

3 Correlation integrals

The generalized order-q correlation integral of X is de¯ned as

Cq(X ; ²) =

"Z µZ
I(kx¡x0k·²)fX(x0)dx0

¶q¡1
fX(x)dx

# 1
q¡1

; (7)

where I(¢) denotes the indicator function taking values 0 and 1, and k¢k denotes the supremum
norm

kxk = sup
i=1;:::;dimx

j xi j : (8)

The parameter ² plays the role of a bandwidth. Correlation integral estimates are being used
frequently in chaos theory to study fractal structures and to characterize deterministic time
series. Correlation integrals are also useful for testing for serial independence, because the
generalized correlation integral factorises when the elements of X are i.i.d. (independent and
identically distributed). The factorisation for q = 2 was used in the BDS test for indepen-
dence, based on C2(X; ²).

To describe the relation between information theoretic quantities and correlation integrals
it is convenient to notice that the Shannon entropy is a special case of a generalised entropy,
the Renyi entropy, de¯ned by

Hq(X) = ¡ 1

q ¡ 1
ln

Z
(fX(x))q¡1 fX(x) dx; (9)

where q denotes the order of the Renyi entropy. Indeed, by taking the limit q ! 1, one
obtains using l'Hopital's rule,

lim
q!1

Hq(X) == ¡ d

dq

¯̄
¯̄
q=1

Z
fX(x)(q¡1)fX(x) dx = ¡

Z
ln fX(x)fX(x) dx; (10)

which is the Shannon entropy.
Upon taking logarithms in Eqn. (7) we obtain

¡ ln C(X; ²) = ¡ 1

q ¡ 1
ln

"Z µZ
I(kx¡x0k·²)fX(x0)dx0

¶q¡1
fX(x)dx

#
; (11)

which is very similar to the generalized Renyi entropy, given in Eqn. (9), the only di®erence
being the replacement of the term fX(x) within brackets by an integral of fX(x0) over an
²-ball around x. The inner integral in Eqn. (7) behaves as ²mfX(x) for small ², where m is
the dimension of X . Thus, up to an ² dependent scale factor, the correlation integral will
correspond to the integral in Eqn. (9). The relationship between Hq(X) and Cq(X; ²) for ²
small is

Hq(X) ' ¡ ln Cq(X; ²) + m ln ²: (12)
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This shows that estimated correlation integrals provide nonparametric estimates of Hq(X),
and vice versa. To give an example of how this leads to estimates of information theoretic
quantities, let us consider Iq(X;Y ) the q-th order mutual information between X and Y ,
given by

Iq(X;Y ) = Hq(X) + Hq(Y ) ¡ Hq(X; Y ): (13)

Given estimated correlation integrals bCq(X; ²), bCq(Y ; ²) and bCq(X; Y ; ²), an estimator for
Iq(X;Y ) is given by

bIq(X; Y ) = ln bCq(X;Y ; ²) ¡ ln bCq(X ; ²) ¡ ln bCq(Y ; ²): (14)

Note that the terms proportional to m ln ² cancel because the dimension of (X;Y ) is the sum
of those of X and Y . A similar cancellation occurs in the conditional mutual information, for
which we obtain analogously:

bIq(X;Y jZ) = ln bCq(X; Y; Z; ²) ¡ ln bCq(X;Z; ²) ¡ ln bCq(Y;Z; ²) + ln bCq(Z; ²): (15)

Further details on the connection between correlation integrals and information theory can
be found in Prichard and Theiler (1995).

The choice q = 2 is by far the most popular in chaos analysis, since it allows for e±cient
estimation algorithms. The conditional mutual information Iq(X; Y j Z) strictly speaking
is not positive de¯nite for q 6= 1. This means that it is possible to construct examples of
variables X and Y , which are conditionally dependent given Z, and for which I2(X; Y j Z)
is zero or negative. If I2(X; Y j Z) is zero, the test based on I2 asymptotically does not have
unit power against this alternative. This situation appears to be very exceptional, and usually
I2(X; Y j Z) is either positive or negative. This suggests that a one-sided test, rejecting for
I2(X; Y ; ²) large, is not always optimal. In practice, however, I2 behaves much like I1 in that
we usually observe larger power for one-sided tests (rejecting for large I2) than for two-sided
tests. This led us to choose q = 2, together with a one-sided implementation of the test.

Prichard and Theiler (1995) use the standard indicator function kernel but mention that
it might not be optimal from a statistical point of view. To their defence we might add
that in chaos theory this has never been an issue, since there the de¯nition of the correlation
integral is usually taken as a starting point. Estimation using U -statistics then gives the
indicator function kernel in a natural way. Here a similar point of view can be taken. In the
present testing context we have no a priori reasons to assume that rede¯ning the correlation
integral using another kernel function will lead to more powerful tests. This might seem
counterintuitive in a nonparametric setting, since it is known that some kernels are better
for nonparametric function estimation than others. However, there are important di®erences
between nonparametric function estimation problems and nonparametric tests. For example,
in a nonparametric function estimation problem the bandwidth should tend to zero at the
proper rate asymptotically to obtain consistency. For testing this need not be the case as is
clearly illustrated by the fact that the asymptotic theory for the BDS test holds for any ¯xed
value of ². In any case, it should be kept in mind that we wish to estimate a functional of the
pdf, and not the pdf itself.

It is beyond the scope of this paper to examine which kernels are optimal for testing.
However, one essential property should not be left unnoticed here: the choice of the kernel
function cannot be made independently from that of the norm used to calculate distances.
For example, factorisation of the correlation integral for i.i.d. data occurs for the indicator
function only with the L1 norm, and for the gaussian kernel only with the L2 norm.
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4 Testing for Serial Independence

In the present paper we propose to investigate and test for independence in time series using
the conditional mutual information de¯ned above. The advantage of using this as a test
statistic is that it captures dependences while the conditioning on intermediate values of the
time series will also give insights on the order of the underlying process.

First let us consider mutual information in a time series setting. For a stationary time
series fXtgTt=1 we de¯ne the delay vectors as

Xm
t = (Xt; : : : ;Xt¡m+1)0; (16)

where the prime denotes the transposed. The dimension m is referred to as the embedding
dimension. The total number of vectors, N , obtained in this way is N = T ¡ m + 1.

The conditional mutual information between Xt and Xt¡m given the intermediate obser-
vations, Xm¡1

t¡1 is given by

I(Xt;Xt¡m j Xm¡1
t¡1 ) = ¡H(Xm+1

t¡1 ) + 2H(Xm
t ) ¡ H(Xm¡1

t¡1 ): (17)

The conditional mutual information has a particular interpretation in a time series setting:
if Xt is a Markov process of order k, the conditional probability density depends only in the
last k lagged values of the time series and further lags contain no additional information.
The conditional mutual information between Xt and Xt¡m will become zero for m > k and
positive for m · k. In this sense the conditional mutual information can be interpreted as an
order identi¯er.

Another useful interpretation is the following. The average amount of information about
Xt in Xm

t¡1 is given by I(Xt;X
m
t¡1), while the average amount of information about Xt in

Xm¡1
t¡1 only is given by I(Xt;X

m¡1
t¡1 ). If these two information measures are subtracted, one

arrives at
I(Xt;X

m
t¡1) ¡ I(Xt;X

m¡1
t¡1 ) = I(Xt; Xt¡m j Xm¡1

t¡1 ); (18)

the conditional mutual information. This clearly demonstrates that the conditional mutual
information quanti¯es the average amount of extra information that Xm

t¡1 contains about Xt,
in addition to the information already in Xm¡1

t¡1 . If Xt¡m contains no extra information about
values of Xt in addition to that in Xt¡m¡1, I(Xt;Xt¡m j Xm¡1

t¡1 ) = 0. If, on the other hand,
Xt¡m does contain extra information on Xt, we expect I(Xt;Xt¡m j Xm¡1

t¡1 ) > 0. We thus
wish to perform a one-sided test based on I(Xt; Xt¡m j Xm¡1

t¡1 ), which can be estimated from
correlation integrals.

Upon introducing Cm(²) and bCm(²) as shorthand notation for C2(X
m
t ; ²) and its estimator

bC2(Xm
t ; ²), respectively, we may write

bI(Xt; Xt¡m j Xm¡1
t¡1 ) = ¡2 ln bCm(²) + ln bCm+1(²) + ln bCm¡1(²): (19)

The second order (q = 2) correlation integral for the m-dimensional delay vectors Xm
t is

Cm(²) =

Z Z
I(ks¡tk·²)fXm(s)fXm(t) ds dt: (20)

Because this is just the expectation of the kernel function, E(I(kX1
m¡X2

mk·²)), it can be esti-
mated straightforwardly in a U -statistics framework, by

bCm(²) =
2

N(N ¡ 1)

N¡1X

i=1

NX

j=i+1

I(kXm
i ¡Xm

j k·²): (21)
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Note that the conditional mutual information is an unbounded measure of conditional
dependence. In our implementation we use a transformed version of the mutual information,

b±m(²) = 1 ¡ exp(¡bI(Xt;Xt¡mj(Xt¡1; :::;Xt¡m+1)) = 1 ¡ [ bCm(²)]2

bCm¡1(²) bCm+1(²)
; (22)

which takes values between 0 and 1. The use of b±m(²) was ¯rst proposed by Savit and
Green (1991) to determine the dimension of a chaotic attractor. Wu et al. (1993) derived
the asymptotic distribution under the null hypothesis of an i.i.d. process. The asymptotic
distribution is

T
1
2 b±m(²)

d! N(0; V±m) (23)

where the asymptotic variance is given by

V±m = 4

(µ
K1(²)

C1(²)

¶m¡1 "µ
K1(²)

C1(²)

¶2
¡ 1

#)2
: (24)

For the correlation integral at embedding dimension 1, the estimator bC1(²) is used in the
BDS test, while K1(²) is estimated by

cK1(²) =
2

N(N ¡ 1)(N ¡ 2)

N¡1X

i=1

NX

j=i+1

NX

k=j+1

I(jxi¡xj j·²)I(jxj¡xkj·²): (25)

It is known that the normal approximation based on the asymptotic distribution does not
always perform well for moderate sample sizes. In the simulation study we will show that
problems also arise for b±m(²). This is the main motivation for using a bootstrap approach for
determining the null distribution of the test statistic.

Recently, Diks (1999) suggested to test for independence using a permutation test for
the BDS statistic. The advantages are an exact level test and a simpli¯cation of the test
procedure: bC1(²) and cK1(²) are functions of the order statistic and hence are invariant under
permutation of the time series. In this way p-values are not a®ected by normalisation of
location and scale of the statistics. In addition permutation tests are easily implemented,
and avoid the cumbersome computations needed to obtain the asymptotic variance. The test
procedure is thus composed of the following steps:

1. Calculate b±m(²) for the time series fXtgTt=1.

2. Randomly permute the time series and obtain f eXtgTt=1.

3. Calculate the test statistic on f eXtgTt=1, denoted by e±m(²).

4. Repeat steps 2-3 B times. In the simulations we set B to 199.

5. Calculate the one-sided bootstrap p-value as

bp =
1 + #

h
e±m(²) ¸ b±m(²)

i

1 + B

6. Reject the null hypothesis of independence if bp · ®, where ® denotes the chosen signif-
icance level.
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5 Testing for Linearity

We test for linearity by comparing a nonparametric estimate of the conditional mutual in-
formation with a parametric counterpart. This amounts to comparing the extra amount of
information contained in Xt¡m about Xt with the expected amount of extra information
under the null of linearity.

For linear gaussian processes, we have Xm
t » N (¹m; §m) where §m denotes the variance-

covariance matrix of the m-dimensional vector of lagged values of the process fXtgTt=1. The
gaussian Renyi entropy for Xm

t then becomes

H(Xm
t ) = ¡

Z
ln

n
j2¼§mj¡ 1

2

o ·
¡1

2
(x ¡ ¹m)0§¡1m (x ¡ ¹m)

¸
fXm(x) dx =

m

2
ln(2¼)+

1

2
ln j§mj;

(26)
which is independent of the order q.

The gaussian mutual information and conditional mutual information become

I(Xt;X
m
t¡1) =

1

2
ln

µ j§1jj§mj
j§m+1j

¶
; (27)

and

I(Xt;Xt¡m j Xm¡1
t¡1 ) =

1

2
ln

Ã
j§mj2

j§m+1jj§m¡1j

!
(28)

respectively. It follows that the linearized version of ±m, ±linm , is given by

±linm = 1 ¡ exp(¡I(Xt; Xt¡m j Xm¡1
t¡1 )) = 1 ¡

s
j§m¡1jj§m+1j

j§mj2 : (29)

Because §m is a symmetric positive de¯nite matrix we can factorize it as §m = L0mLm where
Lm is a lower triangular matrix. It is then immediate that j§mj = jLmj2 =

Qm
j=1 l2j where lj

is the j-th diagonal element of L. We can now express ±linm as

±linm = 1 ¡ lm+1
lm

: (30)

The test statistic is an estimate of ¹m(²) = ±m(²) ¡ ±linm (²), which quanti¯es the di®erence
between the general and the linearized ±m(²). Upon subtracting the estimators for ±m(²) and
±linm (²), one obtains

b¹m(²) = b±m(²) ¡ b±linm (²) =
blm+1
blm

¡

h
bCm(²)

i2

bCm¡1(²) bCm+1(²)
; (31)

where for blm a consistent estimator is used, based on triangularization of the sample variance-
covariance matrix.

Again, we set up a bootstrap procedure to approximate the null distribution of the test
statistic. The test is composed of the following steps:

1. Calculate b¹m(²) for the time series fXtgTt=1.

8



2. Estimate an AR(d) model for d = 1; :::; dmax and choose the optimal order bd according
to a selection criterium. In the simulation and the empirical applications we used AIC
selection criterium.

3. Generate data using the estimated parameters and gaussian innovations; the bootstrap
time series is given by

ext =

bdX

i=1

b̄ext¡1 + ²t (32)

with b̄ the estimated parameters and ²t drawn from the standard normal distribution.

4. Calculate e¹m(²) for the bootstrap time series.

5. Repeat steps 3{4 B times. We use B equal to 199.

6. Calculate the one-sided bootstrap p-value as

bp =
1 + # [e¹m(²) ¸ b¹m(²)]

1 + B

7. Reject the null hypothesis of linearity if bp · ®, where ® denotes the signi¯cance level.

6 Simulations

6.1 Test for Serial Independence

Before examining the power of our test for various models, we ¯rst examine the size of
the asymptotic test for independence for the ± statistic. Note that checking the size of the
permutation test for independence is not necessary, since the permutation test by construction
has exact level. Table 1 shows the size of the asymptotic test for sample sizes of 100, 200
and 500 and for ² equal to 0:5, 1:0, 1:5 and 2,based on 1000 simulations. In all cases the
asymptotic test has a tendency of over-rejecting. As expected, increasing the time series
length T improves the size of the asymptotic test. For all time series lengths, the size improves
upon taking larger bandwidths, but increasing the embedding dimension m has an adverse
e®ect. These results clearly demonstrate the overall poor performance of the asymptotic test
for moderate sample sizes.

Table 1 near here

We next investigate the ¯nite sample performance of our test for independence for the
models given in Table 2. Throughout we use 1000 simulations for each case, keeping the num-
ber of bootstrap replications ¯xed at B = 199. The results are shown in Table 3. Apart from
the AR(1) model and the Asymmetric Tent Map (ATM), they are all nonlinear stochastic
models with zero autocorrelation at all lags. For these models the application of autocorre-
lation based tests would fail to detect any dependence. The ATM is included because it is
an example of a chaotic model that has the autocorrelation structure of an AR(1) process.
We analyzed the conditional dependence in the ¯rst four lags for sample sizes T = 100 and
T = 200. We considered three values of the bandwidth equal to 0:5, 1:0 and 1:5.

Table 2 near here
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Table 3 near here

For the AR(1) model the permutation test has power close to unity for the ¯rst lag for
all sample sizes. For higher lags the rejection rate is close to the nominal level, con¯rming
the ability of the test to detect conditional dependence, which only occurs through the ¯rst
lag. Note that the power for the lags larger than 1 are even smaller than the size. This
possibly results from the fact that there is conditional independence in this process for higher
lags, but no unconditional independence (our null hypothesis, under which the bootstrap is
performed).

For the chaotic ATM, the test has unit power at lag one for all our choices for the time
series length and the bandwidth. The obtained rejection rates for this model were zero for
all higher lags, which have no conditional dependence.

The BILINEAR model exhibits conditional dependence through the ¯rst two lags. For
this model larger sample sizes clearly improve the power of the test. As expected the test has
power against this alternative only for the ¯rst and second lag.

The results for the NLMA model show power only at the third lag: for ² = 0.5 the power
goes from 0:25 to 0:54 while for ² = 1:0 it ranges from 0:70 to 0:94. This clearly demonstrates
that the performance of the test depends on the choice of the bandwidth.

The test has also power against the (¯rst order) TAR model: for ² = 1:0 the rejection
rate is 0:62 for samples size 100 and 0:89 for T = 200. In this case ² = 1:5 shows less power
than the smaller bandwidths for the ¯rst lag (m = 1). Here it can also be observed that
there is some power in the second lag. We conjecture that this \leakage" of power is the
result of taking a bandwidth too large compared to the length scale on which the conditional
distribution of Xt given past observations changes.

For the ARCH(1) model the test has remarkably high power already at sample size T =
100: for ² = 1:0 it goes from 0:86 to 0:99 for time series lengths of T = 200. Some marginal
power is also detected in the second lag and no evidence of deviations from the null occur in
the third and fourth lag.

The test also has power against the GARCH alternative. For the GARCH(1,1) model the
test has power for all four lags analyzed. In this case the interpretation in terms of order is
not possible, as the model for Xt is of in¯nite Markov order.

Although the optimal bandwidth is expected to depend on the alternative at hand, a
bandwidth of 1:0 appears to be reasonable for the processes examined here.

There are of course many tests for independence with which we can compare ours. How-
ever, it appears unreasonable to compare an omnibus test with a test which has power against
speci¯c alternatives. It can be expected that tests which are designed to pick up speci¯c types
of dependence, such as changes in conditional mean or variance, have larger power for spe-
ci¯c alternatives than omnibus tests such as the BDS test and ours. Therefore we decided
to compare our test only with the BDS test. The latter can also easily be implemented as
a permutation test, so that the size is exact and power comparisons are meaningful. Even
taking this into account it can hardly be expected that our test or the BDS test is uniformly
more powerful than the other, which makes direct power comparisons for speci¯c models not
very interesting. However, we can compare our results qualitatively to the BDS test, focusing
on the behaviour of the power function with changing lag m. Since the BDS test is sensitive
to dependence, and not only conditional dependence, we expect it to have a tendency of
rejecting beyond lags for which the ¯rst evidence for dependence is found.

10



Table 4 shows the results for some of the models obtained with the permutation version
of the BDS test with ² = 1:0 and T = 100. In a comparison with Table 3, it can be observed
that the BDS test has a tendency of rejecting for embedding dimension m > k when there is
conditional dependence only up to m = k. These results illustrate our earlier point that the
± test is more suitable for obtaining insights into the lag dependence structure than the BDS
test. In most cases with conditional dependence on the m'th lag, the power of the BDS test
is larger than that of the ± test, but an exception is found for the NLMA model (m = 3).

Table 4 near here

6.2 Test for Linearity

We ¯rst show the size properties of the test in Table 5. For ² smaller than 1:5, the test is
correctly sized at all the four lags taken into account. For higher bandwidth values the ¯rst
lag has the tendency to underreject the null hypothesis while larger lags seem to be relatively
una®ected by the choice of ². These size considerations seem to suggest to take the bandwidth
in the interval 0:5{1:0. Table 5 shows results for the AR(1) parameter equal to 0:6. Similar
results were found upon changing the value of the AR(1) coe±cient.

Table 5 near here

Table 6 near here

Table 6 shows the power of the test for linearity for time series lengths T = 100 and
T = 200 and for di®erent bandwidth values. For ² = 1:0 and T = 200 the test has power
(at 5% signi¯cance level) 0:63 and 0:85 in the ¯rst and second lag respectively against the
BILINEAR alternative, 0:93 on the third lag for the NLMA model, 0:85 on the ¯rst lag for
TAR model and 0:99 for the ARCH(1) model. The test has also power on various lags for
the GARCH(1,1) model.

Power considerations suggest that ² = 0:5 performs poorly in comparison with higher
bandwidths. A reasonable trade-o® between size and power seems to suggest a choice of
² ¼ 1:0. For some models the power of the linearity test is slightly smaller than for the
independence test: this lack of power can be due to the fact that we are testing for a more
general null hypothesis with the linearity test. The models examined here do not exhibit
linear structure. The fact that the di®erences in power are small suggests that little is lost in
terms of size and power when the more general null hypothesis of linearity is tested for.

7 Empirical Applications

We applied our tests for independence and linearity to three benchmark time series in the
statistical literature: the lynx data (T = 114), the sunspot data (T = 288) and the blow°y
data (T = 361). See Tong (1990) for further details related to these time series. The results
are summarized in Tables 7{9.

Table 7 near here

Table 8 near here
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Table 9 near here

For the relatively short lynx time series there were only very few neighbouring points in
high embedding dimensions (an e®ect known as the curse of dimensionality). Therefore we
tested up to a maximum lag m of 5 for the lynx data and 10 for the other two time series. We
applied the tests using di®erent bandwidths: ² = 0:5; 1:0 and 1:5. For the smallest bandwidth,
we found evidence suggesting dependence for the lynx data at lags m = 1 and m = 2 while
evidence for nonlinearity was found only at m = 1. Even though evidence for dependence is
present for all banwidths, the information concerning the relevant lags is mixed. While for
small ² the test rejects, it does not necessarily do so for larger ². This is a typical feature of
TAR models as shown by the results in Tables 3 and 6 where maximal power is reached for
the smaller bandwidth values.

For the sunspot data the results are similar: independence is rejected at lags 1 and 3 but
for the second lag only for the smallest bandwidth. Linearity is also rejected for the smallest
²-value at the ¯rst two lags.

The blow°y data show signs of dependence for the ¯rst lag but not for any higher lags.
No evidence for non-linearity is found for the blow°y data.

8 Conclusion

In this paper we propose information theoretic bootstrap tests for independence and linearity.
The results of the simulation study show that the test for independence has good power
properties at moderate sample sizes, when compared to the BDS test, and in addition provides
insights into the lag dependence in the data generating process. The power of both tests
typically increases when larger bandwidth values ² are taken. However, care should be taken
to avoid \leakage" of power to other lags as a result of taking the bandwidth ² too large.
The choice ² = 1 appears to be a reasonable trade-o® between these e®ects for the models
examined. The size of the independence test by construction is equal to the nominal size. For
the model examined, the size of the linearity test turned out to be also close to the nominal
level. Moreover, for models without linear structure, the power of the linearity test was found
to be close to that of the independence test. This suggests that little is lost in terms of size
and power when testing the more general null hypothesis of linearity instead of independence.
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T = 100 T = 200 T = 500

² m = 1 2 3 4 1 2 3 4 1 2 3 4

0:5 0:21 0:29 0:40 0:48 0:14 0:23 0:32 0:42 0:09 0:14 0:25 0:34
1:0 0:13 0:15 0:19 0:23 0:08 0:09 0:13 0:17 0:07 0:06 0:07 0:10
1:5 0:11 0:12 0:13 0:16 0:08 0:09 0:09 0:10 0:06 0:06 0:06 0:08
2:0 0:15 0:16 0:17 0:16 0:08 0:10 0:10 0:10 0:06 0:07 0:07 0:07

Table 1

Name Model

AR(1) yt = 0:6yt¡1 + ut
ATM yt = 1:25yt¡1I(0 · yt¡1 · 0:8) + 5(1 ¡ yt¡1)I(0:8 < yt¡1 · 1)
BILINEAR yt = 0:6ut¡1yt¡2 + ut
NLMA yt = 0:6u2t¡3 + ut
TAR yt = ¡0:5yt¡1I(yt¡1 · 1) + 0:6yt¡1I(yt¡1 > 1) + ut
ARCH(1) yt =

p
htut, ht = 1 + 0:6y2t¡1

GARCH(1,1) yt =
p

htut, ht = 1 + 0:3y2t¡1 + 0:6ht¡1

Table 2



T = 100 T = 200

Model ² m = 1 2 3 4 1 2 3 4

0:5 0:91 0:03 0:02 0:01 1:00 0:02 0:02 0:01
AR(1) 1:0 0:97 0:03 0:02 0:02 1:00 0:02 0:01 0:02

1:5 0:98 0:04 0:02 0:02 1:00 0:04 0:01 0:02

0:5 1:00 0:00 0:00 0:00 1:00 0:00 0:00 0:00
ATM 1:0 1:00 0:00 0:00 0:00 1:00 0:00 0:00 0:00

1:5 1:00 0:00 0:00 0:00 1:00 0:00 0:00 0:00

0:5 0:26 0:26 0:02 0:02 0:50 0:58 0:04 0:01
BILINEAR 1:0 0:37 0:54 0:04 0:03 0:63 0:86 0:07 0:03

1:5 0:37 0:58 0:05 0:02 0:64 0:88 0:05 0:02

0:5 0:03 0:05 0:25 0:03 0:06 0:06 0:54 0:02
NLMA 1:0 0:05 0:07 0:66 0:03 0:06 0:06 0:95 0:02

1:5 0:05 0:06 0:70 0:03 0:06 0:05 0:96 0:03

0:5 0:61 0:04 0:02 0:02 0:91 0:05 0:04 0:01
TAR 1:0 0:62 0:06 0:03 0:03 0:89 0:07 0:03 0:03

1:5 0:45 0:08 0:03 0:04 0:73 0:11 0:04 0:03

0:5 0:73 0:05 0:02 0:02 0:98 0:06 0:02 0:02
ARCH 1:0 0:86 0:06 0:02 0:03 0:99 0:08 0:03 0:02

1:5 0:86 0:07 0:02 0:01 0:99 0:10 0:02 0:02

0:5 0:47 0:21 0:06 0:02 0:61 0:36 0:15 0:07
GARCH 1:0 0:64 0:40 0:17 0:06 0:90 0:68 0:37 0:13

1:5 0:63 0:38 0:18 0:07 0:89 0:72 0:41 0:16

Table 3



Model m = 1 2 3 4

AR(1) 0:98 0:96 0:94 0:92
ATM 1:00 1:00 1:00 1:00

BILINEAR 0:39 0:60 0:62 0:61
NLMA 0:07 0:08 0:18 0:25
TAR 0:64 0:60 0:53 0:46

ARCH 0:87 0:82 0:77 0:71
GARCH 0:63 0:70 0:73 0:75

Table 4

T = 100 T = 200

² m = 1 2 3 4 1 2 3 4

0:5 0:06 0:05 0:04 0:04 0:04 0:05 0:04 0:05
1:0 0:06 0:04 0:05 0:05 0:06 0:04 0:05 0:05
1:5 0:03 0:05 0:04 0:06 0:01 0:05 0:03 0:04
2:0 0:00 0:05 0:05 0:05 0:00 0:04 0:05 0:05

Table 5



T = 100 T = 200

Model ² m = 1 2 3 4 1 2 3 4

0:5 1:00 0:00 0:00 0:00 1:00 0:00 0:00 0:00
ATM 1:0 1:00 0:00 0:00 0:00 1:00 0:00 0:00 0:00

1:5 1:00 0:00 0:00 0:00 1:00 0:00 0:00 0:00

0:5 0:24 0:21 0:04 0:03 0:53 0:55 0:04 0:02
BILINEAR 1:0 0:36 0:53 0:05 0:02 0:63 0:85 0:05 0:02

1:5 0:40 0:59 0:04 0:03 0:65 0:89 0:05 0:03

0:5 0:05 0:04 0:20 0:01 0:04 0:06 0:48 0:01
NLMA 1:0 0:05 0:06 0:64 0:02 0:06 0:07 0:93 0:02

1:5 0:05 0:06 0:72 0:03 0:05 0:07 0:95 0:02

0:5 0:57 0:03 0:02 0:02 0:89 0:04 0:03 0:02
TAR 1:0 0:58 0:04 0:03 0:04 0:85 0:08 0:03 0:03

1:5 0:40 0:06 0:04 0:05 0:64 0:11 0:05 0:04

0:5 0:73 0:04 0:02 0:01 0:96 0:06 0:01 0:01
ARCH 1:0 0:85 0:06 0:03 0:02 0:99 0:11 0:02 0:02

1:5 0:86 0:07 0:03 0:03 0:99 0:13 0:03 0:03

0:5 0:50 0:19 0:05 0:02 0:83 0:42 0:10 0:02
GARCH 1:0 0:61 0:41 0:18 0:07 0:90 0:71 0:38 0:13

1:5 0:63 0:43 0:26 0:12 0:91 0:75 0:47 0:22

Table 6



² m = 1 2 3 4 5

Independence Test
0:5 0:01 0:01 0:15 0:45 0:53
1:0 0:01 0:01 0:01 0:18 0:68
1:5 0:01 0:87 0:01 0:02 0:50

Linearity Test
0:5 0:02 0:68 0:07 0:52 0:72
1:0 0:10 0:43 0:40 0:39 0:95
1:5 0:28 0:61 0:36 0:33 0:71

Table 7

² m = 1 2 3 4 5 6 7 8 9 10

Independence Test
0:5 0:00 0:00 0:04 0:39 0:50 0:50 0:55 0:48 0:10 0:03
1:0 0:00 0:26 0:01 0:02 0:35 0:53 0:36 0:34 0:32 0:38
1:5 0:00 0:99 0:01 0:00 0:07 0:46 0:31 0:05 0:04 0:16

Linearity Test
0:5 0:00 0:00 0:07 0:29 0:79 0:87 0:55 0:71 0:62 0:34
1:0 0:12 0:42 0:03 0:06 0:23 0:76 0:44 0:31 0:40 0:15
1:5 0:37 0:55 0:43 0:13 0:04 0:56 0:53 0:20 0:26 0:15

Table 8

² m = 1 2 3 4 5 6 7 8 9 10

Independence Test
0:5 0:00 0:57 0:32 0:48 0:49 0:49 0:44 0:46 0:42 0:44
1:0 0:00 0:64 0:49 0:40 0:41 0:50 0:47 0:52 0:52 0:44
1:5 0:00 0:47 0:63 0:45 0:44 0:37 0:42 0:50 0:51 0:46

Linearity Test
0:5 0:17 0:71 0:71 0:82 0:73 0:76 0:72 0:70 0:27 0:33
1:0 0:89 0:40 0:70 0:83 0:77 0:91 0:86 0:94 0:95 0:47
1:5 0:75 0:53 0:46 0:59 0:79 0:64 0:70 0:87 0:83 0:67

Table 9


