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for General Latent Factor Models�

Andr�e Lucaszx Pieter Klaassenyz
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Abstract

Using a limiting approach to portfolio credit risk, we obtain an-

alytic expressions for the tail behavior of the distribution of credit

losses. We show that in many cases of practical interest the distri-

bution of these losses has polynomial (`fat') rather than exponential

(`thin') tails. Our modeling framework encompasses the models avail-

able in the literature. Defaults are triggered by a general latent factor

model involving systematic and idiosyncratic risk. We show explicitly

how the tail behavior of the distribution of these two risk factors re-

lates to the tail behavior of the credit loss distribution. Even if the

distributions of both risk factors are thin-tailed, the credit loss distri-

bution may have a �nite tail index (polynomial tails). If idiosyncratic

risk exhibits thinner tails than systematic risk, the credit loss density

actually increases towards the maximum credit loss. This unconven-

tional behaviour of the credit loss density has not been reported earlier

in the literature. We also derive analytically the interaction between

portfolio quality and credit loss tail behavior and �nd a striking di�er-

ence between two well-known modeling frameworks for portfolio credit
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risk: CreditMetrics and CreditRisk+.

Key words: portfolio credit risk; extreme value theory; tail events;

tail index; factor models; economic capital; portfolio quality; second-

order expansions.

JEL Codes: G21; G33; G29; C19.

1 Introduction

Management of credit risk is a core function within banks and other lending
institutions. There is an extensive literature on how to assess the credit qual-
ity of counter-parties in individual loan (or bond) transactions, see for exam-
ple Altman (1983), Caouette, Altman, and Narayanan (1998), and the Jour-
nal of Banking & Finance (2001, vol. 25(1)) as starting references. Recently,
we have witnessed an increased interest in the modeling and management
of portfolio credit risk. This involves the determination of the probability
distribution of potential credit losses for portfolios of loans. In this paper,
we focus on the properties of this credit loss distribution in its extreme tail,
i.e., where credit losses are high. Clearly, this is the part of the distribution
that banks are most concerned about.

Banks usually get into trouble when in a short period of time a sub-
stantial part of the loan portfolio deteriorates signi�cantly in quality. This
can typically be traced back to some common cause, e.g., a downturn in the
economy of a country or region, or problems in a particular industry sector
(see also Bangia, Diebold, and Schuermann (2000)). Recent examples are
the banking problems in Japan, and the Asian crisis in 1998. A bank is
much less vulnerable to such systematic events when its loan portfolio is well
diversi�ed over regions, countries and industries. To evaluate and manage a
bank's credit risk, it is therefore not su�cient to scrutinize individual clients
to which loans are extended, but also to identify concentration of risks within
the portfolio. The use of portfolio credit risk models allows banks to do that.

Banks also employ portfolio credit risk models to evaluate activities on
a risk/reward basis, using measures such as risk-adjusted return on capital
(RAROC) and economic-value-added (EVA), see Matten (2000). Such an
evaluation can be done on the level of individual loans or clients, but also
for lines of business or the bank as a whole. In addition, portfolio credit risk
models can be used to evaluate the risks and merits of collateralized loan
or bond obligations. A major reason for banks to enter into such structures
is to obtain regulatory capital relief. In many cases, however, the majority
of the economic risk of the loans involved remains with the issuing bank.
A primary motivation for the current review of the 1988 Basel Accord on
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regulatory capital is therefore to better align regulatory capital requirements
with true economic risk. In its latest proposals, the Bank for International
Settlements (BIS) has in fact used a portfolio credit risk approach to set risk
weights for individual counter-parties (see BIS (2001).

Several models have been put forward in the literature to capture the
salient features of portfolio credit risk. The most prominent models are Cred-
itMetrics of J.P. Morgan (1999), CreditRisk+ of Credit Suisse (1997), Port-
folioManager of KMV (Kealhofer (1995)), and CreditPortfolioView of McK-
insey (Wilson (1997a,b)). Despite the apparent di�erences between these ap-
proaches, they exhibit a common underlying framework, see Koyluoglu and
Hickman (1998) and Gordy (2000). All models enable the computation or
simulation of a probability distribution of credit losses at the portfolio level.
The extreme upper quantiles of this distribution are of particular interest.

In the present paper we formulate a general modeling framework encom-
passing the models from the literature mentioned above. The framework
enables us to derive an explicit characterization of the extreme tail behavior
of credit losses in terms of underlying portfolio characteristics. Our approach
extends the results in Lucas et al. (2001) and contrasts with previous studies
of the behaviour of aggregate credit risk. For example, Carey (1998) uses
a large database of bonds and a resampling scheme in order to investigate
the tail behavior of credit loss distributions. This approach, however, does
not provide an explicit relation between default correlations and credit loss
tail behavior. Moreover, all results are conditional on the extent to which
the database used is representative of an actual bond or loan portfolio. Al-
ternatively, J.P. Morgan (1999) uses an explicit modeling framework and a
simulation set-up. The main drawback of a simulation approach is that it
is di�cult to obtain reliable conclusions regarding tail behavior, especially if
one is concerned with extreme quantiles. Moreover, many di�erent experi-
ments would have to be set up in order to obtain tail properties under a va-
riety of empirically relevant conditions. By contrast, our analytic approach
allows for a direct assessment of the relation between default correlations,
credit quality, distributional properties, model structure, and credit loss tail
behavior.

In line with the existing literature, we decompose the risk of an individual
loan into a systematic and idiosyncratic risk component. Other models have
opted to fully parameterize the distribution of the risk components. For ex-
ample, CreditMetrics assumes normal risk components, whereas CreditRisk+

assumes Gamma distributed components. We abstain, however, from mak-
ing parametric assumptions on the risk components. For our purpose, i.e.
the study of the tail behaviour of portfolio credit losses, it su�ces to make
weak assumptions on the probability of extreme realizations (tail behaviour)
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of the risk factors. In addition, we allow risk factors to be related in a gen-
eral, possibly non-linear way to a counter-party's creditworthiness. Using
statistical Extreme Value Theory, we obtain an expansion of the tail of the
credit loss distribution.

Our main contributions to the portfolio credit risk literature are the gen-
eral modeling framework and the analytic results. It turns out that under
quite general conditions credit losses have a polynomial (i.e., fat) rather than
an exponential (thin) tail. This polynomial tail can be characterized by a
single parameter, the so-called tail index. The tail index speci�es the rate
of decay in the tail probability. The larger the tail index, the faster the tail
probability declines to zero. We show how assumptions on the extreme tail
behavior of the idiosyncratic and systematic risk components determine the
extreme credit loss tail behavior, i.e., the value of the tail index. In particu-
lar, we prove that thin tails for idiosyncratic risk and fat tails for systematic
risk produce rather unconventional shapes of credit loss densities. These
densities may be increasing near the edges of their support. To the best of
our knowledge, such behavior has not been reported earlier in the literature.

We also investigate how credit quality as measured by the probability of
default relates to the credit loss tail index. It turns out that credit quality
a�ects the tail behavior of credit losses di�erently in the CreditMetrics frame-
work compared to CreditRisk+, which are two of the most popular portfolio
models to study portfolio credit risk. More speci�cally, the probability of
default impacts on the tail index directly in the CreditRisk+ model, whereas
it only has a second-order e�ect on the tail behaviour in the CreditMetrics
framework.

The set-up of the paper is as follows. In Section 2 we provide the ba-
sic modeling framework and derive the main results for a homogeneous bond
portfolio. We also treat the CreditMetrics and CreditRisk+ models as special
cases. The results are generalized in Section 3 to heterogeneous portfolios.
Section 4 contains a second-order approach to the tail behavior in the Credit-
Metrics framework. We highlight the di�erences between the CreditMetrics
and the CreditRisk+ approach regarding the interaction between portfolio
credit quality and tail behavior. Section 5 concludes, while the Appendix
gathers all the proofs.
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2 Homogeneous bond portfolios

We start our exposition with a very simple portfolio containing n bonds (or
loans), each from (to) a di�erent company.1 The portfolio is homogeneous
in the sense that all bonds have the same characteristics. This restrictive
setting allows us to derive useful results on the tail behavior of portfolio
credit losses. In later sections, we generalize these results to heterogeneous
portfolios.

Each bond in the portfolio speci�es a future pay-o� stream of coupons
and/or principal. The value of this stream depends on the creditworthiness
of the company issuing the bond. The value of an identical stream of future
cash ows will be lower if the company is more likely to default, i.e., has a
lower creditworthiness. In our benchmark setting, each company j, where
j = 1; : : : ; n, is characterized by a two-dimensional vector

(Sj; s
�): (1)

Here, Sj is a latent variable that triggers a company's default. A prime can-
didate for Sj is the company's `surplus' or equity value, i.e., the di�erence in
market value of assets and liabilities. If this surplus falls below the threshold
s�, default occurs. As our focus in the present paper is on extreme tail behav-
ior of credit losses, we concentrate on defaults only and abstract from credit
losses due to credit rating migrations, see J.P. Morgan (1999). Further, for
simplicity we set the recovery rate to 0, implying that the loss given default
is 100%. This means that in case of default, the complete amount invested is
lost. Alternatively, one can use more realistic values like historical averages
of recovery rates. This, however, does not a�ect the rate of tail decay of
portfolio credit losses as derived later on. We assume that the initial value
of each bond is unity (i.e., each bond values to par at the start). The credit
loss on an individual bond j is now given by the random variable

1fSj<s
�g; (2)

where 1A is the indicator function of the set A.
We assume that Sj obeys the general factor model

Sj = g(f; "j); (3)

where f is a common factor, "j is a �rm-speci�c risk factor, and g(�; �) de�nes

1We focus on bonds and loans for expositional purposes, but the basic modeling frame-
work remains applicable in case of alternative credit risky securities.
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the functional form of the factor model. In this section, we restrict the factor
model to be the same for each �rm j. This assumption is relaxed in the
next section. The formulation in (3) comprises the well-known factor models
from the literature. For example, if we set g(f; "j) = �f + "j for some factor
loading � 2 R with Gaussian f and "j, we obtain (a restricted version of) the
CreditMetrics model introduced by J.P. Morgan (1999). In our present static
context, this also coincides with the formulation of CreditPortfolioView of
McKinsey, see Wilson (1997a,b). Alternatively, if g(f; "j) = "j=(�f) with
� > 0 and "j and f exponentially and Gamma distributed, respectively, we
obtain the Creditrisk+ speci�cation of Credit Suisse, see Gordy (2000) and
Credit Suisse (1997).

For sake of simplicity we consider a one-factor version of (3) only. Some
results for linear multi-factor models are given in Lucas et al. (2001). The
key ingredient in (3) is the common risk factor f . Due to the functional
dependence of all Sj on this common f , we are able to accommodate default
correlations. For example, average default rates can be much higher during
recessions than during booms of the economy, which can be captured by an
adequate choice of f .

Given the formulation of the individual credit loss in (2), the credit loss
for a portfolio of n loans expressed as a fraction of the amount invested is
now given by

Cn = n�1
nX

j=1

1fSj<s
�g; (4)

i.e., the sum of the individual losses divided by the total initial value of the
bonds. Looking at the extreme tail behavior of Cn is rather trivial as the
support of Cn is discrete. We obtain a continuous credit loss distribution
only if we let the number of loans n go to in�nity, as in Lucas et al. (2001).
We will follow this approach as it allows us to establish explicit links between
default correlations and credit loss tail thickness.2 De�ne

C = lim
n!1

Cn; (5)

where the limit is assumed to exist almost surely. As is shown in Theorem 1,
C only depends on the systematic risk factor f and not on the idiosyncratic
risk factors "j. Using the formulation in (5) rather than (4), we therefore limit

2The introduction of stochastic recovery rates can also make the credit loss distribution
continuous for �nite n, but this would not provide the desired insight into the relation
between default correlations and credit loss tail behavior. Indeed, the extreme tail behavior
of portfolio credit losses would be directly equal to the assumed tail behavior for the
recovery rates.
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the number of stochastic components considerably. This facilitates the study
of the tail behavior of credit losses. As was shown in Lucas et al. (2001),
empirically relevant quantiles of Cn, e.g., 99% or 99:9%, can be approximated
well by quantiles of C, provided the credit portfolio contains at least a few
hundred exposures. These values of n are quite small given the usually large
numbers of exposures in typical bank portfolios, such that this requirement
is usually met.

We now introduce our key assumptions on the factor model g(�; �) and the
risk factors f and "j. Purely for expositional purposes, we again use more
restrictive assumptions than necessary. In the discussion of the assumptions,
we point out which conditions can be relaxed. Some of these relaxations are
worked out in later sections. We use the notation �F (x) = 1 � F (x) where
F (�) is a distribution function.

Assumption 1 (i) f"jg
1
j=1 is an i.i.d. sequence that is independent of f .

(ii) g(f; "j) is monotonically increasing in f and "j for all j. Moreover, let

S, F , and E denote the supports of Sj, f , and "j, respectively. Then for all

s 2 S and f 2 F an inverse function "(f; s) 2 E exists, and for all s 2 S
and " 2 E an inverse function f(s; ") 2 F exists, so that

s = g(f(s; "); ") = g(f; "(f; s)): (6)

(iii) The supports E of the "j and F of f are unbounded to the right and left,

respectively.

Part (i) of the assumption is standard. The identically distributed re-
quirement is less crucial and will be relaxed in the next section. Part (ii) of
Assumption 1 requires the factor model to be increasing in the risk factors.
The focus on increasing g(�) is not very restrictive per se. For example, the
speci�cation of CreditRisk+ (Sj = "j=(�f)) does not satisfy the assumption
directly, as it is decreasing in f . If this is the case, however, we can usu-
ally easily transform variables and consider g( ~f; "j) with ~f = �f , which is
increasing in ~f . The additional condition in part (ii) requires invertibility
of the factor model g(�). The inverses must be well de�ned and lie in the
appropriate supports of the original risk factors. In particular, we only con-
sider factor models from which we can always uniquely retrieve an element
from the vector (Sj; f; "j) given the other two elements. Note that both the
linear CreditMetrics model (Sj = �f + "j with Sj, f , and "j in R) and the
multiplicative CreditRisk+ model (Sj = "j=(�f) with Sj, f , and "j in R

+)
satisfy this criterion. Note that (ii) also implies that any realization of f
can be o�set by a suitable realization of "j to produce the same value of Sj.
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This excludes for example `unbalanced' factor models as Sj = exp(f) + "j
with Sj; f; "j 2 R. Here, g(�) is increasing in both its arguments, but for
s < " the inverse f(s; ") is not properly de�ned and (6) cannot be met. Part
(iii) states that the supports of f and the "j are unbounded from below and
above, respectively. This assumption is not crucial, but greatly simpli�es
subsequent notation. Again, there is no loss in generality as situations with
a bounded support can be accommodated by an appropriate change of vari-
ables. Combining parts (ii) and (iii), it follows that if "j is pushed to the
upper end of its support (+1), f has to be pushed to its lower end (�1)
in order to keep the value of the surplus variable Sj constant. The intuition
in economic terms is as follows. Consider the borderline case where a �rm j

is almost pushed into bankruptcy. If common risk factors (f), e.g., the state
of the business cycle, are extremely adverse, then �rm speci�c conditions
("j) have to be extremely favorable to prevent the �rm from going bankrupt.
We thus exclude bankruptcies that are solely induced by adverse values of f
regardless of �rm speci�c risk "j (or vice versa).

A second set of assumptions constrains the di�erent types of tail be-
haviour for the risk factors f and "j whose impact on the aggregate credit
risk tail will be investigated. In studying the tail behaviour of aggregate
credit losses we will either start from polynomially declining tails for the
underlying risk components (Assumption 2A) or exponentially declining risk
component tails (Assumption 2B). Let F (�) and G(�) denote the (almost
everywhere continuously di�erentiable) distribution functions of the "j and
f , respectively.

Assumption 2A (i) F (�) has a right-hand tail expansion of the form

�F (") = "��1 � L1("); (7)

where L1(") is a slowly varying function at in�nity, meaning that

lim
""1

L1(t")=L1(") = 1 8 t > 0:

In addition, G(�) has a left-hand tail expansion of the form

G(f) = (�f)��1 � L2(�f); (8)

with L2(�) a slowly varying function for f ! �1.

(ii) lim""1 ln jf(s�; ")j= ln j"j =: �1, with 0 < j�1j <1.

Assumption 2B (i) As opposed to Assumption 2A, the right-hand tail ex-
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pansion of F (�) has the form

�F (") = "��1 � exp (�3"
�2(1 + o(1))) � L1("); (9)

with �3 6= 0 and �2 6= 0. Similarly, the left-hand tail expansion of G(�) has
the form

G(f) = (�f)��1 � exp (�3(�f)
�2(1 + o(1))) � L2(�f); (10)

with �3 6= 0 and �2 6= 0.
(ii) lim""1(�f(s

�; "))�2="�2 =: �2, with 0 < j�2j <1.

Assumptions 2A and 2B place further restrictions on the stochastic be-
havior of f and "j and on the factor model g(�; �). Assumption 2A states
that f and "j have polynomial left-hand and right-hand tails, respectively.
Note that we only make assumptions about the extreme tail behavior of these
random variables. By contrast, both CreditMetrics and CreditRisk+ make
much more restrictive assumptions on the complete stochastic behavior of
the risk factors. Using part (i) of Assumption 2A, we allow for any tail shape
that lies in the domain of attraction of a Fr�echet (or a Weibull) law, see Em-
brechts et al. (1997). An example of this is a distribution with polynomial
tails, e.g., the Student t distribution. Part (ii) of Assumption 2A further
limits the number of allowed factor model speci�cations. For example the
speci�cation g(f; "j) = "j exp(f) is not allowed as it is not balanced in f and
"j. Again, such unbalancedness can usually be resolved by an appropriate
change of variables.

Assumption 2B resembles Assumption 2A except for the fact that we now
have exponential rather than polynomial tails. Though our formulation is
not as general as that in Theorem 3.3.26 of Embrechts et al. (1997), we
still cover a wide range of distributions that are commonly used in empir-
ical exercises, e.g., the normal and the Gamma distributions of CreditMet-
rics and CreditRisk+, respectively. Part (ii) of Assumption 2B is a mod-
i�ed balancedness condition, similar to part (ii) of Assumption 2A. This
is seen more directly if we write down the implication of this condition as
lim""1 ln jf(s�; ")j= ln(") = �2=�2. Whereas Assumption 2A requires this
limit to exist and be unequal to zero, Assumption 2B only allows one partic-
ular value for this limit, namely �2=�2. Assumptions 2A and 2B are easily
applied to the standard credit risk models as well as to straightforward exten-
sions of these. We do this later in the paper when we give explicit examples.

The following theorem now follows directly from Williams (1991), Theo-
rem 12.13.
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Theorem 1 Given Assumption 1, the random variable C is well de�ned in

(5) as an a.s. limit and satis�es

C = P [Sj < s�j f ] : (11)

Note that C is still stochastic due to its dependence on f . We now study the
extreme tail behavior of portfolio credit losses C. The following theorems
are proved in the Appendix.

Theorem 2 Let H be the distribution function of C. Given Assumptions 1

and 2A, H lies in the maximum domain of attraction of the Weibull distri-

bution with tail index

� = �1�1=�1;

which means that we can write H(c) with a slowly varying function at in�nity

L as

H(c) = (1� c)� � L(1=(1� c)); (12)

as c is tending to the maximum credit loss 1.

Theorem 2 directly reveals the extreme tail behavior of credit losses. In
particular, the fact that C lies in the domain of attraction of the Weibull
distribution implies that the distributionH(�) of C has the form given in (12).
The theorem further reveals how the tail index of the credit loss distribution
(�) depends on the tail indices of the latent factors (f and "j) and on the
factor model g(�). The dependence on the factor model enters through �1,
which is controlled by the balancedness condition (ii) in Assumption 2A. If
the tails of f and "j are of the Fr�echet or Weibull type, see Embrechts et al.
(1997), the theorem shows that the tail index of the credit loss distribution
is directly proportional to the ratio of the tail index of f to that of "j. We
illustrate this further below using Student t distributions, which lie in the
maximum domain of attraction of the Fr�echet distribution (with the tail
index equal to the degrees of freedom parameter). The tail index of C can
thus be very low if �1 is much higher than �1. Put di�erently, the tails of
the credit loss distribution may be very fat if the idiosyncratic risk factor
is much lighter tailed than the systematic risk factor. This makes economic
sense. If f has fatter tails than "j, extreme realizations of Sj occur more often
due to bad realizations of f than of "j. Consequently, it is more likely that
large portions of the portfolio default simultaneously (due to common risk)
rather than individually (due to �rm-speci�c risk). Because of this clustering
e�ect, extreme realizations of portfolio credit losses also become more likely,
resulting in a slower rate of tail decay (i.e., fatter tails).

We obtain a similar theorem for the case of exponential tails.
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Theorem 3 Given Assumptions 1 and 2B, H lies in the maximum domain

of attraction of the Weibull distribution with tail index

� = �2�3=�3:

An interesting implication of this theorem is that the tail index of credit
losses can be �nite even if the underlying risk factors f and "j are both thin-
tailed, see also Lucas et al. (2001) and Figure 1 below. We consider two ex-
amples: the CreditMetrics model of J.P. Morgan (1999), and the CreditRisk+

model of CreditSuisse. First, consider the linear factor model of CreditMet-
rics, Sj = �f + "j, with f and "j both standard normally distributed and
� > 0. As f and "j are normal, we have �1 = �1 = 1, �2 = �2 = 2, and
�3 = �3 = �1=2. Also note that f(s; ") = (s� ")=� and consequently that

�2 = lim
""1

("� s�)2=�2

"2
= ��2;

and � = ��2. This con�rms the results in Lucas et al. (2001). A higher
systematic risk component (i.e., higher �) transforms into a lower tail index
of C. This is intuitively clear: more systematic risk results in fatter tails
for portfolio credit losses. For CreditRisk+ we have the speci�cation Sj =
"j=(��f), where "j is standard exponentially distributed, and (�f) has a
Gamma distribution with parameters 1 and 2. We have �1 = 0, �2 = 1,
�3 = �1 for the exponential, and �1 = 1 � 1, �2 = 1, �3 = �1=2 for the
Gamma, see Abramowitz and Stegun (1970) equation 6.5.32. Furthermore,
we have f(s; ") = "=(��s), such that

�2 = lim
""1

�f(s�; ")=" = (�s�)�1:

Therefore, following Theorem 3 the tail index of portfolio credit losses is
given by � = (�s�2)

�1. Again we see that a more dominant common risk
component (higher �) results in a lower rate of tail decline. In contrast
to the CreditMetrics model, however, we also see that the portfolio quality
enters the tail index. This quality is measured by the magnitude of the
default threshold s�. Portfolios with a higher quality level will have a lower
value for s�, and thus a higher tail index. In Section 4 we prove that also
the CreditMetrics model is a�ected by portfolio quality. In contrast to the
CreditRisk+ speci�cation where the e�ect is of �rst-order, portfolio quality
only has a second-order e�ect in the CreditMetrics speci�cation (i.e., only
directly a�ects the slowly varying function and not the tail index). This
provides yet another di�erence between the two modeling frameworks, see
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also Gordy (2000).
To fully grasp the analytic results in Theorems 2 and 3, we present some

credit loss densities for risk factor distributions with di�erent tail indices like
in the theorems above. We consider the linear factor model of CreditMetrics,
slightly reparameterized as

Sj = �(1� 2=�1)
1=2f + [(1� �2)(1� 2=�1)]

1=2"j; (13)

with � = 0:15. Results are similar for other values of � between 0 and 1. We
further assume that f and "j follow a Student t distribution with degrees of
freedom �1 and �1, respectively. Note that (1�2=�1)

1=2f and (1�2=�1)
1=2"j

now both have zero mean and unit variance. We set the probability of default
to 1%. The resulting credit loss densities are given in Figure 1 over various
relevant regions of the domain C 2 [0; 1]. If �1; �1 <1, Theorem 2 applies,
such that the tail index of C is given by � = �1=�1. If �1; �1 " 1, we
obtain normally distributed risk factors and the tail index of C is given by
� = (1� �2)=�2 as derived earlier.

The �rst thing to note in Figure 1 are the middle plots. These reveal the
typical shape of credit loss distributions known in the literature. Due to the
common dependence on f , defaults are correlated. This in turn gives rise to
a portfolio credit loss density that is right-skewed and has a fat right-hand
tail. More peculiar are the steeply decreasing and increasing shapes of the
density in the extreme left-hand (see left-hand plots) and right-hand tail (see
right-hand plots), respectively. These characteristics only show up in the
plots if either the density of f or "j has polynomial rather than exponential
tails. This is due to the speci�c value of � chosen. If �2 > 0:5, similar
patters can show up if both tails are of the exponential type, e.g., normal.
As the assumption of thin tails for f and "j has been predominant in the
literature, it is not surprising that these unconventional shapes of the credit
loss density have not been observed earlier. The intuition for this behaviour
of the densities is as follows. Situations in which all �rms default or no �rm
defaults will almost always correspond to extremely negative and positive
realisations, respectively, of the systematic factor f . These situations are
more likely to occur if the distribution of f has fat tails, and if it is less likely
that the realisation of the idiosyncratic risk factor "j o�sets the realisation
of f , i.e., if "j is thinner tailed.

The phenomena displayed in Figure 1 can also be illustrated using the
analytical expression of the credit loss density. From the proof of Theorem 2
in the Appendix, it follows that for a linear factor model Sj = af + b"j, this
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Figure 1: Credit loss distributions with di�erent tail indices
The �gure contains the credit loss densities for a homogeneous portfolio. The
underlying factor model is linear, g(f; "j) = a � f + b � "j , with a = �(1� 2=�1)

1=2,
b = (1��2)1=2(1�2=�1)

1=2, and � = 0:15. All "j are identically distributed. The
risk factors f and "j both follow a standardized Student t distribution with �1 and
�1 degrees of freedom, respectively. The default probability is 1%. The left-hand
plots display the credit portfolio loss density's behavior in the extreme left-hand
tail. The middle plots display the behavior in the middle of the support, and
the right-hand plots give the extreme right-hand tail behavior. Note the di�erent
scaling of the axes, especially the horizontal axis in the left-hand plots and the
vertical axis in the right-hand plots.

density H 0(c) has the form

H 0(c) =
b

a
�
G0
�
s�

a
� b

a
F�1(c)

�
F 0 (F�1(c))

; (14)

where F 0, G0, and H 0 are the derivatives of the distribution functions F ,
G, and H, respectively. If the tails of f are thinner than those of "j, the
numerator tends faster to zero for c tending to either 0 or 1 (and thus F�1(�)
tending to �1 or +1). By contrast, if the tails of "j are thinner, the
denominator tends to zero at a faster rate. As a consequence, the density
diverges to 1 for both c # 0 and c " 1. If both tails are equally thin, e.g.,
normal, (14) shows that what matters at the extremes of the support is the
size of b=a. For example, for polynomial tails of f and "j that are equally
fat, it follows from (14) that the density tends to a non-zero limit at the edge
of its support if jbj < jaj.

The results so far also have a practical edge for credit risk management.
The likelihood of extreme credit losses is increased if the common risk factor
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has fatter tails than the idiosyncratic risk factor. As it can be di�cult to
reliably estimate the tail-fatness of f and "j from the empirical data that
is typically available, a more conservative approach than that based on nor-
mally distributed risk factors can be warranted for prudent risk manage-
ment. Especially in the upper quantiles of the credit loss distribution, more
probability mass might be concentrated than suggested by the normality as-
sumption for common and idiosyncratic risk (see also the numerical results
in Lucas et al. (2001)).

3 Heterogeneous bond portfolios

So far we have concentrated on a homogeneous portfolio and a one-factor
model. We now extend the results to a heterogeneous portfolio. For sim-
plicity, we focus on a portfolio consisting of m homogeneous groups. We use
i as the index of group i, i = 1; : : : ; m. Each group consists of ni = ni(n)
companies with

P
m

i=1 ni = n. Notice also that for each company j there
exists exactly one i = ij such that this company belongs to group i. We now
have a company/group speci�c factor model, such that for all j = 1; : : : ; n it
holds that

Sj = gi(f; "j);

for some i = 1; : : : ; m. We modify the assumptions from Section 2 accord-
ingly.

Assumption 10 The same as Assumption 1, except for the following modi-

�cations:

(i) The "j are still independent and are within each group identically dis-

tributed. The common distribution function in group i is denoted by Fi.

(ii) The factor models gi(f; ") are increasing in both arguments and the in-

verse functions fi(s; ") and "i(f; s) exist and are well de�ned for all s; "; f in

their relevant supports.

(iii) Unchanged.

Assumption 2A0 Similar to Assumption 2A, except:

(i) Each Fi has a right-hand tail expansion as in (7), but with parameter �1i.

(ii) lim""1 ln jf�(s
�
�
; ")j= ln j"j =: �1�, with 0 < j�1�j < 1, and � as de�ned in

Assumption 3 further below.

Assumption 2B0 Similar to Assumption 2B, except:

(i) Each Fi has a right-hand tail expansion as in (7), but with parameters

�1i, �2i, and �3i.
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(ii) lim""1(�f�(s
�
�
; "))�2="�2� =: �2�, with 0 < j�2�j < 1, and � as de�ned in

Assumption 3 further below.

The main relaxations with respect to the previous set of assumptions
concern the group-speci�c factor models and distributions of the idiosyncratic
risk components. Also note that the credit quality as measured by s�

i
may

di�er accross groups. In order to avoid uninteresting pathological situations
in the present context we also make the assumption that the relative sizes
of the groups �i(n) =

ni(n)

n
eventually stabilize. That is �i = lim!1 �i(n) is

assumed to exist for all i. The assertion of Theorem 1 now takes a di�erent
form, which can be proved similarly, with only a slightly more delicate way of
reasoning. Di�erent from (11) we have the following formulation of portfolio
credit losses:

C =
mX
i=1

�i � P [gi(f; "i) < s�
i
jf ] =

mX
i=1

�i � Fi("i(f; s
�
i
)); (15)

where we have replaced the �rm index j of " by the group index i. For each
�rm in group i, "i follows the distribution Fi, and the "i are independent. The
constants s�

i
determine the default probability in group i. As said before, the

constants �i denote the (asymptotic) relative size of group i. Alternatively,
one can allow for di�erent loan sizes or recovery rates between groups and
incorporate these in �i. This does not a�ect the rate of tail decay, but may
impact the upper endpoint of the support of C. For simplicity, we do not
consider this case here.

Assumption 10 on the factor models all being increasing in f is more re-
strictive for heterogeneous portfolios than for homogeneous portfolios. In
particular, it is no longer always possible to meet this assumption by an ap-
propriate change of variables. As an example, consider two groups where one
has a factor model that is increasing in f , while the other factor model is
decreasing in f . By changing variables from f to ~f to make the latter model
increasing in ~f , one makes the former model decreasing in ~f . Such situa-
tions are, however, of limited practical interest as they imply both positive
and negative correlation between companies' surplus variables and macroe-
conomic conditions for signi�cant parts of the portfolio.

As can be seen from (15), only the groups with a positive �i contribute
to the asymptotic credit loss. We now discard all bonds in group i0 for which
�i0 = 0. The resulting portfolio now contains n0 = n � ni0(n) bonds and

the relative sizes of the groups become �i0(n
0) = ni(n

0)

n0
. It is however fairly

easy to see that still limn0!1 �i0(n
0) = �i. Therefore equation (15) is still

valid for the smaller portfolio, since for the original portfolio the i0-th group
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contributed nothing to the asymptotic credit loss. Henceforth we assume a
portfolio for which all �is are strictly positive.

Parts (ii) of Assumptions 2A0 and 2B0 mention an index �, which is de�ned
in the following assumption.

Assumption 3 There exists an index � 2 f1; : : : ; mg and a constant K such

that
1� Fi("i(f; s

�
i
))

1� F�("�(f; s�� ))
� K (16)

for all i = 1; : : : ; m and all f su�ciently large and negative.

This assumption requires that for extreme common risk factor realiza-
tions f one of the idiosyncratic tails dominates the other tails. The tail
behavior is not checked explicitly for f , but by feeding the inverse function
"i(f; s

�
i
) through the idiosyncratic distribution Fi for group i. Parts (ii) of

Assumptions 2A0 and 2B0 now only need to be satis�ed for group � rather
than for every group i = 1; : : : ; m.

We have the following theorem on the tail index of credit losses for het-
erogeneous portfolios. The theorem is proved in the Appendix.

Theorem 4 Let Assumptions 10, 2A0, and 3 be satis�ed, then H (the cdf of

C) lies in the maximum domain of attraction of a Weibull distribution with

tail index

� = �1��1=�1�:

We obtain a similar theorem for exponential tails.

Theorem 5 Let Assumptions 10, 2B0, and 3 be satis�ed, then H lies in the

maximum domain of attraction of a Weibull distribution with tail index

� = �2��3=�3�:

It is easy to see that Theorems 4 and 5 generalize Theorems 2 and 3. An
important implication of Theorems 4 and 5 is that in order to characterize
the extreme tail behavior of portfolio credit losses, we do not have to take
the complete portfolio into account. Only segment � is important to compute
the tail index. In fact, the tail index is the same for a heterogeneous portfolio
compared to a homogeneous portfolio of the same size consisting of loans to
group � only. This also follows from the fact that the size of the investment
in group � (��), does not enter the expression for the tail index. To provide
some further insight, we focus on the de�nition of �. For concreteness, assume
a factor model that is identical accross groups, gi(f; ") � g(f; "), whereas
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the distributions of the idiosyncratic risk factors are still allowed to follow
di�erent distributions accross groups. According to (16), � then characterizes
the group that has the thickest right-hand tails for the idiosyncratic risk
component. So in the context of a heterogeneous portfolio, the group with
the most heavy-tailed idiosyncratic risk factor dictates portfolio credit loss
tail behavior. In particular, the heavier this tail compared to the tail of f ,
the lighter the tail of portfolio credit losses C. The intuition for this result
follows from the limiting approach taken. Idiosyncratic risk is diversi�able
and therefore not incorporated in C, which only depends on common risk
f . If a part of the portfolio has a strong idiosyncratic risk component, this
part of the portfolio is less likely to be pushed into default by movements in
common risk only. In the extreme right-hand tail of credit losses, all bonds
in the portfolio have to default due to adverse common risk realizations only.
As argued, the most problematic cases in this respect are precisely the bonds
in group �, which are more easily pushed into default by idiosyncratic risk
compared to common risk. Therefore, this group determines the tail behavior
near the maximum credit loss.

4 Second order tail expansion

In the previous sections, we showed that portfolio quality only determined
the tail index of credit losses in the CreditRisk+, and not in the CreditMetrics
framework. We also showed that heterogeneous portfolios show the same tail
index as a homogeneous portfolio consisting only of loans to a particular
segment from the heterogeneous portfolio. In the present section, we again
focus on a homogeneous portfolio and the linear factor model Sj = �f +
(1 � �2)1=2"j with Gaussian risk factors. We aim to show that portfolio
quality also a�ects the tail shape in the CreditMetrics framework, but that
this is a second-order e�ect. By contrast, we proved in Section 2 that in the
CreditRisk+ speci�cation portfolio quality has a �rst-order impact.

In order to study the second-order tail expansion, we derive an expression
for the slowly varying function L(�) in (12) that is correct up to �rst order.
In the Appendix, we prove the following theorem.

Theorem 6 Given the homogeneous Gaussian linear factor model setting

Sj = �f +
p
1� �2 "j;

for � 2 [�1; 1], the distribution of C has a tail expansion for c " 1 of the

form

P [C > c] = (1� c)(1��
2)=�2 � L(1=(1� c)); (17)
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where L is a function that is slowly varying at in�nity and that sati�es

L(x) =
�(ln(x2))

1�3�2

2�2p
1� �2

exp

"
�
(s�)2

2�2
+
s�
p
ln(x2)

p
1� �2

2�2

#
� (1 + o(1)): (18)

The theorem gives a more explicit form of the slowly varying function
L(�) in the tail expansion. Gathering the components of L(x) that depend
on x, we have

L(x) / exp

"
1� 3�2

2�2
ln(ln(x2)) +

s�
p
ln(x2)

p
1� �2

2�2

#
: (19)

The dominant term in L(x) as a function of x " 1 is therefore

exp

"
s�
p
ln(x2)

p
1� �2

2�2

#
: (20)

First note that s� = ��1(p) for a default probability p. For p less than
50%, the default threshold s� will be negative. Moreover, s� is increasing
in p. If s� < 0, (20) is decreasing in x, because �2 � 1. The smaller the
default probability p, the faster the rate of decline of (20) in x. A higher
level of portfolio quality, i.e., a lower p and more negative s�, increases the
rate of tail decline for credit losses. Therefore, less far out in the credit loss
tail, tails may appear thinner than suggested by the result in Theorem 3.
This e�ect, however, is only of second order. In the extreme tail, the slowly
varying function is again dominated by the factor (1�c)(1��

2)=�2 in (17). This
contrasts with the �nding for the CreditRisk+ model in Section 2, where s�

entered the tail index of credit losses directly.

5 Concluding remarks

In this paper, we followed a limiting approach to determining the distribution
of aggregate portfolio credit risk. Using a general (nonlinear) latent factor
model, we decomposed credit risk into a systematic and an idiosyncratic risk
factor. We allowed for di�erent tail behavior of both risk components. With
these ingredients, we proved that under a wide variety of circumstances, the
distribution of portfolio credit losses exhibits heavy tails.

For a homogeneous portfolio and a single factor, we obtained explicit ex-
pressions linking the tail index of portfolio credit losses directly to the factor
model structure and the tail indices of systematic and idiosyncratic risk. The
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results were illustrated by computing the tail decay rate of aggregate credit
losses for two of the most common credit risk portfolio models available in the
literature. This revealed a striking di�erence: the portfolio quality has a �rst-
order e�ect on the rate of tail decline under the speci�cation of CreditRisk+,
but not under that of CreditMetrics.

Using the explicit expressions for the tail index of credit losses, we showed
that if the idiosyncratic risk has much thinner tails than the systematic risk,
the tail index of portfolio credit losses is very small. In particular, the density
of credit losses may then be increasing towards the edges of its support. The
increasing part of the density may already start before quantiles of empirical
interest, e.g., 99%. This means that extreme credit losses may show up with
a much larger probability than suspected on the basis of a factor model with
both Gaussian systematic and idiosyncratic risk.

We generalized our �ndings to the case of heterogeneous portfolios allow-
ing for di�erent distributions of company speci�c risk factors and di�erent
default probabilities and loan exposures. The results turned out to be very
similar. Credit loss tails are dictated by that part of the portfolio that has
the thickest idiosyncratic tails. The thicker these tails, the thinner the tail
of portfolio credit losses. In particular, the credit loss tail shape of a hetero-
geneous portfolio is the same as that of a homogeneous portfolio consisting
solely of the bonds with the thickest idiosyncratic tails.

Finally, we derived a second order result on tail behavior for the Credit-
Metrics model. We showed that portfolio quality has an e�ect on the rate of
tail decline of credit losses, but that this is only a second-order e�ect. The
e�ect may be important, though, if one is interested in quantiles less far out
in the tails.

Appendix: Proofs

Proof of Theorem 2: First note that under Assumption 1, "(f; s) is decreasing in f .
Moreover, the inverse of "(f; s) with respect to f is given by f(s; "). From (11), we have

C = P ["j < "(f; s�)jf ] = F ["(f; s�)] ; (A1)

where the inequality holds because of Assumption 1(ii). Therefore,

P [C > c] = P ["(f; s�) > F�1(c)]

= P [f < f(s�; F�1(c))]

= G[f(s�; F�1(c))]; (A2)
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where the inequality is reversed because "(f; s�) is decreasing in f . Using the substitution
" = F�1(c), we obtain

lim
c"1

lnP [C > c]

ln[1� c]
= lim

""1

lnG[f(s�; ")]

ln[1� F (")]
: (A3)

The importance of this result lies in the fact that it allows us to compute the tail index
of the distribution of C. From Corollary 3.3.13 of Embrechts, Kl�uppelberg, and Mikosch
(1997) and de l'Hôpital's rule, it follows that if (A3) equals � 6= 0, then C lies in the
maximal domain of attraction of a Weibull law with tail index �.

Using the tail conditions in Assumption 2A and the result in (A3), we obtain

lim
c"1

ln[P (C > c)]

ln[1� c]
= lim

""1

ln [(�f(s�; "))��1 � L2(�f(s�; "))]

ln ["��1 � L1(")]

= �1�1=�1;

where �1 was de�ned in Assumption 2A(ii). As mentioned, the result now follows from
Corollary 3.3.13 of Embrechts, Kl�uppelberg, and Mikosch (1997) by applying the rule of
de l'Hôpital.

Proof of Theorem 3: Using (A3) and Assumption 2B, we have

lim
c"1

ln[P (C > c)]

ln[1� c]
= lim

""1

�3(�f(s�; "))�2

�3"�2
=

�3�2

�3
;

with �2 as de�ned in Assumption 2B(ii). The result again follows from Corollary 3.3.13 of
Embrechts, Kl�uppelberg, and Mikosch (1997).

Proof of Theorem 4: Note that

P [C > c] = P

"
mX
i=1

�i[1� Fi("i(f; s
�
i ))] < 1� c

#

= P

"
[1� F�("�(f; s

�
� ))]

 
mX
i=1

�i
[1� Fi("(f; s

�
i ))]

[1� F�("�(f; s�� ))]

!
< 1� c

#
: (A4)

Also note that using Assumption 3,

lim
c"1

lnP [(1� F�("�(f; s
�
� )))K

Pm
i=1 �i < 1� c]

ln[1� c]
�

lim
c"1

lnP
h
[1� F�("�(f; s

�
� ))]

�Pm
i=1 �i

[1�Fi("(f;s
�

i ))]

[1�F�("�(f;s�� ))]

�
< 1� c

i
ln[1� c]

�

lim
c"1

lnP [(1� F�("�(f; s
�
� )))�� < 1� c]

ln[1� c]
: (A5)

Combining this with (A4) and the fact that ln[�� � (1� c)]= ln[1� c] tends to 1 for �� > 0
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and c " 1, we have

lim
c"1

lnP [C > c]

ln[1� c]
= lim

c"1

lnP [F�("�(f; s
�
� )) > c]

ln[1� c]
:

The proof now follows along the lines of that of Theorem 2 for a homogeneous portfolio.

Proof of Theorem 5: Similar to the proof of Theorem 4.

Proof of Theorem 6: Using the fact that for x # �1 we have �(x) = �(x)=jxj(1 +
O(jxj�2)), we obtain for � # 0 that

P [C > 1� �] = �

 
s+��1(�)

p
1� �2

�

!

�

�

�
s+��1(�)

p
1��2

�

�
js+��1(�)

p
1��2j

�

= exp

 
�

s2

2�2
�

s��1(�)
p
1� �2

2�2

!"
�
�
��1(�)

�
j��1(�)j

# 1��2

�2 j��1(�)j(1��2)=�2���� s+��1(�)
p

1��2

�

����
� exp

 
�

s2

2�2
�

s��1(�)
p
1� �2

2�2

!
[�]

1��2

�2
j��1(�)j(1��2)=�2

js+��1(�)
p

1��2j

�

: (A6)

Let �̂(x) = �(x)=jxj, then

�̂�1(�) =
� exp[� 1

2
`(1=(2��2))]p
2��2

;

with `(�) the Lambert-W function, i.e., the solution to

`(x) � exp[`(x)] = x:

For large positive x, we have asymptotically that

`(x) = ln(x) � ln(ln(x)) + o(ln(ln(x)));

such that

�̂�1(�)
�#0
= �

p
� ln(2��2): (A7)

Substituting ��1(�) in (A6) by (A7), we obtain the desired result.
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