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In a recent paper, Fisher et al. (2001) present  a method to mitigate end-effects in lot sizing by 

including a valuation term for end-of-horizon inventory in the objective function of the short-

horizon model. Computational tests show that the proposed method outperforms the Wagner-

Whitin algorithm and the Silver-Meal heuristic, under several demand patterns, within a 

rolling horizon framework. We replicate the computational tests also including a 

straightforward method that assumes the same knowledge about future demand as the ending 

inventory valuation method. Our results indicate that the superior performance reported by 

Fisher et al. is to a large extent due to the fact that their method assumes that quite accurate 

knowledge about future demand is available, whereas the traditional methods do not use any 

information about demand beyond the short model horizon. Moreover, when quite accurate 

knowledge about future demand is indeed available, our results suggest that for some demand 

patterns, ending inventory valuation is not the most effective way to use this knowledge. 

Furthermore, we point out a minor mistake in the results reported by Fisher et al.  

(End Effects; Dynamic Lot Sizing; Ending Inventory Valuation) 

 

                                                 
1 Corresponding author 
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1. Introduction 

Production planning decisions are usually made on a rolling horizon basis. Because of end-

effects, the optimal solution of the short model horizon lot sizing problem may not be the 

optimal solution in the long run. In particular, in a lot sizing problem it is always optimal to 

leave zero inventory at the end of the model horizon. To deal with end-effects, Fisher et al. 

(2001) propose so-called ending inventory valuation, where ending inventory I at the end of 

the horizon T is assigned the value 

                                               2I)(EOQ
2D

h
KV(I) −−= ,                                  (1) 

where D reflects the demand rate (the specific choice depends on the demand pattern; see 

Section 2 ), K is the setup cost, h the unit holding cost, and EOQ the economic order quantity 

(EOQ = 2KD/h ). When production in a certain period covers more than the demand up to 

period T, cost are adjusted according to the valuation function. Now a similar recursion as the 

Wagner-Whitin algorithm (Wagner and Within 1958) can be constructed. Computational tests 

of Fisher et al. show that the proposed method outperforms the Wagner-Whitin algorithm and 

the well-known heuristic by Silver and Meal (1973), under several demand patterns, within a 

rolling horizon framework. 

 

In this note we argue that the superior performance of the method of Fisher et al. is to a large 

extent due to the fact that it makes use of quite accurate knowledge about future demand, 

whereas the two traditional methods do not use any information about demand beyond the 

short model horizon. Hence, to apply the ending inventory valution approach, the required 

information needs to be available. In general, when reasonable (or even better) estimates of 

future data are available, it is quite natural to make use of these. In many practical situations 

this ican actually be done in a quite straightforward way. Indeed, for the lot sizing problem 
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under consideration we can simply extend the short model horizon by using expected demand 

for the additional periods, as has been proposed before in the literature (see, for instance, 

Russel and Urban 1993). In this way, the future beyond the short model horizon is taken into 

account and end-effects may be decreased. This alternative method, to which we will refer as 

Extended Wagner-Whitin (EWW), can be applied on a rolling horizon basis in a 

straightforward way. 

 

In the next section we will replicate the computational experiments of Fisher et al., now 

including EWW, and we will discuss the results. §3 contains some concluding remarks. 

2. Comparison with the Extended Wagner-Whitin algorithm 

As in Fisher et al. (2001) the performance of the Wagner-Within algorithm (WW), the Silver-

Meal heuristic (SM), ending inventory valuation (EIV) and EWW is compared by simulation. 

The true horizon n is set to 300 periods and for every period in this horizon positive demand 

is generated. Now for each of the above methods a production plan is constructed using a 

rolling horizon scheme. The short model horizon T ranges from 2 to 20 periods. For the 300 

period lot sizing problem the optimal solution is determined. For each setting of input 

parameters, we generate eight problem instances and for each lot sizing method the average 

percentage above optimal cost is computed. 

The EIV production plan is constructed in such a way that when arriving at or past period n – 

T during the rolling horizon scheme, the remaining lot sizing problem is solved in an optimal 

way so that the ending inventory always equals zero. In this way a fair comparison is made, 

because the WW algorithm also leaves ending inventory zero.  

In the EWW algorithm the short model horizon T is extended up to the true horizon n. This 

means, for instance, that in period 1 a lot sizing problem consisting of 300 periods is solved 

and in period 150 a lot sizing problem consisting of 151 periods is solved. Note that this 
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method does not assume more knowledge about future demand than Fisher et al., who also 

assume that expected demand is known for every future period. 

In the following subsections the results of the replicated computational experiments are 

discussed for different demand patterns. 

2.1 Stationary demand 

In this case demand is generated from a normal distribution with mean µ = 100 and standard 

deviation σ = 0, 10, 22 and 43. The setup cost K is set to 800 and the holding cost h is 

normalized to 1. So the expected production cycle equals K/Dh2 = 4 periods, where D is the 

long run demand. For the EIV method it is assumed that the long run demand rate is known 

and so D is set to 100 and EOQ is set to 400 in (1). Also, for EWW, demand for every period 

beyond the short model horizon is set equal to 100.  

Table 1 shows the results. Although the overall performance of EIV is better than EWW, it is 

important to observe that, especially for model horizons up to 10 periods, the difference 

between the performance of WW and EWW is typically much larger than the difference 

between the performance of EWW and EIV. This indicates that the superior performance of 

EIV in comparison to WW is to a large extent due to the fact that EIV uses information about 

demand beyond the short model horizon, whereas WW does not. A similar remark can be 

made with respect to the difference in performance between EIV and SM. 
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Table 1: Percentage deviation from optimality for normally distributed demand  

Model σ = 0  σ = 10  σ = 22  σ = 43 

Horizon WW SM EIV EWW   WW SM EIV EWW   WW SM EIV EWW   WW SM EIV EWW 

2 28.57 28.57 0.00 0.00  29.33 29.33 15.53 17.17  31.59 31.59 18.25 20.82  37.10 37.10 21.40 24.99 

3 4.76 4.76 0.00 0.00  5.30 5.30 15.58 12.24  7.20 7.20 18.13 15.04  11.42 11.64 21.48 19.53 

4 0.00 0.00 0.00 0.00  0.54 0.64 0.85 0.54  2.48 2.30 2.05 2.19  6.48 4.07 3.85 4.33 

5 2.86 0.00 0.00 0.00  3.37 0.56 0.47 0.59  4.93 1.12 0.82 1.24  7.48 2.30 1.64 2.26 

6 4.76 0.00 0.00 0.00  5.21 0.59 0.43 0.48  5.14 0.98 0.68 1.23  5.44 1.67 1.28 1.27 

7 4.76 0.00 0.00 0.00  1.61 0.57 0.33 0.48  2.27 0.98 0.70 1.15  2.28 1.65 0.66 0.98 

8 0.00 0.00 0.00 0.00  0.56 0.57 0.33 0.53  0.92 0.98 0.35 0.71  1.31 1.65 0.30 0.43 

9 0.00 0.00 0.00 0.00  1.09 0.57 0.30 0.37  1.14 0.98 0.25 0.48  1.13 1.65 0.26 0.47 

10 4.67 0.00 0.00 0.00  1.69 0.57 0.22 0.47  1.19 0.98 0.28 0.36  1.01 1.65 0.30 0.34 

11 4.67 0.00 0.00 0.00  0.60 0.57 0.18 0.40  0.85 0.98 0.20 0.36  0.67 1.65 0.12 0.17 

12 0.00 0.00 0.00 0.00  0.36 0.57 0.19 0.36  0.42 0.98 0.17 0.31  0.29 1.65 0.14 0.19 

13 0.00 0.00 0.00 0.00  0.44 0.57 0.19 0.29  0.32 0.98 0.11 0.26  0.29 1.65 0.07 0.12 

14 4.57 0.00 0.00 0.00  0.75 0.57 0.12 0.25  0.42 0.98 0.12 0.15  0.29 1.65 0.04 0.08 

15 4.57 0.00 0.00 0.00  0.44 0.57 0.13 0.20  0.26 0.98 0.08 0.11  0.15 1.65 0.06 0.06 

16 0.00 0.00 0.00 0.00  0.25 0.57 0.12 0.24  0.24 0.98 0.07 0.09  0.09 1.65 0.03 0.07 

17 0.00 0.00 0.00 0.00  0.38 0.57 0.09 0.18  0.20 0.98 0.05 0.13  0.08 1.65 0.05 0.06 

18 4.57 0.00 0.00 0.00  0.43 0.57 0.08 0.15  0.15 0.98 0.05 0.05  0.08 1.65 0.01 0.02 

19 4.57 0.00 0.00 0.00  0.24 0.57 0.05 0.18  0.10 0.98 0.05 0.06  0.02 1.65 0.01 0.01 

20 0.00 0.00 0.00 0.00   0.12 0.57 0.08 0.14   0.05 0.98 0.03 0.04   0.06 1.65 0.01 0.03 

Note:  µ = 100, K = 800, h = 1  

 WW: Wagner Whitin, SM: Silver Meal, EIV: Ending inventory valuation, EWW: Extended Wagner Whitin 

  

 

Both EWW and EIV produce optimal quantities in the case of a constant demand rate. The 

same holds for the SM heuristic if the model horizon is sufficiently large. The WW method, 

however, shows a  striking pattern. Moreover, this pattern differs from what is reported by 

Fisher et al. (no error for T larger than 3). It can easly be verified that the latter results are 

incorrect. In the optimal production plan production takes place every 4 periods incurring cost 

1400/4 = 350 per period, while for model horizon T = 5 it is optimal to produce for 5 periods 
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incurring total cost of 1800/5 = 360 per period, which is 2.87% above minimal cost. For T = 6 

it is optimal to produce twice for 3 periods in periods 1 and 4 so that the first production 

decision equals 3 periods incurring cost 1100/3 = 367 per period, which is 4.76% above 

minimal cost. The same computations can be made for the other model horizons. Note that in 

some cases multiple optimal solutions exist (e.g., for T = 7: produce for 3 and then for 4 

periods or produce for 4 and then for 3 periods) and that it depends on the way of 

implementing the Wagner-Whitin algorithm, which solution is selected. In our case the 

algorithm is implemented such that the first production decision is as short as possible. Hence, 

contrary to what Table 1 in Fisher et al. may suggest, when demand is constant and the short 

term models are solved exactly, it is not true that using a larger value of T will never lead to 

long term solutions that are worse. Moreover, it is not true that a long term optimal solution 

will always result if T can be chosen large enough. 

A counterintuitive pattern in Table 1 is that when the standard deviation of demand increases 

WW, EIV and EWW perform better for longer model horizons. Although Fisher et al. also 

observe this phenomenon, they do not give an explanation. We note, however, that 

Federgruen and Tzur (1994) already observed that minimal forecast horizon tend to be smaller 

in case of more variability and that they also gave a plausible explanation for this latter 

phenomenon. 

2.2 Linearly increasing and linearly decreasing demand 

Now demand is generated by adding a normally distributed random variable to a linearly 

increasing or linearly decreasing trend, i.e. demand in period t equals 

                                    1)tf(t�d tt −++= , t = 1,…, 300                                                   (2) 

where xt is a normally distributed random variable and tf is the trend factor. We generate 

problem instances with µ = 100, σ = 10, K = 800, h = 1 and tf  = 1, 10, 20 and 40. To 

determine the ending inventory in the EIV method in period t, D is replaced by the expected 
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demand in period t + T, which equals µ + tf(t + T – 1) and EOQ is replaced by the 

corresponding economic order quantity. For EWW, we estimate demand beyond the short 

model horizon by substituting xt  =  0  in (2). 

We only present the results for linearly deceasing demand and trend factors 1 and 10. For 

trend factors 20 and 40 the tables mainly consist of zeros because when t in (2) is sufficiently 

large, demand is large relative to the setup cost, so it is always optimal to produce each period 

and each method produces a (near) optimal solution. The results for linearly decreasing 

demand and linearly increasing demand are similar.  

 

Table 2: Percentage deviation from optimality for a demand 

distribution with linearly decreasing trend 

Model tf = 1  tf = 10 

Horizon WW SM EIV EWW   WW SM EIV EWW 

2 5.14 5.14 18.57 9.59  0.46 0.46 1.34 0.78 

3 3.39 0.59 3.19 1.27  1.27 0.15 0.29 0.22 

4 1.68 0.22 0.17 0.13  0.23 0.10 0.12 0.01 

5 3.03 0.29 0.22 0.14  1.07 0.09 0.06 0.01 

6 0.33 0.24 0.10 0.13  0.03 0.09 0.04 0.01 

7 1.54 0.24 0.14 0.12  0.72 0.09 0.02 0.01 

8 0.60 0.24 0.11 0.13  0.13 0.09 0.04 0.00 

9 0.76 0.24 0.06 0.07  0.72 0.09 0.03 0.00 

10 0.47 0.24 0.07 0.06  0.03 0.09 0.03 0.01 

11 0.53 0.24 0.07 0.08  0.58 0.09 0.01 0.00 

12 0.10 0.24 0.07 0.06  0.05 0.09 0.02 0.02 

13 0.51 0.24 0.08 0.06  0.39 0.09 0.02 0.01 

14 0.16 0.24 0.04 0.04  0.03 0.09 0.01 0.00 

15 0.25 0.24 0.06 0.06  0.32 0.09 0.02 0.01 

16 0.13 0.24 0.03 0.02  0.01 0.09 0.01 0.01 

17 0.26 0.24 0.02 0.02  0.47 0.09 0.01 0.00 

18 0.09 0.24 0.05 0.02  0.02 0.09 0.01 0.01 

19 0.22 0.24 0.04 0.02  0.31 0.09 0.01 0.00 

20 0.12 0.24 0.06 0.05   0.00 0.09 0.01 0.01 

Note: µ = 100, σ =10, K = 800, h=1. 
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The results for decreasing demand can be found in Table 2. We see in this table that for trend 

factor 1 EWW outperforms WW and SM for almost all model horizons and that EWW 

performs (slightly) better than EIV for most model horizons. For trend factor 10 the results 

are even more favorable for EWW. Hence, these results suggest that when demand faces a 

linearly decreasing trend EWW is a better choice than EIV. An explanation for the fact that 

EWW performs better than EIV is that when arriving in period t in the rolling horizon 

scheme, EIV actually assumes a constant demand after period t + T – 1, while EWW takes the 

expected trend into account. 

2.3 Seasonal demand 

For this case demand is generated according to the following formula: 

                        c/4)]
� � � �

2sin[a�d tt +++= , t = 1,…, 300,                                            (3) 

where a is the amplitude of the seasonal component and c is the length of the seasonal cycle. 

To account for the seasonal demand pattern in period t for determining ending inventory in 

the EIV algorithm, define the periodic order quantity POQ as EOQ/µ.  Now D in (1) is 

replaced by the average demand in the first POQ periods immediately following time t + T –1 

and EOQ is replaced by the economic order quantity corresponding with this average demand. 

To compare the different solution methods the same settings are used as in Fisher et al. 

(2001), i.e. µ = 100, σ = 10, K = 800, h = 1, a = 20, 40, 60, 80 and c = 12. Again for each lot 

sizing method the average deviation from optimality is computed using eight iterations for 

each parameter setting. 

The results of the simulations are shown in Table 3, where we see that EWW outperforms 

EIV, especially when the amplitude of the seasonal component increases. Again we explain 

the better performance of EWW by the fact that it incorporates the seasonal component in a 
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better way. EIV averages the first POQ periods of expected demand to account for its cyclical 

behavior, but EWW incorporates the actual expected cyclical behavior. 

 

Table 3: Percentage deviation from optimality for a seasonal demand distribution 

Model A = 20  a = 40  a = 60  a = 80 

Horizon WW SM EIV EWW   WW SM EIV EWW   WW SM EIV EWW   WW SM EIV EWW 

2 29.82 29.82 17.09 16.13  31.09 31.09 16.68 16.21  34.98 34.98 15.89 15.29  40.77 40.77 14.96 15.92 

3 5.85 5.85 17.59 14.29  6.85 6.85 18.69 10.75  9.93 9.93 17.17 6.51  14.89 14.89 17.99 4.34 

4 0.95 0.97 3.49 0.87  2.04 2.02 5.31 4.12  4.76 4.40 4.63 4.04  9.62 8.37 5.22 4.06 

5 3.77 0.85 0.64 0.41  4.19 1.72 1.27 0.64  6.69 3.96 2.34 3.74  9.64 7.84 4.92 3.76 

6 4.25 0.78 0.46 0.44  2.52 1.41 0.99 0.31  1.97 2.32 1.61 0.25  2.92 2.89 2.43 0.88 

7 2.07 0.78 0.67 0.52  2.52 1.33 0.90 0.28  2.32 3.22 1.55 0.11  1.98 3.71 2.01 0.24 

8 0.62 0.78 0.38 0.33  1.15 1.96 0.64 0.26  2.13 3.12 0.55 0.11  3.00 3.60 0.70 0.14 

9 1.10 0.78 0.27 0.26  1.07 1.69 0.53 0.21  1.70 3.49 0.24 0.05  2.08 4.96 0.54 0.20 

10 1.74 0.78 0.22 0.25  1.52 169 0.40 0.18  1.04 3.25 0.44 0.07  0.83 5.15 0.36 0.10 

11 0.80 0.78 0.27 0.18  0.99 1.69 0.28 0.11  0.81 3.25 0.20 0.05  0.64 4.93 0.22 0.10 

12 0.40 0.78 0.22 0.17  0.40 1.69 0.21 0.14  0.23 3.25 0.27 0.08  0.30 4.93 0.48 0.09 

13 0.55 0.78 0.17 0.16  0.49 1.69 0.18 0.07  0.44 3.25 0.34 0.05  0.38 4.93 0.47 0.05 

14 0.77 0.78 0.16 0.12  0.64 1.69 0.16 0.08  0.47 3.25 0.15 0.05  0.71 4.93 0.20 0.06 

15 0.43 0.78 0.11 0.06  0.40 1.69 0.12 0.08  0.39 3.25 0.10 0.06  0.63 4.93 0.15 0.05 

16 0.29 0.78 0.15 0.11  0.21 1.69 0.13 0.06  0.24 3.25 0.18 0.02  0.46 4.93 0.23 0.03 

17 0.25 0.78 0.09 0.07  0.26 1.69 0.09 0.03  0.18 3.25 0.11 0.03  0.23 4.93 0.17 0.02 

18 0.39 0.78 0.10 0.08  0.20 1.69 0.11 0.03  0.13 3.25 0.03 0.02  0.08 4.93 0.10 0.01 

19 0.27 0.78 0.07 0.04  0.18 1.69 0.10 0.05  0.13 3.25 0.06 0.01  0.14 4.93 0.08 0.02 

20 0.15 0.78 0.04 0.03   0.11 1.69 0.05 0.03   0.07 3.25 0.03 0.00   0.11 4.93 0.04 0.02 

Note: µ = 100, σ =10, b = 12, K = 800, h = 1  

 

3. Concluding remarks 

In our opinion, the results that Fisher et al. find for their ending inventory valuation method 

are not surprising once one realizes that this method uses additional information. It seems to 

make more sense to compare it with other methods that make use of the same information, 

such as EWW. For non-stationary demand, the performance of EWW actually appears to be 
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superior to EIV. Note that EWW can easily be applied in practice, since it will often suffice to 

extend the short model horizon with only a limited number of periods instead of the 

“complete future” . This follows from the computational study of Federgruen and Tzur (1994) 

which indicates that minimal forecast horizons tend to be small. Furthermore, computation 

times are not an issue since the extended lot sizing problems can be solved in linear time 

(Federgruen and Tzur 1991, Wagelmans et al. 1992). 

Of course, one could argue that the simulation experiments do not describe a very realistic 

situation, if only because the parameters of the demand patterns are not known but have to be 

estimated, for instance by using smoothing methods (Makridakis and Wheelwright. 1986). 

We have run additional experiments to investigate if this would change the performance of 

EIV and EWW. Our conclusion from the results of these experiments is that the performance 

of the two methods does not change significantly. For details on the results of these and other 

additional experiments, we refer to Van den Heuvel (2002). 

Finally, it is worth metnioning that Stadtler (2001) proposes an alternative method for lot 

sizing in a rolling horizon environment, that produces very good results without the 

assumption of the availability of good estimates of future demand. 
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