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Two independent pivotal statistics that test location
and misspecification and add-up to the
Anderson-Rubin statistic.*

Frank Kleibergen'

June 21, 2002
Tinbergen Institute Discussion Paper, TI 02-064/4

Abstract

We show that the Anderson-Rubin (AR) statistic is the sum of two independent piv-
otal statistics. One statistic is a score statistic that tests location and the other statistic
tests misspecification. The chi-squared distribution of the location statistic has a degrees
of freedom parameter that is equal to the number of parameters of interest while the
degrees of freedom parameter of the misspecification statistic equals the degree of over-
identification. We show that statistics with good power properties, like the likelihood
ratio statistic, are a weighted average of these two statistics. The location statistic is
also a Bartlett-corrected likelihood ratio statistic. We obtain the limit expressions of
the location and misspecification statistics, when the parameter of interest converges to
infinity, to obtain a set of statistics that indicate whether the parameter of interest is
identified in a specific direction. We show that all exact distribution results straight-
forwardly extend to limiting distributions, that do not depend on nuisance parameters,
under mild conditions. For expository purposes, we briefly mention a few statistical
models for which our results are of interest, i.e. the instrumental variables regression
and the observed factor model.

Key words: Identification statistics, rank tests, Bartlett-correction, power and size prop-
erties, confidence sets, conditioning.
JEL codes: C12, C13, C30

1 Introduction

The Anderson-Rubin (AR) statistic, see Anderson and Rubin (1949), is a corner-stone statistic
to test for linear relationships between parameters for which estimators with normal distribu-
tions exist. This importance results since the AR statistic is a sufficient and a pivotal statistic
so it has an exact distribution. Other statistics that test such hypothezes, like, for example,

*The research documented in this article has been funded by the NWO Vernieuwingsimpuls research grant
“Empirical Comparison of Economic Models”.
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Wald, likelihood ratio (LR) and Lagrange Multiplier (LM) or score statistics, are not pivotal
so their distributions depend on nuisance parameters, see e.g. Phillips (1989), Bekker (1994),
Dufour (1997) and Staiger and Stock (1997). A deficiency of the AR statistic is, however, that
the degrees of freedom parameter of its x? distribution exceeds the number of parameters that
characterize the hypothesized linear relationship. Especially when this difference is large, the
AR statistic has low power. A considerable interest has therefore appeared for test procedures
that have a known distribution under the hypothesis of interest whilst they overcome the de-
ficiency of the AR statistic, see e.g. Bekker (1994), Staiger and Stock (1997), Wang and Zivot
(1998) and Kleibergen (2000). We decompose the AR statistic to obtain such test procedures.

The AR statistic comprises two statistics that are, under the hypothesis of interest, in-
dependent random variables with exact distributions. Each of these two statistics tests a
separate hypothesis while the joint hypothesis is identical to the hypothesis of interest under
the AR statistic. The first statistic is the K-statistic from Kleibergen (2000,2001) and tests
a hypothesis that concerns the location of the linear relationship. The degrees of freedom
parameter of its x? distribution is identical to the number of pre-specified parameters in the
linear relationship. The second statistic is a J-statistic, see e.g. Sargan (1958) and Hansen
(1982), that tests a misspecification hypothesis, i.e. whether there is a linear relationship be-
tween the parameters. The degrees of freedom parameter of its x? distribution is identical to
the degree of over-identification. The degrees of freedom parameters of the y? distributions of
both statistics add-up to the degrees of freedom parameter of the x? distribution of the AR
statistic. The AR statistic is just a function of the two pivotal statistics, i.e. the sum, and
other functions can be used as well to test the hypothesis of interest. We are interested in
those functions that outperform the AR statistic with respect to power. An example of such
a function is the LR statistic. The distribution of the LR statistic depends, however, on a
rank statistic. Alongside the LR statistic, we also analyze other combinations of the J and K
statistics.

The paper is organized as follows. In the second section, we decompose the AR statistic
in a sequence of steps to obtain the pivotal J and K statistics. In the third section, we show
that the K-statistic is a quadratic form of the derivative of the AR statistic with respect to
the parameter of interest. It therefore equals zero at those values of the parameter of interest
where the AR statistic is minimal, maximal or has an inflexion point. Hence, the K-statistic
has low power around the value of the parameter of interest where the AR statistic is maximal
or has an inflexion point. The AR statistic equals the sum of the J and K statistics such that
the J-statistic has discriminatory power for those values where the K-statistic suffers from a
power problem. We therefore combine the J and K statistics to improve the power. There
are several ways in which these statistics can be combined. Powerful combinations result from
noting that the maximal value of the AR statistic and the inflexion points are caused by
rank reduction of a hyper parameter. There is an estimator of this hyper parameter which is
independent of the J and K statistics. Powerful combinations of the J and K statistics then
result by using a rank test that involves the independent estimator. In the fourth section, we
show that the LR statistic is such a combination and we construct its conditional distribution
given the rank statistic for any number of parameters of interest, see Moreira (2001) for
the case of a single parameter of interest. We also show that the K-statistic is a Bartlett-
corrected LR statistic. In the fifth section, we conduct a power comparison of the different
test procedures. In the sixth section, we analyze the confidence sets that result from the
different test procedures. We construct the expressions of the different pivotal statistics when
the parameter of interest converges to infinity. These limit expressions are statistics that test
well-defined hypothezes and reflect whether a (1 — «) x 100% confidence set is finite. Hence,
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these statistics reflect if a parameter is identified in a certain direction at a specific significance
level. We give a few examples of the kind of confidence sets that can result. For expository
purposes all distribution theory in the paper is exact and based on a joint normal distribution
of the estimators with a known covariance matrix. In the seventh section, we show that all
exact distributions straightforwardly extend to limiting distributions that are free of nuisance
parameters under mild conditions. In the eight section, we give a few examples of statistical
models where the results in the paper are of interest, i.e. the instrumental variables regression
and the observed factor model. Finally, the nineth section concludes.

Throughout the paper we use the notation: a = vec(A) for the column vectorization of
the n x m matrix A such that for A = (A4;--- Ap,), vec(A) = (A} --- ALY, I, is the m x m
identity matrix, Py = X(X'X)™' X’ and My = I, — Px for a full rank n x m dimensional
matrix X. Furthermore, « - " stands for convergence in probability and « - " for convergence
in distribution.

2 Decomposing random vectors and statistics

We consider a n x } random vector & and a n X m random matrix B for which a and the
vectorization of B, b =vec(B), have a joint normal distribution:

(3) - (3)m

where the nx 1 and mnx 1 vectors a and b (=vec(B)) reflect the mean of the normal distributed

random vector and
‘/aa Vab
V = , 2
( Vi Vi > 2)

with V,, :nxn, Vi :n x mn, Vi, : mn x n and Vi, : mn x mn, is the covariance matrix of
the normal distributed random vector. We assume that n exceeds m.
We analyze whether a m x 1 vector ¢ exists such that a = Be. In order to do so, we specify

> Q>

a = Bca + Bj_hla, (3)

where the n x (n — m) matrix B, is such that BB = 0 and BB, = I,,_,, and ¢, and h,
are m x 1 and (n —m) x 1 vectors. The specification of a in (3) is a unrestricted specification
of a but becomes problematic when B has a reduced rank value, for example, if B is equal
to zero. The distributions of the random variables that we construct next are, however, not
affected by such reduced rank values of B. A

To analyze whether a = Be, we construct the n x 1 random vector d,

A

d = a — Be = vec(a) — vec(Be) = 4 — (¢ @ I,)vec(B) = i — (¢ & I,)b. (4)

The random vectors d and b have a joint normal distribution,

(1)~ (8)m

d=a— Bec= B(c, — ¢) + Bl h,, (6)

where
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and .
I, 0 I, 0 Waa Wap
= = 7
v ( _(C®In) Imn > V( _(C®In> Imn ) < Wbd Wbb ) , ( )
with Wyg :n x n, Wg, : n X mn, Wyg : mn x n, Wy, : mn x mn. The quadratic form of d with

the inverse of Wy, constitutes the Anderson-Rubin (AR) statistic, see Anderson and Rubin
(1949), that can be used to test Hy : a = Be.

We pre-multiply < g ) with

I, 0
R = ( _Wded—dl Imn ) ) (8)
to obtain ) R
d\ d
()-=(7) ®
with ) R
e=b—WuW,'d (10)

The random vectors d and é have a joint normal distribution,

(yn (1) (0 )

e=>b— Wdedjild, (12)

where

and W, = Wy, — WdeC;ll Wa, and are, as indicated by the covariance matrix, independent of
one another. The (rotation) matrix R orthogonalizes b and d. Under Hy : @ = Be, d is equal to
zero and e (12) is equal to b so é is, under Hy, a unbiased (maximum likelihood) estimator of
b. We use ¢ to construct (local) estimators of ¢, — ¢ and h,, under Hy : a = Bc, by specifying
d as ) ) )

Wy2d=W,Ef + W2E\g, (13)
where the n x m random matrix E is such that é=vec(F) and the n X (n —m) random
matrix E| is such that | E =0 and F'| F, = I,,_,,. The specification of d (13) results in the
estimators f and §,!

f

(E'W E) " E'W N, fIE~N
(14)
§g= (E\ WuF ) 'F\d, GIE ~ N(0, (E' WaaE1)™).

Under Hy, E is a unbiased estimator of B so f is an estimator of ¢, — ¢ and § is an estimator

1 _1. .
of h,, which are both equal to zero under Hy. Because (W2, E,) (W, ,*E) =0 and f and g are
normal distributed, f and g are independent. When Hy does not hold, € is not a unbiased

'Instead of (13), we can also specify Wd_d%ci as Wd_d%d = WjdEf + W(;i%EAJ_Q which results in f =
(E'WagE)'E'd and § = (EiW@lEL)_lEA’le_dlcz. This specification implies, however, that f and § are
not invariant to transformations, like, for example, Qa = QBc, for a non-singular k x k matrix (). We therefore
consider this specification less convenient.



estimator of b and f and g do not estimate ¢, — c and h,. The estimators f and g are therefore
local estimators. We only use f and ¢ to detect deviations from Hy such that, since there is a
invertible transformation from d to (f, §), we can use them as well when H, does not hold. We
normalize f and § by pre-multiplying by (E' deilE’)% and (B Wy E L)_%. The distributions
of the resulting random vectors do not depend on E and are marginal distributions,

(E'W,'E)2f ~ N(0,1,),
) o (15)
(Ej_deEL)5g ~ N(O, In—m)

We construct the quadratic forms of each of these (mixed) normal distributed random vectors,

. 1.
=f (E/ ddlE).f dw, dd2 P —%Edezd ~ x*(m),
dd
(16)
A Ao a1, 1. .1, 1. )
J=§ (" WukE )j=dW,> PWd%dELdezd = d'W,,’ MWd—d%Edezd ~ x*(n —m),

where we used that E| (E|\WyuE ) 'E| = W' = WoE(EW'E) ' E'Wt. The x?(m)
distributed K-statistic shows whether d lies in the span of B. In an identical manner, the
x*(n — m) distributed J-statistic reveals whether d lies in the span of B, . Hence, the K-
statistic shows whether ¢, is equal to ¢ and the J-statistic reveals if h, equals zero. The

independent J and K statistics, that add up to the AR statistic,
AR =dWld=J+K, (17)

thus each test one element of Hy : a = Be, i.e. Hk : ¢, = ¢ and Hy : h, = 0. We use the above
properties to obtain statistics for testing the hypothezes involved in Hy : a = Be.

3 Conditional Testing

The K-statistic (16) is a score statistic and equals a quadratic form of the derivative of the AR
statistic ( 17) when we differentiate with respect to ¢, with the conditional information matrix
of ¢ given F, see the Appendix for a proof. For a realized value of a and b the K-statistic
is therefore equal to zero at those values of ¢ where the AR statistic attains its minimum,
maximum or has an inflexion point. This implies that the discriminatory power of the K-
statistic is low when the hypothesized value of ¢ in Hk : ¢, = ¢ happens to coincide with a
maximum or inflexion point of the AR statistic. The AR statistic equals the sum of the J
and K statistics so the J-statistic is equal to the AR statistic at these values of ¢ and has
discriminatory power. We discuss two different manners in which the J-statistic can be used
to overcome the problem with the discriminatory power of the K-statistic.

The distribution of the K-statistic holds under Hy : @ = Be, which is identical to Hg : ¢, = ¢
and Hj : h, = 0, while the K-statistic tests only Hk. A non-significant value of the K-statistic
can thus occur alongside a large value of the J-statistic that tests Hy. When we test Hk using
the K-statistic we should therefore verify whether it is valid to apply the distribution of the K-
statistic. We can check if H; holds by conducting a pre-test of Hy using the J-statistic. Under
Hy : a = Be, the J and K statistics are independent random variables. A test of Hy : a = Be
with size a is obtained when we jointly test Hx : ¢, = ¢ with size ax using the K-statistic and
Hj : h, = 0 with size a; using the J-statistic and (1 —a) = (1 — ay)(1 — ak), so a = aj + ax.
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There is a whole range of values of ay and axk that satisfy the size conditions a; +ax = a and
ay > 0, ag > 0. By specifying «; and ak appropriately, we can emphasize the test of Hy or
Hg. For example, when a = 0.05, a; = 0.01 and ax = 0.04 implies that we focus on testing
Hg but discard large values of the J-statistic.

Another manner of improving the power properties results from noting that the J and K
statistics result from the regression model (13),

1. . 1
Wyld=W,Ef + Wi ELg, (18)

and that F is independent from d. When E is close to a lower rank value, there is a multi-
collinearity problem and tests of Hy based on f only, like the K-statistic, have low power.
This explains the low discriminatory power of the K-statistic for values of ¢ that coincide
with the maximum or inflexion points of the AR statistic. The derivative of the AR statistic
with respect to ¢ equals E W@ld, see the Appendix, so the zero values of this derivative and
consequently the K-statistic for values of ¢ at which the AR statistic attains a maximum or
inflexion point are caused by a reduced rank value of E. At these values of ¢, the AR statistic,
which then equals the J-statistic, has more discriminatory power than the K-statistic. Hence
to obtain good (optimal) power properties, we want to use the K-statistic at full rank values
of E and the AR statistic at reduced rank values of E. An example of a statistic that combines
these properties is

RKJ=K+p? _xJ, (19)

nk(E)

that uses the p-value of a rank test of E Prank(F)- We refer to this statistic as the RKJ-statistic.
The RKJ-statistic is a linear combination of the J and K statistics. Unlike the AR-statistic,
the RKJ-statistic does, however, not attach a fixed weight equal to one to the J-statistic but
this weight depends on the p-value of a rank test of E. Because E is independent of the J
and K-statistics, the RKJ-statistic (19) has a conditional distribution given the p-value of a
rank test of E. The conditional distribution of the RKJ-statistic therefore uses the explicit
conditioning on E that is proposed in Moreira (2001). Given Prank(fs)» We can simulate the

distribution of the RKJ-statistic.2 When E has a full rank value, Prank(E) 18 close to zero and

the RKJ-statistic is approximately equal to the K-statistic. When E is close to a reduced rank
value, p,, (i) Is sizeable and the RKJ-statistic becomes similar to the AR statistic. In a later
section, we show that the conditional distribution of the likelihood ratio statistic also depends
on a rank statistic, see Moreira (2001).

There are several rank tests that can be employed to obtain the p-value, Prank(B)- For
example, the rank tests proposed in Anderson (1951) and Gill and Lewbell (1992) can be
used when the covariance matrix V' has a kronecker product form. When V' does not have a
kronecker product form, we can use the rank tests proposed in, e.g., Cragg and Donald (1997),
Robin and Smith (2000) or Kleibergen and Paap (2002).

The above two procedures dlffer in several manners. The latter procedure explicitly con-
ditions on E or a rank test of E while the former procedure is a unconditional procedure.
This implies a difference in the hypothezes tested. The first procedure conducts a joint test
of Hy and Hk and adapts the sizes oy and ak in order to put more emphasis on one specific
hypothesis. The latter procedure only tests Hx and assumes that Hy holds a priori. When
Hj does not hold, the first procedure can reject all possible values of c. The latter procedure

2We note that the critical values of the RKJ-statistic are reasonably approximated by a linear interpolation
of the x?(m) and x2(n) critical values of the K and AR statistics.



does never reject values of ¢ close to the minimum of the AR statistic because Prank() 1S ap-
proximately equal to zero for these values of c. Hence, the first procedure can imply an empty
confidence set while the latter procedure always results in a non-empty confidence set for c.?

4 Relationship with the likelihood ratio statistic

We investigate the relationship between the pivotal statistics that add-up to the AR statistic,
i.e. the J and K statistics, and the likelihood ratio (LR) statistic for testing Hk : ¢, = c.
Before we discuss the LR statistic, we first decompose the likelihood function.

4.1 Decomposing the likelihood function

To obtain the likelihood function, we consider that a and b are observed estimators of a and
b. Furthermore, we assume that Hy : @ = Bc holds for unknown values of a, B and c. The
likelihood for (¢, b) then results from the joint density of (d,b) (5) with d =0 :

Lie,bld,b) = p(d.ble,d)

= (2m) 2D |73 exp [—%(lAJfb)/Wl(Bib)], (20)

where d = @ — Be. The likelihood function for ¢ corresponds with the marginal density of d
that is obtained by integrating over b in (20):

Led) = pdle
= men p(da b|C, b)db (21)
— ) ¥ W F exp |~ 3dWytd|

To obtain the J and K statistics, first, b is transformed to é and, second, d is transformed
to (f, ). The same expression for the hkehhood function of (¢, b) results when we use the joint
density of (d,é) instead of the joint density of (d, b),

L(c,bld, &) = p(d, é|c, b)

Wa 0 ool d N (Wa 0N d
0 W PI72\ e—p 0 W ée—b )|’

and therefore also leads to the same likelihood function for ¢ (21). Likelihood function (22)
shows that € is the maximum likelihood estimator for b given c.
The transformation from d to (f, §) (14) is an invertible transformation of random variables,

(SIS

— (Zﬂ)f%n(erl)

( Jgf ) — (W E(EWE) BB WaE ) ) d, (23)

and the joint density of ( 1, §) is obtained by noting that
. R -1

s oA N1 EWE 0 R N 94
( de E B, ) - < 0 EindEJ_ ( E Wk ) ) ( )

3We note that also the confidence sets that result from the K-statistic are never empty.
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and reads:

Pl fogle,b) = (2m) 74 |EWB] exp <1 (E'W B) |
1
(271’)_%(7‘_7") ‘Ej_deEL exp [—%gI(ELdeEL)Q} (25)
(2%)_%’”" ]Weer% exp [—— (e—b)Wit(e— b)]
= p(f|é, ¢, b)p(g €, ¢, b)p(€|b, C)

We can express the likelihood of (¢, b) using (é, f ,3). This expression of the likelihood does,
however, not contain the determinants that depend on E which are present in the joint density

of (&, f,9)" :

Llebe, f,9) = m) 78 Wl e [ { FEWG B)f + (B Wab ]|
(2m) 4 W] exp [ 4 (6 — B Wt 6 — )]

Factorization (26) is of interest because the maximum likelihood estimator for ¢ puts f to
zero. This results since ((E'W;;'E) times) f equals the derivative of the log-likelihood with
respect to ¢, see the Appendix for a proof. When ¢’ (EindE 1)g would not depend on ¢,
F(E WCEEA) f would be the minimal sufficient statistic for ¢ because it is of lower dimension
than the sufficient statistic d’ Wd’dlcf. This would occur when B is known a priori such that
E does not depend on c. In that case, likelihood ratio statistics that test Hx : ¢, = ¢ and
Hj : h, = 0 against Hg- : ¢, # c and Hj : h, = 0, for a pre-specified value of ¢, only consist of
FI(E Wd_dlE) f evaluated at ¢ because f'(E’ Wd_dlE) f is equal to zero at the maximum likelihood
estimator of ¢ and §'(E', WzE, )§ does not depend on ¢ so it cancels out in the likelihood ratio
statistic. In the next section, we therefore analyze the importance of §'(E| WyaE, )§ for the
likelihood ratio statistic.

We can further transform the joint density of (¢, f,§) to obtain the density of the J and
K statistics which have, instead of (f, §G), distributions that are independent of é,

p(e, JKle,b) = (2m) 2™ [W,.|” 3 exp [—3 (€ —b) W' (€ —b)]
1 nom_y 1y 1 m_ 1
T J72 texp [—3]] } {r(%p% K= texp [—1K] } (27)

= p(élb,c)p(J]c)p(K]c).

We use the above decompositions to analyze the behavior of the LR statistic for testing
Hg : ¢, =c.

4.2 Decomposing the likelihood ratio statistic

The LR statistic for testing Hx : ¢, = ¢ against Hk+ : ¢, # ¢ equals twice the difference of the
log-likelihood evaluated at the maximum likelihood estimate of ¢,, cyr,, and the hypothesized
value of ¢,, ¢

LR(c) = 2 [log(L(CMLW)) —log(L(c|d))
= d(C)/WC;l:lCZ(C) — d(CML)/Wd_dICZ(CML), (28)
= AR(c) — AR(emn),

4These determinants are not present because (CZ, I;) are observed quantities in the likelihood so we do not

incorporate the Jacobian of the transformation when we transform (d, b) in the likelihood.
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where ¢y, in cz(cML) and AR(cyr) indicates that the value of ¢ involved in the respective
expression is equal to ¢y,. By expressing the AR statistic as a function of J and K statistics
as in (17), we obtain the specification for LR(c):

LR(C) = K(C) + J(C) — K(CML> — J(CML)

— K(0) + [3(e) — I, (29)

which results because the K-statistic is a quadratic form of the first order derivative of the AR
statistic and is therefore equal to zero when evaluated at the maximum likelihood estimate of
¢, see the Appendix for a proof.” Under Hy : a = Bec, the J and K statistics are independent
random variables that have exact x? distributions with resp. n —m and m degrees of freedom.
Hence, unless ¢y, is equal to ¢, the LR statistic does not have an exact x? distribution with m
degrees of freedom. In data-sets that consist of a finite number of observations, the maximum
likelihood estimator is a random variable and ¢y, is never equal to c¢. The LR statistic does
thus not have an exact x*(m) distribution in finite samples. When B has a full rank value, the
maximum likelihood estimator is a consistent estimator of ¢ so ¢y, equals ¢ in samples where
B has a full rank value and that contain an infinite number of observations. This explains
why the asymptotic distribution of the LR statistic is identical to a x2(m) distribution when
B has a full rank value. When B does not have a full rank value, ¢y, does not equal ¢ even in
samples that contain an infinite number of observations so in that case even the asymptotic
distribution of the LR statistic is not identical to a x?(m) distribution, see e.g. Phillips (1989)
and Staiger and Stock (1997).

The expression of the LR statistic (29) depends on the J-statistic so the distribution of the
LR statistic depends on n —m. Bekker (1994) shows that when n — m increases in proportion
with the sample size that then the asymptotic distribution of the LR statistic depends on
n —m even when B has a full rank value.

The specification of the LR statistic (29) shows that we obtain a statistic with an exact
x%(m) distribution by subtracting J(c)—J(cyr) from it. A way of correcting the LR statistic
is by means of the Bartlett correction, see e.g. Bartlett (1937). The Bartlett correction uses
the expectation of the LR statistic,

E(LR(c)) = E(K(c)+ J(c) — J(cun))
m+mn—m— E(J(eur)) (30)
= n— E(J(CML)).
A Bartlett-correction of the LR statistic is then a function whose expectation is equal to

n—m— E(J(CML)),
E(BARCOR(c)) =n—m — E(J(cun)), (31)

since the expectation of LR(c) minus the Bartlett-correction is then equal to the expectation
of a x*(m) distributed random variable, i.e. m. An obvious function with the property that
its expectation is equal to n —m — E(J(eyy)) is J(¢)—J(emw), so

BARCOR(C) = J(C) — J(CML). (32)

The statistic that results after this Bartlett-correction of the LR statistic is the K-statistic.
Hence, the K-statistic is a Bartlett-corrected LR statistic.

®We note that because of this property J(cyr,)=AR(cur).



4.3 Conditional Distribution Likelihood Ratio Statistic

General m. When V has a kronecker product form, i.e. V = (Vo ® Vy), with Vg @ (m +
1) x (m+1) and Vi : n x n, and m = 1, Moreira (2001) obtains the conditional distribution
of the likelihood ratio statistic (28) given ¢'W_'é. We construct the conditional distribution
of the likelihood ratio statistic when V' has a kronecker product form for general values of
m and obtain the conditioning statistics. When V' has a kronecker product form, AR(cyr)
is the smallest root A, of the polynomial, see e.g. Anderson and Rubin (1949), Hood and
Koopmans (1953) and Hausman (1983),

No-(a B)Vy'(a B) —0e
Wo—(d B)Vy'(d B) 0w (33)
My —Wo? (d BYVs'(d B)YWy?| =0,
where ,
(1 0 10\ _ [ wa, wg
WQ_(—C Im>VQ<—c ]m)_(ngj WQZ)’ (34)

with we,, : 1 x 1, we,, = wq, :m x 1, Wo,, :m X m.
To obtain the conditional distribution of the likelihood ratio statistic, we first conduct a
triangular decomposition of Wy,

1 1
1 1 1 2 _ 1 2
Wy = Wg;EWg;i/ Wy? = ( Wos  ~Wau,WesWa., )
)

. ee T (35)
— 1 _dededb wQ;d 0
0 I, 0 W
where Wo,, = Wq,, —wq, dw{zdldwg 2> such that,
_1 PN A ~ _1 A ~ A ~
Mo =Wo™ (d B)'Ve'(d B)Wg?| = [Mw—(d B°) (d B)|,  (30)

_1 1
2

. L1 1.1
with d* = V; *dwg,’, E* = V5 2 EW,, 2, see Moreira (2001). We then use a singular value
decomposition (SVD) of £*, see Golub and van Loan (1989),

E* =USV, (37)

where U/ and V are resp. n x m and m X m orthogonal matrices, i.e. U'U = I,,, V'V = I,,, and
S is a m x m diagonal matrix with the m non-negative singular values in decreasing order on
the diagonal. The number of non-zero singular values determines the rank of a matrix. The
SVD leads to the specification of (36),

o, e dd dUSV
= (i Y (8= (it )

_ |y _(1 0)( d'd’ d*'u8)<1 0 >‘

w0 v )\sui 8 0Vl g8
_ |y _( d"d d*’US)'

mo\sud s
_ |y _(&;;CZ“@*U'LJ*UL d;;s>‘

" Sdy; s )|
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since V'V = I,,,, and where ci*U = U'd* and cf}}l = L{icz* are independent, since Y| U = 0 and
U U = Iy, and df; ~ N(0, I,,,) and df; ~ N(0, I,_p).

Under Hy : d = 0, d; ~ N(0, L,,), CZ?JJ_ ~ N(0,1,_,)* and S is independent of (d;, ci’{h). We
obtain the distribution of the smallest root A, of (38) by simulating d;; and dz}L from N(0, I,,)

and N(0, I,,_,,) distributions resp. and substitute the simulated values of d}; and ci}‘h in (38)
while we keep S fixed. We then numerically solve for the smallest root A.;, of polynomial
(38). Simulations experiments revealed that only the value of the smallest element of S, which
is, since the singular values are ordered in decreasing order, the last diagonal element s,,,,
is of importance for the conditional distribution of the smallest root Ay, of (38).5 Hence,
the conditional distribution of A, given S is identical to the conditional distribution of A,
given $,,,,. By specifying (38) as

Tl Jx Tkl Jx Tt N ~ ~ ~
‘/\Im _ ( diydyy ;;fULdUL dgf > ' = M 8 [N — AT — (A8~ — L) Ny + di iy,
U
(39)

we can analyze the behavior of the smallest root A.;, when all elements of S converge to
infinity or when the smallest element of S converges to zero. When the smallest element of
S converges to zero, the (m + 1)-th row and column of the matrix in (39) become equal to
zero so the smallest root of (39) is then equal to zero. When all elements of S converge to
infinity, it follows from (39) that the smallest root converges to J’&’LJ}}L The LR statistic
(28) equals the AR statistic minus the smallest root Ay, of (39). Hence, when all elements of
S converge to infinity, the distribution of the LR statistic converges to a x*(m) distribution
while it converges to a x?(k) distribution when the smallest element of S converges to zero.
The conditional distribution of the LR statistic only depends on the smallest element of S.
This element constitutes a test of rank reduction of E*. The squared value of s,,,, equals the
rank test of Anderson (1951) because s2, equals the smallest eigenvalue of E* E*. Since only
the smallest element of S is of importance for the conditional distribution of the LR statistic
also the conditional distribution of the LR statistic depends on the value of a rank statistic.

m=1. When m = 1 and V has a kronecker product form, S equals (¢'W_ ')z and we can
determine the functional expression of the smallest root. Under Hy : d = 0, we can then
express the smallest root as a function of the J and K (AR) statistics and ¢'W_'é, see Moreira

(2001),

Amin = 3 [AR +eéWte— /(AR + @W_1é)? — 4Jé’We—elé} . (40)

Substituting (40), the LR statistic (29) becomes,

LR= 1 [AR —¢Wte + /(AR + @W_10)2 — 4Jé/We;1é] . (41)

Because the AR statistic equals the sum of the J and K statistics and the J, K and ¢'W_'é
statistics are all independent of one another, we can construct the conditional distribution
of the LR statistic given ¢'W_'é. We compute this conditional distribution by generating
realizations of the J and K statistics from x%(n — 1) and x?(1) distributions and holding
e'W_te fixed. When ¢'W_'é is large, this conditional distribution becomes identical to the

6We note that S also results from the spectral decomposition of E¥E*, E¥E* = VS?V', with V am x m
orthonormal matrix.
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x*(1) distribution of the K-statistic while it is identical to the x*(n) distribution of the AR
statistic when é¢'W_'¢é equals zero, see Moreira (2001).

The explicit expression of the LR statistic (41) shows that the distribution of the LR
statistic depends on a rank statistic, i.e. ¢'W_'é that tests whether the rank of é equals
zero. The distribution of the RKJ-statistic is a weighted average of the distribution of the J
and K statistics where the weights are independent of the AR statistic and only depend on
¢'W_té. The distribution of the LR statistic is a more complicated weighted average of the
distribution of the J and K statistics and the (implicit) weights depend on the ratio of the

AR statistic compared to ¢'W_'é. Because (%)IV*1 () is equal to d'W;'d + ¢W'é for all
values of ¢, ¢W_'é is a mirror image of the AR statistic. Hence, ¢'W_'¢é is maximal at the
value of ¢ where the AR statistic is minimal and minimal at the value of ¢ where the AR
statistic is maximal. The maximal and minimal values of the AR statistic and ¢'W_'é are
also identical.” These properties imply that the ratio of the AR statistic compared to &'W_'é
is more sensitive to the value of ¢W_'é than ¢'W_'é itself. The weights attached to the J
and K statistics in the RJK and LR-statistic therefore depend in a slightly different way on
¢'W_té. The relationship between the AR statistic and ¢'WW_'é shows that a large value of
¢'W_.1é implies that we are close to the value of ¢ where the AR statistic attains its minimum
and around which the K-statistic is the optimal statistic to conduct tests on c. Furthermore,
a small value of ¢'W_'¢é reveals that we are relatively close to the value of ¢ where the AR
statistic is maximal and around which the AR and J-statistics are the optimal statistics to
conduct tests on c. The conditional distribution of the LR statistic given ¢’ W_'é in (41) shows
that it combines these two properties and the LR statistic essentially uses the statistic with
the most power for discriminating between different values of ¢ at the hypothesized value of
c. For small values of ¢'WW__!é, the conditional distribution of the LR statistic is similar to the
distribution of the AR statistic, which is the optimal statistic at small values of ¢'W_'é that
are caused by the maximal value of the AR statistic, while the conditional distribution of the
LR statistic resembles the distribution of the K-statistic for large values of ¢'W_'é, which are
caused by the minimal value of the AR statistic. Also the specification of the LR statistic (29)
shows that it behaves like the K-statistic around the minimum of the AR statistic and like
the AR and J-statistic around the maximum. This results because the J-statistic is, when Hj
holds, not very sensitive to the value of ¢ while the K-statistic is small around the maximum
of the AR statistic.

When the true value of B is close to zero, ¢'W_'é is small for all values of ¢ and the
conditional distribution of the LR statistic given ¢'W_!¢ is then similar to the distribution
of the AR statistic at every hypothesized value of c. The conditional distribution of the LR
statistic shows that the LR statistic applies the statistic with the most power for discrimi-
nating between different values of ¢ while this statistic is essentially intended to test another
hypothesis, i.e. Hy : a = Be.®

We have to be careful with applying the LR statistic in cases when there is no value of ¢ at
which Hy : @ = Be holds. For a realized value of (, B), the sum of d'W'd and ¢'W'é, that

equals (Z)/V_l (%), does not depend on c. Because a # Bc for all values of ¢, the AR statistic
has a minimum that is considerably larger than zero and, since the minimal values of the

"When we substitute these results and that AR+&'W'é =ARax+ARmi, for all values of ¢ and that the
J-statistic equals the AR statistic at the minimum and maximum values of the AR statistic, we exactly obtain
that the minimal value of the LR statistic equals zero and the maximal value equals ARy ax—ARmin.

8We note that this also holds around the value of ¢ where the AR statistic attains its maximum because
¢'W:té is then minimal such that the conditional distribution of the LR statistic is then also similar to the
distribution of the AR statistic.
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AR statistic and ¢'W_'¢é are identical, ¢'W_'é is sizeable at all values of c. The conditional
distribution of the LR statistic (41) then resembles the distribution of the K-statistic for all
hypothesized values of c. Since there is no value of ¢ at which a equals Bec, the conditional
distribution is, however, invalid. We can still (mistakenly) use this conditional distribution
and apply it, for example, to construct a (invalid) confidence set for c¢. Although there is no
value of ¢ at which a = Be, the confidence set is not empty because the LR statistic equals
zero at cyp,. Hence, a mechanic use of the LR statistic and its conditional distribution does
not indicate that the results are inappropriate. Usage of J or AR statistics could indicate that
a # Bc for all values of c. The resulting confidence set for ¢ based on the AR or J-K statistics
is then empty.”

5 Power Comparison

We analyze the power of the AR, J, K, LR and RJK statistics for discriminating between
different values of ¢, when a = Be, (3). We therefore generate d, b (10000 times) from the
normal distribution (5) with d = 0. We then use a range of values for ¢, to obtain & = d+ Be,.
We use these realizations of a, b to conduct tests of the hypothesis Hy : @ = Bc for a fixed
value of c. We test Hy with a size equal to 5% so a = 0.05. To test Hy, we use the AR
statistic with aag = 0.05, the K-statistic with ax = 0.05, the J-statistic with a; = 0.05, the
LR statistic with argr = 0.05, the RJK-statistic with arjx = 0.05 and a combination of the J
and K statistics, which we indicate by JK, which uses a; = 0.01 and ax = 0.04. The overall
size of testing Hy equals 5% for this combined test procedure.

In our simulation experiment we use a value of m that is equal to 1. The null-hypothesis
that we use to compute the power curves is Hy : a = b, so ¢ = 1. We compute power curves
for different values of the covariance matrix, W, the number of elements of a and b, n, and the
value of b. We specify the n(m + 1) x n(m + 1) covariance matrix W as

W= (Wq® Wy), (42)

where Wo : (m+1) x (m+1), Wy : n X n, and

Wo = ( /1) ' ) , Wy = (X'X) 7, (43)
with X : T'xn, T =100, X = (z4), ¢ =1,...,7, j = 1,...,n, and z;; are independent
realizations of N(0,1) random variables which are kept fixed when we generate d and b. The
specification of the n x 1 vector b is such that only the first element of b, b, is non-zero. This
remains to hold when we vary the number of elements of a and b, n. Hence, when we use
a larger value of n, we only add elements to a and b that are equal to zero and adapt the
specification of Wy, (43) in the appropriate manner. We vary the values of the parameters p,
b, and n to analyze the sensitivity of the power for testing Hj.

Panels 1-3, see the Figures Section, show the power curves of the different statistics for
testing Hy : a = b with a size equal to 5% over a range of values of ¢, which defines the mean
of a, bc,. Panel 1 contains the power curves for the case that by = 1, by = 0.5 in Panel 2 and

9We note that because there is no value of a where a equals Be, the confidence set that results from the
LR statistic is misspecified because £(é) # b when a # Be. An empty confidence set could therefore contain
more information than a misspecified non-empty confidence set because it indicates that the tested hypothesis
is inappropriate. The same reasoning applies when we solely use the K-statistic.
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by = 0.1 in Panel 3. Hence, from Panel 1 to Panel 3, the value of b becomes closer to a reduced
rank (zero) one. For the LR and RJK statistics, we use the critical values that result from the
conditional distributions of these statistics. We can use the conditional distribution of the LR
statistic because W has a kronecker product form. For all other statistics we know the exact
x* critical values. The rank test that we use for the RJK-statistic is é'W_'é.

The power curves in Panels 1-3 show a number of interesting features. The degrees of
freedom parameter of the x? distribution of the AR statistic equals the number of elements
of a and b, n, while the degrees of freedom parameter of the y? distribution of the K-statistic
is equal to one. This explains the larger discriminatory power of the K-statistic compared
to the AR statistic in Panels 1 and 2. Panels 1 and 2 also show that the power of the AR
statistic decreases when we increase n while the power of the K-statistic remains (almost)
unaltered. The power curve of the K-statistic is, however, below the power curve of the AR
statistic at values of ¢, which are considerably different from the hypothesized value of ¢,, i.e.
1. This decrease in power is caused by the property of the K-statistic that it equals zero at
those values of ¢ where the AR statistic is minimal or maximal (because m = 1 there are no
inflexion points). Hence, the discriminatory power of the K-statistic reduces around values
of ¢, for which the hypothesized value of ¢, i.e. 1, coincides with the value where the AR
statistic is maximal. The power curve of the J-statistic indeed indicates that the AR statistic
is maximal at these locations. Since h, = 0 in our simulation experiments, the J-statistic
should have and has low power everywhere except around values of ¢, where the hypothesized
value of ¢, corresponds with the value where the AR statistic is maximal. The power curve of
the combined J and K statistics shows that the combined test procedure resolves the power
issues that are involved with the K-statistic. The power curve of the combined J and K
statistics lies on the power curve of the K-statistic around the hypothesized value of ¢, while
it is equal to one at the location of the spurious decline of the power curve of the K-statistic.
The power curve of the combined J-K statistics shows that oy = 0.01 and ax = 0.04 is an
adequate specification of oy and ak for practical purposes.

Panels 1-3 show that the power of the J-statistic is often quite small. It is a size correct
statistic though since its power coincides with the size at ¢, = 1. The power is small because
the mean of a, a = Bc,, is such that h, = 0 for all values of a. Hence, the generated values
of @ more or less satisfy the hypothesis that is tested using the J-statistic. For many of the
parameter settings of b1, n and p, the power of the J-statistic is equal to one at those values
of ¢, where the power curve of the K-statistic has its spurious local minimum. This explains
why the J-statistic is ideally suited to be combined with the K-statistic, i.e. it is independent
from the K-statistic under the hypothesis of interest, size correct and it has power where the
K-statistic suffers from a decline in power. As a consequence, combinations of the J and K
statistics overcome the power issues of the K-statistic.

The power curves of the LR and RJK statistics, whose conditional distributions depend
on é, do not suffer from sudden declines of the power curve. This shows that they are ap-
propriate combinations of the J and K statistics. The difference between the LR and RJK
statistics is the manner how they use é. The RJK-statistic uses the nominal value of ¢'W_'é
to obtain the p-value of a rank test. The LR statistic uses the relative value of the AR statistic
compared to ¢'W_'é.!’ The simulation experiment is such that the same sequence of values

of (‘Z)/V_1 (Z) =AR+¢'W_'é is used for every value of c,. This explains why the LR statistic

19The use of the relative value of ¢'W__'é compared to AR+¢&'W, 'é in the LR statistic is confirmed by
the power curve of the statistic K—i—(ﬁ){] , with the appropriate (conditional) critical values, that is
indistinguishable from the power curve of the LR statistic in all cases for which we computed power curves.
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is slightly more powerful than the RJK-statistic because the simulation experiment is more
favorable towards the way the LR statistic attaches the (implicit) weights to the J and K
statistics.

In Panel 3, where b, is very small, the power curves of the AR, LR and RJK statistics are
indistinguishable in Figures 3.1-3.4. The combined J-K testing procedure has somewhat less
power in these cases. We notice, however, that the power is very small in these cases anyway.
The primary importance for such small values of b; is therefore that the test procedures are
size correct.

All Figures in Panels 1-3 show that around the hypothesized value of ¢, i.e. 1, the power
curves of the K and LR statistics are identical. This results from the property that score and
LR statistics have locally the same power. For the well-identified cases the local argument
carries further than in the bad identified cases. The variance is much larger in the bad
identified cases so the local argument only applies to values of ¢, in the direct neighborhood of
the hypothesized value. Panels 1-3 show that the explicit use of conditioning variables when
we combine the J and K statistics, as in the LR and RJK statistics, does not lead to a large
improvement in power compared to a fixed combined use of both of them with a; = 0.01 and

6 Confidence Sets

We can use the statistics that test Hy : a = Be, or Hk : ¢ = ¢, and Hj : h, = 0, for a range of
values of c. It enables us to construct a (1 — a)) x 100% confidence set for c¢. This confidence
set only includes values of ¢ for which a test of Hy : @ = Bec with size a is non-significant.
We show some properties of the confidence sets that result from the AR, J, K, LR and RJK
statistics. We focus on the occurence of infinite confidence sets. We also give some examples
of the possible shapes of confidence sets.

6.1 Limit behavior of the statistics as functions of ¢

The AR, J, K, LR and RJK statistics are invariant with respect to the specification of c. When
we use an alternative specification for Hy : a = Be, for example, Hy : a = B*c¢* with ¢* = Dc
and B* = BD™! for an invertible m x m matrix D, this alternative specification does not alter
the value of the AR, J, K, LR and RJK statistics. The Appendix contains a proof of this
property. Because of the invariance property, we only analyze the behavior of the AR, J, K,
LR and RJK statistics for large values of ¢ in one specific direction. For expository purposes,
we take the first element of ¢ to reflect this direction. The behavior of the statistics in any
other direction of ¢, say c,, can then be obtained by conducting an appropriate transformation
that uses some invertible m x m matrix D such that u; ,,, = Dc,, with u; ,, the first column of
I,,,. The behavior of the statistics for large values in the direction ¢, then results from applying
the results for the large value of the first element case in this transformed setting.

Unconditional AR, J and K statistics. A necessary condition for a statistic, that tests
hypothezes on a specific parameter, to imply an infinite confidence set is that it converges to
a finite constant when the hypothesized value of the parameter converges to infinity, see e.g.
Gleser and Hwang (1987) and Dufour (1987). We therefore analyze the behavior of the AR, J
and K statistics for realized values of a, b and V and a value of ¢ equal to ruy ,,, where r is a
scalar that converges to infinity and u; ,, equals the first column of I,,.
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Given realized values of a, b and V, the AR statistic to test Hy : a = Bc is a function of c,

AR() = |a=(c® LY Voo =Vl @ 1) = (¢® L/ Via + (cR I VR L™

We analyze the behavior of the AR statistic in the direction of the first element of c. We
therefore specify c as a function of a scalar r, ¢ = 74 ,,, and we let r converge to infinity:

ARLIM (1) = lim, 00 AR(c = 1uy,m)
- ?l(ul,mA(g) In) [(ul,m ® In),‘/bb(ul,m ® In)/}il (Ul,m X In)/b (45)
- bll‘/b:bll bl’

where b= (b, ... 0.}, Viy = (Vop, ) 4,5 = 1,...,m and Vyp, : m X m.

The limit expression ARLIM(u;,,) (45) is a finite function of wu,,. It equals the Wald,
LR and Lagrange multiplier (score) statistics that test the hypothesis of a zero-value of by,
Hy, : by = 0. The (1 —«) x 100% confidence set for ¢ based on the AR statistic is infinite in the
direction uy,, when ARLIM(uy,,) is less than the x?(n) critical value associated with a size
equal to a. When the (1 — a)) x 100% confidence set of ¢ based on the AR statistic is infinite
in the direction w; ,,, ¢ is not identified in the direction u; ,, with (1 — ) x 100% significance.
Hence, standard statistics that test for a zero-value of b; govern the identification of ¢ based
on the AR statistic in the direction c;.

The limit behavior of the K-statistic is constructed in the Appendix and reads!!

N _1 _ 1.
KLIM () = limy_oo K(¢ = uymr) = 0.V, 2P Vi 01, (46)

101 V,;,,%IELIM(uLm)
where
ELIM(u1m) = (@ = Vi Vi bt b2 = Vi Vird b+ b = Vi Vi b1 ) (47)

The relationship between the AR, J and K statistics implies the limit behavior of the J-statistic

1.

N _1 1
JLIM(u1 ) = iy oo J(¢ = g r) = B V; 2 M Vy 21, (48)

1
1o
Vy, & BLIM (u1,m)

Under the hypothesis Hy, : b = 0, JLIM(uy,,) and KLIM(u;,,) are independent x?(n — m)
and x?(m) distributed random variables. These statistics test hypothezes that decompose the
hypothesis H;, : by = 0 in an identical manner as how the J and K statistics decompose the
hypothesis Hy : a = Bc into Hy : h, = 0 and Hyg : ¢, = ¢. The specification of the hypothezes
involved in JLIM(u4 ,,) and KLIM(u;y ., ) results from a unrestricted specification of by :

bi=(aby...by)cy, +(aby...by)| hey, (49)

with ¢, : mx1and hy, : (n—m)x1and (a by...by) | (@by...by) =0, (aby...by)| (aby...by),
= I,,_p,. The statistic KLIM(uy,,) tests Hxrimv(uy ) © G = 0 and JLIM(uy ) tests Hypmcuy ) -

Ul,m

' The construction of the limit expression of the K-statistic is more involved than the limit expression of
the AR statistic. The K-statistic equals a quadratic form of the derivative of the AR statistic. Because the
AR statistic converges to a finite constant, its derivative converges to zero which complicates the construction
of the limit expression of the K-statistic.
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hy, = 0. When a = Be, ¢, equals é(l —(cg...cm))". Testing for a zero value of ¢, is there-
fore identical to testing for an infinite value of ¢;. Similarly, hs, indicates whether b; is spanned
by (a by ...by).

The (1 — a) x 100% confidence sets that result from the J or K-statistics are infinite in
the direction u; ,,, when JLIM(uy,,) or KLIM(uy ,,) are not significant at the (1 — a) x 100%
significance level.

The (1—a) x100% confidence set for ¢ based on the J-K statistics is infinite in the direction
u1,m when KLIM(uy ,,) is less than the x?(m) critical value associated with a size equal to ax
and JLIM(uy,,) is less than the x?(n —m) critical value that is associated with a size equal to
ay. The size of confidence sets based on the J-K statistics are based on statistics that conduct
tests on by, i.e. statistics that test Hxriv(u,.) @ ¢ = 0 and Hypivu, ) @ ey = 0. These tests
therefore reflect whether c is identified in the direction w; ,,, with (1 — ) x 100% significance.

When the critical value of the y*(n — m) distribution associated with a size equal to aj
exceeds the critical value of the y?(n) distribution associated with a size equal to «, a non-
significant value of ARLIM(u, ,,) implies a non-significant value of JLIM(u; ,,). This results
because the AR statistic equals the sum of the non-negative J and K statistics. A choice of a;
and ak that implies a critical value for the J-statistic which exceeds the critical value of the
AR statistic is quite common because m is typically quite small and we only use the J-statistic
to get rid of the spurious behavior of the K-statistic around the maximum of the AR statistic.
The non-significant value of ARLIM(u; ,,) implies that the (1 — a)) x 100% confidence set of
¢ based on the AR statistic is infinite in the direction w;,,. The (1 — ) x 100% confidence
set of c that is based on the J-K statistics is, however, still finite in the direction u; ,, when
KLIM(uy ) is significant. This indicates that, especially when n is large and m is small, the
AR and J-K statistics can lead to different conclusions with respect to the identification of ¢
in specific directions. This holds with respect to testing hypothezes as well and we therefore
further discuss it using the critical regions of the different test procedures in the next sub-
section.

Conditional LR and RJK Statistics. The limit behaviors of the LR, when V has a
kronecker product structure, and RJK statistics consist of weighted averages of the limit
behaviors of the J and K statistics. These weights depend on the limit behavior of statistics
that test the rank of E. In the Appendix, we show that the behavior of W,, as a function of
¢, with ¢ = uy ,,7, is such that, with respect to the statistic that tests the rank of E, we can
consider the limit behaviors of E and Wee as

ELIM (uy ) = (a — Vi Vi b by = Vi Ve by - b — Vi 1@}181) ,
‘/aa - ‘/abl ‘/b:bl ‘/bla Vab2 - ‘/abl ‘/b:blll‘/blbg

WLIMee(Ul,m) — Viga — %2?1 ‘/b:b1 Viva  Vigby — %2?}1 ‘/b:bl Viyby

—1 -1
%m,a - ‘/bmbl ‘/E)lbl ‘/bla ‘/bmbg - ‘/bmbl ‘/blbl ‘/blbg e (50)
—1
‘/abm - ‘/abl ‘/blbll‘/blbm
‘/I)Qbm - ‘/bzbl ‘/E):bl ‘/blbm
—1
‘/bmbm, - ‘/b'mbl ‘/E)lbl %1bm

When W has a kronecker product structure, W = (Wq ® W), the distribution of the limit ex-
pression of the LR statistic is conditional on the smallest eigenvalue of WLIMQ’ee(ULm)_%
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n=2>5 n =20

p=051p=099| p=0 | p=05|p=099| p=0

Fig. 4.1 | Fig. 4.3 | Fig. 4.5 | Fig. 4.2 | Fig. 4.4 | Fig. 4.6
ARLIM 33.9 4.06 8.01 55.2 18.3 28.9
(0.0) (0.54) (0.16) (0.0) (0.57) (0.08)
KLIM 25.3 1.86 1.44 14.9 1.78 0.83
(0.0) (0.18) (0.24) (0.0) (0.19) (0.38)
JLIM 8.60 2.20 6.58 40.2 16.5 28.10
(0.07) (0.69) (0.16) (0.002) (0.62) (0.08)
LRLIM 31.8 1.93 6.30 39.1 2.20 13.7
(0.0) (0.19) (0.16) (0.0) (0.19) (0.09)
RJKLIM 27.5 1.86 7.38 31.4 1.78 24.3
(0.0) (0.19) (0.16) (0.0) (0.19) (0.09)
é’Wefelé 10.3 61.1 2.22 26.0 84.4 16.2
(0.07) (0.0) (0.81) (0.16) (0.0) (0.71)

Table 1: Limit values of the statistics for the 1 — p-value plots in Panel 4 (p-values between
brackets).

ELIM(uy m) Wy 1ELIM(u1,m)WLIMQ,ee(ul,m)_%, which corresponds with the limit value of
¢'W_'é when m = 1. Similarly, the distribution of the limit expression of the RJK-statistic
is conditional on a statistic that tests the rank of ELIM(uy,,) and that uses WLIM_.(u1 )
as the covariance matrix of ELIM(uy,,). This rank statistic corresponds with ¢'W_'é when
m = 1. The limit value of the RJK-statistic is equal to a weighted average of the limit values
of the K and J statistics where the weights are equal to one and the square root of the p-value
of the limit value of the rank test.

6.2 Examples of Confidence Sets

We illustrate some different kind of confidence sets for ¢ that can result from the different
test procedures. For this purpose, we obtained six different realizations of a and b from the
stochastic process described in Section 5 and use the accompanying six different values of V.
For each of these six realizations of @ and b, we compute the value of the AR, J, K, LR and
RJK statistics over a range of values of c. Panel 4, in the Figures Section of the paper, contains
1—p-value plots of the AR, J, K, LR and RJK statistics and shows the parameter combinations
that were used to generate a and b in the stochastic process from Section 5. The 1 — p-value
plots for the LR and RJK statistic where computed by usage of the conditional distribution
given ¢'W_'é. Table 3 contains the limit values of the AR, J, K, LR, RJK statistics and the
rank statistic ¢'W_'é that result when ¢ converges to infinity. These limit values are obtained
using (45)-(50).

The 95% confidence set for ¢ based on a specific statistic equals the range of values of ¢ for
which the 1 — p-value plot of the statistic lies below the 95% line. Hence, the 95% confidence
set results from the intersection of the 95% line with the 1 — p-value plot. For the J-K test
procedure with ax = 0.04 and oy = 0.01, the 95% confidence set for ¢ results as the range of
values of ¢ for which both the 1 — p-value plot of the K-statistic lies below the 96% line and the
1 — p-value plot of the J-statistic lies below the 99% line. The 95% confidence set of ¢ based
on the J-K test procedure with ax = 0.04 and «; = 0.01 thus results from the intersection of
the 1 — p-value plots of the K and J-statistics with the 96% and 99% lines resp..

The confidence sets in Panel 4 contain a number of interesting features. The 1 — p-value
plots of the LR and RJK statistics are very similar in all cases. They resemble the 1 — p-value
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plot of the K-statistic around the minimum of the AR statistic. In several of the 1 — p-value
plots, Figures 4.1-4.2, the 1 — p-value plot for the K-statistic has multiple local minima. This
is caused by the property of the K-statistic that it is equal to zero both at the value of ¢ that
minimizes the AR statistic and values where the AR statistic attains its maximum or has an
inflexion point. Hence, the 95% confidence set based on the K-statistic then contains two
disjunct areas with values of c. The 1 — p-value plots show that the combination of the J and
K statistics overcomes this deficiency of the K-statistic. The 1 — p-value plot of the J-statistic
equals one at the local minimum of the 1 — p-value plot of the K-statistic that is caused by
the maximum of the AR statistic. The confidence set for ¢ based on the J-K test procedure
with ax = 0.04 and ay = 0.01 therefore only contains the area where the K-statistic is small
as a result of the minimum of the AR statistic.

The 95% confidence sets for ¢ based on the AR, LR, RJK and J-K test procedures are
finite and convex in Figures 4.1-4.2. Table 3 shows that the limit value of ¢'W ¢ is significant
at the 95% level for Figures 4.3-4.4. The limit behavior of the RJK, LR and K-statistics is
therefore identical in these Figures. The limit values of the AR, LR, K, J and RJK statistics
are not significant at the 95% level in Figures 4.3-4.6. The 95% confidence sets for ¢ based
on the AR, RJK and LR statistics are therefore infinite in these figures. The 95% confidence
set for ¢ based on the J-K test procedure with ax = 0.04 and oy = 0.01 is also infinite in
Figures 4.3-4.6 because the limit values of the K and J statistics are not significant at resp.
the 96% and 99% level. In Figures 4.5-4.6, the 95% confidence set for ¢ based on both the
AR, LR, RJK and J-K test procedures equals (—00, 00). In Figures 4.3-4.4, the confidence sets
that result from these procedures equal (—oo, z)U(y, co) for some values x and y (z < y) that
differ over the Figures and the involved test procedure. Hence, these 95% confidence sets are
non-convex and exclude a convex set of values of c.

The 95% confidence set for ¢ that results from the AR statistic contains the 95% confidence
set based on the LR, RJK and J-K test procedure with ax = 0.04 and a; = 0.01 in all of the
Figures in Panel 4. In some cases, the 95% confidence set of ¢ based on the AR statistic is
much larger than the 95% confidence set based on the other test procedures. This shows the,
on average, larger power of these procedures compared to the AR statistic for discriminating
between different values of c.

7 Limiting distributions

Sofar, we assumed that the random vectors a and b have a joint normal distribution with
an a priori known value of the covariance matrix. We made this assumption for expository
purposes only. The distributions of the statistics are not limited to this restricted setting. The
results documented previously extend to the case where the covariance matrix is unknown but
a consistent estimator of it exists and a and b are (root-7") consistent estimators of a and b:

()-GOl (%) )

where 7" is the sample size and ¢, and ¢, are n x 1 and mn x 1 dimensional normal distributed
random vectors,

( i: > ~ N(0, V). (52)
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We assume that V is a consistent estimator of the covariance matrix V,
e
TV ? V. (53)

The consistent covariance matrix estimator V' implies a consistent estimator of the covariance
matrix W (7),

- I, 0\ ¢ I, 0 Wi Way
W = Vv < . 54
( —(c®1,) Imn > ( —(c®1I,) Imy ) < Woa W (54
We replace the elements of W in the expression of é by the respective elements of W to obtain
e:
e= b—WyW,'d
b= WaaWiatd+ [3War (Wigh = (3 Waa) ™) + (Waa = W) Wiil| d - (55)
= e+ ae?
where € = lA)— Wded_dlCZ, fbe = [%Wbd(Wd_dl - (%de)fl) + (Wbd - %Wb@WC;II}CZ Under Ho .
a = Be, %W — W — 0 and that v/T'd converges to a normal distributed random vector with
p

mean zero and a finite variance,

VT, — 0. (56)

Hence, 1, does not influence the joint limiting distribution of d and é which, under Hy : a = Be,

reads .
\/_< i ) (wd)
e—e ) da \ ¥, )’

(57)
(o Wa 0
( v, ) N0 w )
with e = 0. We use ¢ to decompose d into two parts,

f= E(EWau)™\d

= EA’/Wd_dldA-i— [Ué(%de)_l + E' ((%de)_l — Wd_dl)] CZ

= [ty (58)
g= FE\d

= F\d+(E.-E.)d

- g + ag7

where vec(E) = &, vec(U,) = i, f = EW, ', = E'\d, 4y = [UL(AWaa) ™" + E'((5Waa) ™" —
Wi hld, iy = (Ey — E,)d. Because U, — 0, %VV — W — 0 and that v/Td converges to a
p P
normal random variable with mean zero and a finite variance,
VT - 0, VT, - 0. (59)
Because of the independence of 1/, and v, the above results imply that, under Hy : a = Be,
\/_JE’E = E de Va

ﬁg‘E L,lvbd? (60)
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N VR RN . .
where, since ' deQIWdiiE | =0, B'W, 4, and E' 1, are independent random variables. The
limiting distributions of the J and K statistics result from the limiting distributions of f and
g, see Kleibergen (2000,2001),

~ o~ A ~ ~ P
K= f(EWy E)[=dW,*'P__
d
(61)
~ A ~ Aa 1
J=g (B WuE)"'g= d'deQIMVv

and the x? random variables to which the J and K statistics converge are independent. Equa-
tion (61) shows that the distributions of the J and K statistics in (16) hold as limiting dis-
tributions when @ and b are (root-T) consistent estimators of a and b and V is a consistent
estimator of the covariance matrix.

The distributions of the LR and RJK statistics are a combination of the distributions of
the J and K statistics and depend on statistics that test the rank of E. These rank statistics
involve a consistent estimator of W... Because /T, 7 0 (56), a consistent estimator of W,

results directly from W
Wee = Wiy — WioaW ' W, (62)

since under Hy, %Wee — Wee. When W, has a kronecker product form, we can construct the
p

LR statistic to test Hx : ¢, = ¢ and its limiting distribution is conditional on the smallest
eigenvalue of E*E*, where E* results from (36)-(37) with W, replaced by W... In a similar
way, Wee can be used for the rank statistic on which the limiting distribution of the RJK
statistic depends.

The above shows that the J, K, LR and RJK statistics are applicable in a more general
setting than we used initially. In the next section, we discuss some examples of statistical
models that satisfy the conditions for usage of these statistics.

8 Econometric Models

The AR, J, K, LR and RJK statistics can be used to test hypothezes on the parameters of
many frequently used models. We briefly discuss two examples of such models, 7.e. the limited
information simultaneous equation and the observed factor model.

8.1 Limited Information Simultaneous Equation Model

For expository purposes we only use a specification of the limited information simultaneous
equation, or linear instrumental variables regression model, that does not include any exoge-
nous variables in the structural equation,'? see e.g. Hausman (1983),

Yy = Xca+5>

X= ZB+V, (63)

where y and X are a T’ x 1 and T x m matrix of endogenous variables, respectively, Z is a
T x n matrix of weakly exogenous variables (or instruments), see e.g. Engle et. al. (1983), ¢

12When we consider all variables as residuals from a regression on an additional set of exogenous variables,
the model results from a more general model that includes this additional set of exogenous variables in both
sets of equations.
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is a T' x 1 vector of structural errors and V is a T' x m matrix of reduced form errors. The
m X 1 parameter vector c, contains the structural parameters. The n x m parameter matrix B
contains the parameters of the second set of equations which are in reduced form. The matrix
Z is assumed to be of full column rank.

When we substitute the second set of equations for X into the first set of equations for ¥,
we obtain the restricted reduced form specification

y= ZBc,+u,

X= ZB+V, (64)

where u = V B +¢. The restricted reduced form is nested within the unrestricted reduced form

y= Za+u,

X= ZB+V, (65)

where a is a n X 1 vector of parameters, that has the vectorized specification

(1)- o (3)+(2)

with z =vec(X) = z, v =vec(V) = v, b =vec(B). Estimators for (a’ 0')" in (66) that satisfy
(51) allow us, when we also have a consistent estimator for the covariance matrix V, to use the
AR, J, K, LR and RJK statistics. These statistics can be used to test Hy : a = Be, Hx : ¢, = ¢
and Hj : h, = 0, see e.g. Kleibergen (2000,2001) and Moreira (2001).

8.2 Factor Models

Factor models with observed factors are used to describe excess returns, i.e. the return in
deviation from a riskless return, on (portfolios of) assets in financial markets as linear functions
of a small number of observed factors, see e.g. Jagannathan and Wang (1996,1998),

/

R= (i1 F)(é,)+U, (67)

where R is a T' X n matrix that contains as its’ ij-th element the excess return on asset j
at time 4, ¢ =1,...,7T, 5 =1,...,n; vr is a T x 1 vector of ones, F' is a T x m matrix that
contains as its’ ij-th element the value of the j-th factor at time ¢, i =1,...,T, 5 =1,...,m;
U is a T x n matrix of disturbances and the n x 1 vector a and the n X m matrix B contain
the parameters. The excess returns on the asset are in deviation from the riskless return and
the constant term reflects the risk-premia on the observed factors. The parameter vector a is
therefore spanned by the columns of B, a = Bc,.
Instead of vectorizing the factor model (67), we vectorize its transpose and obtain

vee(R) = (1 F) ® I, ( Z ) + vec(U"), (68)

where b =vec(B). An estimator of (a’ V')’ in the vectorized model (68) that satisfies (51)
alongside with a consistent estimator of the covariance matrix V enable us to use the AR,
J, K, LR and RJK statistics to test Hy : a = Be, or Hk : ¢, = ¢ and Hy : h, = 0 when we
specify a as a = Bc, + By h,. Kan and Zhang (1999,2000) discuss the inferential problems
with standard tests of hypothezes on ¢, when B is relatively small. The (conditional) limiting
distributions of the AR, J, K, LR and RJK statistics are insensitive to the value of B and
therefore do not suffer from the problems analyzed by Kan and Zhang (1999,2000).
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9 Conclusions

We isolate two independently distributed statistics from the AR statistic. Alongside the sum
of these statistics, that constitutes the AR statistic, we can consider other functions of these
statistics as well. We analyze several of these functions and show how to improve power. We
also construct statistics that determine whether a specific parameter is identified. We therefore
analyze the behavior of the statistics when the hypothesized value of the parameter converges
to infinity in a specific direction. All exact distribution results in the paper generalize to
limiting distributions that are free of nuisance parameters under mild conditions.

The analysis is this paper can be extended in several directions. In Stock and Wright (2000)
and Kleibergen (2001), these tests are cast into a generalized method of moments setting such
that they can accomodate non-linear hypothezes. Other possible extensions are to conduct
tests on sub-sets of the parameters.

Appendix

Proof that the K-statistic is a quadratic form of the derivative of the AR statistic.
The AR statistic reads, X )
AR = (a — Be)W,'(a — Be),

and we construct the derivative with respect to ¢ of each of its elements. The derivative of
a — Bc with respect to ¢ reads

da—Bc) >
5 — —DB.

Because d = i — (¢ ® I,,)'b and
vec(c® I,) = D0 civec(tim ® 1),

where u; ,, is the i-th column of 1,,,, we obtain, by using Wy, = E(dd) = E(da’)—E(dV) (c®I,),
that

QeedlWad) — (L, + Ko) (I @ Woap) (Vec(tua gm @ L) - . . vec(tmm @ 1))

where K, is the n? x n? dimensional commutation matrix, see Magnus and Neudecker (1988).
The derivative of the AR statistic then becomes:

Ovec(W,
—3 % = d/delB - §(d/de ® ledd )Ly + ’Cnn)Tdd)

= dWB— (AW @ dWWa) (vec(ugm @ 1) . .. vec(thmm @ I,))

= AW B — (AW 1) (vec(d W Way (wrm @ 1)) . . . vec(d W W (ttmm @ In)))
= AW B — (dW5 1) (vec(d Wi Wa,) .. .vec(d'Wd;llebm)>

= AWIB— (AW @1) (WyaWild. .. Wbdedjd)

= dw;}! [B— (WonaWitd ...Wbmdwdjd)]

— dW,'E,
where é = b — W' Waa(d — d), d = 0, é =vec(E), Wyy = (Wha---Wi,a)'s Wha = xn,
i =1,...,m, and which results because (AW ' @ d W ) Knn = (AW @ dW;}'). Since the

K-statistic is a quadratic form of d Wd’dlf? , this shows that the K-statistic equals a quadratic
form of the derivative of the AR statistic with respect to c.
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Conditional Information Matrix of ¢ given £ Because the logarithm of the likelihood
is proportional to minus the AR statistic, the conditional information matrix of ¢ given F
results from differentiating the first order derivative of the AR statistic with respect to c :

PRI~ D (E'deld) B
= (EIde )24 +(d'® E’)(de ® Wyq )M
- E'W,'B- (d’de @ E'W N (I + Kon) (vec(Wa,) . . . vec(Wa,, )

N =
D

= Ewg! [B - (Wbldejd . Wbmdwc;dld)] — Ewy) (delwcgdld. . demwgd) ,

= EWR B+ Wit (WanWotd ... Way, Wighd)

where we, since E is given, did not take the derivative of E with respect to ¢ and we used that

(AW @ BWN (I + Kon) (vec(Wap,) . . . vec(Wa,,)) =

- [(CZIWd—; ® BW + (EW @ CZIWd—;)] (vec(Wa,) . .. vec(Wa, )

= BWt [ (vec(Wa, Wikd) . . . vec(Wa, deilci)) + (vec(cZ'dedel) . vec(cZ’dedem)ﬂ

= E/Wd_dl Wap, Wcillci .. demWC;lld) + (WbldW@ld. .. WbdeC;ild)} .
Since d is independent of E and &(d) = 0, we then obtain that

I(c|E)= & (E'Wd;;E + BW (del Wild... W, Wd—dld) |E>
- E'W,'E.

Invariance of the AR, J and K statistics to the specification of ¢. The AR, J and
K statistics are invariant with respect to the specification of ¢ when we specify Hy : a = Bc

instead by Hy : @ = B*c* with ¢* = Dc and B* = BD™! for an invertible m x m matrix D.
The specification of the covariance matrix V' (2) then reads:

V:za Vab*
Ve = ,
(v v )
with Viry = (D7 ® 1) Vaa, Vi = (D71 @ I,)'Vip (D™ @ 1,,). The covariance matrix W (7)
becomes

. I, 0\ ., I, 0
W= (—(c*@]n) Imn) v (—(c*@]n) Imn)

N ( —(D£n® I,,) L?m >I ( I(;L (D10® I,) >/V < I(;L (D10® I,) ) ( —(D?@ L) I,

B I, 0 ’V I, 0

~\ —(e®1,) (D'®I,) ) ( —(c®1I,) (D'®I,) )
Waa  Wap
Wieq  Wieps

such that Wiy = (D' ® ]n)’WbdA and Wy = (D' @ I,)Wy(D~! @ I,). The alternative
specification of Hy does not alter d,

d=a— Bc=a— B*c,
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with B* = BD~, such that, since Wy, also remains unchanged, the AR statistic is invariant
to the transformation from c to c*.
For the invariance of the J and K statistics, we analyze é* and E*,

~

¢ = b — Wy gWitd = (D' ® I,,)'¢é

such that
Ef =ED7 ' Weeer = (D‘1 ® In)’I/Vee(D_1 ® I,).

This directly implies that
K = d'W' E* (B Wy B )L E*Wy'd = d Wy E(E'W,,' E) L E'W,,d

so both the J and K statistic are invariant (The invariance of the J statistic results because
J=AR—-K and both the AR and K statistics are invariant).

Limit behavior of the K-statistic as a function of ¢ The K-statistic is invariant with
respect to the specification of c. We therefore only consider the limit behavior of the K-statistic
with respect to one element of ¢ = (¢; ... ¢,,)’, say ¢1. The limit behavior in any other direction
of ¢, say ¢ = ¢,r, with r a scalar, can be obtained by conducting a transformation, from c to Dc,
with D an invertible m x m matrix such that Dc, corresponds with u; ,,. This transformation
implies subsequent transformations of B to BD™, Vi, to (D' ® I,,)'Vip(D ' @ I,,) and Vi to
(D' ® I,,)' Vg
To obtain the limit behavior of the K-statistic as a function of ¢, we consider that

K(c) = dW ' E(E'W'E) ' E'W; N,

and that E ded is the derivative of the AR statistic with respect to c. Because the AR
statistic converges to a constant function when ¢ converges to infinity, its derivative £’ Wdfild

converges to zero. E Wd_dlcz converges to zero because some elements of E converge to zero. In
order to obtain the limit behavior of the K-statistic, we therefore focus on the highest order
terms of the limit behavior of E. In order to do so, we denote E as

where é; = b; — Wbidefild, B = (131 . l;m), and analyze the behavior of é as a function of a
scalar r for which we denote ¢ as ¢ = ¢,r

err) = b= Vi = Vislre, ® )] [12A(er) + r(B(er) + Bler)) +C) 7 [a = (rey @ 1))

= b= [Via — Vin(re, ® 1)) [ZA(e) ™ = FA(e) U (Bley) + Bler))Ale,) ™t + O(F)]
[d —(re, ® In)’I;]

=[%w4®@®1)()(q®hﬂ+%WM@®hmmr%+mMmrl
(er @ 1)'b = Vas(er @ L) Aler) L (Bley) + Bler) ) Aler) ™ er @ L)'B] + O(H)

= [mn = Vin(cr @ In) A(cr) ™ er @ )]
+1 [Vis(er @ L)(A(er) Y = Ble) Ale) ™ (6 @ L)'D)|
+2 [T = Vinler ® L) Aer) ™ (e @ 1) ViaA(er) 7 (er @ L)'b + O(),

B
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where O(T%) denotes that the highest order of r in this remainder term is proportional to r%,
Aley) = (¢, @ L) Vip(e, @ I,), Ble,) = V(e @ 1,), C = Vg, and we used that

[ Aler) +r(Bler) + Bler)) +C] 1
= 2 A(e) ™ = Aler) " H(Aler) ™+ (rBley) +rB(e,) + C)7) H A(e)
= %2-’4(67"> 1— %4-’4(07‘>_1(A(C7")_1 + %(B(Cr) + B( )/ %C)_l)_lA(cr)_l
2 Ae) ™ = mAe) T (rAle) T + (Ble) + Blen) +70) ) T A(e)
=z A(e) ™ = mAler) T (Bler) + Bler) ) Aler) ™ + O(r)-
The behavior of é;(¢,r), ¢ =1,...,m then results from

éi(crr) = (Upm ® I,) é(c,r),
where u; ,, is the i-th column of I,,,. As mentioned before, we only consider the limit behavior
in case ¢, = Uy ,,. The limit behavior for other specifications of ¢, can be obtained through a
transformation. The specification of ¢, = uy,, implies that
e1(urr) = & [ Viso(uam © L) (A1) 7 = Blutg ) Al ) 1, @ )0 + O(H)

%1111(%1171)71& - ‘/llbl‘/E):blllA)l] + O(r%)

i = Van Vi ba| + O().
Ui,m ® In>, _A ‘/b,-b(ul,m & ]n)A(ul,m>_1(ul,m X In)/} [;+ O(%)
_‘/bz‘bl‘/;);bllbl—i_O(%)’ 1=2,...,m

~

é; (Ui mr) =

— 3 3=

S
T

The behavior of d and Waq as functions of r is described by

dle,r) = a—1(c, ® I,)'b,
Waa(err) = 2 A(e,),

such that for ¢, = uy,, :
cz(ulymr) = a-— 7“(31,
Waa(ui,m) = Vi,
and the limit behavior of the K-statistic corresponds with

KLIM(t1 ) = 1m0 K(¢ = g pnr) = b Vblbl PV Vbjfl by,

Z  ELIM (u1,m)
where

ELIM(uy) = (a — Vi Vi bt by = Vi Ve by - b — Vi vb;bllél) ,

which we obtained by post-multiplying (é; ... é,,) by a m xm diagonal matrix with (r,1,...,1)
on the diagonal. This diagonal matrix cancels out in the K-statistic.

LimitAb/ehavior of W, as a function of ¢ To construct the limit behavior of W, we use
that (3)' V(%) = d'W,;;'d + éW_'é is constant and does not depend on c. Hence, the limit
behavior of ¢'W_'é, when ¢ = uy 7 and 7 converges to infinity, results as
. ~ 1A a\'t-—1 /4 . 5 153
1y o0,y r EWee'e = (l})/V 1 (b) — iy oo ey e & W' d
— (V1 (2) — ARLIM(u )
= GVE) - Vb
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The limit behavior of ¢'W_'é and é then imply that the behavior of W, when ¢, = UpmT, 1S
characterized by

L (Vaa = Vi Vg Vi) + O(5)

T ) (Vi = Vi Vi Vi) + O( %)
Wee(uLmT) = %(‘/bza - ‘/bgb1 ‘/l.):bl %m) + O(%)

r2

Vbez - %2b1%:b1%1b2 + O(%

L) Voubs = Vouby Voo Vous, + O(2)
(Vb = Vb Viry Visb) + O(55)

‘/I)Qbm, - ‘/bzb1‘/27:b1 ‘/blb'm, + O(%

Vombm — %mbl‘/b:bll‘/lnbm +0(3)
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0.05 (dashed line); J,

0.04 (dotted line); LR, arr
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Panel 3: Power curves of AR, axg = 0.05 (solid line); K, ax = 0.05 (dashed line); J,

ay = 0.05 (dashed-dotted line); J-K, ay = 0.01, ax = 0.04 (dotted line); LR, apr = 0.05
(plusses); RJIK, agyjx = 0.05 (crosses), statistics that test Hy : @ = b (AR and J-K) or

Hk : ¢, =1 (K, LR, RJK) or H; : h, =0 (J).
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Panel 4: 1 — p-value plots of AR (solid line); K (dashed line); J (dashed-dotted line); LR
(plusses) and RJK (crosses); statistics that test Hy : a = bc (AR), H, : ¢, = ¢ (K, LR and
RJK) or H; : h, =0 (J) for a range of values of c.
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