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How to overcome the Jeffreys-Lindleys Paradox for
invariant Bayesian Inference in Regression Models

Frank Kleibergen'
August 8, 2001

Abstract

We obtain invariant expressions for prior probabilities and priors on the parameters
of nested regression models that are induced by a prior on the parameters of an encom-
passing linear regression model. The invariance is with respect to specifications that
satisfy a necessary set of assumptions. Invariant expressions for posterior probabilities
and posteriors are induced in an identical way by the respective posterior. These pos-
terior probabilities imply a posterior odds ratio that is robust to the Jeffreys-Lindleys
paradox. This results because the prior odds ratio obtained from the induced prior prob-
abilities corrects the Bayes factor for the plausibility of the competing models reflected
in the prior. We illustrate the analysis, where we focus on the construction of specifi-
cations that satisfy the set of assumptions, with examples of linear restrictions, ¢.e. a
linear regression model, and non-linear restrictions, i.e. a cointegration and ARMA(1,1)
model, on the parameters of an encompassing linear regression model.

1 Introduction

In Bayesian model comparison, that uses Bayes factors and prior and posterior odds ratios,
prior probabilities for competing models are assigned independently from the prior densities
on the parameters of these models. When one of these models encompasses the others, the
prior (density) of its parameters has a specific value at the locations of the parameters that
correspond with the competing nested models. Hence, it can occur that this prior has a low
value at the location of a competing nested model while that model has a prior probability
equal to the prior probability of the encompassing model. These kind of instances lead to
the Jeffreys-Lindleys paradox, see e.g. Lindley (1957), Bernardo and Smith (1994), O’'Hagan
(1994) and Poirier (1995).

The prior probabilities and densities are specified independently because the prior (density)
on the parameters of an encompassing model does, because of the Borel-Kolmogorov paradox,
see e.g. Kolmogorov (1950), Billingsley (1986), Wolpert (1995) and Dréze and Richard (1983),
not imply unambiguous probabilities for the lower dimensional sub-sets of its parameter space
that constitute the nested models. By restricting ourselves to regression models, we are, how-
ever, able to construct a necessary set of assumptions that allow us to define the (Hausdorff)
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integral of the prior of the parameters of an encompassing linear regression (ELR) model over
lower dimensional sub-sets of its parameters space that constitute nested regression models.
The (Hausdorff) integral is invariant with respect to specifications of the nested regression
models that satisfy the assumptions. When we make an additional assumption about the
completeness of the set of regression models of interest, the (Hausdorff) integral implies prior
probabilities for nested regression models that are induced by the prior on the parameters
of the ELR model. Alongside this result, it also implies the priors on the parameters of the
nested regression models that are induced by the prior on the parameters of the ELR model.
Both the prior and prior probability are invariant with respect to specifications that satisfy
the assumptions.

In an identical manner as for the priors, we also obtain posteriors of the parameters of
nested regression models that are induced by the posterior of the parameters of the ELR
model. In line with the Bayesian paradigm, identical expressions of these posteriors result
when we update the prior with the likelihood. The same reasoning applies to the posterior
probabilities that are induced by the (Hausdorff) integral of the posterior of the parameters
of the ELR model over the lower dimensional sub-sets that constitute the nested regression
models. These posterior probabilities lead to a posterior odds ratio that equals its specification
of prior odds ratio times Bayes factor. This shows that the prior odds ratio, which is induced
by the prior of the parameters of the ELR model, corrects the Bayes factor for the plausibility
of the competing models reflected in the prior. The posterior odds ratio that results is there-
fore robust against the Jeffreys-Lindleys paradox because prior probabilities and densities are
specified in line with one another.

The paper is organized as follows. In the second section, we make the assumption that
allows us to obtain the invariant expression of the Hausdorff integral over lower dimensional
sub-sets. Because we do not restrict ourselves to linear lower dimensional sub-sets, we use
Hausdorff integration instead of Lebesque integration. We therefore define the Hausdorff
measure of lower dimensional sets and the Hausdorff integral. In the third section, we make
an assumption about the completeness of the analyzed set of regression models. Alongside
with the assumption that concerns the invariance of the Hausdorff integral, this assumption
implies the prior probability for each nested regression model that is induced by the prior
on the parameters of the ELR model. The assumptions also imply invariant priors on the
parameters of the nested regression models. We discuss why they avoid the Borel-Kolmogorov
paradox. Section 4 shows that the analysis continues to the case of the posterior and posterior
probabilities. In section 5, we discuss the Jeffreys-Lindleys paradox and show that the use of
prior probabilities that are induced by the prior on the parameters of the ELR model leads to
a posterior odds ratio that is robust to the Jeffreys-Lindleys paradox. Section 6 extends the
analysis to regression models that are conditional on nuisance parameters. Section 7 discusses
examples where we focus on the construction of specifications that satisfy the assumption
that concerns the invariance of the Hausdorff integral. Because these specifications do not
automatically result from the nested regression model of interest, they can be difficult to
construct especially in case of non-linear restrictions. We illustrate this for some models that
result from linear restrictions, 7.e. linear regression models, and non-linear restrictions, the
cointegration and autoregressive moving average model, on the parameters of an ELR model.
Finally, the eight section concludes.

We use the following notation throughout the paper: vec(A) stands for the column vec-
torization of the 7" x k matrix A such that vec(A) = (a}...a}) when A = (a;...ay),
My = Ip — A(A’A)7'A’, with I7 the T x T dimensional identity matrix; J(a, (b,c)) is the
jacobian of the transformation from a to (b, ¢) and |, stands for evaluated in a.

2



2 Hausdorff integrals for lower dimensional sub-sets

We consider the linear regression model,
G:y=Xp3+e¢, (1)

with y a T x 1 vector of dependent variables, X a 7" x k matrix that contains the independent
explanatory variables, 3 a k x 1 vector of parameters and € a T" x 1 vector of disturbances.
The support of 3 is the R*. For expository purposes, we assume that ¢ ~ N (0, I7) but another
distributional assumption can be made as well. We specify a prior on  in model G, pg (),
that is continuous and continuous differentiable. This prior pg (/) induces prior probabilities
for convex k-dimensional sets S C R¥,

Pr [S] = / pe (8)d5, 2)

where df3 is shorthand notation for Ly (d) because (2) is a Lebesque integral.
We use the prior density pg and prior probability Prg in model G to induce prior proba-
bilities and densities for the parameters of nested regression models

Gzy:sz((pz)_*—Eﬂ ZZI,,W, (3)

with ¢, € O¢,, B¢, is an open convex set in the R™ and f; is a k-dimensional continuous
differentiable vector function of ¢, : m; x 1, m; < k. The nested regression models (3) are
represented by lower-dimensional sub-sets in the parameter space of 3, the R¥,

ﬂ:fi(wi)}v i:17"' y 1. (4>

The sub-sets Sg, (4) are m;-dimensional manifolds in the RF.

The prior probability and density of the regression models (3) have to be invariant with
respect to the specification of 5 and f;. In order to achieve this, we make an assumption with
respect to the specification of § and f;.

S(;i = {goi - ®Gi C R™

Assumption 1: The k x 1 dimensional vector 3 is an invertible function of the m; x 1
dimensional vector y; and the (k —m;) x 1 dimensional vector \; :

B = filw:) + gi(pi, M), (5)

where g;(v;, Ai) is a continuous differentiable k x 1 vector function of (p;, \;) which is such
that:

b. The set of values of ; that lead to a unique value of fi(y;) is identical to the set of
values of ; that lead to a unique value of fi(v;) + gi(@;, Ni), and the latter set does not

depend on \;, such that g;(p;, \;) is a strictly monotonic function of \; for all values of

%‘-1

1'We note that this condition refers to the functional relationship f;(;) + g:(¢;, Ai)- The spaces where ;,
\; result from are therefore considered unrestricted, ¢, € R™, \; € R*=™i such that Oy, is not involved and,
for example, the set of values of ¢, that do not imply a unique value for f;(y;) can even be outside Oy, .



/
9g:(pi;\i) 9g:(pi;Mi)
C. ( ox, I1Ai=0 N,

symmetric (k —m;) X (k —m;) matriz that does not depend on ;.

0) = A; for all values of ¢,;, with A; a fixed positive definite

i=

To construct the prior probability of G; induced by pg (), we evaluate the integral of
pa(B) over Sg,. Because Sg, does not have to be a linear set, Lebesque integration can not
be used to evaluate this integral. We therefore use Hausdorff integration, see e.g. Billingsley
(1986). Like Lebesque integrals, Hausdorff integrals result after we have defined the Hausdorff
measure of sub-sets of Si,. We construct the Hausdorff measure by using a limit sequence
of sets that converge monotonically to the sub-sets within Sg,. The Hausdorff measure then
results as the limit of the ratio of the measure of a k-dimensional set and the measure of the
(k — m;)-dimensional set that is eventually restricted. Assumptions la-b are necessary for
the construction of the monotonically converging limit sequence while assumption 1c implies
that the limit of the measure of the restricted set does not depend on ¢,. This shows the
necessity of all three assumptions to obtain the invariant Hausdorff measure. The definition
of the Hausdorff measure also shows how Hausdorff integrals of non-negative functions are
constructed, see e.g. Billingsley (1986).

Definition 1: When m; < k and assumption 1 holds, the Hausdorff-measure of W¢, C Sg,,

We, = {902' € QGi - @Gz’ﬁ = fz((rpz)}v 1=1,...,n, (6)

with Qq, a convexr open m;-dimensional sub-set of Og,, reads

Hmz(WG.L) = limpHO |: Lk(W(Ii(P)) (7)

Hk—mi (g(wak—mi (07p)))

where L(Wq,(p)) is the Lebesque measure of the k-dimensional set Wg,(p),

WGz(p) - {902 S QGN Ai € Bk_mz(07p) C Rkimﬂﬂ = fZ(QOz) +gl(gpz7>‘l)} ) (8)

Hy—m;(9(¢;, Bi—m, (0, p))) is the Hausdorff measure of the (k—m;)-dimensional set g(p;, Bx—m, (0, p))
and By 1, (0,p) is a (k — m; )-dimensional sphere centered at zero with radius p.

Definition 2:  When m; < k and assumption 1 holds, the Hausdorff integral of a non-negative
function q(B) over the m;-dimensional set W, reads

. fW,l(P) Q(ﬂ)Lk(dﬂ)
fWG,L Q(ﬁ) Hmz (d/g) == llmp—>0 kamj(lg(%,kami (pr)))

1i fVVGi (p) q(B)dB (9)
1mp—>0 Hktfmi (g(SDMBk:fmi (pr)))

Theorem 1 When m; < k and assumption 1 holds, the Hausdorff measure H,,,(We¢,) (7) is
equal to

N

/
ofi Ofi
(wz) M (%10 (wz)

AN/,
i

and is invariant with respect to the specification of B and (p;, \;) that satisfy assumption 1.



Proof. see the appendix. m

Theorem 2 When m; < k and assumption 1 holds, the Hausdorff integral of the non-negative
function q(B) over W¢, (9) is equal to

ani q(8)Hm,(dB) = : fgci q(B(p;, \i)

1
|Ai|2

/\i:O) |J(ﬂ7 (Qow )‘2))

=0 dg;. (11)

The Hausdorff integral (11) is invariant with respect to the specification of 3 and (p;, \;) that
satisfy assumption 1.

Proof. see the appendix. m

When m; = k, the Hausdorff measure and integral are identical to the Lebesque measure
and integral, see Billingsley (1986). In the next sections, we use the Hausdorff integrals to
construct prior and posterior probabilities and densities.

3 Prior density and Prior probability

We construct the prior probability of G;, i = 1,... ,n, that is induced by pg (/). In order to
obtain these probabilies we make an assumption about the completeness of the set of models
G“Z:L , N.

Assumption 2: The true model is an element of {G;, i =1,...,n} such that the joint
prior probability of the regression models G;, 1 =1,... ,n, is equal to one.

Assumption 2 shows that we consider the models G;, 7 = 1,... , N, as separate events,
unless they result from functions f;(¢;) that are invertible transformations of one another,
even when one of them equals G and encompasses all the other models. Hence, all sets Sg,
constitute a discrete separate event, the model G;, although they are lower dimensional sets
in the R*. The probabilities for these events then result from the Hausdorff integral over Sg,
with respect to the prior pg((3) after an appropriate normalization for the completeness of the
set of models G;, © = 1,... ,n. The Hausdorff integral results from theorem 2.

Theorem 3 When assumptions 1 and 2 hold, the invariant prior probability for model Gj,
i=1,...,n, that is induced by ps(B) reads

Prg[G] = 2% i=1,...,n, (12)

with
Qo =[5, pc(B)Hp,(dB), (13)

and
Q= i1l s, pe(B)Hn;(dB), (14)

with w the number of sets S¢, that have a different function f;, w < n, n; is the number of
sets that have the identical function f; (or an invertible transformation thereof), m; is the
dimension of Sq; and S, 1;=1,... ,n; are the sets with the same function f; involved.



Proof. follows directly from theorem 2. The specification of () ensures the completeness
that results from assumption 2. m

When m; = k, Hausdorff integrals are identical to Lebesque integrals and
Qa, = fSG.L pc(B)dB m; = k. (15)

When m; < k, we obtain from theorem 2 that

orig [B{OG ; (—oo )]
X |)‘i:0

QGZ- = 98(91.00) m; <k
‘ O ‘Ai:o‘

(16)

- w . .
B \Ai\% U@cipG(%p\z)

Aizod%} m; <k,

where we haved used that

pa(pi i) = pa(B(es, X)) (B, (wir M) (17)
= palpilhi)pa(N).

The resulting specification of ) then corresponds with

w—1 Pc (A5)1x;—0
Q= 2o Tt e, PeleiPiby=odies + s, pa(@)d5
where ng are the number of sets of dimension k. Because of theorem 2, the prior probability
(12) is invariant with respect to the specification of 3, (¢;, A;) that satisfy assumption 1.

For expository purposes, we consider an example with n = 2. We use theorem 3 to obtain
the prior probabilities of a nested (non-linear) regression model,

Gr:y=Xfi(p) +e, (18)

with ¢; € B¢, C R™, such that

SGl = {Qol S ®G1 - Rm1|ﬁ = fl(S01)}7 (19)

with m; < k and f1(¢;) continuous and continuous differentiable, and an encompassing linear
regression model,

Gy:y=X0+e, (20)

with 3 € R* such that Sq, = { B e R’“} . The vital element of the applicability of theorem 3 is
the existence of a function g1 (¢, A1) which is such that 3, (¢, A1) satisfy the conditions from
assumption 1. Depending on the regression model of interest, the function g; (¢, A1) can be
difficult to construct and we therefore in section 7 give some examples of its specification for
some commonly used regression models. Alongside assumption 1, we also make assumption
2. Because | S, PG (B)dp = 1, we obtain the probabilities induced by pg(3) for S, and Sg,

from theorem 3,

Pra[Sa.] = gt Prg [Sa,) = 1 - Pra [Sa,), (21)



with

L ()ag =
QGl - % |:f@(11 pG(901|>‘1)|/\1:0dSO1 ) (22)

These prior probabilities imply the prior odds ratio (PROR):

PROR [y, Go] = el 3

Qa, -

The prior probability from theorem 3 also implies a prior density of ¢, on Og;.

Theorem 4 When assumption 1 holds, the prior probabilities (12) induce the prior densities
N T Prg[Gi(e;.p)] -
pa (il Ai)lx =0 (24)
f@(.'i Pe (ulAi)[x;=odu’

.un,

on Og,, where By, (v;, p) is a m;-dimensional sphere with radius p centered at ¢; € O¢, and
G;(¢;, p) is the model G; where @; results from By, (1;, p). The prior density (24) is invariant
with respect to the specification of 3, (p;, \i) that satisfy the conditions from assumption 1.

Proof. see the appendix. m

For the example that we considered previously, theorem 4 implies the prior on ¢, in Gy :

_ PG (p1]M1)[x; —0
pG1(S01) - fecl PG EU\M)L\FOdu? (25)

and on 3 in Gy :

pGQU3)=:PG(5)- (26)

Theorem 4 states that these priors are invariant with respect to the specification of (¢, A1)
and [ that satisfy assumption 1.

Assumption 1 ensures that \; represents the difference between G and G; for all values
of ¢,. This allows us to use \; to project 5 onto f;(¢;). We can therefore also interpret
conditioning on )\; = 0 to result from integrating over \; with respect to the projection
function pj; : RF — Sa., pii(B) = pii(fi(w;) + gi(w;, M) = fi(w;), see McCulloch and Rossi
(1992).

Borel-Kolmogorov Paradox

The Borel-Kolmogorov paradox, see e.g. Kolmogorov (1950), Billingsley (1986), Wolpert
(1995) and Dréze and Richard (1983), implies that the probability of a lower dimensional set
is not unambiguously defined. Definitions 1-2 state the Hausdorff measure and integral for
lower dimensional sets. They lead to probabilities for these sets that are invariant with respect
to their specification when this specification accords with assumption 1. Hence, assumption
1 gives a manner of unambiguously specifying probabilities on lower dimensional sets and
therefore avoids the Borel-Kolmogorov paradox. There are two reasons why assumption 1
avoids the Borel-Kolmogorov paradox. First, assumptions la-b imply a specification in which
one parameter, \;, completely and only reflects the imposed restriction. For all values of 3,
conditioning on a zero value of \; leads to the desired restriction, = fi(¢;). Assumptions

7



la-b therefore identify the restriction and avoid the issue of non-conglomerability that is one
element of the Borel-Kolmogorov paradox, see e.g. De Finetti (1972). Second, assumption lc
implies that the Hausdorff measure of the restricted space does not depend on ¢,. This allows
us to separate the measures of the restricted and unrestricted space in a joint set of (¢;, \;).
Assumption 1 excludes the traditional example of the Borel-Kolmogorov paradox that
the restrictions \; = 0 and 2- = 0 lead to different densities and probabilities, see e.g.

1,1
Wolpert (1995) and Dréze and Richard (1983). This traditional example is concerned with
non-conglomerability and shows that the restriction can be represented in a non-denumerable
infinite number of ways, see e.g. De Finetti (1972). Assumptions la-b impose a structure on
the representation of the restriction, g;(¢;, A;), such that it represents the restriction for all
values of ;. This property does, for example, not hold for the specification W’\—i = 0. That

specification is not uniquely determined when ¢,; = 0. It does therefore not Zfézpresent the
restriction A; = 0 when ¢, ; = 0 and explains why assumption 1b is necessary. The structure
imposed by assumptions la-b on g;(¢;, A;) overcomes the issue of non-conglomerability and
reduces the number of ways how the restriction can be represented to a denumberable infinite
amount. Assumption lc adds further structure and is concerned with the measure of the
restricted space. It ensures that this measure does not depend on ¢, and does therefore also
exclude the specification @Ai =0.

Theorems 3-4 show hovzz’lwe conduct Bayesian inference in regression models that are non-
linear in the parameters in a manner that corresponds with Bayesian inference in linear regres-
sion models. The latter analysis is well-developed and theorems 3-4 show how we extend this
analysis to regression models that are non-linear in the parameters. For example, sufficient
statistics exist for the parameter 3 in G and we know how the prior influences the posterior.
By specifying the prior on ¢, in G; according to theorem 4, this property also holds for the
prior and posterior of ¢, in G;. We discuss this property for the posterior in the next section.

4 Posterior density and Posterior probability

The posterior in model G (1) is obtained by updating the prior with the likelihood:

_ : (B)L(DIB)
yge! (5|D) - kap;c (u)L(D|u)du’ (27)

where L£(D|[3) is the likelihood function, which in our case of normal disturbances corresponds
with

L(D|B) = 2m) 2T exp [~ (y — XB) (y — XB)], (28)

but any other likelihood that is a continuous and continuous differentiable function of § can
be used as well. Because the posterior (27) is a proper density function, and therefore non-

negative, we can, analogous to theorem 3, construct posterior probabilities by usage of theorem
2.

Theorem 5 When assumptions 1 and 2 hold, the invariant posterior probability for model
Gi,i=1,...,n, that is induced by ps(5|D) (27) reads

Pre[Gi|D) = Zeie i=1,...

o (29)



with
and

Qo= X [ s, P6(B1D) Ha, (45). (31)

Proof. results directly from the proofs of theorem 2. m

When m; = k, the Hausdorff integral is identical to the Lebesque integral and
Qacip = fsci pc(B|D)dp m; = k. (32)

When m; < k, we use theorem 2 to obtain that

(N =0
Qap = % [f@ci pa (@il Ai, D)|x,=odep; m; <k, (33)
where
pc (i Ail D) = pa(B(es; M) D) (B, (@5, M) (34)

= palpilhi; D)pe(Ni|D).

The accompanying specification of () corresponds with

pc (A D)|x, = n; pc (¢;i|Aj,D)|x, =0dep;
CalDly=o | rs o, Pa (oA D)la =0, (35)

Q= i =196 + Jure s, pa(BID)dB.

1
4,12

We refer to theorem 3 for further clarification of the different symbols. Theorem 2 shows
that the posterior probabilities are invariant to the specification of (3, (¢;, A;) that satisfy
assumption 1.

Similar to theorem 4 also the posterior probabilities (29) imply a posterior density for ¢,
on Og;.

Theorem 6 When assumption 1 holds, the posterior probabilities (29) induce the posterior
densities

o pa (il A, D)x;—o L
sz (QDZ|D) - Jﬁ@(ﬁ p(;(u|)\7;,D)|)\i:0d’Uz L= 17 o

., (36)

on Og,, and these posterior densities are invariant with respect to the specification of 3, (v;, Ai)
that satisfy the conditions from assumption 1.
Proof. results directly from the proof of theorem 4. m

Naturally, the posterior densities (36) also result when we update the prior pg,(p;|D) with
the likelihood:

_ PG, (P)L(DIB)p=7; (05 .
pa; (| D) = Tog 6, )LDz, () @ 1=1,..

., Nn. (37)

Similarly, the posterior probabilities (29) result from the equality between the posterior odds
ratio (POR) and the prior odds ratio (PROR) times the Bayes factor (BF):

POR(G;, G;) = PROR(G;, G;) x BF(G;, G;) (38)



where

POR(GZ, GJ) — DPrlGilD] PROR(GZ’ G]) _  Prg[Gi] BF(GZ, Gg) _ P(“.L(D)

Prg [G;]D]? Prg[G;]?

and pg, (D) is the marginal data density,

pa.(D) = Jo, pa.(@i) £(DIB)lp=s.(0nde:
p6 (MilD)|x,m0 _ Jog, Pe (#ildiD)lx—ode; (40)
PG (Ai)lx;=0 f@Gi PG (¢;1Mi)|x;=0dp;

= CﬂX

with ¢g = [. pa(8)L(D|3)df3, for a proof of (40) we refer to the appendix, see also Verdinelli
and Wasserman (1995).

The specification of the prior pg, (¢;) satisfies the conditions for the Bayes factor to equal
the Savage-Dickey density ratio, see e.g. Dickey (1971) and Verdinelli and Wasserman (1995).
The Bayes factor is therefore equal to the ratio of the posterior heights divided by the prior
heights:

PG NIy, —o | [ Jog, PG (#ilXi: Dy —0de
PG (Ai)Ix; =0 Joq . PG (#ilX)Ix;—0dei
11

BF(G:,G;) = (41)

PG (A1D)Ix;—0 f@(;jPG(‘le/\jaD)l/\j:Od‘Pj :
PG (A5l =0

Je, . Pa (2j1Xj)Ix;=0de;
iy

Substituting this expression for the Bayes factor in (38) results in the posterior odds ratio that
accords with the one that results directly from the posterior probabilities (29), i.e.

~ Qayp

POR(G;, G/) = . (42)
Qq; D
For our example with n = 2, the Bayes factor for comparing G; with Gy becomes
_ Pa (Al‘D)h —0 f@(l PG (501|/\17D)|>\1:0d501
BF(G1,G2) = [ PG (A1)|A1io } { f@il PG (911A1) 12, —0dpy (43)
and the posterior odds ratio for comparing G; and G, reads
POR(G1,Gz2) = Qayp
(44)

s (MID)a =
W [f@m PG(%\)\l,D)!Alzod%} )

The first part in the Bayes factor (43) is the Savage-Dickey density ratio, see Dickey (1971)
and Verdinelli and Wasserman (1995). The second part arises because the integral of the
conditional densities pg (¢1|A1, D)|x =0 and pg(¢1|A1)]x,—0 over Og, does not have to be equal
to one. When O¢, = R™| the integrals of both conditional densities are equal to one and the
Bayes factor simplifies to the Savage-Dickey density ratio.

5 Jeffreys-Lindleys Paradox

We consider the Bayes factor in our example of comparing G; and G, (43). Furthermore, we
use O¢g, = R™ such that the Bayes factor is equal to the Savage-Dickey density ratio,

BF(Gy, Gy) = 2Lt (45)

PG (A1)|x =0

10



The Bayes factor (45) favors G; above Gy when A; = 0 is more likely in the posterior than
in the prior. Hence, it shows whether the information in the data is more favorable for G;
compared to Gs relative to the prior. When the likelihood dominates the prior in the posterior,
for example, because of a large number of observations, the Bayes factor remains sensitive to
the specification of the prior while the posterior is hardly sensitive to the prior anymore.
This is known as the Jeffreys-Lindleys paradox, see e.g. Lindley (1957), Bernardo and Smith
(1994), O’Hagan (1994) and Poirier (1995). It indicates that when the value of the prior on
A1 in A\ = 0, pg(A1)|a,—0, decreases that the Bayes factor increases, especially when the value
of the prior becomes so small that it hardly affects the posterior anymore. We can achieve
this by decreasing the prior precision on A; (or () or increasing its prior variance.

The Bayes factor is popular for model comparison because it is equal to the posterior odds
ratio when the prior odds ratio is equal to one, which implies equal prior probabilities for G,
and Gy of one-half, see e.g. Kass and Raftery (1995). This specification of the posterior odds
ratio is then also affected by the Jeffreys-Lindleys paradox. The sensitivity to the Jeffreys-
Lindleys paradox results because a prior odds ratio equal to one does not correct the Bayes
factor for the plausibility of G; compared to Gy reflected in the prior. When we instead use
prior probabilities for the prior odds ratio that correct the Bayes factor for the plausibility of
G1 compared to G reflected in the prior, which are the prior probabilities induced by pg(3)
stated in theorem 3, we obtain the posterior odds ratio (44),

POR(Gl, G2) _ P (/\1|D)1‘A1:0. (46)
[A1|2

The posterior odds ratio (46) shows the a posteriori support for G; compared to Go when we
use the prior pg (/). The posterior odds ratio (46) is not affected by Jeffreys-Lindleys paradox.
This results because a decrease of the prior precision (or an increase of the prior variance)
on A; does not directly influence the posterior odds ratio (46). Hence, this posterior odds
ratio can also be used in case of an improper prior because only the posterior pg(p;, A\1|D),
or put differently the posterior pg (5| D), needs to be proper. The posterior odds ratio (46) is
related to the posterior information criterium of Phillips and Ploberger, see e.g. Phillips and
Ploberger (1994,1996) and Phillips (1996).

6 Nuisance Parameters

For expository purposes, sofar, we only discussed regression models that contain no nuisance
parameters. When model G (1) is a linear regression model conditional on a realization of a
[ x 1 vector of nuisance parameters 7, we specify it as

G: Py(n)y = Px(n)Xp +-e, (47)
and model G; as
Gi: Py(n)y = Px(n) X fi(¢;) + &, 1=1,....,n, (48)

where the T x T matrices P,(n) and Px(n) are observable given a realization of the nuisance
parameter vector 1. The matrices P,(n) and Px(n) scale out the nuisance parameters such that
the disturbances ¢ : T' x 1 have a pre-defined distribution that does not depend on nuisance
parameters. We specify a joint prior on (3,7),

pa(B,m) = pa(Bln)pa(n). (49)

11



When assumption 1 is satisfied, where we note that A; should be fixed and therefore inde-
pendent of 7, theorems 1 and 2 hold and the Hausdorff integrals of the conditional prior
and posterior of 3 given 7, pa(B|n) and pg(5|n, D), over Sg, are invariant with respect to
specifications that satisfy assumption 1. This implies that theorems 3-6 apply such that the
conditional prior and posterior of 3 given 7 imply invariant probabilities and densities.

Theorem 7 When assumptions 1 and 2 hold and model G (47) is a linear regression model
given a realization of the nuisance parameter vectorn, the expressions of the prior and posterior
probabilities in theorem 8 and 5 induced by pe(5,n) and pe(5,n|D) remain unaltered when we

replace Q¢, and Qg, p by
QG@ - f@n [f@plpG(ﬁ|n)Hml(dﬁ)i| pG(n)dnu I = 17 y 1
(50)
Qain = Jo, [Jo, po(BIn, D) Hu (d8) p(ulD)dn, — i=1,...n,

where ©,, is the parameter region of n. Similarly, the joint prior and posterior densities of
(p;,m) defined on O, x O, that result from theorems 4 and 5 read

p&(‘%ﬁ) _ ) pa (e Ailn)|x;—opa (n) , i=1, n,
Jen|Jeg, Pn(%Ai\n)lxi:od%}pn(n)dn
(51)
pe. (¢, | D) = __ pe(piiln, D)y =opg (n| D) ’ i=1,... .n
Je, f@ci PG(*Pm)\im:D)hi:od%]pG(W‘D)dﬂ

The probabilities that result from (50) and the densities (51) are invariant with respect to
specifications that satisfy assumption 1.

Proof. results directly from theorem 2. m

Theorem 7 shows that we can extend the invariant probabilities and densities to restrictions
on linear regression models that condition on nuisance parameters. These restrictions should,
however, be such that they do not involve the nuisance parameters. This explains why we
refer to these parameters as nuisance parameters. Assumption 1 should also not involve the
nuisance parameters in any of its elements.

For many regression models a function g;(;, A;) can be constructed such that the conditions
for theorem 7 are satisfied. Amongst these models are not only linear regression models but also
models that are non-linear in the parameters, like, for example, cointegration, instrumental
variables and auto-regressive moving-average (ARMA) models. Hence, for all these models
prior/posterior probabilities and densities result through theorem 7 from a prior specified on
the parameters of an encompassing linear regression model. In the next section, we briefly
discuss a few examples of these models and focus on the specification of g;(¢;, Ai)-

The prior/posterior probabilities and densities stated in theorem 7 are invariant with re-
spect to transformations that satisfy the conditions from assumption 1. They are not invariant
to transformations that involve the nuisance parameter n. Invariance to these kind of trans-
formations can be achieved by an appropriate specification of the prior pg(/3,7) (49).

7 Examples

We discuss a few examples of regression models that result from a restriction on the parameters
of an encompassing linear regression model. The first example concerns linear restrictions that
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lead to a nested linear regression model. The second and third example are concerned with
non-linear restrictions that lead to a cointegration model and an autoregressive moving average
model of order (1,1) (ARMA(1,1)). The vital element of the applicability of theorems 1-7 is
the construction of a function g;(¢;, \;) that makes assumption 1 hold. This function is not
given by the specification of the regression model of interest and can be difficult to obtain.
We therefore focus on the construction of g;(¢;, A;). Once g;(¢;, \;) is obtained, theorems 1-7
can be used. For regression models that are non-linear in the parameters, these theorems then
imply priors that differ from the priors that are traditionally used for the parameters in these
models. Hence, these traditional Bayesian analyzes are not in line with the Bayesian analysis
of a linear regression model. Besides the cointegration and ARMA model, other models which
have this property are, for example, instrumental variables regression models, see Kleibergen
and Zivot (1998), and simultaneous equation models, see Kleibergen (1997) and Kleibergen
and van Dijk (1998).

7.1 Linear regression model

Our first example considers linear restrictions on the parameters of a linear regression model,
see also Tiao, Tan and Chang (1977),

G:y=(X 2)B+u, (52)
where y : T x 1, X :Txm, Z:Tx(k—m),m<k,B:kx1,3e&RFand u~ N(0,0%I7).
Our linear regression model of interest Gy,

Gi:y=Xp+u, (53)

where ¢ : m x 1, o € R™, is nested in the encompassing model G (52). We therefore specify

S, as
Selz{SDERmW:((g)}- (54)

The model with which we compare Gi, Go, is identical to G, such that Sg, reads
S, = {B € RF}. (55)

Because 0% € R* is a nuisance parameter, we respecify G; and G, towards the notation used
in theorem 7,

Gi: Po)y=P(o)Xp+e,
Gy: P(o)y=P(o)(X Z)0 +e¢,

where P(o) =o'l and e ~ N(0, Ir).
A specification of g;(p;, ;) that makes assumption 1 hold is in this case straightforward

to construct
1, 0
= (T )er (0 )n 57

with A : (k. —m) x 1 and g(¢, A) = (0 Ix_,)'A. Specification (57) satisfies assumption 1 since
it is an invertible relationship and (a.) 3 = (I,, 0) ¢ < XA = 0, (b.) all values of ¢ lead to
a unique value of § both when A = 0 and when A # 0, (c.) % = (0 Iy_m)" and does
not depend on ¢. A prior specified on (3,0?) in model G (52) therefore implies invariant

prior/posterior probabilities for G; and G and densities for ¢ when we apply theorem 7.

(56)
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7.2 Cointegration model

The second example that we consider is a cointegration model. Cointegration implies a non-
linear restriction on the parameters of a linear regression model. The restriction that cointe-
gration implies is that the long run multiplier of a vector autoregressive model has a reduced
rank value, see e.g. Engle and Granger (1987) and Johansen (1991). For a vector autoregres-
sive model of order 1, cointegration with r cointegrating vectors implies therefore that we can
specify it as

Gr : Ayt = a;«ﬁlrytfl + Uy, r= 1a s 7k - 1a (58)

where g, us 0 kX 1; Ays = yr — yo1, oy, B ik xor, B, = (I, _/8/2,7‘)/7 Bor (k—r) xrand
us, t = 1,...,T, are independently and identically normal distributed with mean zero and
covariance matrix (2. We reflect the cointegration models G, (58) in matrix notation

G, :Y=X3,a +U, r=1,... ,k—1, (59)

where Y = (Ay; ... Ayr)', X = (yo...yr—1)’, U = (uq ... uy)". The cointegration models G,
(59) are nested in the multi-variate linear regression model

G:Y =XII+U, (60)

where II : k£ x k. We specify the cointegration models G, (59) and the encompassing linear
regression model G (60) in line with theorem 7 as

G,: P(Q)vec(Y) = P(Q)(Ir @ X)vec(B,a,) + vec(e), r=1,... k-1,

G: P(Q)vec(Y) = P(Q2)(I ® X)vec(IT) + vec(e), (61)

where P(Q) = (072 ® Iy), ¢ = UQ72, vec(e) ~ N(0, Iyy). Equation (61) shows that G,

r=1,...,k—1, is represented using the lower dimensional sets
Sa, = {ar eRF, B, € REITIL = ( g ) ozT} , r=1,...,k—1. (62
M2

The unrestricted full rank model Gy is identical to G (60) such that Sg, reads
Sa, = {IL e R**}. (63)

Because cointegration imposes a non-linear restriction on the parameters of a linear regres-
sion model, the specification of a function g;(p;, ;) that makes assumption 1 hold is rather
difficult to obtain. In Kleibergen and Paap (2000) a specification of II that, results from a
singular value decomposition and, makes assumption 1 hold is given:

= B.ar+ 6, 1 Avawr 1, r=1,... k-1,
< (64)
vec(Il) = vec(B,a.) + (a;yL ® B, )vec(A), r=1,... ,k—1,

where A, : (k—7)x (k—r); B, ,al | :kx(k—r)and 8, 3, =0,8,, 8, = lh—r, a;a, | =0,
CVr,LOé;«,L = Ix_,, such that

9r (@ Ar) = (a7, | ® B, 1 )vec(N,), r=1,...,k—1, (65)
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with ¢, = (ar, 8,,). The specification of II (64) satisfies assumption 1 because, there is
an invertible relationship between IT and (a, 3,,., A;), see Kleibergen and Paap (2000), (a.)
II=pg.a <\ =0,(.) (a,B,,) imply a unique value of 3, a, when «, has full rank and
identically (o, 85, A;) imply a unique value of 3,a, + 3, | Ara, 1 when o, has full rank, (c.)

/
%&A)C) = (a. | ® 3, 1) such that (ag\féf&?)i)) (6555(:('9(&’37)) = I(j_ry2 and does not depend on
¢,. Hence, all conditions of assumption 1 are satisfied. Theorem 7 therefore applies and a
prior specified on (II,€2) in G implies a prior probability for G,, r =1,... , k, and a prior for
(ar, By, €2) in G, that are invariant with respect to the specification of IT and (o, 85, Ar)
that satisfy assumption 1. For more details about the resulting Bayesian analysis of the

cointegration model, we refer to Kleibergen and Paap (2000).

7.3 ARMA(1,1)

As another example of a non-linear restriction on the parameters of a linear regression model,
we consider the autoregressive moving average (ARMA) model of order (1,1), see e.g. Box,
Jenkins and Reinsel (1994),

Gl Yt = PYp—1 — QU1 + Ut, t= 1a e 7Ta (66)

where the disturbances u; are independently and identically distributed, u; ~ N(0,0?). When
we recurrently substitute u;_; in (66), we obtain

T

Gy :yt:(p—a)Zaj_lyt_j—I—ut, t=1,...,T. (67)

j=1
We specify (67) as a regression model that is non-linear in the parameters,
Gr:y=Xf(o,p) +u, (68)

where y = (y1...yr), X = (x1...29), 2 = (Yiz1-. 9% 0...0) : T x 1, ¢ =1,...,T;
u=(uy...up), and

o =(-a| T [:Tx1 (69)
oT-1
Model G; (68) is nested in the linear regression model
G:y=X0B+u, (70)
with 5 : T x 1. We specify both G; (68) and G (70) in the notation of theorem 7,

Gi: Plo)y = P(o)Xf(a,p) +e,

G: Plo)y=P(o)XB+e, (71)

with P(c) = 07!y and € ~ N(0, I7).
The ARMA(1,1) model imposes a non-linear restriction on the parameters of (70), 5 =
f(a, p). This implies that it is not straightforward to obtain a specification of g;(p;, \;) that
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makes assumption 1 hold. A (unrestricted) specification of [ that gives such a function
gi(i, Ai) 1s

1
s=-a | T () 72

with A @ (T'—2) x 1 and g(p,A) = (0 Ir_2)'\ with ¢ = (a,p). Equation (72) satisfies
the conditions from assumption 1 since: (3 has an invertible relationship with («, p, A), (a.)
8= fla,p) = A=0, (b.) (p,a) implies a unique value of f(«, p) when p — a # 0, identically
(p,a, A) implies a unique value of f(a,p) + (0 Ir_2)'A when p — o # 0, (c.) % = (0
It )" and independent of (¢, p). Theorem 7 therefore applies and a prior that is specified on
(8,0%) in G induces a prior probability for G; and a prior on («, p, 0?) that are invariant with
respect to the specification of 8 and («, p, \) that satisfy assumption 1. For more details on
the resulting Bayesian analysis of the ARMA(1,1) model, we refer to Kleibergen and Hoek

(1999).

8 Conclusions

The paper obtains expressions for prior /posterior probabilities and densities of the parameters
of nested regression models that are induced by the prior/posterior on the parameters of an
encompassing linear regression model. The resulting probabilities and densities are invariant
with respect to specifications that satisfy a necessary set of assumptions. Hence, by specifying a
prior and a likelihood for the parameters of an encompassing linear regression model, we obtain
a complete Bayesian analysis, that includes both prior/posterior probabilities and densities,
for all of its nested regression models that allow for a specification that satisfies the set of
assumptions. The resulting Bayesian analyzes of these nested regression models are in line
with one another.

The Bayes factor in the resulting analysis corresponds with the Savage-Dickey density
ratio and equals the ratio of the posterior and prior height in the hypothesized parameter
point. When we multiply the Bayes factor with the prior odds ratio, we obtain the posterior
odds ratio. Because both the prior probability and density result from the same prior on the
parameters of the encompassing linear regression model, the prior odds ratio corrects the Bayes
factor, for the plausibility of the competing models reflected in the prior, in the expression of
the posterior odds ratio. The posterior odds ratio is therefore robust to the Jeffreys-Lindleys
paradox.

Applications of the above results are especially important for regression models that result
from non-linear restrictions on the parameters of encompassing linear regression models. In
these models, the resulting analysis leads to priors and posteriors that are different from the
ones that are used traditionally. The traditional Bayesian analysis leads to anomalies in these
models, like, for example, in simultaneous equation, see Kleibergen (1997) and Kleibergen
and van Dijk (1998), and cointegration models, see Kleibergen and van Dijk (1994). When we
deduce the priors and posteriors of the parameters in these models from priors and posteriors
on the parameters of encompassing linear regression models, these anomalies disappear, see
e.g. Kleibergen (1997), Kleibergen and van Dijk (1998), Kleibergen and van Paap (1998). This
further illustrates the importance of the analysis.
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Appendix

Proof of Theorem 1.
Before we obtain the specification of the Hausdorff measure, we note the structure that

assumption 1 imposes on the jacobian of the transformation from g to (¢;, \;) :

ofi 9g;  Ogi
JB o) = (GE+5% &)

Because g;(¢;, Ai) is a strictly monotonic function of \; and g;(¢;, A;) =0 \; =0, g—(‘;ﬁ_ A=0

0. Hence, the jacobian in )\; = 0 reads
Ai=0 ) ;

C”'gl

JB, (e M)nmo = (85

and

(NI

[T (B, (@5, Ai)) [ni=o0| = (giihizo)/ (S—igm:o)

— Og;
N

!/
0g;
Ai:o) M<%) (ﬁ i=

99i 0g; _
where (a_?\; — (a—i’; —0) = A;.
The Hausdorff measure H,,,(Wg,) is obtained by considering that g;(¢;, \;) is a strictly
monotonic function of A;. We therefore consider a sequence of sets centered at \; = 0,

ﬁ = f(QOz) +gi(gpi7 Al)} )

where Bg_pm,(0,p) is a (k — m;)-dimensional sphere with radius p centered at 0. We use a
limiting sequence of W, (p) that is obtained by letting p converge to zero,

WGi(p) = {Qpi S QGi - Rmi7 Ai € Bk—mi(()’p) - ]Rk_mi

lim W, (p) = We,.

p—0

This results because g;(¢;, A;) is a strictly monotonic function of A.

= A, and g—;ﬁ_| rn=0 = 0, for values of p close to zero the

dg; dg;
Because (Ti; = a—f]\; A;=0
Lebesque measure of W, (p), Lr(Wg,(p)), can be specified as:

L(We, (p fQ( fB( Op)’J( , (035 M) | dAidep;
2
~ chi (3&) M(ag}'k,()) (3&) ka—mi(O,p)|Ai|§ dXidep,;
Ox; 1M
1
/
o gy @) i)
' ‘ a7 12 =0 i

Nl=

Q

! 1
fQG'L (322) M< 6gi|ki:0> (:3(2) dgpz |A2|2 {ka—mi(OW) d)\z} '

N
i
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To construct the Hausdorff measure, we divide Lg(Wg,(p)) by the measure of the set of which
we construct the limiting sequence Bg, (0, p) transformed using the strictly monotonic function
of Ai, gi(@;, Ni). In Ay = 0, the derivative %&’M
the construction of the measure of the limitihg sequence, g;(¢;, Ai) can be considered as a
function of A; only. For values of p close to zero, the measure Hy .,,(9(¢;, Bi(0,p))) does
therefore not depend on ¢, and can be specified as, see Billingsley (1986):

Hi (900 B0 ) = [, 0, |55
oo (8 @)

~ f 0g; ! 9g;
= JBiom, (0,p) |\ 9N 12i=0 I\
| A7 d);
dX;.

A;=0 1s equal to zero. This implies that, for

Hy m, (dX;)

1

2
d;

/\i:O)

N[

d;

Q

ka,lmi (0,p)
~ A kafmi (0,p)

The specification of the Hausdorff measure then becomes:

) Ly (Wg, (p))
Hml(WGz) = hmp—>0 |in*mi (g(‘PiaBi(Oap)))i|

.

1
dﬂpi}|Ai§{kaml(0)p) d/\i}
2

1
2

af;
8(,0;

7
(5” M
8(,9’,) dg;
(8150

= limp_>0

- fQ(Ji

To show the invariance of the Hausdorff measure, we consider an invertible function h :
RF — R* 1 = h(B). Because of assumption 1, we can specify 3 as

B = fi(e:) + gi(ei, M)
and p can therefore be specified as
= 1i(;) + iy, 0:),

with [;(¢;) = h(fi(;)) and 7(¢;,0:) = h(fi(#;) +gi(@i, Ai)) — h(fi(0;)). Because of assumption
1b, that g;(¢;, A;) is a strictly monotonic function of A;, h has to be strict monotonic. This

dy;.

/
(8302) M(%hio) (8302)

2V
7

op’) \op
6; is an invertible function of )\; only. Because of assumption Ic, gg} = g—gggﬁ g’a\,? should be
such that

!/
implies that (ah) (‘%) is a positive definite symmetric matrix for all values of 3 and that

/

or; or;

(ag?’ez:o) (a_gﬂez‘:o) = Bi<:>
/

Oh [ 0g; O\ Oh [ 0g; O\ o

(8 (Fhemo) (5lom0) ) (8 (F1m0) (5lomo)) = B

/ / /
o\; 0gi oh Oh 0g; O\ o
(8o) (Slma) (35) (%) (lamo) (Btlas) = B
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with B; independent of v,. Since 0; is an invertible function of \; only and (gf’\ﬁ

' 99g: _
/\120 N )\1':0 -
!/
oh Oh

A;, with A; independent of ¢, (a_,@') (a_,@') should be equal to some fixed positive definite

symmetric matrix that is independent of 5. Unlike g;, h is an invertible function such that
the only specification of h that satisfies all conditions is an invertible linear function. Hence
every specification p = I;(¢,;) + ri(1;, 0;) that satisfies assumption 1 is such that (1.) u is an
invertible linear function of # and (2.) 6, is an invertible function of A; only and v, is an
invertible function of ¢, only. It is straightforward to show that these transformations lead to
an identical Hausdorff measure.

Proof of Theorem 2.
For values of p close to zero, fWo % q()dB can be specified as

fWGi(p) q(B)dp = ch ka,mi(o,p) q(B(i; X)) | T(B, (03 M) dhidp;
~ fQGi ka*mi (0,0) q(ﬂ(gpiv >‘2) /\1:0) |J(ﬂv (Qpiv )‘2)) /\i:0| d)‘ldgoz

~ { oo 4820 AN)r=o) [T, (0 M nmol di f { S, 0, N}

i

To obtain the Haussdorf integral, we divide fWo,(p) q(B)dB by Hy—m,(9(¢;, Br—m,;(0,p))) that
we constructed previously, '

. fw . (p) q(B)dp
fwo,i q(8)Hp, (dB) = lim,_g Hkmi(g((:oi,Bkmi(O,p)))]

= limpHO

[ {foe, 10060 |56ters olde H Fo, 0 dM}]

1
|Ail2 {ka—mi (0,p) dAi}

= L {Jo,, 9B M)nm0) 1B, (9 2)) mol et |

1
|A;]2

The proof of the invariance of the Hausdorff integral to specifications of 3, (p;, A;) that
satisfy assumption 1 is analogous to the proof for theorem 1.

Proof of Theorem 4.
Equation (24) gives the definition of a density function. The invariance of it follows from
the proof of theorem 1. We have shown in this proof that when

B = filw;) + gi(pi, Ni)
and
po= () +ri(¢;, 0:),

are two specifications that satisfy assumption 1 that 1), is an invertible function of ¢, only and
0, is an invertible function of \; only. Hence, we can independently transform ¢, to 1, and A,
to 6;. This does not affect the specification of the prior from theorem 4.
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Proof of equation (40)

pai(D) = Jo. Pai(@i) £(DIB)lp=si(0ndei

o p(;i(%)ﬁ(Dm)‘ﬁ:fi( i)
= )\ ‘D |/\1 {f@ i PG (Al D)[x,=o - }d@i}

. [pc; (i) £(DIB)|g=f,(0;)Pc (¢5|Xi,D)x,—0
= pa(MID) o { o, | ) }d%}

[pc; (2) L(DIB) | p=f,; (0 PG (PilAi,D)Ix;—0
= peuz-w)m:o{f@ai P e e |

f PG ; () L(DIB)| g1, (01 PG (@ilXi; D) x; =0 d
e(‘ PG (‘P'L’Ai)lk,L:OC(D‘ﬁ)‘ﬁ:fi(g;i)) SDZ

B

PG (pi)pc (#ilXi, D)x;—o
)= {f@ci { PG (©i520)x;=0 ]dgpz}

pc (Ni|D)lx;=o j2¢ %|/\ Ix;=0PG (¥;|2i,D)|x; =0
= c¢g X L . doy;
s f@c PG (¢ilAi)|x;=0dp; f@( A)Ix;=opa (@i Ni)lx; =0 Pi

= pa(N

= CﬁXpG( i

. p6 (AilD)|x;=o fe(:i P (#ilXi: D)l =ode;
B2 Th6 )lx =0 Jo,, Pe (ii)lx=ode;

where
cg = [ pa(B)L(D|B)dp

= Jami Jrrem PG (05, M) L(D|B(Ns, ;) dNidep;,

_ PG (@i Xi)[x;=0
(i) = Jog, Pa(ulAi)lx;=odu’
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