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Abstract

Recently, cooperative game theory has been applied to various economic al-
location problems in which players are not fully anonymous but belong to some
relational structure. One of the most developed models in this respect are com-
munications situations or (symmetric) network situations in which players can
only cooperate if there are sufficient communication links in the communication
network.

Another class of applications considers situations in which the players are
hierarchically ordered, i.e. they are part of a structure of asymmetric relations.
Examples are auctions, airport games, sequencing situations, the water distribu-
tion problem and hierarchically structured firms. This paper is about games with
permission structure being a general game theoretic model to study situations
with asymmetric relations between the players. We provide new axiomatic char-
acterizations of the Shapley permission values and the first characterizations of
the Banzhaf permission values using split properties which say something about
the payoffs of players if we split certain players in two.

Keywords: Cooperative game theory, hierarchical permission structure, Shap-
ley value, Banzhaf value, split neutrality.
JEL classification: C71

1 Introduction

A situation in which a finite set of players N C IN can generate certain payoffs by
cooperation can be described by a cooperative game with transferable utility (or simply
a TU-game), being a pair (N,v) where v: 2 — R is a characteristic function on N
satisfying v(()) = 0. The collection of all characteristic functions on a particular player
set N is denoted by G.

In a TU-game there are no restrictions on the cooperation possibilities of the
players, i.e., every coalition ¥ C N is feasible and can generate a payoff. Recently,
TU-games are applied to economic allocation problems where there are restrictions on
the possibilities of cooperation. One of the first models in this respect are the games
in coalition structure in which the set of players is partitioned into disjoint sets which
represent social groups such that for a particular player it is more easy to cooperate
with players in its own group than to cooperate with players in other groups (see, e.g.,
Aumann and Dreze (1974), Owen (1977), Hart and Kurz (1983) and Winter (1989)).

Perhaps the most developed and applied model in which there are restrictions on

the possibilities of cooperation are the games with limited communication structure



where the edges of an undirected graph on the set of players represent binary com-
munication links between the players such that players can cooperate only if they are
connected. Following Myerson (1977), many authors studied solutions for such situa-
tions by applying well-known solutions for TU-games to the graph restricted game, i.e.
TU-games in which a coalition can only earn the sum of the worths of its connected
components'. These communication situations are widely applied in the economic net-
works literature that follows the seminal paper by Jackson and Wolinsky (1996). Other
economic applications of TU-games with limited communication structure are sequenc-
ing games (see, e.g. Curiel (1888), Curiel, Potters, Rajendra Prasad, Tijs and Veltman
(1993,1994) and Hamers (1995)) and water distribution games (see Ambec and Spru-
mont (2002)) which are both special cases of games which communication structure is
a line-graph (see van den Brink, van der Laan and Vasil’ev (2003)). Besides viewing
these problems as games with limited communication they can be seen as games in
which there is some ordering among the players. In the water distribution problem,
the order is given by the location of the players along the river. In the sequencing
games the order is given by the positions of the players in the queue. Another type of
sequencing game is discussed in Maniquet (2003) where there is no initial queue but
the players are ordered according to their waiting cost.

The underlying paper considers games with a permission structure which are suit-
able to study situations where there is a hierarchical ordering of the players. These are
TU-games in which the players are part of a hierarchical organization such that there
are players that need permission from other players (refered to as their predecessors)
before they are allowed to cooperate. Thus the possibilities of coalition formation are
determined by the positions of the players in this so-called permission structure. Vari-
ous assumptions can be made about how a permission structure affects the cooperation
possibilities. In the disjunctive approach, as considered in Gilles and Owen (1994) and
van den Brink (1997) it is assumed that every player needs permission from at least one
of its predecessors before it is allowed to cooperate with other players. Alternatively,
in the conjunctive approach, as developed in Gilles, Owen and van den Brink (1992)

and van den Brink and Gilles (1996), it is assumed that every player needs permission

1See, e.g Kalai, Postlewaite and Roberts (1978) who consider the core as a solution, Owen (1986)
for computing dividends in Myerson’s graph restricted game. Examples of solutions that are not
defined by applying solutions to Myerson’s graph restricted game can be found in, e.g. Borm, Owen
and Tijs (1992) and Hamiache (1999)). Greenberg and Weber (1986) consider games with line-graph
communications structures in a non-tranfsferable utility setting.



from all its predecessors before it is allowed to cooperate with other players.

Given a game and a permission structure, in the same spirit as Myerson (1977), a
modified game is defined which takes account of the limited cooperation possibilities.
The conjunctive and disjunctive approach yield different modified games. A solution
for these games is a function that assigns to every game with a permission structure
a payoff distribution over the individual players. Applying solutions for TU-games
(being functions that assign a payoff distribution to every TU-game) to these modified
games yields solutions for games with a permission structure. Applying, for example,
the Shapley value (Shapley (1953)) yields the disjunctive and conjunctive Shapley per-
mission values. An alternative is to apply the Banzhaf value which is based on the
Banzhaf index for voting games (Banzhaf (1965)) and is generalized to arbitrary games
by, e.g., Owen (1975) and Dubey and Shapley (1979). This yields the disjunctive and
conjunctive Banzhaf permission values.

The conjunctive and disjunctive Shapley permission values have been character-
ized in van den Brink and Gilles (1996) and van den Brink (1997), respectively. In van
den Brink (1999) it has been shown that these two permission values only differ with
respect to the fairness axiom that they satisfy. The disjunctive Shapley permission
value satisfies disjunctive fairness implying that deleting the relation between a player
and one of its predecessors changes the payoffs of these two players by the same amount
(under the condition that the subordinate player has at least one other predecessor)?.
Instead, the conjunctive Shapley permission value satisfies conjunctive fairness imply-
ing that deleting the relation between a player and one of its predecessors changes the

payoffs of this player and each of its other predecessors by the same amount.

The underlying paper has two purposes. First we give new characterizations of the
Shapley permission values using certain split neutrality properties. Second, we show
that these new properties can be adapted to give axiomatic characterizations of the
Banzhaf permission values which have not been characterized so far.

The split neutrality properties of the Shapley permission values state that, if a
player in a game with permission structure ‘splits’ in the sense that a new player
enters the game with permission structure and takes over part of the contribution or

supervision of the player that is already present, then the total payoff that is distributed

2This property is related to fairness as introduced in Myerson (1977) for games with a limited
communication structure.



among all players does not change. We distinguish between two such neutrality prop-
erties. Vertical split neutrality considers the situation in which the new player enters
the game as a null player, and enters the permission structure as a predecessor of the
player that is already present. Horizontal split neutrality considers the situation in
which the new player enters the game as a veto player for the old player, and enters
the permission structure in a similar position as the old player.

Introducing these split neutrality properties is not sufficient to characterize the
permission values. Therefore, we introduce a third new property. We can look at the
fairness properties discussed above as some kind of ‘power split’ properties. Adding a
relation between two players can be seen as a split of the power over that successor. A
similar requirement as with the two split neutrality properties mentioned above states
that after such a power split the total sum of payoffs distributed over all players does
not change. We refer to this property as power split neutrality.

The Banzhaf permission values do not satisfy vertical split neutrality, horizontal
split neutrality and power split neutrality. However, we adapt these three properties in
a way so that they are satisfied by the Banzhaf permission values. Instead of requiring
that the total sum of payoffs does not change after a split, we then require that the
sum of payoffs of the two players into which the former player is split does not change
after the split®. In particular, pairwise power split neutrality implies that the payoffs
of two predecessors of a player change in opposite direction if we delete its relation
with one of the two predecessors. This ‘opposite change’ property is not satisfied by

the Shapley permission values (although they satisfy it if the game is monotone).

The paper is organized as follows. In Section 2 we state some preliminaries on games
with a permission structure. In Section 3 we give new axiomatic characterizations of
the Shapley permission values using the split neutrality properties mentioned above.
In Section 4 we give characterizations of the two Banzhaf permission values. In Section
5 we make some concluding remarks discussing some extensions, possible applications
and relations with other literature. Finally, there are three appendices. Appendix A
contains result on the Banzhaf value for TU-games that is used in proving some results

in this paper. Appendix B contains all proofs. Appendix C shows logical independence

3Lehrer (1988) and Haller (1994) characterize the Banzhaf value for TU-games using amalgamation
neutrality and collusion neutrality, respectively. The pairwise vertical and horizontal split neutrality
axioms used here are related to a similar neutrality property which is defined in Appendix A of this

paper.



of the axioms that characterize the solutions that are discussed in this paper.

2 Preliminaries: games with a permission structure

In a game with a permission structure it is assumed that players who participate in a
TU-game are part of a hierarchical organization in which there are players that need
permission from certain other players before they are allowed to cooperate. For a finite
set of players N C IN such a hierarchical organization is represented by a pair (IV,.S),
where the mapping S: N — 2V is called a permission structure* on N. The players in
S(i) are called the successors of player i € N in permission structure S. The players
in S71(i) := {j € N | i € S(j)} are called the predecessors of i in S. By S we
denote the transitive closure of the permission structure S, i.e., j € S (¢) if and only
if there exists a sequence of players (hq, ..., h;) such that hy =i, hgq € S(hy) for all
1 <k<t—-1,and hy = j. The players in 5(2) are called the subordinates of i in
S, and the players in S1(i) := {j € N | i € 5(j)} are called the superiors of i in
S. In this paper we restrict our attention to hierarchical permission structures being

permission structures S: N — 2V that are
(i) ayclic, ie., i ¢ S(i) for all i € N, and

(i) quasi-strongly connected, i.c., there exists an i € N such that S(i) =

N {i}.

We denote the collection of all hierarchical permission structures on a particular player
set N by S¥. A triple (N,v,S) with N ¢ N, v € GV and S € SY is called a
game with a (hierarchical) permission structure. In a hierarchical permission structure
there exists a unique player iy such that S(ig) = N \ {io}. Moreover, S~'(ig) = 0 for
this player. We call this player the top-player in the permission structure. Since we
only consider hierarchical permission structures we will often refer to these simply as

permission structures®.

4The set {(i,5) € N x N |i€ N, j € S(i)} describes a directed graph on N.

5The results in this paper could be adapted for acyclic permission structures that not necessarily are
quasi-strongly connected. For notational convenience we restrict attention to hierarchical permission
structures.



2.1 Disjunctive and conjunctive restrictions

In the disjunctive approach as developed in Gilles and Owen (1994) and van den Brink
(1997), it is assumed that each player needs permission from at least one of its prede-
cessors before it is allowed to cooperate with other players. Consequently, a coalition
is feasible if and only if every player in the coalition, except the top-player iy, has a
predecessor who also belongs to the coalition. Thus, the feasible coalitions are the ones

in the set
Y= {ECN[ST@NE#Dor S'(i) =0 foralli € B}.

Note that E € ®% ¢ implies that ig € E. The coalitions in ® g are called the disjunc-
tive autonomous coalitions in S. The largest disjunctive autonomous subset of £ C N
in S € Sy is denoted by of, 4(E) = U{F € ®% ¢ | F C E}, and is called the disjunctive
sovereign part of E in S. It consists of those players in E that can be reached by a
directed ‘permission path’ starting from the top-player such that all players on this
path belong to coalition F. Using this concept we can transform the characteristic
function v into a modified characteristic function which takes account of the limited
cooperation possibilities as determined by the permission structure as follows. Given a
game with a permission structure (N, v,S), the disjunctive restriction of v on S is the
characteristic function r§, , ¢:2V — R given by r%, o(E) = v(0% 4(E)) for all E C N.

Alternatively, in the conjunctive approach as developed in Gilles, Owen and van
den Brink (1992) and van den Brink and Gilles (1996), it is assumed that each player
needs permission from all its predecessors before it is allowed to cooperate. This
implies that a coalition F is feasible if and only if for every player in the coalition it
holds that all its predecessors belong to the coalition. The set of feasible coalitions in

this approach thus is given by
s ={ECN|S'(G) Cc Eforallic E}.

The coalitions in the set ®% ¢ are called the conjunctive autonomous coalitions in S.
The largest conjunctive autonomous subset of ' is denoted by o, 5(£) = U{F € ®F 4 |
F C FE}, and is refered to as the conjunctive sovereign part of E in S. It consists
of all players in F whose superiors all belong to E. Given game with permission
structure (N, v, S), the conjunctive restriction of v on S is the characteristic function
s 2V — R given by 1, (E) = v(of g(E)) for all E C N.



Example 2.1 Consider the game with permission structure (N, v, S) with N = {1,2, 3,4},
v € GN given by v(E) = 1if4 € E, v(E) = 0if 4 ¢ E, and S € SY given by
S(1) ={2,3}, S(2) = S(3) = {4}, S(4) = 0.

The disjunctive and conjunctive restrictions of v on .S are given by

. (E>:{ 1 if Be{{1,2,4}, {1,3,4}, {1,2,3,4}}

r
N,v,S .
0 otherwise,

and

1 if E={1,2,3,4}

0 otherwise,

T]CV,mS(E) = {

respectively. []

Insert Figure 1

2.2 Permission values

A solution for games with a permission structure is a function f that assigns a payoff
distribution f(N,v,S) € RY to every game with a permission structure (N, v, S) taking
into account the limited cooperation possibilities. The disjunctive Shapley permission
value ¢? is obtained by appyling the Shapley value (Shapley (1953)) to the disjunctive
restricted games, while the conjunctive Shapley permission value ¢° is obtained by

applying the Shapley value to the conjunctive restricted games, i.e.,

(pd(N, U, S) = Sh(Nv rlem?S) and QOC(N, v, S) = Sh(N, T?\LU,S)’

where
Shu(N,w) = 3 W= ”T]'\)f!ﬁ'm = D! (B) — o(B\ {i}) for all i € N,

Alternatively, we can apply the Banzhaf value to the disjunctive and conjunctive re-
stricted games, yielding the disjunctive Banzhaf permission value 3% and the conjunc-

tive Banzhaf permission value 3¢, respectively, i.e.,

BY(N,v,S) = B(N,rfy,s) and 5°(N,v,5) = B(N,15,.s),



where
Bi(N,v) = 2‘N|1EZC;V ) —v(E\ {i})) for all i € N.
1<)

Example 2.2 The disjunctive and conjunctive Shapley permission values of the game
with permission structure given in Example 2.1 are ¢*(N,v,S) = $5(5,1,1,5) and
¢“(N,v,S) = i(l, 1,1,1).

The disjunctive and conjunctive Banzhaf permission values of this game with permis-
sion structure are 3¢(N, v, S) = %(3, 1,1,3) and (N, v,S) = (1, 1,1,1). [

The disjunctive Shapley permission value is axiomatized in van den Brink (1997),
while axiomatizations of the conjunctive Shapley permission value can be found in
van den Brink and Gilles (1996) and van den Brink (1999). The first two axioms are

straightforward generalizations of efficiency and additivity of solutions for TU-games.

Axiom 2.3 (Efficiency) For every N C N, v € G and S € SY, it holds that
ZiGN fi(vav S) = U(N)

Axiom 2.4 (Additivity) For every N C N, v,w € G~ and S € Sy, it holds that
f(N,v+w,S) = f(N,v,8)+ f(N,w,S), where (v+w) € GV is defined by (v+w)(E) =
v(E)+w(E) for all EC N.

Player ¢ € N is inessential in game with permission structure (N, v,S) if i and all its
subordinates are null players in (N,v), i.e., if v(FE) = v(E \ {j}) for all E C N and
je{itu S (7). The inessential player property states that inessential players earn a

zero payoff.

Axiom 2.5 (Inessential player property) For every N C N, v € GV and S € S,
if i € N is an inessential player in (N,v,S) then f;(N,v,S) = 0.

The next two axioms are stated for monotone characteristic functions. A characteristic
function v € GV is monotone if v(E) < v(F) for all E C ' C N. The class of all
monotone characteristic functions on N is denoted by GY. Player i € N is called
necessary in game (N, v) if v(E) = 0 for all E C N\ {i}. Necessary players are ‘strong’
players in monotone games. The necessary player property states that necessary players

in monotone games always earn the highest payoff.



Axiom 2.6 (Necessary player property) For every N C N, v € G and S € S¥,
if i € N is a necessary player in (N, v) then fi(N,v,S) > fj(N,v,S) forall j € N.

We say that player ¢ € N dominates player j € N ‘completely’ if all directed ‘permission
paths’ from the top-player ig to player j contain player i. We denote the set of players
that player ¢ dominates ‘completely’ by S(i), i.e.,

i € {hy,...,hy_1} for every sequence of nodes hy, ..., h

S(i)=1{je S
(4) {J (4) such that hy = ig, hy = j and hyyq € S(hy), ke {1,...,t —1}

We also define ?71(2') —{j € S(i) | i € S(j)}. Weak structural monotonicity states
that a player i always earns at least as much as any of its subordinates j that it

dominates ‘completely’ in the sense that j € S(i).

Axiom 2.7 (Weak structural monotonicity) For every N C N, v € G and S €
S, ifi € N and j € S(i) then fi(N,v,S) > f;(N,v,S).

Weak structural monotonicity is a weaker version of structural monotonicity as intro-
duced in van den Brink and Gilles (1996) which states that in a monotone game with
permission structure players always earn at least as much as each of their subordinates®.

The five axioms given above are satisfied by both the disjunctive and conjunctive
Shapley permission values. These two permission values differ with respect to the fair-
ness axiom that is used. Disjunctive fairness states that deleting the relation between
two players h and j € S(h) (with |[S7(j)] > 2) changes the payoffs of players h and
7 by the same amount. Moreover, also the payoffs of all players ¢ that ‘completely’
dominate player h, in the sense that i € 3_1(h)7 change by this same amount”.

For S € 8, h € N and j € S(h) we denote

LSO} iti=n
S-mip(t) = { S(@) if i € N\ {h}.

6This stronger structural monotonicity is satisfied by the conjunctive Shapley- and Banzhaf per-
mission value but is not satisfied by the disjunctive Shapley- and Banzhaf permission value, as can be
seen from Example 2.2.

"This property is some kind of Equal loss or gain property. Since it is related to fairness as
introduced in Myerson (1977) for games with a limited communication structure, we refer to this
property as (disjunctive) fairness. In Myerson’s model fairness means that deleting a communication
relation between two players in an undirected communication graph has the same effect on both their
payoffs. (Note that in our fairness property we require that the successor on the relation to be deleted
has at least two predecessors.)

} |
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Axiom 2.8 (Disjunctive fairness) For every N C N, v € GY and S € S, if
h € N and j € S(h) with |S71(j)] > 2 then

Fi(N0,8) = fi(N, 0,8 ) = f5(N,v,8) = f;(N, 0,5 _(nz)) for all i € {h} US " (h).
The above six axioms characterize the disjunctive Shapley permission value.

Theorem 2.9 (van den Brink (1997)) A solution f is equal to the disjunctive Shap-
ley permission value ©® if and only if it satisfies efficiency, additivity, the inessential
player property, the necessary player property, weak structural monotonicity and dis-

Junctive fairness.

The conjunctive Shapley permission value does not satisfy disjunctive fairness. How-
ever, it satisfies the alternative conjunctive fairness which states that deleting the
relation between two players h and j € S(h) (with |S71(j)| > 2) changes the payoffs of
player j and any other predecessor g € S71(j) \ {h} by the same amount. Moreover,
also the payoffs of all players that ‘completely’ dominate the other predecessor g change

by this same amount.

Axiom 2.10 (Conjunctive fairness) For every N C N, v € GV and S € S¥, if
h,j,g € N are such that h # g and j € S(h) NS(g) then

fi(N,U,S) - fi(vaas—(hJ)) = fj(NvUvS) - fj(Navvs—(hJ)) fOT all i € {g} Ug_l(g)'

Theorem 2.11 (van den Brink (1999)) A solution f is equal to the conjunctive
Shapley permission value ¢° if and only if it satisfies efficiency, additivity, the inessen-
tial player property, the necessary player property, weak structural monotonicity and

conjunctive fairness.

3 Axiomatizations of the Shapley permission values

using split neutrality properties

In this section we provide new axiomatizations of the disjunctive and conjunctive Shap-
ley permission values using split neutrality properties. We distinguish two neutrality
properties in which a player is ‘split’ in two. The first one considers a situation in

which a player splits in two players in a vertical line. The second considers a situation
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in which a player splits in two players on the same horizontal level. These splits do
not ‘really’ affect the worths that are generated by coalitions. We now need the new
player to make the old player active. Therefore we require in both cases that the total
sum of payoffs that is distributed over all players does not change after a split.

Let us state these two split neutrality properties more explicitly. First, let h €
IN\ NV be a new player whose only task is to supervise player j. So, h will be a null player
in the new game and in the permission structure he becomes the only predecessor of j
and gets all previous predecessors of j as its predecessors. Then vertical split neutrality
states that the sum of the payoffs of all players (including player h) in the new game
with permission structure is equal to the sum of the payoffs of all players (excluding

player h) in the original game with permission structure.

Axiom 3.1 (Vertical split neutrality) For every N C N, v € GV, and S € SY, if
he N\ N and j € N then

Z fZ(NU {h},UV(h7j),SV(h7j)) - Z fi(vav S)a

iENU{h} ieN

where vV ) € GNURY s given by vV)(E) = v(E N N) for all E C N U{h}, and
SV(hi) ¢ S}{VU{“ is given by

| {J} ii=h
SYEDG) =1 (SN Y U{h} ifieST()
(i) ifie N\ S(3).

Insert Figure 2

For the second split neutrality property, suppose that player j € N, with S(j) = () and
S~1(4) # 0, is split in two players in the sense that a new player h enters who gets the
same predecessors as j, has no successors (similar like j), while in the new game h and
7 veto each other. Then horizontal split neutrality states that the sum of the payoffs
of all players (including player h) in the new game with permission structure is equal
to the sum of the payoffs of all players (excluding player h) in the original game with

permission structure.
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Axiom 3.2 (Horizontal split neutrality) For every N C N, v € G and S € S¥,
ifh e N\ N and j € N with S(j) =0 and S7'(j) # 0 then

Z f@(N U {h},UH(h’j), SH(h’j)) - Z fi(vaa S)v

ieNU{h} ieN

where v (7)€ GNUY s given by v () (E) =

v(EN{j}) fECN
v(ENN) if EC NU{h} with h € E,

0 ifi=nh
and SHM9) € Sgu{h} is given by SH®D (i) = ¢ SGE)YU{h} ifie S71())
S(i) ifi e N\ S1(j).

Insert Figure 3

In order to give new characterizations of the Shapley permission values we need to
introduce another property. We can look at the fairness properties discussed in the
previous section as some kind of power split properties. Adding the relation between
h and j such that h is the predecessor and j is the successor on the relation, can be
seen as a split of the power of g € S7(j) over j with player h. A similar requirement
as in the previous two split neutrality properties states that after such a power split
the total sum of payoffs does not change. (Of course, instead of adding a relation we

can say the same if we delete a relation, as done in the fairness axioms.)

Axiom 3.3 (Power split neutrality) For every N C N, v € G~ and S € SY, if
h € N and j € S(h) with |S71(j)| > 2 then

Z fl(Na v, S) = Z fZ(Nv v, Sf(h,j))‘

i€N ieN
We can characterize the Shapley permission values using the above three new axioms.
In that case we do not need efficiency. However, we still need the weaker axiom that

requires efficiency only for one player games with a permission structure. Note that
S € Sjj with |[N| =1 implies that S(i) = @ for i € N, and thus r{, ¢ = v in that case.

Axiom 3.4 (One player efficiency) For every N C IN with |[N| = 1, v € GV and
S € SN, it holds that f;(N,v,S) =v({i}) fori€ N.
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Replacing efficiency in Theorem 2.9 by one player efficiency, vertical split neutrality,
horizontal split neutrality and power split neutrality yields a new characterization of

the disjunctive Shapley permission value.

Theorem 3.5 A solution f is equal to the disjunctive Shapley permission value @ if
and only if it satisfies one player efficiency, vertical split neutrality, horizontal split
neutrality, power split neutrality, additivity, the inessential player property, the neces-

sary player property, weak structural monotonicity and disjunctive fairness.

The proof of this theorem (as well as the proofs of all further results) can be found in
Appendix B of this paper. Logical independence of the axioms is shown in Appendix
C.

Replacing disjunctive fairness by conjunctive fairness in Theorem 3.5 characterizes the
conjunctive Shapley permission value. (Since the proof of this theorem goes along

similar lines as the proof of Theorem 3.5 it is omitted.)

Theorem 3.6 A solution f is equal to the conjunctive Shapley permission value ¢°

if and only if it satisfies one player efficiency, vertical split neutrality, horizontal split
neutrality, power split neutrality, additivity, the inessential player property, the neces-

sary player property, weak structural monotonicity and conjunctive fairness.

4 Axiomatizations of the Banzhaf permission val-

ues

Since the Banzhaf value for TU-games is not efficient it is not surprising that the
(disjunctive and conjunctive) Banzhaf permission values also do not satisfy efficiency.
However, the characterizations of the Shapley permission values given in the previous
section only use one-player efficiency. This weaker version of efficiency is satisfied by
the Banzhaf permission values. In this section we show how the neutrality axioms can
be adapted to give a characterization of the Banzhaf permission values.

Vertical split neutrality stated that the total sum of payoffs that is distributed
among the players does not change if we let a player h € IN \ N who is not yet in
the game enter the game as a null player and enter the permission structure as the

unique predecessor of a player j € N who is already in the game. So, player h does
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not add anything to the generation of value and he only supervises player j. Usually,
supervisors are useful only if they supervise more than one successor®. Therefore it
seems reasonable that such a split does not generate more payofts for these two players.
In other words, the payoff for player h should go at the cost of player j, implying that
the sum of the payoffs of players h and j in the new game with permission structure is

the same as the payoff of player j in the original game with permission structure.

Axiom 4.1 (Pairwise vertical split neutrality) For every N C N, v € GV and
SeSY,ifhe N\ N and j € N then

fi(NU{h}, 0V D SV 1 £ (N U {h}, 0V ") SV = £(N v, 9),
where vV 1) ¢ gNUhY gpg SV (i) ¢ SﬁU{h} are as given in Axiom 3.1.

Similarly, it seems reasonable that the sum of the payoffs of players h and j in the new
game with permission structure is equal to the payoff of player j in the original game
with permission structure after we let player h take over part of the role of player j on

a horizontal level.

Axiom 4.2 (Pairwise horizontal split neutrality) For every N ¢ N, v € GV,
and S € 8, if he N\ N and j € N is such that S(j) =0 and S7(j) # 0 then

(N U{h}, o0 gHODY 4 (N U {h}, v 0D GHRDY = £/(N, v, S),
where v (i) ¢ GNURY gpng SH(I) ¢ S}{VU{” are as given in Axiom 3.2.

Neutrality axioms for TU-games are introduced in Lehrer (1988) and Haller (1994)
who characterize the Banzhaf value for TU-games using what they call amalgamation
neutrality and collusion neutrality, respectively. The pairwise vertical and horizontal
split neutrality axioms used here are related to a similar neutrality property which is
defined in Appendix A of this paper.

Disjunctive and conjunctive fairness compare the effects of deleting the relation
between players h and j € S(h) on the payoffs of players h and j, and on the payoffs
of players g € S71(j) \ {h} and j, respectively. These properties do not compare the
change in payoffs of the two predecessors h and g € S7!(j) \ {h} after deleting the

81n the economic literature managers in firms usually have tasks such as, for example, coordinating,
monitoring, or information processing. All these roles are useful only if a manager has at least two
SUCCESSOrs.
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relation between h and j. It seems reasonable that these changes are opposite in sign.
The disjunctive and conjunctive Shapley permission values do not satisfy this property
(see Example 4.6).

It turns out that the Banzhaf permission values satisfy the ‘opposite change’ prop-
erty for every game with a hierarchical permission structure, i.e., the disjunctive and
conjunctive Banzhaf permission values of players h and g, h # ¢, always change in
opposite direction after deleting the relation between players h and j € S(h) N S(g).
Moreover, the absolute values of the changes in the Banzhaf permission values of these
two players are the same. In other words, the sum of the payoffs of players h and g does

not change. Therefore, this can be seen as a pairwise version of power split neutrality.

Axiom 4.3 (Pairwise power split neutrality) For every N C N, v € GV and
S eS8y, ifh,g,j €N are such that h # g and j € S(h) N S(g) then

Iu(N, v, 8) + fo(N,v,S) = fu(N,v, S_ny) + fo(N, v, 8_n))-

Replacing in Theorems 3.5 and 3.6 vertical split neutrality, horizontal split neutrality
and power split neutrality by the above three pairwise axioms yields characterizations

of the disjunctive and conjunctive Banzhaf permission values, respectively.

Theorem 4.4 A solution f is equal to the disjunctive Banzhaf permission value 3% if
and only if it satisfies one player efficiency, pairwise vertical split neutrality, pairwise
horizontal split neutrality, pairwise power split neutrality, additivity, the inessential
player property, the necessary player property, weak structural monotonicity and dis-

junctive fairness.

Again, the proof can be found in Appendix B. A similar axiomatization of the con-
junctive Banzhaf permission value can be given by replacing disjunctive fairness by

conjunctive fairness.

Theorem 4.5 A solution f is equal to the conjunctive Banzhaf permission value 3¢ if
and only if it satisfies one player efficiency, pairwise vertical split neutrality, pairwise
horizontal split neutrality, pairwise power split neutrality, additivity, the inessential
player property, the necessary player property, weak structural monotonicity and con-

Junctive fairness.
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We already mentioned before that the Shapley permission values do not satisfy the
property that deleting the relation between players h and j € S(h) N S(g), h # g,
changes the payoffs of h and ¢ in opposite direction. We illustrate this with the

following example.

Example 4.6 Consider the game with permission structure (N,v,S) given by N =
{1,2,3,4,5}, v = uqa5 — 1—7[)U{4}, where ur denotes the unanimity game of T C N (see
equation (2) in Appenndix B with ¢r = 1), and S(1) = {2,3,5}, S(2) = S(3) = {4}

and S(4) = S(5) = 0. In this example, ©§(N,v,5) — @4(N,v,S_(2.4)) = =535 — 0 < 0
and p3(N,v,S) — ¢4(N,v,5_(24)) = _310 — % = —4% < 0. Thus, deleting the relation

between players 2 and 4 changes the disjunctive Shapley permission values of player
4’s predecessors 2 and 3 in the same direction. (By disjunctive fairness the change

in the disjunctive Shapley permission value of player 4 is the same as for player 2:
PN, v, 8) — (N, v, S_op) = & — L = —L)

120 60  120°

For the conjunctive Shapley permission values ¢5(N,v,S) — @5(N,v,S_(2.4)) =
& —0 >0 and @§(N,v,S5) — @§(N,v,5_(24) = 75 — 55 = 15 > 0. Thus, deleting
the relation between players 2 and 4 also changes the conjunctive Shapley permission
values of player 4’s predecessors 2 and 3 in the same direction. (By conjunctive fairness
the change in the conjunctive Shapley permission value of player 4 is the same as for
player 3: ©§(N,v,5) — ©§(N,v,5 @1) = 75 — 35 = B5°) o
However, for monotone games with a hierarchical permission structure the disjunctive
and conjunctive Shapley permission values satisfy the ‘opposite change’ property. This

follows from the following proposition (which straightforward proof is omitted).

Proposition 4.7 For every N C N, v e GV, S € S8Y and h,g,j € N with h # g and
j €S(h)nS(g):

1. (,O?(N,U, S) Z QO?(N,U, S—(}Lj)); QO;dL(N,U,S) 2 SO}dL(NaUa S—(}Lj)) and @Z(Nava S) S
Y3 (N, v, S_15))

2. gO;(N,U, S) < @;(N,U,S_(h7j)), SOZ(NanS) > QOZ(N’U’S—(}W')) and W;(vav S) <
QOS(N,U, S_(hJ)).
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5 Concluding remarks

In this paper we gave new axiomatic characterizations of the disjunctive- and con-
junctive Shapley permission values using split neutrality properties. Also for the first
time characterizations of the disjunctive- and conjunctive Banzhaf permission values
are given. All new axiomatic characterizations use nine logically independent axioms®.
According to these characterizations, the difference between the disjunctive and con-
junctive permission values is with respect to the fairness axiom that is used. According
to the disjunctive permission values the payoff of a successor and one of its predecessos
changes by the same amount if we delete the arc between these two players, while ac-
cording to the conjunctive permission values the payoff of the successor and each other
predecessor changes by the same amount. The main difference between the Shapley
permission values and Banzhaf permission values is with respect to how the payoffs
react to particular changes in the game and permission structure that reflect a split
of contributions in the game and/or authority in the permission structure. The sum
of the Shapley permission values over all players do not change, while the sum of the
Banzhaf permission values of the two players that represent the original player is equal
to the payoff of the original player in the original game with permission structure.

With the axioms for solutions for games with a permission structure that are
formulated so far we can, by looking at different combinations of axioms, find other
solutions or obtain impossibility results. For example, there is no solution that satisfies
efficiency, the necessary player property, weak structural monotonicity and pairwise
vertical split neutrality. A next step then could be to weaken these axioms to find new
solutions.

Also, future research can be directed to generalizations and special cases. Games
with a permission structure have been generalized in, e.g Algaba, Bilbao, van den Brink
and Jiménez-Losada (2000, 2003a,b) to games with limited cooperation in the sense
that the set of feasible coalitions forms an antimatroid. A more specific approach is
to concentrate on hierarchical permission structures that have a tree structure. These

structures have important applications in economic theory, in particular hierarchically

9Without logical independence the fewer axioms the better. However, since we also show logical
independence of the axioms the more the better. Sometimes it is wrongly claimed that less (stronger)
axioms is better than few (weaker) axioms. We could easily obtain less axioms by taking axioms
together. For example, vertical and horizontal split neutrality can easily be formulated into one
stronger axiom.
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structured firms (see van den Brink (1996)) which are games with a permission structure
such that the permission structure is a tree and the game is defined on the ‘lowest
level” in the tree, i.e. the set of players that have no successors. Other special cases
are peer group games studied in Branzei, Fragnelli and Tijs (2002) which essentially
are games with a permission structure in which the permission structure is a tree and
only one-player coalitions have a non-zero dividend in the game. So, the difference
between hierarchically structured firms and peer group games is that in hierarchically
structured firms the game is defined on the lowest level of the hierarchy but any game
on that set of players is allowed, while in peer group games only one-player coalitions
have a non-zero dividend but any player can have a non-zero dividend. Special cases
include airport games and auction games (see Branzei, Fragnelli and Tijs (2002)).

Further future research can be directed to economic applications of cooperative
game theory that can be found in recent literature as already mentioned in the in-
troduction. In the water distribution problem of Ambec and Sprumont (2002) agents
are located along a river from upstream to downstream, and water flows into the river
between each pair of agents. Each agent can consume its own water inflow, but can
also decide to let water stream through to downstream agents. Depending on the
utilities of the different agents for water, efficiency gains can be realized if an agent
does not consume all its water. Main question then is how agents that let water flow
downstream should be compensated for not consuming their water. In the sequencing
games of Curiel (1985), Curiel et all. (1993, 1994) and Hamers (1985), a set of jobs
is in a queue to be processed on one machine. Depending on the wating costs and
processing times of each job, cost avings can be realized by jobs switching positions.
Making switches so that we obtain an efficient queue (i.e. a queue that minimizes total
costs), the main question then is how jobs that switch to positions later in the queue
have to be compensated. Van den Brink, van der Laan and Vasil’ev (2003) study both
examples by considering them as (undirected) line-graph games. Although the related
sequencing game of Maniquet (2003) is not a line-graph game, also there the jobs are
hierarchically ordered. He does not assume an initial order of the players, but looks for
a fair allocation of the waiting cost (that can be compensated by monetary transfers)
depending only on the waiting cost of the players. The order is given by the waiting
cost of the jobs.

We remark that in order to analyze the above two mentioned applications of the

water distribution problem and sequencing situations we need to generalize the games
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with permission structure as discussed in this paper to allow for ‘non-transitivities’. In
games with a permission structure, feasible coalitions containing player ¢ always contain
the top player and intermediate players between player ¢+ and the top. To analyze the
water distribution and sequencing situations we first need to relax this assumption to
avoid higher ranked players to earn also payoffs from cooperation of coalitions that
only contain players that are lower in the hierarchy. The games as discussed in this
paper then can be seen as a special case of transitive permission structures.

Last but not least we mention the network literature. We already mentioned in the
introduction that perhaps the most developed field of games with limited cooperation
in economics are the games with limited communication which is widely applied in the
economic literature on network formation that follows the seminal paper by Jackson
and Wolinsky (1996). Building on Myerson (1977)’s model with given communication
structure they formulate a strategic model in which the players themselves decide what
communication links to build. They extensively study the efficiency and stability of the
resulting networks. In a similar way, future research can be directed to the formation
of directed (or hierarchical) networks by extending games with a permission structure
in a similar way as done for communication networks by Jackson and Wolinsky. In this
respect the fairness and split neutrality axioms are of particular interest since they say

something about the effects of adding or deleting arcs from the network.

Appendix A

In this appendix we introduce a similar neutrality property for TU-games as amalgama-
tion and collusion neutrality as defined in Lehrer (1988) and Haller (1994), respectively.
Suppose that player h € IN\ N is entering the game v € GV as a veto player for player
J € N. Then the sum of the Banzhaf values of players h and j in the new game is equal
to the Banzhaf value of player j in the original game. To be more precize, for game
(N,v) and players j € N and h € N\ N, let the characteristic function vy,; € GV{#}
be given by

i (E) = (1)

W(E\{j}) ifECN
W(ENN) i ECNU{h}, heE.

Proposition A.1 If NCN,ve GV, je Nand h € N\ N then
By (N U {h},vsj) + Bj(N U{h},vy;) = B;(N,v), where vy,; € GNY is given by (1).
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PrROOF. If NC N, v e GV, j € N and h € N\ N, then vy;(E) — vy (E \ {h}) =0 if
Jj & E, and vpj(E) —vp(E\{j}) =01if h &€ E. Thus

Bh(N U {h},vhj) + BJ(N U {h},vhj) =

22% S (g (B) — o (BN (D)) + S (un(B) — ung (B {71)
ECNU{h} ECNLJE{h}

:mizv S (g (B) — o (BN {RD)) + S (ung(B) — v (E\ {5})
ECNU{h} ECNU{h}
{h,j}CE {h,j}CE

=g X ENN) —w(ENN)\ ) +o(E0N) —o(EN N\ {7})
ECNU{h}
{h,j}CE

2|N\ 1 Z ) —v(E\{j})) = B;(N,v).

ECN
jeE

[l

Refering to the property described above as pairwise split neutrality for TU-games, to
verify that the Banzhaf value for TU-games is characterized by one-player efficiency,
the null player property, symmetry, additivity and pairwise split neutrality goes along
the same lines as a similar result is shown in Haller (1994). The Shapley value for TU-
games does not satisfy pairwise split neutrality but it satisfies the analogous property
which states that the sum of the payoffs of all players in the game vj; (including player
h) is equal to the sum of payoffs of all players in the original game v (excluding player
h). Refering to this property as split neutrality it is easy to verify that the Shapley
value for TU-games is characterized by one-player efficiency, the null player property,

symmetry, additivity and split neutrality.
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Appendix B: Proofs

This appendix contains the proofs of the results presented in this paper. We first prove

necessity of the axioms in Theorem 3.5.

Lemma B.1 The disjunctive Shapley permission value ¢? satisfies one player efficiency,
vertical split neutrality, horizontal split neutrality, power split neutrality, additivity, the
inessential player property, the necessary player property, weak structural monotonicity

and disjunctive fairness.

PROOF.

Since vV (") (N) = v (N) = v(N) for every N C N, v € GV, S € SY, j € N and
h € IN\ N, ¢? satisfying efficiency implies that it satisfies one player efficiency, vertical
split neutrality, horizontal split neutrality and power split neutrality. ¢? satisfying the

other axioms follows directly from Theorem 2.9. [

We prove the uniqueness part of Theorem 3.5 in three steps. First, we prove a lemma
for positively scaled unanimity games with a permission tree that has no inessential
players. We denote by SY.. = {S € S¥ | for all i € N it holds that |S~1(7)| < 1} the

tree

class of all permission trees on N. For T C N, T # (), and cr > 0, the positively scaled

unanimity game wp = crur is given by

cr IfEDT

0 otherwise.

wT(E) = { (2)

For S € SY and h € N the permission structure S_, € SY\} is given by

S (i) = (S(@)\ {h})US(h) ifieS'(h)
B S() if i € N\ ({h}US™'(R)).

Insert Figure 4

Lemma B.2 If solution f satisfies one player efficiency, vertical split neutrality, hori-

zontal split neutrality, power split neutrality, the necessary player property and weak
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structural monotonicity, then f(N,wr,S) is uniquely determined for all S € S}, and
wp = cpur with e¢p > 0 and T' C N satisfying T U §*1(T) = N.

PROOF.

Suppose that solution f satisfies the six axioms. Consider a hierarchical permission
(tree) structure S € SY.. and monotone characteristic function wr = crur, T C N,
¢r > 0 with TUSL(T) = N. (So, there are no inessential players.) Clearly, f satisfying
the necessary player property implies that there exists a constant ¢* € IR such that
fi(N,wrp,S) =c* for all i € T, and f;(N,wr,S) < c* foralli € N\ T. But then weak
structural monotonicity and the fact that S(i) = S(i) for all i € N and S € S, imply
that

fi(N,wp, S) = ¢* for all i € TU?il(T) =TUS™Y(T)=N. (4)

So, we have uniquely determined f(N,wr,S) if we determine ¢*. We do this by induc-
tion on |N|.
If IN| =1 then one player efficiency implies that f;(N,wr,S) = ¢r for i € N.
Proceeding by induction assume that f;(N',wr/, S") = 58,",#' for all (N', wyr, S") with
S'eS8N' er >0, T'U(S)HT') = N’ and |N'| < |N]|.

We distinguish the following three cases (of which at least one must occur).

(i) Suppose there exist h,g,j € N, h # g, such that S(h) = S(j) = 0 and {h,j} C
S(g). (Note that this case can only occur if |[N| > 3.) By the assumption that
TUS YT) = N, we have {h,j} C T. Since crup = (crurny) 79 and
S = (S_p)3) with v (9 and SH("9) as given in Axiom 3.2, horizontal split
neutrality implies that

Z f@(N, wT?‘S) = Z fi(N\{hLCTUT\{h}?S*h)' (5)

ieN ieN\{h}
With the induction hypothesis it follows that 3=, a3 fi( N\{R}, crur\ny, S—1)
(|N| — 1) = cr- With (5) and (4) this yields that |N|c* = ¢r, and thus
filN,wr, S) = ¢* = 7 forall i € N.

(i) Suppose that there exist j € T and h € N \ T with S(j) = 0 and S(h) = {j}.
Since wr = (wr)V ™) and S = (S_,)V ") with vV and SV"9) as given in
Axiom 3.1, vertical split neutrality implies that

Z f@(N, wT?‘S) = Z fi(N\{thTﬂS*h)' (6)

iEN i€N\{h}
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Similarly as in case (i), with the induction hypothesis and (4) this yields that

|N|c* = ¢, and thus f;(N,wr,S) =c* = [y for all i € N.

Suppose that there exist h,j € T with S(j) = 0 and S(h) = {j}. Then take a
g € N\ N, and define ', 5" € SNVt by &' = §V0) and

{h,j} ifi=g
@) ={ (SG)\ (P ulg) ifies(h)
S(1) if i e N\ S71(h)

Insert Figure 5

(Note that S” ¢ Sﬁ;{g} since h and g are both predecessor of player j in

S".) Since T'U Wﬁl(T) = N U {g}, the necessary player property and weak

structural monotonicity imply that there is a ¢** € R such that
fi(NU{g},wr,S")=c" for all i € N U{g}. (7)

Since (N U{g}h)\ {h}, crumguy, S75) € Stree M (with [(NU{g}\ {h})] =

|N|) is as considered in case (ii) it follows from that case that

Sil(NULgh) \ {h}, erumgny, %) = % foralli € (NU{g})\{h}.  (8)

But then, by S”, ., = (57,)" (h7) | horizontal split neutrality implies that

Yienuigy fit NU{g}t wr, 87 1) = Zieivugapniny fil(NU{gH\{A}, erury gy, 7)) =
cr. With the necessary player property, weak structural monotonicity and the
fact that T'U Sﬁ(hJ)fl(T) = N U {g} this yields

cr .
filN U{g},wr, S”5,;) = N1 for all i € N U{g}. 9)

Further, power split neutrality implies that

Z fz(NU {g},wT,S”) = Z fi(NU{g}vavsz(h,j))a (10)

ieNU{g} i€eNU{g}
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which with (7) and (9) gives

Li(NU{g},wr,S") = |NTT+ N for all i € NU{g}. (11)

Since S" = S”, ), again applying power split neutrality yields

Z fi(NU{g}’wT’S,) = Z fi(NU{g}’wT’S”)’ (12)

ieNU{g} i€NU{g}

which with the necessary player property, weak structural monotonicity, 7" U
SHT) = N U{g} and (11) yields

fi(N U{g},wr,S") = |N|C% for all i € N U {g}. (13)

Finally, vertical split neutrality yields

Z fZ(N, wT,S) = Z fl(NU {g},wT, Sl) = Cr, (14)

iEN 1€ENU{g}

and thus with (4) we have f;(N,wr,S) = c¢* = i forall i € NV.

SO7 for 5 € Stjv\"[ee and wr = Crur with cr >0 and T'U §_1(T) = ]\]7 we conclude that
fi(N,wT,S):c*:‘cTT'forallz’GTUSLl(T):N. ]

The next step is to show that adding the inessential player property and disjunctive
fairness to the axioms implies that f is uniquely determined for all positively scaled

unanimity games with a permission tree.

Lemma B.3 If solution f satisfies one player efficiency, vertical split neutrality, hori-
zontal split neutrality, power split neutrality, the inessential player property, the nec-
essary player property, weak structural monotonicity and disjunctive fairness, then
f(N,wr,S) is uniquely determined whenever S € SY _ and wyr = cpur for some

tree
TCN,T+#0,and cp > 0.

PROOF.

Suppose that solution f satisfies the eight axioms. Consider a permission (tree) struc-
ture S € SV,

tree

some ¢y > 0. Denote ag(T) =T U S (T).

and monotone characteristic function wy = crur as given in (2) for
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Since all players in N \ ag(T") are inessential players in (N, wr, S), the inessential
player property implies that f;(N,wr,S) = 0 for all i € N \ ag(T). Further, f
satisfying the necessary player property and weak structural monotonicity and the fact
that S(i) = S(i) for all i € N and S € SY,,, imply that there exists a constant ¢* € R
such that f;(N,wr,S) = ¢* for all i € ag(T). So,

fi(N, wy, S) = (15)

¢ ifieag(T)=TUSYT)
0 ifie N\ ag(T).

In particular, f; (N, wr,S) = c¢*. So, we have determined f(N,wy,S) if we deter-
mine ¢*. We do this by induction on |N \ ag(T)|.

If IN\ ag(T)| = 0 then ¢* = M = Tascmy is uniquely determined by Lemma B.2.

Proceeding by induction assume that ¢* = f; (N, wys, S’) is uniquely determined

for all (N, wyr, S") with &' € SN, e > 0 and |N'\ ag/(T")| < [N\ as(T)|.

Since N \ as(T) # 0 there exists a j € N \ as(T) with S(j) = . We distinguish the

following three cases (of which at least one must occur).

(i) Suppose that ag(T) # {io} and j & S(h) for all h € as(T) \ {io}. Take
h € as(T) \ {io}. Define S’ € S¥ by

5/@:{ {ny iti=j

S(i) otherwise.

(Note that S" ¢ SY.. since player h has two predecessors in S’.) Also define
S" e Sy by

(i) = { S@\{n} ifheSsq)

S'(4) otherwise.

Insert Figure 6

(Note that S” € SY._.) Since |N \ as/(T)| < [N\ as(T)|, the induction
hypothesis implies that all f;(N,wr,S”), 1 € N, are known. Since S = S/_(m)
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and S" = S ;) for g € S7!(h), power split neutrality and the induction
hypothesis imply that

S filNywr, S) =Y fi(N,wr, S) =Y fi(N,wr, S") (16)
€N €N €N
is known. With (15) the |ag(T")| unkown payoffs fi(N,wr,S) = ¢*, i € as(T),

are then uniquely determined.

Suppose that ag(T) # {io} and there is an h € ag(T) \ {io} with j € S(h).
Define S’ € SY by

S,(i):{ S@E)U{j}  ifi=io

S(7) otherwise.

Insert Figure 7

(Note that S’ ¢ SY., since player j has two predecessors in S’.) Also define
S" e Sy by

= { SOV ities)
S'(i) otherwise.

(Note that S” € SN

iree-) Since S = S, . and j is an inessential player

in S and S, disjunctive fairness and the inessential player property imply
that fi,(N,wr,S") — fi,(N,wr,S) = f;(N,wr,5") — f;(N,wp,S) = 0. Thus
fio (N wr, S") = fiy (N, wr, S).

Since S" = 5", . for g € S~1(4), disjunctive fairness, the inessential player
property and g € S’(ig)NS" (i) also imply that f;, (N, wr, S")— fi, (N, wr,S") =
fi(N,wp,S") — f;(N,wr,S") = 0. Thus f;,(N,wp,S") = fiy(N,wr, S").

So, fi,(N,wr,S) = fi,(N,wr,S") = fi,(N,wyp,S”). Since S” is as in case (i)

we have uniquely determined ¢* = f; (N, wr, S).
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(iii) Finally, suppose that ag(T") = {ip}. Consider the game with permission struc-
ture (N U {g}, wr, SY97)). Vertical split neutrality and the inessential player
property imply that fi, (N U {g},wr, SV%0) + f,(N U {g}, wp, SV@0))) =
fio(N,wr, S). The necessary player property and weak structural monotonic-
ity imply that fi,(N U {g},wy, SV@©))) = f (N U {g},wr, SV#)). Thus
fio(N,wr, S) = 2fi, (N U {g},wr, SV@0)). Since (N U {g}, wr, SV0))) is
as considered in case (ii), we determined ¢* = f;/(N,wr,S) = 1f;(N U
{9}, wr, SV00)).

So, in all three cases we uniquely determined ¢* and thus, with (15) we uniquely
determined f(N,wr,S). [

Finally, by adding additivity to the axioms of Lemma B.3, we prove the main result of

Section 3.

PROOF OF THEOREM 3.5.

With Lemma B.1 we only have to show that there can be at most one solution that
satisfies the nine axioms stated in the theorem. Therefore, suppose that solution f
satisfies the nine axioms.

Consider the hierarchical permission structure S € S§j and the monotone charac-
teristic function wr = cpup, o > 0, as given in (2). If ¢ = 0 then the inessential
player property implies that f;(N,wr,S) =0 for all i € N.

Now suppose that ¢y > 0. Again, we denote by ag(T) = T U S~(T) the set
consisting of all players in 7' and all their superiors. For S € SN \ S, there is
at least one i € N with S;N(T) # ?;1(T). Therefore, by vs(T) = {i € as(T) |
TN ({i}US(i)) # 0} we denote the set of those players in ag(T) who belong to T' or
have subordinates in 7' that they dominate ‘completely’.

Again, the inessential player property implies that f;(N,wr,S) = 0 for all i €
N\ ag(T). Further, f satisfying the necessary player property and weak structural
monotonicity implies that there exists a constant ¢* € R such that f;(N,ws,S) = ¢*
for all i € y5(T"). We prove that ¢* and all f;(N,wr, S), i € as(T)\vs(T), are uniquely
determined by induction on the number > ;cy [S(7)].

If Yen [S(0)| = IN| — 1 then S € S, and f(N,wr, S) is uniquely determined by
Lemma B.3. (Note that Y ;cn [S(i)| > |N| — 1 for all S € SY.)
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Proceeding by induction assume that f(NV,wz,S’) is uniquely determined for all
S" € Sy with Yy [9'(9)] < Xien [S()]-
Next we recursively define the sets Ly, k € {0} UN, by

L[) = @, and

k-1
Lk::{ieN\ULt
t=1

k-1
S c U Lt}7for all k£ € IN.
t=1

In van den Brink and Gilles (1994) it is shown that for hierarchical permission
structures there exists an M < oo such that the sets Ly, ..., Ly, form a partition of N
consisting of non-empty sets only.

Next we describe a procedure which determines the values f;(N,wr,S) as linear

functions of the constant ¢*, i.e. we determine the values ¢;, ¢ € N such that
fi(N,wp, S) =" + ¢, foralli e N (17)
STEP 1 For every ¢ € L; one of the following two conditions is satisfied:

(i) If i € N\ ag(T) then f;(N,wr,S) = 0 as mentioned before. Thus

*

C;, = —C.
(i) If 7 € ag(T) then i € T since S(i) = (0. Thus f;(N,ws,S) = c*, ie.
C;, — 0.

Let k = 2. GOTO STEP 2.

STEP 2 If L, = () then STOP.

Else, for every ¢ € Lj one of the following three conditions is satisfied:

(i) Ifie N\as(T) then fi(N,wr,S) =0, and thus ¢; = —c*.
(ii) If i€ vg(T) then fi(N,wr,S) = c*, and thus ¢; = 0.

(iii) Ifi € ag(T) \ vs(T') then by definition of ag(T") and ~vs(7T') there exists
an h € {i} US(i) and a j € S(h) such that |S~!(j)] > 2. Disjunctive

fairness implies that
fz(Na wr, S) - fl(Nv wr, Sf(h,j)) = f](Na wr, S) - f](Na wr, Sf(h,j))‘

Using the induction hypothesis and the fact that j € S(i) implies that we
already determined ¢; for which f;(N,wr,S) = ¢* +¢; (since j € L; with
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| < k), it follows that we have determined ¢; = ¢; + fi( N, wr, S_n ) —
[ (N, wr, S_(j)) such that

filtN,wr, S) = f;(N,wr, S) — f;(N,wr, S_nj)) + fil N;wr, S_pnj) = " + .

STEP 3 Let Kk =k + 1. GOTO STEP 2.

Since there exists an M < oo such that the sets Lq,..., Ly form a partition of N
consisting of non-empty sets only, the procedure described above determines the values
¢i, 1 € N, and thus with (17) we determined all f;(N, wr, S) = ¢*+¢; as linear functions
of ¢* with ¢; known for all i € N. To determine ¢*, we distinguish the following two

cases.

(i) Suppose there exists j € ag(T) with |[S71(j)| > 2. Take h € S71(j). Power
split neutrality implies that

S filNywr, S) =Y fi N, wr, S_n )

ieN iEN
The induction hypothesis implies that > ,cn fi(NV,wr, S—(nj)) is known. So,
Sien fi( N wr, S) is known. With (17) ¢* is uniquely determined.

(i) Suppose that |[S7I(j)] = 1 for all j € ag(T) \ {ip}. Then, by assumption,
there exists a j € N \ as(T) with [S71(j)| > 2. Take h € S71(j). Disjunctive

fairness and the inessential player property imply that
fio(N7 wr, S) - fio(N7 wr, S—(}Lj)) = fj(N7 wr, S) - fj(N7 wr, S—(hJ)) = 0.

So, ¢ = fi,(N,wp,S) = fiy(N,wp,S_(n;)) is uniquely determined by the
induction hypothesis.

In both cases we determined c¢*. Since we already determined all ¢;, i € N, with
(17) we then uniquely determined all values f;(N,wr,S), i € N.

Now, let S € Sﬁ and consider the characteristic function wy = cpur with ¢ < 0. (Note
that we cannot apply the necessary player property and weak structural monotonicity
to this game with permission structure, because crur is not monotone if ¢y < 0.) Let

vy € GV denote the null game, i.e., vo(E) = 0 for all E C N. From the inessential player



30

property it follows that f;(N,vo, S) = 0 for all i € N. Since %, s+7% w5 = " 005
for all T C N, additivity of f implies that f(N,wr,S) = f(N, v, S) — f(N, —wr,S) =
—f(N,—wg,S). Since —wr = —crup with —ep > 0 is monotone, f(N, —wr,S) is
uniquely determined. Thus also f(N,wr,S) = —f(N, —wr, S) is uniquely determined
if e < 0.

Finally, since every characteristic function v € GV can be expressed as a linear com-
bination of unanimity games v = Ypc y Ay (T)ur with Ay ) (T) = Spep(—1) Tl (F)
being the Harsanyi dividends (see Harsanyi (1959)), it follows with additivity of f that
f(N,v,S) is uniquely determined for every v € G~ and S € SY. Il

PROOF OF THEOREM 4.4.
Proving that 3¢ satisfies additivity, the inessential player property, the necessary player
property and weak structural monotonicity is along the same lines as this is shown for
©? in van den Brink (1997). One player efficiency is evident.
Pairwise vertical split neutrality of 3¢ follows from Proposition A.1 (see Appendix A)
and the fact that 1§ v, gvonn = (7.,)n; Where V3 and SV are as given
in Axiom 3.1, and vy, is as given in equation (1) of the appendix. Similarly, pair-
wise horizontal split neutrality of 3¢ follows from Proposition A.1 and the fact that
"ot gu0nn = (T4,5)nj Where v (h3) and SH("9) are as given in Axiom 3.2.

To prove that 3¢ satisfies pairwise power split neutrality, let N C IN, v € GV, S €
Sy and h,g,j € N be such that j € S(h)NS(g), h # g. Since o 4(E) = Uflv,s,(hvj)(E)
if h ¢ E or g € E (where 0% 4(F) denotes the sovereign part of coalition E in S, see
page 5), it follows that

BN, v, S) = BA(N,v,S_(ns)) = Bu(N, 7% s) = Bu(N, 7% s, )

= 2% > (v(ehs(E) —v(oh s(E\{h}) = v(ofs ,  (B) +v(ohs . (E\{h})))

ECN
heE

= ot 3 (w0 s(B) — vlots ., (B) = gy 30 (vlos(B)) — vlotys ., (B)))

ECN ECN
heE heE
9¢E

= s 3 (vl s(B) — vlohs., ()

ECN
9g¢E
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W 3 (v(o% (BN {g}) — v(ods_,  (E\{g})))

ECN
geE

v 2 (00 (B) —v(oths (B 10}) — (o s(B)) + v(os(B\ {9})

ECN
ger

= BQ(N’ T?V/U,S,(h’j)) - BQ(N’ Tfl\fﬂ),S) = Bg(Nv v, S—(}hj)) - Bg(Na v, S)v
showing that 3¢ satisfies pairwise power split neutrality.
To show that 37 satisfies disjunctive fairness, let S € S¥ and h,j € N be such

that j € S(h) and |S~1(j)| > 2. Further, let i € {h} US " (h).
Since {i,j} ¢ E implies that o ¢(E) = U%’Si(h j)(E), it follows that

ﬁ;j(Nv v, S) - /B’Ld(N7 v, S—(hJ)) = BZ(N’ T?V,v,S) - Bl(Nv Tif,v,s,(h’j))

2|N\ P> (vl — (0% s(E\{i}) = v(0%s_,, (B)) + 00k s, (E\{i}))

ECN

S
d 1 d d
2|N‘ 1 Z ( - 'U(O-N,S,(h’j) (E))) = 2‘N|_1 Z (U(O-N,S(E)) - 'U(O-N,S,(h’j) (E)))
ECN ECN
1€ER {i,7}CE

= o 2 (1o s(B)) — vl s (BN 11) — vloths o, () + 0(ohs (BN (1))

ECN
JjeEE

== B](N’ T?V/U,S) - B](N7 r§lv7v7S,(h7j)) = 6?(]\[’ U’ S) - ﬁ;l(N7 U’ Si(haj))’
showing that 37 satisfies disjunctive fairness.

Uniqueness of 3¢ follows along the same lines as the proof of the uniqueness of p?. We
describe the differences compared to the proofs of Lemma’s B.2 and B.3 and Theorem
3.5 in characterizing 5.

Lemma B.2 now states that: If the solution f satisfies one player efficiency, pairwise ver-
tical split neutrality, pairwise horizontal split neutrality, pairwise power split neutrality,
the necessary player property and weak structural monotonicity, then f(N,wr,S) is
uniquely determined for all S € S _ and wr = cpup for some ¢ > 0 and T'C N

tree
satisfying T U S~(T) = N.
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In the proof of Lemma B.2 the induction hypothesis now will be that f;(N', wy/, S") =

e
2\N’| 1

for all (N', wz, S") with S" € SN,

er >0, T'U(S")(T") = N” and |N'| < |N]|.

tree?

Using the pairwise versions of vertical split neutrality, horizontal split neutrality and

power split neutrality we adapt the three cases that are distinguished on pages 13-14

as follows.

(i)

(iii)

fh(N U {g}’ wr, S”) + fg(N U {g}’ wr, S”) = fh(N U {9}’ wr, SZ(;W-)) + fg(N U {g}’ wr, S

In case (i) by using pairwise horizontal split neutrality we replace equation (5)
by

fi(N,wr, S) + fu(N,wr, S) = fi(N \ {h}, crum ny, S-n)- (18)

With the induction hypothesis it then follows that f;(N\ {h}, crur (ny, S—n) =
si=z. With (4) and (18) it then also follows that 2¢* = 5xf=, and thus
filN,wp, S) =c¢* = 27%% for all7 € N.

We arrive at a similar conclusion in case (ii) by using pairwise vertical split

neutrality and replacing equation (6) by

fi(N;wr, S) + fu(N,wr, S) = f;(N\ {h},wr, S_p).

In case (iii), we consider the same S” and S”, and also arrive at equation (7).

Then we replace equation (8) by

FUN UG\ (B erumny, §7,) = s for all i € (VU {g}) \ {h}.

Now pairwise horizontal split neutrality implies that f;(N U {g},wr, 5", ;) +

(N U{g},wr, 57, ) = [;(NU{g}) \{h}, crurqny, SZ;) = gt , and thus
with the necessary player property and weak structural monotonicity we can

replace equation (9) by
filtNU{g},wr, S”,5) = 2‘N‘ for all : € N U{g}.

Further, using pairwise power split neutrality instead of power split neutrality

we replace equations (10), (11), (12) and (13), respectively, by

" )
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fi(NU{g},wr,S") = % for alli € NU{g}

(N U{g} wr, S') + fo(NU{g}, wr,S') = fr(N U{g} wr, S") + f(N U {g},wr, ")

fi(NU{g},wr,S") = % for all i € NU{g},

Finally, pairwise vertical split neutrality yields that (14) is replaced by

(N, wp, S) = fu(NU{g},wr,5") + fy(NU{g},wr,S") = 2@11-

Thus with (4) we have f;(N, wr, S) = ¢* = gxf= for all i € N.

Lemma B.3 is now adapted to the lemma which states that: If solution f satisfies one
player efficiency, pairwise vertical split neutrality, pairwise horizontal split neutrality,
pairwise power split neutrality, the inessential player property, the necessary player
property, weak structural monotonicity and disjunctive fairness, then f(NV,wr,S) is

uniquely determined whenever S € SY _ and wr = cpug for some T'C N, T # (), and

tree
cr > 0.
The proof is identical except for part (i) in the proof by induction to determine ¢* on

page 16. Now pairwise power split neutrality implies that
[itN,wr, 8) + fie(N,wr, S) = fj(N,wr, S) + fiy(N, wr, ')
and
fi(N,wr, 8) + fio (N, wr, 8') = f3(N,wr, S") = fio (N, wr, S")

which with (15) and the induction hypothesis yields that ¢* = f;(NV,wr, S), i € as(T),
is known.
(Part (ii) is identical. In part (iii) pairwise vertical split neutrality and the inessential

player property imply the same as vertical split neutrality and the inessential player

property.)

In the proof of uniqueness for any game with a hierarchical permission structure, in a
similar way as in the proof of Theorem 3.5 we arrive at (17) and uniquely determine
all ¢;, i € N. The determination of ¢* in case (i) on pages 19-20 should be replaced by
the following.
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(i) Suppose there exists j € ag(T) with |[S~*(j)| > 2. Then take h,g € N, h # g,
such that j € S(h) N S(g). Pairwise power split neutrality implies that

n(N,wr, S) + fo(N,wr, S) = fn(N,wr, S_gj)) + fo(N,wr, S_4j)),

which with the induction hypothesis yields that fi,(N,wr,S)+ f,(N,wr, S) is
known. Then with (17) ¢* is uniquely determined.

The remainder of the proof is the same as the proof of Theorem 3.5. L

PROOF OF THEOREM 4.5.
Proving uniqueness and proving that g¢ satisfies additivity, pairwise vertical split neu-
trality, pairwise horizontal split neutrality, the inessential player property, the neces-
sary player property and weak structural monotonicity is along the same lines as this is
shown for 3%. So, we only have to show that /3¢ satisfies pairwise power split neutrality
and conjunctive fairness.

To show that /3¢ satisfies pairwise power split neutrality, let N C N, v € GV, S €
Sy and h,g,j € N be such that j € S(h)NS(g), h # g. Since 0§ g(E) = 0%757(h7j)(E)
if h € E or g ¢ E, it follows in a similar way as done for 3¢ in the proof of Theorem
4.4 that

Br(N,v,5) = BL(N,v, S_(h,3) = Bu(N, v 0.5) = BN, w5 )

W 3 (v(ofs(B)) = v(ofs(B\ {h}) = vloks ., (B) +v(ohs . (E\{h})))

ECN
helE

w 3 (0(0%s o, (BN ARD) = v(o%s(E\ {h})))

v X (0(0s (2N () — el s\ (1))
{h,EgC}]éE
- 2|J\}—1 Z (U(U?V’Sf(h,n(E)) N U(UZCV,S(E ) 2\N| 1 Z ( NS (h.d) (E)) —U(va,

gEE h¢E g€E

S(E)))
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W Y (v(ofes o, (B) = v(oks ., (B\{g}) — v(05,s(E)) +v(ok.s(E\ {g}))

ECN
gel

= BQ(N7 TJCV,v,S,(h,j)) - BQ(Na TJCV,v,S) = 5§(N7 v, S*(h,j)) - ﬁ;(N, v, S),

showing that 3¢ satisfies pairwise power split neutrality.

To show that (3¢ satisfies conjunctive fairness, let S € SY and h,g,j € N be
such that j € S(h) N S(g), h # g. Further, let i € {g} Ug_l(g). The proof is
similar to the corresponding proof for disjunctive fairness of the disjunctive Banzhaf
permission value, but with the roles of h and ¢g exchanged. Since {i,j} ¢ E implies
that ofy 5(E) = O"va,s,(h,j)(E): it follows that

Bzc(Nv U, S) - 65(N7 v, Sf(hvj)) = Bl(Nv TJCV,U7S) - Bl(Nv r]ch?S,(h’j))

= o 3 (00035 (B0) = o(03s (BN AID) 000, () + vl (B ()

1
= ST Y (e ) = v(oks o, (B)) = g > (v(o%s(B) —v(ok s, (E)))
ECN ECN
1€ER {i,j}CE

= o 2 (105 (B)) — v(okes(B\ 11) — vl0fys ) (B + 0(0fcs. o, (BN (1))

ECN
jeEE

= By(N. 5, 5) — Bi(Noriy s, ) = BN 0,8) = B5(N, v, S_ny).

Appendix C: Logical independence

We show logical independence of the axioms of Theorem 3.5 by the following nine

solutions for games with a hierarchical permission structure.

1. The solution f given by f;(N,v,S) = 0 for all i € N satisfies all axioms of
Theorem 3.5 except one player efficiency.

2. The solution f given by fi,(N,v,S) = v({ip}), and fi(N,v,S) = 0 for all
i € N\ {io} satisfies all axioms of Theorem 3.5 except vertical split neutral-

ity. (Remember that iy denotes the top-player in (N, 5).)
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3. The solution f given by f(N,v,S) = (N, Xien v({i})ugy, S) satisfies all axioms

of Theorem 3.5 except horizontal split neutrality.

4. For S € SN and T C N let 22 = {Z € SY | Z7*(i) = S7'(4) for all i €
N\as(T), Z7i) € S71(i) for all i € ag(T), and |Z71(i)| =1 for all i € ag(T)\
{io}} where again ag(T) = T U S~Y(T). The solution f given by f(N,v,S) =
Yren Yzezs @} (N, Anw)(T)ur, Z) satisfies all axioms of Theorem 3.5 except

power split neutrality.

5. For game (N,v) define d(N,v) = max{Aw,)(T) | T C N}, where A, (T)
are the Harsanyi dividends, and D(N,v) = {T' C N | Aw)(T) = d(N,v)}.
The solution f given by f(N,v,S5) = ¢“(N, Y repvy Aoy (T)ur, S) satisfies

all axioms of Theorem 3.5 except additivity.

6. The solution f given by f;(N,v,S) = %%2 for all i € N, satisfies all axioms of

Theorem 3.5 except the inessential player property.

7. The solution f given by fi,(N,v,S) = v(N) and f;(N,v,S5) =0foralli € N\{ip}

satisfies all axioms of Theorem 3.5 except the necessary player property.

8. The solution f given by f(N,v,S) = Sh(N,v) satisfies all axioms of Theorem 3.5

except weak structural monotonicity.

9. The conjunctive Shapley permission value ¢ satisfies all axioms of Theorem 3.5

except disjunctive fairness. O]

Logical independence of the axioms of Theorem 3.6 can be shown by the above solutions
1,2, 6, 7 and 8, using ¢ instead of ¢? in solutions 3, 4 and 5, and replacing ° by ¢
in solution 9.

Similarly, logical independence of the axioms of Theorem 4.4 can be shown by the
above solutions 1, 2, 6, 7 and 8, using 3¢ instead of ¢? in solutions 3, 4 and 5, and
replacing ¢¢ by ¢ in solution 9.

Finally, logical independence of the axioms of Theorem 4.5 can be shown by the
above solutions 1, 2, 6, 7 and 8, using 3¢ instead of ¢? in solutions 3, 4 and 5, and

replacing ¢° by 3¢ in solution 9.
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Figure 1: Permission structure S from Example 2.1

P

Figure 2: An illustration of permission structures S and SY" as described in Axiom
3.1

Figure 3: An illustration of permission structures S and S#"J) as described in Axiom
3.2

Figure 4: An illustration of permission structure S_j
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Figure 5: An illustration of permission structures S, S” and S” of the proof of Lemma
B.2 case (iii)

Figure 6: An illustration of permission structures S" and S” of the proof of Lemma B.3
case (ii), with h € S(g) (So, h = g)
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Figure 7: An illustration of permission structures S’ and S” of the proof of Lemma B.3

case (i) with h € S(ip) and j € S(h)
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