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Abstract

We extend the standard evolutionary model of Kandori, Mailath, and Rob (1993) to in-
corporate time-varying aggregate and idiosyncratic shocks separately in coordination games.
We show that both types of shocks have a different effect on the invariant distribution over
the different equilibria of the game. While idiosyncratic shocks are shown to be neutral,
the aggregate shocks introduce a systematic bias against the risk dominant equilibrium.
Different from Kandori, Mailath, and Rob (1993) we derive a sufficient condition under
which this bias prevents equilibrium selection with probability one.
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1. Introduction

Coordination failure on the macro-economic level in an economy, see e.g. Cooper (1999), or
coordination on for instance the silver versus golden standard in a monetary economy, see e.g.
Young (1998), can both be modelled as a coordination game. Coordination games typically
have several Nash equilibria and standard game theory cannot discriminate between them.
The evolutionary game theoretic models of Kandori, Mailath, and Rob (1993) (henceforth
KMR) and Young (1993) provide a framework that does discriminate in coordination games
and that singles out the so-called risk-dominant Nash equilibrium. However, contrary to the
macro-economic literature KMR, do not distinguish between aggregate and idiosyncratic shocks.
Aggregate shocks capture the idea that some shocks directly affect populations as a whole,
e.g. hard times such as a flooding, earthquake, or a recession. Idiosyncratic shocks capture
individual differences among players that are too small to model explicitly. Here we introduce
both types of shocks into the evolutionary framework of KMR. The aim of this paper is to
show the different consequences of these shocks in coordination games.

In the evolutionary model of KMR each individual optimizes in a myopic way against the
last round aggregate distribution of actions in the economy, which is observed by everyone, and
each individual has a probability of making a mistake in implementing his optimum, which is
called the mutation rate. In KMR, this rate is assumed to be the same for everyone and it is
constant over time. The model reduces to an ergodic Markov process and, as the mutation rate
vanishes, the unique distribution converges to the degenerate distribution in which everyone
behaves according to the risk-dominant Nash equilibrium.

Below we assume time-varying individual mutation rates in 2 x 2 coordination games.
To be precise, in each time period each agent has a mutation rate consisting of a common
component for all agents, i.e. the aggregate shock, and an individual component reflecting the
idiosyncratic shock. Below we characterize the invariant (probability) distribution over the
basins of attraction associated with the two pure Nash equilibria. This invariant distribution

is compared with the invariant distribution in the standard KMR model, where the fixed



mutation rate is equal to the mean of the volatile process. Then both types of shocks have a
different effect on the invariant distribution in the standard KMR model. While idiosyncratic
shocks are shown to be neutral, the aggregate shocks introduce a systematic bias against the
risk dominant equilibrium, i.e. the equilibrium with the largest basin. As a consequence,
the expected fraction of time the system spends in the risk dominated equilibrium is lower
than in the standard model of KMR. Furthermore, the introduction of individual time-varying
mutation rates increases the volatility between the two basins of attraction in the dynamics
and hence the coordination failure aggravates.

The limit of the invariant distribution is also investigated for vanishing mutation rates.
First, it is shown that the limit probability of the risk dominant equilibrium is bounded away
from one if the smallest upper bound upon the support of the probability distribution does
not go to zero in taking this limit. This limit result differs from the limit result in KMR.
Furthermore, in Bergin and Lipman (1996) a sufficient condition for equilibrium selection of
any arbitrary strict Nash equilibrium is derived when mutation rates are state dependent. Our
results differ in this respect, because the limit invariant distribution puts positive probability
upon both pure Nash equilibria. Moreover, the limit probability of the risk dominant equilib-
rium is larger than the limit probability of the risk dominated equilibrium. Next, it is shown
that letting the smallest upper bound of the support go to zero is an almost sufficient condi-
tion for equilibrium selection of the risk dominant equilibrium. So, taking the limit in case of
time varying mutation rates matters. Finally, our results are valid for populations of all sizes,
contrary to the large population results in KMR.

This paper is organized as follows. The next section introduces the model. The bias
of aggregate shocks in the absence of idiosyncratic shocks is derived in section 3, whereas the
model with both types of shocks is analyzed in section 4. The last section deals with equilibrium

selection. The appendix contains the proofs of several lemmas used in the main theorems.



2. The Model

We consider a population labelled N = {1,2,... N} of N > 2 players, with N even, who are all
randomly matched in every time period in %N pairs to play %N identical (fixed) coordination

games, each of which is given by

1\2 ” S1 | 59
s1 || a,a 0,0
52 0,0 1, 1

with @ > 1. The off-diagonal elements are normalized to 0. The pure Nash equilibrium (s1, s1)
is the risk-dominant equilibrium, see e.g. Harsanyi and Selten (1988). Time is discrete and
denoted by t € N. By 2, € Z, Z = {0,1,... , N}, we denote the number of players adopting
action s; at time ¢. Thus z; = N means that the risk dominant equilibrium (s1,s1) is played
in every one of the %N pairs at time ¢, while 2; = 0 yields the risk dominated equilibrium

(s2, 82) in every pair. We denote the states z; = N and z; = 0 by E; and E» respectively. By

* _ N4a—1
- a+l

z < %N we denote the critical level of the population for which an arbitrary player
is indifferent between s; and sz (see also section 5 of KMR). Generically z* will not be integer
and we denote [z*] as the largest integer smaller or equal to z*, i.e. the Entier function of z*.

We assume that, at the beginning of period t+1, all players observe z; and play a best response

to z; which induces the best-reply deterministic dynamics given by

_ [0, iz <[z,
1= BR(z) = { N, if z > [2%] + 1.

The basin of attraction of Ej is equal to By = {[z*] +1,...,N}, whereas By = Z\B; =
{0,...,[2*]} is the basin of attraction of Es.

We add a stochastic component to the dynamics representing random mutation by the
players. A player who mutates plays an action selected at random from {s1, so} with probability
% on either action. Thus with a probability half as large as the mutation probability, a mutant
player plays the action s; which is not a best response to z;. Similar as in KMR we assume

that if 2, € By, ¢ = 1,2, then in period ¢ + 1 the best reply dynamics first take the system from

the state z; to the state F; and, subsequently, the stochastic process determines the number of



mutants. Thus, if 2, € B, then the number of mutants from FEs at period ¢ 4 1 is reflected by
zg41. Similarly, if z; € By, then N — 21 states the number of mutants from state Fy at period
t + 1. In case the number of mutants exceeds a certain threshold the state moves from the
current basin of attraction into the other. Since in order to switch equilibrium, mutations have
to offset either F7 or Fs, it is without loss of generality to reduce the N-state Markov chain
to a two-state Markov chain on the level of the basins of attraction By and Bs. The invariant
distribution on Z can be easily derived from the invariant distribution of the reduced Markov
chain.

The innovative feature of our model lies in the introduction of an individual mutation rate
2¢; ¢ for player 7 at time ¢ that is stochastic or volatile over time. The mutation rate ¢;; is thus
the individual probability of not playing a best reply at time t.! At every time t we assume
that (;+ = e +¢;+, where the common term e; represents an aggregate shock on the population
as a whole and ¢;; denotes an idiosyncratic shock due to small individual differences between
players that are not explicitly modelled. Define the (N + 1)-dimensional stochastic variable
O; as (e1¢,... ,ent,€t) € RYN*!. We assume that ¢) 6; is i.i.d. over time, 44) at each time ¢,
all g;; are 1.i.d. and e; is independent of all €;¢, i) (;¢ € (0,6) for some § € (0,1) and iv)
Ee;; = 0. Note that the latter corresponds to ;¢ being drawn from a (possibly asymmetric)
fair probability distribution that includes the special case of white noise (i.e. a symmetric
fair distribution). So, E(;; = Ee; € (0,6) and all (;¢ can be regarded as (asymmetric) noise
around a volatile aggregate mutation rate ;. T'wo interesting special cases involving degenerate
probability distributions are i) e, = € > 0 for all ¢, i.e. a constant aggregate mutation rate with
idiosyncratic variation around e, and i) €;; = 0 for all ¢ and ¢, i.e. no agent-specific shocks.
The model of KMR corresponds to (;; = ¢ > 0 for all ¢ and ¢, i.e. in KMR both special cases
hold simultaneously.

For explanatory reasons let us first assume that (;; denotes a realisation. Then the proba-

!Note that from this point on we use the term mutation probability or rate to mean the probability or rate
at which a player plays a non-best reponse. As explained above, the actual mutation probability or rate is twice

as large.



bility that all players in a subset M C N mutate and all other players in the population don’t
is given by
I TI =G0
ieEM iEN\M
Given z; € Bj the system first moves from the state z; to the state F; and, subsequently, at
least N — [2*] mutations are needed to take it away from Bj into Bz. Then to obtain the
probability of going from B; to Bs conditional on z; € B; we have to sum up over all groups
M with at least N — [2*] players. This probability is given by
p(0r) = Z H Gigt - H (1= Git) s
M:|M|>N—[z*] i€M ic{1,..,N)\M
where | M| denotes the cardinality of M. Similar, the probability of going from Bj to By, i.e.
Zt+1 > 2%, is given by
0= e II -6,
M:|M|>[z%]+1 €M ic{1,..,N)\M
because the transition from Es to E; takes at least [2*] + 1 players that mutate. Note that
taking 6; = (0,...,0,¢) yields the transition probabilities in KMR, i.e.

p(O) = i <N>51(1—5)N—j and ¢ (6,) = i <N>5j(1—5)N_j. (2.1)

J=N—[z*] J Jj=lz*]+1 J

The transition matrix P (6;) of the two-state Markov chain on B; and Bs is given by

_ [ 1=p(b) p(6)
Pwt)_(‘](@t])) ZlO_Q@t))’

where the (7,7)-th entry denotes the probability of the transition B; — Bj. The associated

unique invariant distribution, denoted by g (P(6¢)) = (p1 (P (6¢)) , 2 (P (6:))), is given by

w1 (P(6y)) = > 4(%)

- _ p ()
20 + 900 and pz (P(6;)) =1 — p1 (P(6r)) = >

(61) +q (6r)°

where p;, ¢ = 1,2, is the probability on the state z; € B;. The expected length of time

spent in B; (Bg) conditional on 2z, € B (Bz) is given by p(ét) (q(ét)). KMR show that

lim.0 1 (P(e)) =1 for the case 6; = (0,...,0,¢).



The case of volatile individual mutation rates can be handled as follows, see e.g. Bellman
(1954). In every period, the dynamics consist of a compound probability distribution. At each
period ¢, first 0; is drawn to determine each player’s individual mutation rate (;; for period
t, and next, these N mutation rates (;; determine the transition probabilities of the Markov
chain. Doing so yields a homogeneous Markov chain in which the conditional probabilities

Pr(B; — Bj|B;), i,j = 1,2, of going from B; into B; conditional on 2 € B; are given by
Pr (Bl —>BQ|Bl) :]Ep(gt) and Pr (BQ —>Bl|Bg) =E q(9t)

Thus, the two stochastic events can be compounded into a single transition matrix IEP (6;) , 6; ~

O, where

L—Ep(6,) Ep()
EP (8) = < Eq)  1-Eq(@) )

and IE (.) is the expectation operator. The associated unique invariant distribution is denoted by
w(EP6:)) = (p1 (IEP (6¢)) , 2 (IEP (6))) . Finally, the aim of the analysis below is to compare
the invariant distribution p(IEP(6;)) of the volatile process with the invariant distribution
1 (P(IEf;)), where we interpret the latter as the invariant distribution in the standard KMR
model under the assumption 6; = (0,...,0,Ee;), i.e. the KMR model with ¢ = Eg;. To put

it differently, we investigate the effect on the invariant distribution of introducing a volatile 6,

around (0,...,0,¢) in the standard KMR model.

3. Aggregate shocks

In this section we restrict the analysis to the special case of volatile aggregate shocks and
abstract from idiosyncratic shocks. Formally, we take 6; = (0,... ,0,&;), where &; is i.i.d. over
time. For notational convenience we treat the vector 6, as a real number and drop its time
index t.

The derivation of the systematic bias in the invariant distribution is derived in two steps.
First, we show that aggregate shocks have a systematic bias upon the invariant distribution if

we compare p (IEP(0)) with g (P(IE6)). This result holds locally, meaning that it is derived for



all probability distributions with the property that the support of 0 lies within close distance
of its mean. Then, second, we relax the first result by showing that close distance means a
support restricted to [0,@ for some upperbound @ > 0, for which we derive explicit expressions.

Our first result states a sufficient condition under which p2(IEP(0)) is bounded from below

by pa(P(IES)).

1_N N-[z¥]
2N-1> N

Theorem 3.1. Let = min{ - \/[z*](N(;\EZ_*P)(N_l)}. If EG < 0, then there

N

exists a v > 0 such that for every probability distribution with support in the interval

(IEQ — v,1E0 + ) it holds that j2(P(IE)) < pa(IEP(6)). Moreover, > 0.

Proof
We have to show that ug (IEP (0)) — ug (P (IE6)) > 0, which is equivalent to

Ep (0)
Ep () +Eq ()

__ p(E9)
p (E0) + q (E0)

>0 Ep(0)q(E) —p(E))q(0)] > 0.

Define the asymmetric N x N matrix A (6) by its (¢,m)-th element ay , (9)

m

Qo (8) = (?) <N> (B0 (1—EON L (0 (1— 0N ™ I.m=1,...N.

Then we have that p(0) q (IEf) is equal to

N

>

| k=N—[z*

| (3) @ a-ot

N

>

j=[z*]+1

(

N
J

> (E6) (1 —EO)N~

and p (IEf) q (#) is equal to

N

>

| k=N—[z*

@f > (BO)* (1 — Bo)YN*
1

N

>

i=lz"]+1

(

N
J

ICHETAS

This means that p (0) g (IEf) sums over all the elements in the ([z*] + 1) X

in the lower-right corner of A (6) while p (IE) q

(0) sums over all the elements in the (N —

([2*] + 1) submatrix in the lower-right corner of A ().

the terms in the ([z*] + 1)

Formally,

p(¥)q

(E0)

—p(Ef)q(0) =

So, p(6)q

(IEQ) and p (EF) q

=[2"]
(N —[2"]

) submatrix

[27]) x
(#) share

X ([#*] + 1) submatrix in the lower-right corner of A (6), which cancel.

(3.1)



In Figure 3.1 we provide a picture which shows the general form of expression (3.1). Note that
ajr (0) —ag,; (0) =0forall @ € [0,1] if K = j = N — [2*] and that for all other combinations
of j and k we have j < k. In order to determine the second derivative of expression (3.1), we
first determine the second derivative of the individual terms of the double sum. With respect

to this derivative, note that

82 m me_m(m_l)_’_e(eN_Qm)(N_l) m N—m _

55 O™ (1= = TR O 1-0N", m=1,...
and, therefore,

0? _m(m—1)+60(ON —2m) (N —1) _

ﬁa&m(e)_ 02(1_9)2 a@,m(0)7 m=1,...,N.

Denote ¢, (0) = m (m — 1)460 (6N — 2m) (N — 1). Substitution of this result yields the second

derivative of (3.1)

N—[z*]

) N
@ a0 —pEN O] = Y Y

j=[z*]+1 k=N —[z*]

ek (8) aj (0) — ¢; (0) ag,; (0)]
02 (1 — 6)* '

(3.2)

From Lemma A.2 it follows that cj (0) a;x (6) — ¢; (0) ar; (0) > 0 in 0 = E6 for j = [2*] +

1,...,N—[2*], k = N —[2*],...,N and j < k provided E§ < 0. So, for all j < k the
functions a;j, (0) — ay, ; () are strictly convex around § = IE@ for all j = [2*]+1,... ,N — [2*],
E=N—[z*],...,N and j < k. Thus (3.2) is positive. Continuity of the second derivative

implies that it is also positive locally around 6 = IEf. Finally, applying Jensen’s inequality
locally around 6§ = Ef to the convex function f(6) = p(0)q(Ef) — p(IEf)q(0) results in

E[f(0)] > f(Ef) = 0, which concludes the proof of Theorem 3.1. O

Theorem 3.1 states that fluctuations of # around the mean IEf introduce a systematic bias
in the invariant distribution in favor of the risk dominated equilibrium FEs and against the risk

dominant equilibrium F;. This can be explained as follows. First of all, the fluctuations in the
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Figure 3.1: Expression (3.1) for 8 € [0,0.12] with parameters N = 10, 2* = 3 and IEf = 0.1.

mutation rates increase the probability of a switch to the other basin of attraction, because?

Ep(0) > p(Ef) and Eq(0) > q(EH).

So, random aggregate shocks in the mutation rates increase the volatility in the dynamical
system and the coordination failure aggravates. Second, the result of Theorem 3.1 implies that
the probability FEp(#) of a switch from F; to Es increases relatively faster than the probability
Eq(0) of a switch from Es to E;. So, it becomes relatively more easier to leave E; than E»
and, therefore, the fraction of time the stochastic process spends in E; decreases due to these
fluctuations.

The sufficient condition of Theorem 3.1 allows every probability distribution with its mean

Ef smaller than the positive threshold 8. Since [2*] ~ & ;r_ﬁf L this threshold is a function of

the parameters N and a. Then it is easy to verify that for %% to be the minimum in the

)N—m

2This follows immediately from the expression a%zgé?m 1-0 in the proof of theorem 3.1, because

2 Nem m Vm(N—-m)y(N—1) m /mH®N-—m)N-1)
gl 1=07 " >0 0d 15— NN 1) NTT N oD :

and the lower bound is positive if m > 2. Since N — [2*] > [2*] + 1 > 2 this holds for all the individual terms
in p(0) and ¢ (), provided @ sufficiently close to 0. Then application of Jensen’s inequality yields the stated

results.



definition of # corresponds to
IN? — AN +4+ 4 /(N = 1) (N = § + 1VB) (N - 15 - §)
a > )
2(N -3++5) (N—-3-5)
provided N > max{%\/g—i— %,3—1— \/5} ~ 5.2. Figure 3.2 represents the latter area in the

(3.3)

(N, a)-plane for N > 6 and the curve is asymptotic to @ = 1 as N goes to infinity. So, for every

a > 1 there exists a N (a) < oo such that = 35~ > 1 for every N > N (a). In that case

0 > % is quite large. Nevertheless, Theorem 3.1 also holds for small population size N, which

is at the expense of 6.

25
15

0.5

0 20 40 60 80 100

Figure 3.2: The area of inequality (3.2) represented in the (NV,a)-plane, @ > 1. The area on

and above the downward sloping curve features § = %%

Theorem 3.1 states that adding small volatility of the mutation rates to the KMR model
is sufficient to obtain a systematic bias. The next theorem states a sufficient condition under
which the entire interval [0,@ can be regarded as an upper bound upon the support of the

volatile mutations. This sufficient condition is more restrictive than the one in Theorem 3.1.

Theorem 3.2. Let § = min {%NNP [z*}]vﬂ _ \/([Z*]+1)J(\’]\(’NLZI])1)(N1)}' IFEO < 0, then for

each probability distribution with support in [0,0] it holds that ps(P(IE6)) < pa(IEP(0)).
Moreover, 0 < 7] <4.
Proof

Lemma A.4 states that there exists a unique inflection point b (0,IE0) if E6 < 0. Therefore,

10



each function a; (0) — ay ; (f) in (3.2) is strictly concave on (O,é\) and strictly convex on

0 € [EQ,?) (recall also Lemma A.2). We introduce the following convex approximation for

a;r (0) —ag; (0). First, denote the function r (¢) as the ray (or line) that starts in the origin

(0,0) and that is tangent to the function a;y (6) — ay; (#) in some point §* € <§, ]EQ). The

uniqueness of the inflection point ) guarantees that 6* is uniquely determined. Moreover,

7 (0) < ajk (0) —ak,; () for all 0 € [0,6%]. Now, define the convex function f7 : {O, 5} — R as
r(0), if 6 € [0,60%),

T\ @k (0) - a; (6), o€ [07,0].

Then f7) is a convex approximation of a;j () —ax,; (¢) on [O, 5} and f7 (0) < ajp (0) —ay,; (0)

for all 0 € [0, 5} Furthermore, f7, (E6) = a;x (I0) — ay; (E6) = 0. But then

N—[z"] N N—[z"] N
E Z a] k - ak,] Z Z ]Ef]*,k (0)
J=[z*]4+1k=N—[z*] J:[Z*]'H k=N—[z*]
N—[z¥] N
> > fie(E6) =0.
j=[z*]+1 k=N—[z*]
where the last inequality is Jensen’s inequality. g

Similar as before, the sufficient condition of Theorem 3.2 allows every probability distribu-

tion on [0,@ provided Ef < 6. The threshold 6 is also a function of the parameters N and

a through [2*] ~ N"'_i‘_ll L Somewhat unexpected we obtain that 6 > > 1L in the (IV, a)-plane

coincides with the condition stated in (3.3). This may seem strange, but recall that 0= %%

implies 6 = % NN 7. As before, the mild restriction 6=0= 2 N T > 2 can be achieved for every
a > 1 provided its population size N exceeds a certain minimum but finite threshold.

Finally, Theorem 3.1 and Theorem 3.2, respectively, are derived by requiring that each
individual term under the double summation sign of (3.2) is locally convex and has a unique

inflection point on (0,1E#). This suggests that the upper bounds # and 7] upon the mean can

be relaxed by considering the double sum of (3.2) as one function.

11



4. Aggregate and idiosyncratic shocks

In this section both types of shocks will be analyzed, i.e. 6; = (e14,...,en¢,&). The main
result in the next theorem states that the invariant distribution of the general model coincides

with the invariant distribution of the model with aggregate shocks only.

Theorem 4.1. For each probability distributions of §; it holds that p (IEP(6;)) = p (IEP((0, ... ,0,e))).

Proof

We will first show that Ep (6;) = ]EZ;V:N%Z*] (7)6% (1 —&;)V™. The assumptions on Git
imply that IE¢;; = Ee;. Furthermore, Hle Git = Hle (et +€it) is a polynomial with cross
terms containing powers of ¢; and products of €;4, ¢ = 1,... ,k. Since all &;; are i.i.d. with
Eei; =0, also E (g5, ¢ €ipt - ----€it) =0,4, € {1,... ,N}, ke {1,...,N}. Combined with
the independence between all €; ; and ¢;, we have that IE (6% “Eit iyt 6,-k7j,t) = 0, with

i e {l,...,NY,l=1,... .k —j. Thus, E:([ﬁ;lg¢) — ¢b k =1,...,N. This gives us

E {HieM Girt - Hie{l,... NIM (1- Ci,t)} = ]Es‘tM‘ (1-— 6t)N_‘M|. Using this yields

B Z H Git - H (1—=CGit) p = Z E {g‘tM‘ (1- 6t)N*\MI}

M:|M|>N—[z*] | i€eM ie{l,...,N}\M M:|M|>N—[z*]
N
N\ N
-5 Y (Nda-a
j=N—[z*]

Similar, Eq (0;) = E Z;-V:[Z*]_H (Zj) e/ (1 — &;)"V7J. Then the stated result immediately follows.]

Theorem 4.1 implies that the idiosyncratic shocks can be neglected when studying the effects
of varying mutation rates. So, the effect of idiosyncratic shocks on the invariant distribution is
neutral. This theorem also allows for a reinterpretation of the standard model in KMR, namely
idiosyncratic shocks with expectation 0 around e, i.e. formally (;; = €;¢ with E'[g;;] = ¢ for

alli=1,...,N.
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5. Limit results

The main result in KMR translated to time-varying mutation rates can be formulated as
w2 (P (E6;)) — 0 as E6; — 0. In this section it is shown that the limit of po (EP (6;)) as
Ef; — 0 depends upon how we treat the support and the distribution of probabilities over its
support in the limit as the mean vanishes. To show this we treat 6; = (0,... ,0,e¢) as a scalar
and drop the time index ¢.

Before we state the main results, we consider the following example, which nicely illustrates

the results derived below.

Example 5.1. Suppose 0 € {0,v} for some v > 0 and Pr{0 =~} = p > 0. Then Ef = py

and
pa (BP (6) = — 20~
is independent of p > 0. Obviously,

lim po (EP (0)) >0 (5.1)
p—0

and, by standard arguments from KMR,
lim po (EP (6)) =0,
y—0

whereas both lim,_oIEf = lim,_oIE§ = 0. Moreover, the limit in (5.1) depends upon +.
Furthermore, suppose that the parameters p and ~y of the probability distribution of 6 can be
represented as functions of some single parameter A € [0,1]. Formally, let both p = p(A) :
0,1] — [0,1] and v = () : [0,1] — [0, 1] be continuous functions of A. Then for all functions
p () and y (X) with v (0) = 0 it holds that limy_.o p2 (IEP (6 (X)) = 0, whereas for all functions
p () and vy (\) with p(0) = 0 and v (0) > 0 it holds that limy_,g 2 (IEP (6 ()\))) > 0. Note

that limy_o p2 (EP (6 (\))) < 3, because (2.1) implies that q (v (X)) > p (v (X))

13



This example shows that the way in which the limit is taken matters for the convergence
results. Note that IE# — 0 can be accomplished in two different ways. Either the support is
fixed and the probability distribution converges to a degenerate probability distribution over
the support that is degenerated in the point 0, i.e. {0,7(\)} fixed and p(A) — 0 in the
example, or the support collapses into a single point in the limit 0 without restrictions upon
the distributions over the support, i.e. {0,7(X)} — {0} and no restrictions upon p(\) in the
example. (Or a combination of both.) Moreover, the limit limy_,q g2 (IEP (6 (X)) depends
upon v (0) but is always bounded from above by %

In order to make things precise we introduce the following notation. Let A € [0,1]. Since
every probability distribution can be approximated arbitrarily close by some discrete proba-
bility distribution we restrict attention to such distributions. Denote 6 (\) as the stochastic
variable for A € [0,1]. For some n > 1 the functions s : [0,1] — [0,1], s =0,... ,n, determine
the finite support {79 (A),71 (A),--- ;7 (AN} of (X)) with 0 = () <11 (A) < ... < (A).
Furthermore, the functions ps : [0,1] — [0,1], s =0, ... ,n, determine the distribution of the
probability mass over the support of 6 (\) where Pr{f =5 ()} = ps(A) > 0 for some A > 0
and Y ps (A) = 1. So, EG(N) = >0 5 ps (A) v (A) and limy_,oEO (A) = 0 if and only if
limy—0 ps (A\)ys (A) =0 for all s > 1.

The next theorem states a sufficient condition such that generically® o (IEP (6 (\))) does

not converge to 0 if A goes to 0.

Theorem 5.2. Suppose ps and s are continuously differentiable for all s = 0,... ,n. If there
is some s*, 1 < s* < n such that limy_7ys (A) = s > 0 and limy_,g ps (A\) =0 for s > s*, then

generically

> e g Ps (0)p (7s)
> 25 (0) [P (7s) + g (75)]

3By generic we mean that the measure of the area in the parameter space for which our result holds is equal

lim 2 (EP (0 (A))) =

to one. We cannot do better than generic, because the proof of theorem 5.2 shows that a nongeneric counter

example can be constructed.
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Proof

We will derive necessary and sufficient condition for limy_,o po (IEP (6 (X)) = 0, which will be
nongeneric. Since limy o Ep (6 (\)) = limy_,0Eq (0 (X)) = 0 both the denominator and numer-
ator are equal to 0 in the limit. Application of De L’Hopital’s rule yields that limy_o g2 (IEP (6 (N)))

is equal to

limy 0 3 50+ [Pk A P (35 (V) +ps (W) ' (3 (M) 76 (V]
limx o D25 o [P (A) [P (s (V) + ¢ (3 D]+ ps (M) [P (75 (V) + ' (s (W) 75 (V)]

Since p(0) = p'(0) = 0, ¢(0) = ¢ (0) = 0 and ps(0) = O for all s > s* it follows that

. (5.2)

the numerator is equal to Y »_ .. pl (0)p(7s). So, the latter can only be 0 if and only if
o Ps(0)p(vs) = 0, which is a one-dimensional restriction upon the n — s*-dimensional
space of first derivatives in A\ = 0 of the vector function (ps«(N),...,pn(A)). This re-
striction is nongeneric. Therefore, the numerator is generically not equal to 0. Similarly,
the denominator Yo .. pi (0) [p(7s) + q(7s)] is generically not equal to 0. So, generically

limx—o p2 (EP (6 (X)) # 0. O

The condition of Theorem 5.2 translates as follows. If the support {70 (A) ,71 (A) ;... ;9 (M)}
converges to the set {0,7Vs+,... ,7n}, then it is generically impossible that s (IEP (6 (\))) con-
verges to 0 as A goes to 0. The limit depends upon the n — s* first-derivatives of ps and the
n — s* points s in the limit support.

Theorem 5.2 implicitly imposes the necessary condition limy—o {70 (A) ,71 (A),... ,m (A)} =
{0} in order to have convergence of o (IEP (6 (\))) to 0. This means that the limit of the sup-
port of 6 (\) has to vanish or collapse into the singleton {0}. The following theorem states that
this necessary condition is generically also a sufficient condition for the subclass of functions
ps (A) and 7 (A) that are all [2*] + 1 times continuously differentiable. This means that for
this subclass no further restrictions have to be made with respect to the functions ps in order

to have convergence of pa (IEP (6 (A))) to 0 as A goes to 0.

Theorem 5.3. Suppose p, (\) and v, (A) are [2*] + 1 times continuously differentiable for all
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s=0,...,n. Iflimy_,o7vs (A\) =0 for all s, then generically limy_,; 1o (IEP (6 (\))) = 0.

Proof

Equation (5.2) in the proof of Theorem 5.2 is also valid here. However, since v, (0) = 0 for
all s, p(0) = p'(0) = 0 and ¢(0) = ¢’ (0) = 0 both the numerator and denominator are 0.
Therefore, we proceed in an iterative manner in applying De I’Hopital’s rule. Within finite
iterations this rule will yield a numerator and a denominator that are not equal to 0, because
the ([z*] + 1)-th derivative of ygz*]+1 (1-— %)N_[Z*]_l in g (vs) is positive and all other terms
are equal to 0. This positive term is multiplied by a weighted sum of the limit probabilities

ps (0), s > 1. Generically, this weighted sum is not equal to zero So, the numerator is equal to

0 while the denominator is not at the [2*] 4+ 1 step of the iterative process. 0
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A. Appendix

This appendix provides four lemma’s, two of which (Lemmata A.2 and A.4) are used in the
proofs of Theorem 3.1 and 3.2. The other two Lemmata, namely Lemmata A.1 and A.3, are
used in the proofs of Lemmata A.2 and A.4 respectively.

Lemma A.1 focuses on the inequality ¢, (6) = ¢(¢ —1) + 6 (/N —2¢) (N —1) > 0 for suf-
ficiently small 6 > 0, which appears several times in the analysis. The lemma states several

properties of the upper bound upon 6. Before we proceed by stating the lemma, note that

0§9<%— %5(1]\\;;]\;)_(]1\7)—1) =0(l—-1)4+0(ON —2()(N —-1) > 0.

Lemma A.1. Let f (¢) = % — —w. Then

0< ' l) = T+1) < f(N=[27]) = ' 0) < 1.

o in S O=FEIHD) <FIN=[T) = min £

Proof

Note that f(0) = f(1) =0, f(N) = land 0 < f(¢) < 4 < 1 for all other ¢. Next, we show

that f () is increasing on ¢ € (1, N — 1). The first derivative of f (¢) with respect to ¢ € (1, N)

is given by
9 (0) = 2y/0(N —0) (N —1) — (N —20)
ot ONVI(N -0 (N-1)

This derivative is larger than 0 if and only if
N (-4 + (4(N—1)+4)¢—N) > 0.

This inequality holds at £ =1 and ¢ = N — 1 (because N > 2) and, therefore, it holds for all
¢=1,...,N—1. Since f(N —1) <1 = f(N) the function f also increases in going from

{=N—1tof=N. Then,

peminy SO =FE+Y, | min - f(0) =F(N =T
and f([z"] +1) < f(N = [27]). 0

The second lemma is used in the proof of Theorem 3.1.



Lemma A.2. If Ef < 0, then ¢ (0) ajr (0) — c; (0) ar; (0) > 0 for 0 € [E,0), j = [*] +

1,...,N—[¢*], k=N —1[2*],...,N and j < k. Moreover, 6 > 0.
Proof
First, a; (0) > ag; (0) > 0 if and only if & > Ef. Second, if 0 < 6 < £ — W,

then ¢, (#) > 0 and, thus, ¢ (0) a; (#) > 0. From Lemma A.1 it follows that ¢ (6) > 0 for all

k=N —[z*],...,N if 0 is smaller than
Lk DR _N-[] JEIO D,
k=N—[z*],....N N N(N-1) N N (N -1)
Third,
1j+k-1

C]C(Q)—CJ(Q):(k—_])[(k’-{-j—l)—Q(N—l)m>0<:>9<2ﬁ

The latter bound upon 6 is larger than £ <8~ > 1, because j > [2*] + 1 and k > N — [z*]. To

conclude, for 6 € []E@,?) (recall @ is the minimum of the two bounds upon  just derived) it

holds that c (0) a;j (0) > ¢; (0) ax; (0) for all k > j. O

The next lemma is used in the proof of Lemma A.4.

. - 2 .
Lemma A.3. Let g (j, k) = 555 — \/N2(k+a2yvl(>N:411)V<N71)ky' Then

. o _ N[
0< ey 9(k) =9 +1,N) = ——-+.
j=[z*]+1,... ,N—[z*]

Proof

First, g (4, k) > 0 for all j, k. The derivative with respect to k is given by

o N\NP(k4j-1)P —AN(N - Dkj— N2(k+j—1)+2N (N 1)
FrI Usk) = -

2(N—1)N\/N2(k:~|—j—1)2—4N(N—1)kj

Then 2 g (j,k) < 0 is equivalent to

2
<N\/N2(k+j—1)2—4N(N—1)kj> — (N2 (k+j—1)+2N (N —1)4)°

= —4N?(N-1)j(2N (k4+j—1)+ (N — 7)) <O0.
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Note that %g (7,k) <0 for all j. By symmetry a%.g (7,k) < 0 for all k. So,

| | N - [
ky=g(N —[z*],N) = ————.
ey in 90k =gV =L N) = =
j=[z*]+1,... ,N—[z*]
O
The last lemma is applied in the proof of Theorem 3.2.
Lemma A.4. If B0 < 0, then for all j = [z*]+1,... ,N—[z*],k=N—[z*],... ,Nand j < k

the function a;y (0) — a ; (¢) admits a unique inflection point 0 c (0,IE0) and it is strictly

convex on 0 € (é\, 5) Moreover, 0 < 0 <.

Proof

Assume E6 < 6. Lemma A.2 states that each function a; (6)—ay,; (9) is convex for § € [, 5)
Furthermore, from (3.1) and (3.2) it follows that each a; (6) — ax ; () is locally concave for
sufficiently small # > 0. So, there exists an inflection point 0 e (0,IEf). The remainder of
this proof consist of showing that the third derivative of a; (6) — ax j () is increasing in every

b (0,IE0). We proceed as follows. Since

0 {—-2—-0 (N — 4)
o (9)@ 2 (1 9)2\] 0—2 . (1 0) (9)@ 2 (1 9)2\] 2—/¢
we obtain

0 ame(0) _£—2-0(N-4)

9062 (1 - 6)? 63 (1 —06)° @t (6)

Differentiation of the second derivative ¢y (6) a; i (0) — ¢; (@) ay ; (#) with respect to 6 yields

¢, (0) ajr (0) — ¢} (0) ak,; (0)
02 (1 —0)>
n (k=2-0(N—-4)cx(0)a;r(®) —(—2-0 —4))c; (0) ar, (6)
3
63 (1—9)

7

where ¢ (6) denotes &c, (0), ¢ = j,k. By definition of f it must hold that c (5) ajr (5) =

c;j (5) a.j (5), which yields

(k- 5)+8 (1) . @ 50 0k§§a) = @ -
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From Lemma A.1 it follows that both ¢, () and ¢; (#) are positive for 6 < f([2*] + 1) = WTH -

v DO IEED < £ (N = [2%). So, f([2*]+1) < . Since k—j > 0, 5(1 - 5) >0
and the term outside the large round brackets are all positive for 6 < 9 it suffices to prove that
. (é\) ¢k (é\) — ¢ (é\) /¢; (5) is positive in 6 < f ([2*] + 1). So,

¢, (5) ¢ (5) 2(N — 1) (k — 5) (N(N—l)é?—N(k+j—1)§+kj)

% (#) e (9) o (7) s (9)

The numerator is positive for sufficiently small 0 >0 (which can be established by choosing

IE# small enough). Then, necessarily, the numerator is positive for

G ki1 VNZ (k4 — 1) AN (N — 1) kj
2(N —1) 2N (N — 1) ‘

Lemma A.3 implies that the latter bound upon 0 is minimal at N]\L[Zl*]

> %L > 6, because

N
[2*] < $N. So, if Ef < 0 = min {g,f([z*] +1), N]\izl*] }, then the third derivative in § €
(0,IE0) is positive and a;j (6) — ay ; (#) admits a unique inflection point on (0,IE€). The rest

trivially follows. O
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