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Summary: With the aim to mitigate the possible problem of negativity in the estimation of
the conditional density function, we introduce a so-called re-weighted Nadaraya-Watson (RNW)
estimator. The proposed RNW estimator is constructed by a slight modification of the well-
known Nadaraya-Watson smoother. Because the estimator is explicitly defined in terms of the
data, its practical implementation is quite simple. With a detailed asymptotic analysis, we
demonstrate that the RN'W smoother preserves the superior large-sample bias property of the
local linear smoother of the conditional density proposed by Fan, Yao and Tong (1996). As a
matter of independent statistical interest, the limit distribution of the RNW estimator is also
derived.
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1 Introduction

Let {(X;,Y;);4 > 1} be a R? x R valued strictly stationary process with a common prob-
ability density function f(.,.) as (X,Y). Also assume that X admits a marginal density
g(.). Suppose we are given n observations of (X,Y’) denoted by (X1,Y1),..., (X, Ys).

Of interest is estimating the conditional density of Y given X = z, i.e.

f(z,y)
g(x)

where ¢(.) is assumed positive at . The conditional density can be a useful statistical

fyle) =

tool in several ways. The most obvious need for estimating conditional densities arises

when exploring relationships between a response and potential covariates.

A motivating example: Consider the bivariate data analysed by Azzalini and Bowman
(1990) on the waiting time between the starts of successive eruptions and the duration
of the subsequent eruption for the Old Faithful geyser in Yellowstone National Park,
Wyoming. The data were collected from August 1st until August 15th, 1985. There are
a total of 299 observations. The times are measured in minutes. In Figure 1 we give a
scatter plot of the data. Note that both variables are transformed to have mean zero and
variance one. From the plot it is clear that when there has been a relatively short waiting
time between eruptions, the duration of the next eruption is relatively long. But, when
the waiting time between eruptions is longer than about -0.17 (or 70 minutes in the scale
of the untransformed data), the duration of the next eruption is more or less a mixture of
short and long durations. This interesting observation can nicely be summarized by the
conditional density.

Figure 2 gives the estimated conditional density. Notice that when the waiting time to
eruption is more than -0.17, the conditional density of eruption duration conditional on
waiting time to eruption is bimodal. On the other hand, for waiting times below -0.17, the
conditional density is unimodal. To visually appreciate how the shape of the conditional
density evolves across the various values of the waiting time to eruption, the estimated
conditional densities in Figure 2 are stacked side-by-side.

In addition to serving as data exploratory or visualization tool, the conditional density

can also be useful in time series prediction. Let ¢,(Z;|€2;) denote the data-generating
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Figure 1: Duration of eruption plotted against waiting time to eruption.
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Figure 2: Conditional density estimates of eruption duration conditional on the waiting

time to eruption.

process of a time series {Z;} € R where Q; contains all relevant variables that explain Z;.
Often the conditioning variables are taken to be past values of Z;,i.e. 3y = Z; 1,..., Zt 1,
where m > 1. Suppose data are available on {Z;}: Z1,...,Zy and we like to predict
Zn+n (H > 1). In tackling this problem, by far the most common approach is to model
the dependence of future observations on the past by a parametric class of functions, i.e.
¢,(.|.) is assumed in advance to have a particular form; linear or nonlinear.

An ideal alternative to the parametric based prediction is the nonparametric estima-



tion of the conditional predictive density, i.e. fi(2]€%), and use it for prediction purposes.
Because the conditional predictive density itself is implied by a data generating process
(model) which is unknown, all the information needed to predict the future is summa-
rized in the conditional density without a need for specifying an approximating parametric
model. To simplify matters suppose that m = 1 and H = 1. Define X; = Z; and Y; = Z; 1
wheret = 1,..., N —1. Then the one-step ahead predictive conditional density of Zy; is
simply f(y|Xy). One can use an estimate of f(y|Xy), say f(y|Xy), in different ways. For
example, point-predictors such as the mean, the median, or the mode can be directly con-
structed from f(y|Xx). More importantly, the whole conditional density can be carefully
investigated for unique features that may otherwise been missed by single-point approx-
imations provided by point-predictors. One way of doing this is by reporting predictive
intervals (PI’s) that better convey the shape of the predictive conditional density (where
relevant information is summarized) as much as possible. For instance, Polonik and Yao
(2000) proposed a PI called maximum conditional density region (MCDR) that is defined
through the conditional predictive density. Because MCDR is constructed in such a way
that it reflects a possible multimodality and/or asymmetry of the predictive conditional
density, it is an efficient way of reporting PI’s when compared against other common ways
of PI reporting such as those based on quantiles. Hyndman (1996) and De Gooijer and
Gannoun (2000) also introduced methods of defining PI's via the predictive conditional
density that are capable of adapting to the shape of the underlying conditional density.

Having recognized the role conditional densities could play in data analysis or time
series prediction, the purpose of the present paper is to suggest a nonparametric estimator
of the conditional density, f(y|z). In particular, our suggestion adapts the conditional
distribution smoother of Hall, Wolff and Yao (1999). Cai (2001, 2002) also extended the
smoother of Hall et al. (1999) to contexts other than the distribution function mainly to
conditional quantiles.

The plan of the paper is as follows. In Section 2 we introduce the RNW conditional
density smoother. In the same section, two existing smoothers are also discussed so as
to motivate the proposed smoother. In Section 3 we study the asymptotic behaviour
of the suggested smoother. In Section 4, we provide proof of the main result of the

paper. Proofs for some auxiliary results are also given. We close in Section 5 with some



concluding remarks.

2 Methods

To help motivate the construction of the proposed conditional density estimator, we first
discuss two existing kernel-based smoothers of the conditional density. To simplify the

presentation, we shall consider the case of d = 1 throughout the paper.

2.1 Nadaraya-Watson (NW) and local linear

Let the kernel K(.) be a symmetric density function on R. Let h,, denote the bandwidth.

As h,, — 0, it is easy to see from a standard Taylor argument that
E{Kn, (y —Y)|X =z} ~ f(ylz)

where K, (.) = K(./hy)/hy,. This suggests that the estimation of f(y|x) can be viewed as
a nonparametric regression of K (y —Y;) on {X;}. In fact, it is based on this particular
idea that the well-known Nadaraya-Watson kernel smoother, here denoted by faw (y|z),
was first proposed by Rosenblatt (1969),

faw(ylz) = ZKhn (y = Yo)w'" (x) (1)

where

NW(.I') _ Khn<x _ Xl)
a > iy K (v — X))

Now suppose that the second derivative of f(y|z) exists. Also introduce the short-hand

notation,

otif (ylz)

(i.4) —

In a small neighborhood of a point z, we can approximate f(y|z) locally by a linear term

flylz) = flyle) + [V (yla)(z - )
= a+0b(z —x).



In this sense, one can also regard the estimation of f(y|z) as a nonparametric weighted
regression of K, (y —Y;) against (1, (X; — x)) using weights K}, (x — X;). Accordingly,
Fan et al. (1996) proposed the so-called local linear smoother of f(y|z). The local linear

estimator, here denoted by f1.;,(y|x), is defined as @(z), where (,b) minimize

> (Ko = ) = a = b(X, ~ 2)) Kz - X

i=1

Simple algebra (see Fan and Gijbels, 1996) shows that fLL(y]:U) can be expressed as

fLL (ylz) = ZKh y — Youwi " (z), (2)
where
W) — Kinl& = X {Top = (% = )Ty}

(Tn,OTn,Q - Tg,l)
with T, ; = Y0 | K, (v — Xi)(X; —2)? (j=0,1,2).

From the definition of the two estimators, we can see that while fyyw (y|2) approximates
f(y|x) locally by a constant, say a, frr (y|z) approximates f(y|x) locally by a linear model.
To appreciate why the extension of the local constant fitting to the local linear alternative
is interesting, we now compare the two estimators via their respective moments. When the
process {(X;,Y;)} is a-mixing (see Section 3 for a definition of a-mixing), Chen, Linton

and Robinson (2001) showed the approximate asymptotic bias and variance of Fw (y|z)

to be
. p 2| £(2,0 (0,2 9(95) (1,0
Bias(fuw(le)) = 5hib[120i) + FO0ule) + 225 1000 )
and
¢ —  k2(nh2 1 flylw)
Var(fuwlole)) = ki) L83 (®)

where ky = [ w?K(u)du and ko = [ K?(u)du. Similarly, under p-mixing, Fan et al. (1996)

gave approximate asymptotic bias and variance of f,,(y|z), i.c.

Bias(funlyle) = Skl [fE0(l) + FO9(la)]. (5)

Var(fro(ylz)) = Kj(nhy)™!




Some remarks about the above asymptotic bias and variance expressions are in order.
We see that the two variances are identical. Therefore, the difference in the asymptotic
mean squared errors (MSEs) between the two estimators depends only on their respective
biases. Note that the bias of fyw(y|z) has an extra term %f@o) (y|x). The bias of

faw(ylz) is large if either ]‘;’((;))| or [f19(y|z)| is large, but neither term appears in (5).

g

For example, when the design density is highly clustered, the term | ;((;)) | becomes large. Of

course, when g(x) is uniform the biases of the two estimators are the same. Thus, the fact
that fLL(y|:U) does not depend on the density of X makes it “design adaptive” (see Fan,
1992). Now, let’s consider | £ (y|x)|. For simplicity, suppose that the conditional density
of Y depends on z only through a location parameter, say the conditional mean (denoted
here by m(z)) and hence f(y|z) = f(y — m(z)). Then fOO(ylz) = m®(z) OO0 (y —
m(z)|r) where m(V(.) denotes the first derivative of m(.). In this set-up, when for example,
m(z) is linear m(x) = a+ bz with large coefficient b, the bias of fyw (y|z) gets large. But,
when m(x) is flat or has maximum or minimum, or inflection point at x, the biases of the
two estimators become the same.

The above theoretical comparisons suggest that the local linear estimator is more
attractive than the local constant alternative because of its better bias performance and
design adaptation. It is also possible to show that both in the interior and near the
boundary of the support of g(.), the asymptotic bias and the variance of fLL(y|x) are of
the same order of magnitude. On the other hand, fyw (y|z) has a bias of order h,, for
x in the boundary. So, at least in theory, the local linear smoother does not suffer from
boundary effects and hence does not require modifications at the boundaries.

Although the local linear approach is more efficient in the sense already discussed,
the smoother f,,(y|z) may give conditional density function estimates that are not con-
strained to be nonnegative. On the other hand, fNW(y]:C) always gives nonnegative esti-

mates. With these remarks in mind, we pass on to the suggestion of this paper.

2.2 RNW estimator

Now we introduce a simple kernel smoother called RNW which combines the better sides

of the LL and NW smoothers. In other words, while sharing the nice sampling properties



of the LL estimator, it is always nonnegative.

From least squares theory, it is easy to see that the local linear weights w!*(x) satisfy:
S (X — 2)wlE(2)=0. But for the Nadaraya-Watson weights w" (z), this moment
condition is not fulfilled. It is this observation that motivates the introduction of the

RNW smoother. Let 7;(z) denote probability like weights with properties that 7;(x) >0,
S Ti(z)=1, and
ZTZ i — ) Ky, (z — X;) = 0. (7)

Note how 7;(z) is introduced to force the Nadaraya-Watson weights w¥" (z) resemble

that of w/*(z) (see also Hall and Presnell, 1999). Following similar arguments as in
Owen (1988), we look for the unique solution of 7;(x) by maximizing Y.  log{r;(z)}

subject to the above constraints via Lagrange multipliers, i.e.

G = Zlog{n }—I—K)(l—ZTl )—n)\ZTl X; —x)Kp(z — X;).

Setting 0G/07;(x) = 0, one obtains 7;(z) = 1/{k + nA(X; — 2) K}, (z — X;)}. But, just

summing 0G/0T;(z) and employing (7), we can see that k = n. Hence,
mi(z) = n H1+ MNX; — 2) K, (z — X))} (8)

Now we show that |A| < O,(h,,). This is a useful intermediate result in studying the
asymptotic theory of the RNW smoother. Let v; = (X; — 2)Kj,, (x — X;). Then from (7)
and (8),

nt ivi{l + M} =
i=1
Rewriting this
0 = n S R+ A0) - )
i=1
i=1

> At 0P+ ) - (o

i=1



where 7 =n~' Y7 | v;. But notice that
|1+ Ao ™! = (1 + |\ max(|u]) ™"
Thus continuing,
0 = [A[(1+[A[Co)™ o — |54,

where 7y =n~' Y " 02

and Cy denotes the upper bound to v;. Hence,
IN (14 Co| ) o < |7y
This implies,
AN ——.
A< Uy — Ca|1]
Now, by standard Taylor expansion, it follows easily that

= Op(hi), and Vg = Op(hn)

Therefore, |A| < Op(hy,).

Definition and computation

The RNW smoother looks very much like that of NW smoother. The only difference is
that it involves re-weighting the NW weights by 7;(z). The role of 7;(z) is to adjust the
NW weights such that resulting conditional density estimates resemble that from the LL
smoother. We define the RNW conditional density estimator as follows
fRNW(y|95) = Z K, (y — Yo)wW () (9)
i=1

where

RNW(x> _ 7i(2) K, (v — X;)
> iy Ti(T) K, (7 — X))

From computational perspective the RNW smoother is easy to implement. To see

that, let’s substitute (8) into (7). Upon doing this, we obtain

— X-2)K(z-X)
0= Z 1+ AMXi — 2) Ky, (z — X;) 5%

i=1

8



Now notice that —g(.) is just the gradient with respect to A of
L(\) ==Y log{l+ \X; — 2) K, (z — X;)}.
i=1

So a zero of g(.) is a stationary point of L(.). The implication is that, in practice, one
can compute A as the unique minimizer of L(.). Our experience suggests that a line
search algorithm is a suitable choice to compute A\. The conditional densities displayed

in Section 1 are computed via the RNW smoother.

3 Asymptotic behaviour

In this section, our aim is to study the asymptotic properties of the RNW conditional
density estimator fryw (y|z) under a reasonably weak mixing condition. In particu-
lar, we consider the so-called strong mixing (a-mixing). This mixing condition ensures
an asymptotically vanishing memory of the strictly stationary process. The a-mixing
condition (Rosenblatt, 1956) is satisfied if there exists a sequence of nonnegative num-
bers called mixing coefficients (a(k)) such that limg ..o (k) = 0 and for any A in

I =o{(X1,Y1),..., (X, Yy)} and any set B in 755, = o{(Xpuqk, Ynik),---} , we have
|P(AN B) — P(A)P(B)| < a(k).

The a-mixing condition is weaker than many other mixing modes and dependence
conditions, for example, m-dependent, ¢-mixing, absolute regular, and p-mixing. Further,
it is known that a-mixing is fulfilled for many stochastic processes, including many time
series models. For example, under mild assumptions, linear AR and bilinear time series
models are strongly mixing, with mixing coefficients decaying exponentially. For more
details on mixing conditions, we refer the interested reader to, for example, Roussas and
Ioannides (1987).

Before we state the results of this paper, we first provide a list of regularity conditions
that are useful in asymptotic theory of RNW smoother. For brevity, theoretical results

will be given for z in the interior of the support of X.

A.1 The kernel function K(.) is a probability density function defined on the real

line such that:



(i) K is bounded and symmetric.
(i) |u|K(u) — 0 as |u] — 0.
(iil) [u?K(u)du < oco.
A.2 (i) The marginal density g(z) is continuous and is bounded from below by a
positive constant.
(ii) The function f(y|x) has bounded continuous second order derivative with
respect to x at (x,y).

A3 E(|Kn,(y — Y1) | X1 = u) < C < oo for some ¢ > 2, in a neighborhood of z.

A.4 The joint conditional density fiv; v;)x, x;) of (Y1,Y}) given (X1, X;) satisfies,

for all j > 1 and all values of arguments involved,
foryixax,) (W, yslu, v) < C < oo.

A5 Asn — oo, hy, — 0 and nh? — oo.

A.6 (i) There exists a sequence of positive integers {d,} such that d, — oo and
d,h? — 0.

(ii) For some constant 8, 0 < 6 < 1, and a > §, 3 2, j*a’(j) < 0.

A.7 Assume that there exists a sequence of positive integers, ¢, such that g, — oo,

¢n = o((nh2)?), and (n/h2)"?a(g,) — 0 as n — oo.

Remark 1: We provide a sufficient condition for the mixing coefficient a(n) to satisfy
Conditions A.6(ii) and A.7. Suppose that h, = An %% (0 < p < 1,A > 0), ¢, =
(nh2/logn)/? and a(n) = O(n~%) for some d > 0. Note that such choice of a(n)
encompasses a large class of strongly mixing random variables with mixing coefficients
decaying moderately fast. Then Condition A.6(ii) is satisfied for d > (6 + 1)/6 and
Condition A.7 is satisfied if d > (1 + p)/(1 — p). Hence, both conditions are satisfied if

a(n) =0(n %), and d>max{%g,6+71}.

10



Theorem: Assume that Conditions A.1-A.7 are satisfied and suppose that (nh8)'/? tends

to a constant c. Then, as n — oo, we have
(1)

Frnw(ylz) = f(yle) = Bias(fanw (ylz)) + Op((nhi)~%),

(i1)
2\1/2 | ¢ o F D k3 f (y|z)
(nhn)/ [fRNW(yl-T) f(y|x) Bms(fRNW(y|:c))] _)N(ng— f(x))

where

Bias(faxw(ylr) = kIO (l) + FO)(gla)]. (10)

Remark 2: From Theorem (i), it may be seen that to the first order, the RNW smoother
enjoys the same convergence rates as the LL smoother of Fan et al. (1996). However,

they employed the p-mixing condition which is stronger than the a-mixing.

Remark 3: From Theorem (ii), the asymptotic variance is given as

L fylT)

Var(faw(ol)) = Knkd) TS

Note that to the first order, frnw (y|z) matches both the bias and the variance of the
local linear smoother frr(y|z) (see (5)). Thus, the RNW smoother shares the better bias

behaviour of the LL smoother.

*
n’

Remark 4: If one chooses the optimal bandwidth, say A}, such that it minimizes the

asymptotic MSE of fryw (y|a), it is easy to see that
hy, = Bn~ '/

where B is a function of some unknowns such as f(y|z). In practice, B may be replaced by

consistent estimates in order to construct a feasible, approximately optimal bandwidth.

11



Unlike the n~'/5 rate familiar from the univariate density estimation, notice that h* ~

n~% as one needs to smooth in both = and y directions.

Remark 5: In defining all the kernel smoothers of the conditional density including the
RNW smoother, we have used the same bandwidth A,, in both x and y directions. But in
practice there may arise a need to have different levels of smoothing for each direction. For
example, in the eruption-waiting time illustration of Section 1, it is not advisable to have
the same bandwidth for both variables because they have different levels of variability. In
fact that was the reason for standardizing the variables before using a single bandwidth

for both.

Remark 6: As seen in Remark 4, the optimal bandwidth choice under the MSE criterion
gives h,, satisfying nhS — ¢ # 0. If nh8 — 0, the bias will be negligible, the asymptotic
MSE will be dominated by the variance and hence we are not in the optimal case. So
the imposed condition that (nh8)/? — ¢ # 0 allows us to give an asymptotic normality

theorem under optimal conditions of convergence.

4 Proofs

Throughout this section we re-denote fRNW(y|:C) by f (y|x). In the course of the proof
of the theorem, we also derive some auxiliary results which are necessary to establish the

theorem. All along this chapter C' will denote a generic constant.

4.1 Proof of the theorem

The first step in the proof is to get an arbitrary good approximation to the value of A.
Recall that |A| < O,(h,,). After replacing 7;(z) by (8), we Taylor expand (7) about A = 0.

This gives

hnk1g' (x)
k3g(x)

where k3 = [u?*K?(u)du. Now substituting (11) into (8),

+ 0p(hn) (11)

Ti(w) = n"bi(2)(1 + 0p(1)) (12)

12



where

bi(z) = (1 + %

Let m(z,y) = E{Kp,(y—Y)|X = x}. Also define ¢; = K, (x — X;) —m(X;,y). Using
(9) and (12),

(X; — 2) Ky, (x — Xi))_l.

; o Y e (X, y) = fyle)]bi(e) K, (x = X5)
fole) = fyle) = ST LR e - %) {1+0,0)]
= {(nh2)7V20 + L} H1 4 0,(1)} (13)
where
Jl = nn_1/22b 51Khn ZC—X),

Joo= n7 ) [m(Xi,y) = f(ylo))bi(z) K, (v — X;),  and

i=1
J3 = TL_IZb Khnl‘— )

It is easy to see that m(z,y) = f(y|z)+3kih2 fO? (y|z)+0,(h2) and its second deriv-
ative with respect to z, m®(z,y) = f®9(y|z) + 1kih2 > (y|z). By Taylor expanding
m(X;,y) about X; = x to the second order and employing (7), J» becomes

Jy = =hik f0? ‘1Zb VK, (v — X3) +

n

m®(z,y)n™" Y (X = 2)%:(@) K, (x — Xi) + 0p(h7).

=1

1
2
Using the expression for m(®(z,y) and further Taylor expansion gives

Jy = %klhig(ac){ O (y|z) + f“””(y!:v)} + Oy(hy,) + 0, (2).

Similar manipulation applied to J3 gives J3 = g(z) + 0p(1). Substituting the evaluated Jo
and Js, (13) becomes

(n2) 2 [ f(yl2) — (ko) = Bias(f(yla) + 0p(02)] = g7 @) h+0,(1)  (14)

where Bias(f(y|z)) is as defined in (10). Note that since the condition (nhS)Y/2 — ¢
implies (nh2)20,(h?) = 0,(1), 14 becomes

(n12)2 [ (ul2) ~ (ko) = Bias(F(yl))] = 974 (@) I + 0,(1) (15)

13



To deal with Jy, we evaluate E(J;) and Var(Jy). Set A; = h,e:b;(2) K}, (x — X;), then

Jl = nil/Q Z Az
i=1
Note that E(A;) = 0. Thus E(J;) = 0. Exploiting stationarity

Var(i) = E(A)+2n7" ) E(AA))

1<i<j<n
- J+2)° (1 - —) (ALA)). (16)
j=2
From routine calculations, it follows that

E(AY) = g(2)ka f(ylz) + 0p(1).

It remains to evaluate the second term of (16). For notational convenience, we shall
denote this term by B. We follow the technique by Masry (Masry, 1986). Namely, define
the sets S, and Sy by

S1 = {(L,j):5€{l,....,n}, 1<j—1<d,}
S» = {(L,j):jef{l,....n}, dut+1<j-1<n—-1}

where {d,} is as defined in Condition A.5(i).
From the above splitting, notice that

- 22(1——) B(AA,) +2Z<

JE€S JES2

—)E@a).

Consider the first term on the right-hand side of B (or (17)), i.e

22(1——) (A14;) < i|E<A1AJ)|

JES1

N

Z Ch%, by Lemma 1(ii)
=1
= Cd,h? =o(1). (18)

The last step follows from Condition A.5(i).
For the second term on the right-hand side of (17), note that

2 Z (1 — ‘%)E(A1Ag’) < Z |E(A14;)]

JES2 JES2

14



Applying Davydov’s (1970) inequality, we have that

DB <) 8a(j = DEV(A)EY (1A

JES2 JES2

where 1/s+ 1/t =1 — 6 and ¢ is as defined in Condition A.5(ii). Now setting s =t = ¢,

DOIEAA)] < Y8~ DEN(AL)

JES2 JES2
< 8) a’(j—1)(Chy)'?, by Lemma 1(i)
JES2
n—1
< Chy® Y (n—j)a’(j)
j=dn+1

N

Chy™0 Y~ a®(j)
j:dn

< Chy7Pd ) el (j).

Lets choose d,, such that h%d® = O(h,). Then, using Condition A.5(ii), we have
> jes, [E(A1A;)] = o(1). Observe that under the above choice of d,, the condition

d,h? — 0 is satisfied. Substituting the above evaluated terms into (16), we can see that
Var(Jy) — g(a)ks f(ylz). (19)
Finally, recalling (15),

fylz) = f(ylz) = Bias(f(ylx)) + Opl(nh2)"/?).
This completes the proof of the first part of the theorem.

Denoting Var(J;) by o%(z,y), we now move to the second part of the theorem, i.e. to
show that the left-hand side of (15) is asymptotically normally distributed. To achieve
this, it is sufficient to establish that J; is N'(0,0%(z,y)) distributed.

For the proof we make use of Doob’s technique (see Doob, 1953, pp. 228-232) according
to which the sum )7 | A; is split into large and small blocks. Specifically, we partition
{1,...,n} into 2r, + 1 subsets with large block of size p,, and small block of size g,. Set

|: n :|
Tn
Pn an

15



where [.] denotes the integer part. Thus, we can write J; as,

Ji=n"2Y A =n V2S04 Sop + San}
i=1

where
S-S S0 S
j=1 Jj=1
with
kj+pn—1
n; = Z Ai, where ]{Jj = (] - 1)<pn + Qn) + ]-7
i=k;
lj+Qn_1
& = Y, A, where Ij=(j—1)(pn+n) +pn+1,

i=l;

n

Wr, = Z AZ

i:Tn (pn +qn)+1

Before continuing with the proof, we first show some consequences of Condition A.6.

This condition implies that there is a sequence of positive constants 3,, — 0 such that
Butn = o((nh*)'/?) and B, (n/h?)"*a(gn) — 0. (20)

Now define p, by p, = [(nh?)}2/4,]. Then it follows easily from (20) that as n — oo,
Gn/Pn =0, pa/n—0, pu(nh®)™? =0, and  (n/pa)alg.) —0.  (21)

Now we exploit Lemma 2. This Lemma tells us that Sy, and S3,, are asymptotically
negligible. Then showing the asymptotic normality of J; reduces to proving that n="/ 2S1n
converges to N'(0,02(z,y)). The main idea of the proof is to approximate n~Y/2S,,
by a sum of independent random variables (r.v.’s). For each n, let 2,1,...,2,, denote

independent r.v.’s with the distribution that of
Pn
n Y2y =12 Z A,
j=1

Then, the characteristics function (cf.) of Y7 | znm is 7" (tn~1/2), where @, (tn/?) is
the cf. of n~*/2n,. Notice that 7, is F/*-measurable with i, = (¢ — 1)(pn + ¢») + 1 and
Ja = ta + pn — 1. Let V; = exp(itn;/y/n), then using Lemma 4,

Elexp(itn"/28, )] — @;(tn_l/z)’ - ‘E[exp@m—l/?sl,n)] — T Elexo(itn="/n,))
j=1
< 16ra(g, +1) — 0.

16



The last step follows from (21), i.e. m,(q,) < (n/pn)a(g,) — 0. Therefore, it suffices
to establish that 7 (tn~'/?) converges to the cf. of the N'(0,0%(z,y)). Equivalently, it
would suffice to show that > " | Z, ,, is asymptotically N (0, 1), where

an = <n,m/°n 2 = E 2 = r—nE 2 .
) Zn, /S ) Sn mzl (Zn,m) n (771)
Now > | Z, m will converge to N (0,1) provided that, for every e > 0,

gn(e) = Z/ 2*dF, m(z) — 0, as n — oo,

m=1" lz|>¢

where F),,,(.) is the distribution function of Z,,,. This is the well-known Lindeberg

condition. But, since F, ,,(.) is the same for m =1,..., 1,

gn(e) = mE (Zi,1l{|zn,1\>e}> ;

= 2 b (7711{|m|>ﬁsns}>»

ns
r 202 .
%p(mly > ev/ns,) since || < paC,
n
rnpiCZ E(?ﬁ)
ns  e?ns?
C2p? 1

2 2
e n s;

N

N

by Markov inequality,

By Lemma 3, E(n?) — pno®(z,y). Further, from (21), it is easy to see that p,r,/n — 1
(see the proof of Lemma 2). Thus, s2 — o%(z,y) # 0. Again from (21), p?/n —
0. Therefore, g,(¢) — 0. Hence Y '"_, Z,,, will converge to N(0,1), or equivalently
S zZnm will converge to N'(0,0%(z,y)). This completes the proof of the theorem.

m=1

4.2 Auxiliary results

Lemma 1: Under the conditions of the Theorem,
(i) B(|A]*) < Chy;

(i) |[E(A14;)] < Ch2.

17



Proof:

(i) Recall that Ay = h,e1b1(2) Ky, (x — X7). Note that

E(A) = / / (K (y — Y2) — m(X1, y))bs (2) K, (2 — X0)|“F (X0, Y1) dX,dY.

Now conditioning on X; = u, noting that m(X3, y) is bounded and using Conditions

A.2(i) and A.3, we can see that

E(A[Y) < CH / b1 (2) K, (2 — 0)|du
R
< Ch,.

The last step follows from applying Condition A.1(ii).

(ii) Clearly

B(A, _ hZ////elbl VK, (x — X1)e; x
) K

h(ﬂU - )f(X1 Y1, X5, YJ)(-Tla Y1, Ty, yj)dxldyldxydy]

Conditioning on (X7, X;) = (u,v) and using Condition A.4,
B < O [ [ leh@)Kn o = u)eghy(a) K, (@ = o) fixy (1 o)
R JR

2

< C’hi(/]bl(x)Khn(x—uﬂdu)
R

< Ch?

n*

Lemma 2: Under conditions of the Theorem, n ' E(S3,) = o(1) and n"'E(S3,,) = o(1).

Proof: Here we only prove n™'E(S.,) = o(1). The proof of n™'E(S;, 3) = o(1) can be
done along the same lines. Observe that
E(S2,) ZE 2 > Elas). (22)
1Su<js<rn
Consider the first term on the right-hand side of (22). In the rest of the proof, the

stationarity property will be repeatedly used. We can see that

Tn éj+Qn*1

i:E&?) = > > E@h+2 Y B(AnAy)]

éj §m<i§€j +gqn—1

18



Tn _ej“"‘In_l dn .

- > B(AY 424, (1 - —)E(AA)|
=1 i=¢; i=2 In
J J
Tn dn .
[ 7
< 3 [0B@Y) + 20,51 - D) B
j=1 i=2 In
Tn an
< Y [wB@) + 20,3 1B
j=1 i=2
< g (B(AD +0(1)). (23)

The last step follows from applying similar arguments used in deriving the variance of J;.
Now we deal with the second term of (22). When u # k,

T "™ Gn ({n

Z E(eue;) = Z Z Z Z E(Au(pntan)+pn+iDk(pn+an)+pati)-

1<u<j<rn u=1 k=1 i=1 j=1

But since, |[u(pn + qn) + pn +i = (k(pn + qn) + 1o+ J)| = po;

n—pn n

2 Y Eleg) < 2> ) |E(AA))

ISu<jsrn i=1 j=itpn

< 20 ) |B(AA))

Jj=1+pn

= o(n). (24)
Note that Y7, [F(A1A;)] = o(1). Now combining (23) and (24),
nLE(S2,) <n! (rnan(Af) +o(l) + o(n)).

But from (20) r,¢,,/n < ¢,/ (pn+¢y,). Further, from (21), ¢,,/p,, — 0. Therefore, r,q,/n —

0. Thus the proof of the lemma is complete.
Lemma 3: Under conditions of the Theorem,
E(n3) — pao®(2,y).

Proof: Recall that ; = 37" A;. Then

Pn
E(m})=> E(A)+2 Y E(AnA)).
Jj=1 1<j<m<pn

19



Proceeding in a similar fashion as in deriving the variance of J;, the lemma follows.

Lemma 4: (Volkonskii and Rozanov, 1959) Let Vi,..., VL be strongly mizing random
variables with respect to the o-algebras .7-“;11, . ,fff respectively with 1 < 11 < J; < 19 <

o<jus<n, iy —iz2w>=land |Vi| <1 forj=1,...,L. Then

L

BT -T1EWv)

J=1 Jj=1

< 16(L — 1)a(w)

where a(w) 1is the strongly mizing coefficient.

5 Concluding remarks

In conclusion we like to note that Hyndman and Yao (2002) also introduced two alternative
kernel smoothers of the conditional density, both aimed at removing negativity. Unlike
the RNW smoother which is explicitly defined in terms of the data observations, these
estimators are obtained implicitly through a minimization procedure. The implicit formu-
lation has two disadvantages. First, convergence of the algorithms is far from guaranteed,
especially when the dimension of the covariate is more than 1. Secondly, asymptotic study
of the estimators is complicated. In contrast, the RNW smoother allows direct asymptotic
analysis. Moreover, it is straightforward to implement in practice whatever the dimension

of the covariate.
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