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Abstract

International and interregional trade and transport are on the rise and hence, there is a
clear need for reliable estimates of transport flows. However, the available databases
and estimation methods are not yet satisfactory for analytical and predictive purposes.
In this paper we explore the use of different statistical techniques in order to examine
the spatial flow pattern of freight transport among competing transport modes.
Freight transport has specific peculiarities that are different from passenger transport.
We argue that a logit model, the most commonly used technique in the empirical
analysis of passenger flows, is not always appropriate for the analysis of freight flows,
unless the interdependence between the decision making regarding the shipment of
individual units of freight belonging to the same shipment is correctly modelled.
In the paper, we will focus on the analysis of aggregate freight transport flows of the
type that may be generated from conventional spatial interaction models. In particular,
adjusted estimation techniques alternative to the logit model will be employed to
analyze the transport flows of two products, chemical products and foodstuffs, based
on an European interregional data set.
We will conclude the paper by discussing various caveats encountered during the
empirical analysis.
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1. Introduction

As a result of globalisation, liberalisation and economic integration, a world-wide

surge in trade and transport flows can be observed. At the same time, there is a

growing awareness that externalities of various kinds (congestion, environmental

stress, safety, etc.) may become severe stumbling blocks in the process of

international or interregional trade. Hence, we observe an increasing interest in

optimal capacity use of the available infrastructure, inter alia in the area of modal

choice. This recognition has also prompted a renewed interest in spatial interaction

modelling, particularly in the European context.

Generally speaking, a flow of goods between two regions takes place when the

difference in the market clearing prices in the two regions is larger than the cost of

transport, provided that the two regions are linked by an adequate infrastructure (see

also Rietveld and Nijkamp 2000).

Accessibility plays clearly an important role in firms’ locational decisions. Ceteris

paribus, more accessible regions tend to attract more firms that will generate more

competitive output and thus a higher level of economic activity. Therefore, the level

of imports and exports will, in turn, tend to rise accordingly  (De Dios Ortúzar and

Willumsen 1990).

In order to move goods from the origin to the destination one needs to use carriers.

Therefore, the structure of the carriers’ market is also of critical importance (e.g.

whether carriers collude or not). In a non-competitive carriers’ market, prices are

higher than the corresponding marginal costs. The amount of transport in a non-

competitive market is, therefore, lower than the social optimum (Hurley and Petersen

1996a, 1996b). A too high price of transport will also have a feedback effect on firms’

location and firms’ inventory management decisions.

It is noteworthy that, in general, in the literature, the demand for freight transport has

received much less attention than passenger demand. In fact, for a long time

congestion in urban areas has been (and still is) prominent on the political agenda in

many industrialised countries, and in this framework passenger movements play a

much more important role than freight transport.

On the other hand, from the perspective of a unified European market, freight

transport is likely to gain more importance, as spatial competition is likely to become

an important source of competitive advantage.
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Freight transport presents, on the one hand, features that make it similar to passenger

movements; for example, price considerations affect the way the flow of both goods

and passengers is distributed across transport modes in the same way. On the other

hand, freight transport also has various intrinsic peculiarities that make it different

from the standard model of passenger movements; for example, the existence of

volume pricing implies that in freight transport the unit cost of transport interacts with

the volume of the shipment. These two factors jointly determine the average cost of

transport. It should thus be noticed that the market structure might have very

important effects on the interaction between the volume of goods between two regions

via a given mode of transport and the relative average cost of the shipment. For

example, suppose that in a certain region only one carrier (a monopolist) serves one

mode of transport (equivalently, more carriers may also collude and behave like in a

shared monopoly). If the carriers apply price discrimination (of the second type) in the

form of volume discounts, the decision to ship one additional tonne of freight along a

given link depends on the number of tonnes of freight already scheduled to be shipped

along that link. This phenomenon introduces interdependence between the tonnes of

freight belonging to the same shipment. This, in turn, has implications for the

empirical analysis of such data. In fact, statistical models that assume that the choice

of the mode of transportation is made independently for each tonne (such as the logit

model, also in its grouped data version) would fail with this respect.

Against the previous background, the aim of this paper is to offer an exploratory

investigation of estimation techniques that may be used to analyse how flows of

freight transport between origin-destination pairs in spatial interaction models are

allocated to competing transport modes.

The paper is organized as follows. In section 2 we show the implications of the type

of modelling chosen (micro or macro) for the empirical analysis. Section 3 describes

the available data sets, and section 4 presents the results from the empirical analysis.

Finally, section 5 contains some concluding remarks.
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2. Statistical Analysis of Transport Flows

In the present paper we will offer a statistical analysis of freight flows from the

perspective of spatial interaction models1. An important empirical question concerns

the analysis of the process governing the allocation of freight flows on a certain link

to competing transport modes. The allocation process may be influenced by such

factors as the unit cost of transport via the competing transport modes, the difference

in travelling time and/or the difference in the distance to be travelled when using

either of the two transport modes2.

Statistical methods can be used to analyse whether there is a systematic – possibly

causal – relationship between the aforementioned variables and the quantity of freight

flows shipped via two competing transport modes (in our case, road and rail).

At first glance, this problem resembles very much the problem of modal split in

passenger transport. Clearly, there is a similarity in flow data, such as the total flow of

passengers between any two locations, and the number of passengers travelling via

each of the competing transport modes. But there are also methodological differences.

The flow of passengers travelling via any of the competing transport modes is the

result of a process of (individual) utility maximisation (Ben-Akiva and Lerman 1985).

Individual travellers choose the preferred transport mode independently from each

other (except in the case of congestion; see Emmerink 1996). The independence of

individual decision-making implies that the observed flow can be considered as a

compact representation of the underlying individual data. In the latter context, discrete

choice models can be used to investigate the agents’ decisions with regard the

preferred transport modes (Ben-Akiva and Lerman 1985).

It is, given the similarity in flow data in freight and passenger transport, tempting to

apply mutatis mutandis the same statistical techniques to the choice of the mode of

transport in both cases. This would certainly be correct, if each tonne of freight

transport could be considered as an independent individual unit, so that the choice to

                                                          
1 Transportation networks can be represented as Input–Output tables with origins arranged down the
columns and destinations arranged along the rows (see e.g. Nijkamp and Reggiani 1989). Each cell in
this origin–destination table represents the total flow of freight from a given origin to a given
destination. Similarly, in the event that origin–destination pairs are linked by more routes (involving
different transport modes, e.g. roads and railways) separate origin–destination tables for each of the
transport modes can be constructed.
2 This list pretends by no means to be an exhaustive list of the determinants of the decision to choose a
particular means of transport.
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ship this tonne via either of the transport modes could be made independently for each

tonne.

The key problem now lies in the fact that, in freight transport, a certain flow (i.e.,

volume of tonnes) of a given commodity does not necessarily correspond to n agents

each independently choosing the preferred mode of transport to ship their own tonne.

In fact, the number of decision-makers is normally rather limited, as the freight

market has rather oligopolistic features (see also NCHRP 1997). Furthermore, the

existence of quantity discounts (volume pricing) implies that the decision to ship one

tonne of commodities via a certain mode of transport is not independent from the

decision on the remaining tonnes of commodities belonging to the same shipment. In

this way, the link between individual transport choice behaviour and aggregate flow

outcomes for freight transport becomes non-linear. Therefore, stochastic utility

models should be able to address the issue of the interdependency between tonnes

belonging to the same shipment when the choice of transport mode is analyzed. In

other words, the correlation between the error terms in the equations referring to the

tonnes of freight in the same shipment is non-zero. This problem can be solved by

considering the tonnes of freight belonging to a given shipment as repeated

observations, as is done in Random Effect Panel Data analysis (Green 2000). To

apply this technique, the number of shipments along a given link should be known.

However, this is generally not the case when dealing with aggregate data from spatial

interaction models (a case faced in the present analysis). It is, therefore, intriguing to

examine how the same macro data used to calibrate spatial interaction models can be

used to investigate the relationship between the average amount of freight shipped via

a given transport mode and the average cost, travel time and distance associated with

it (and with the competing transport modes). To this end, we deploy an adjusted

regression method (see section 4). Before presenting these econometric experiments

we will first present in section 3 the data sets used.

 3. Description of the Data Sets

3.1. General

The data sets used in our analysis concern the flow of goods (foodstuffs and chemical

products) between 108 regions belonging to 14 countries in the EU in the year 1986
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(the regional classification can be found in Appendix 1; additional information on the

data can be found in Buratto 1999). Consequently, there are, in principle, 11664

possible links. These regions are used for a spatial interaction modelling effort and do

not entirely correspond to the standard European regional classification; therefore,

available regional data (i.e., regional income and population as published by Eurostat)

are – at least – difficult to match. Moreover, we neglect border impediments such as

the different railway gauges between France and Spain and the different train lengths

between various countries.

Our aim is, in fact, rather modest, as we want to show how these potentially

interesting data can meaningfully be used in an empirical analysis. The data are also

interesting because the dependent variable, viz., the share of the total freight flow on a

given link shipped by road, presents different characteristics in the two data sets; these

characteristics will bear on the statistical techniques used to extract the information

contained in the data.

The data contain information on the flows of goods between each pair of regions;

flows of goods within regions are not considered. Moreover, the data sets contain

information on the total transport costs over the links, the distance, and the travel time

between origins and destinations via different transport modes (road and rail). This

information is separately available for two types of commodities: foodstuffs and

chemical products. Additional information on the data can be found in Buratto (1999),

Nijkamp and Reggiani (1998), and Reggiani (1998). The list of the variables used is

presented below.

In the case of foodstuffs we have the following variables:

RC:  the transport cost between any two regions by road (Euros/tonne).

TC: the transport cost between any two regions by rail (Euros/tonne).

RT:  the travel time between any two regions by road (minutes).

TT: the travel time between any two regions by rail (minutes).

s: the share of the flow of foodstuffs between any two regions routed by road.

RELC: the relative transport cost defined as RC/TC.

RELC2: the square of the relative transport cost, defined as (RELC)2.

RELT:  the relative travel time, defined as RT/TT.

RELT2: the square of the relative travel time, defined as (RELT)2.
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In the case of chemical products the data contain information on the following

variables:

RC:  the transport cost between two regions by road (Euros/tonne).

TC: the transport cost between two regions by rail (Euros/tonne).

RD:  the distance between two regions by road (Kms).

TD: the distance between two regions by rail (Kms).

s1: the share of the flow of chemical products between two regions routed by road.

Finally, the mean and standard deviation of the variables used are presented in Table

1.

Table 1 : Descriptive statistics of the variables used.

Foodstuffs Chemical Products

# observations: 3439 # observations: 1731

Mean Std. Dev. Mean Std. Dev.

RC 79.61 35.18 RC 78.52 34.29

TC 84.61 27.07 TC 90.24 31.74

RT 106.21 687.87 RD 1039.46 603.99

TT 1308.57 777.44 TD 1086.26 631.11

s 0.95 0.22 s1 0.82 0.19

An unbalanced distribution of the number of observations across modes of transport

(i.e., more than 80% of the flow of freight is routed by road) can impair the predictive

ability of any statistical model (and discrete choice models in particular, Cramer

1996). It is evident from Table 1 that this is the case in both data sets. The number of

observations refers to the number of origin - destination pairs with non-zero flows on

at least one of the two modes of transport (road or rail). Moreover, foodstuffs display

a significantly shorter travel time by road than by rail, while chemical products travel

similar distances by road and rail.

Some specific statistical proprieties of the data sets will be discussed in subsection 3.2

and 3.3.

3.2. Foodstuffs

The data set contains 3439 observations on foodstuffs flows between EU regions

(origin-destination pairs). This means essentially that a non-zero flow of foodstuffs
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has been observed on 29.5 % of all possible links. The average foodstuffs flow is

39817 tonnes of which 37760 tonnes are routed by road, and the remaining 2058

tonnes by rail. On average, 95% of the freight is routed by road. However, these

figures are somewhat misleading.  In fact, the median flow3 of foodstuffs is as low as

1168 tonnes. The median flow of foodstuffs by road and rail is as low as 1068 tonnes

and 7 tonnes, respectively4. The large average flow is thus the result of the

combination of very large flows on a relatively few links and very small flows on

relatively many links (i.e., the distribution of flows is skewed). The flow of foodstuffs

in 2.6% of the cases is entirely routed by rail, while in 38.6% of the cases it is entirely

routed by road.

It is noteworthy that the explanatory variables included in the data set appear to be

highly correlated; in fact, the correlation coefficient between the travel time by road

and by rail is 0.98 (significant at 5%). Likewise, the correlation coefficient between

the cost of shipping one tonne of foodstuffs by road and via the rail is 0.85

(significant at 5%). Given the very large share of the total flow of foodstuffs that is

routed towards their destination by road, the very high correlation coefficient between

these two flows (0.99, significant at 5%) comes as no surprise.

3.3. Chemical products

The data sets on chemical products contains 1731 observations on non-zero flows

between European regions (origin-destination pairs)5. The average flow amounts to

39255 tonnes, of which 31898 tonnes are routed by road and the remaining 7356

tonnes by rail. If we look at the medians, we see that the median total flow between

regions amounts to only 4375 tonnes, the median flow by road amounts to 3465

tonnes, and the median flow by rail is as low as 356 tonnes. The quite large average

flows are thus the result of the combination of very large flows on a relatively few

links and of very small flows on relatively many links (the distribution of flows is

again very skewed). Since a consistent share of the total flow is routed by road (82%

                                                          
3 50% of the flows consist of a number of tonnes smaller than or equal to the value of the median flow.
4 The median flow of foodstuffs calculated without including the links with a zero flow amounts to
2341 tonnes. The median flow of foodstuffs via road and railway is 2046 tonnes and 73 tonnes,
respectively.
5 The number of observations in the two analyses may differ, because only those regions linked by non-
zero flows are considered.
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on average), the flow of chemical products by road between any two regions is highly

correlated with the total flow (the correlation coefficient is 0.98, significant at 5%).

4. The Empirical Analysis

4.1. General

In this section we explore the distribution of the flow of foodstuffs and chemical

products between the two competing transport modes, viz. the road and the railway.

In both the foodstuffs and the chemical products cases the dependent variable is a

share, viz. the share of the relevant good shipped by road. This variable is not

obtained from individual surveys, but it is rather an aggregate figure (similar to those

used in spatial interaction models). It might be tempting to treat this share as the

outcome of the aggregation of independent individual choices. This bears a seemingly

striking resemblance to the share of passengers travelling by car when the data are

presented as grouped data. This parallel is correct, if the decision to ship each tonne of

freight via either transport mode is made independently from the decision to ship

other tonnes of freight. Because of the presence of quantity discounts and certain

restrictions on the size of the containers, the independence assumption is untenable, at

least for the tonnes belonging to the same shipment. In this case the estimation of

discrete choice models from grouped data would be inappropriate. However, it would

still be possible to retain the assumption of independence between shipments, and in

the case that the tonnes of freight belonging to each shipment were known, one could

estimate random effect discrete choice models from panel data. Should this

information not be available, then one has to look for alternatives that are more

agnostic about the structure of the errors. For example, these data could be considered

as macro aggregates; in this case the only statistical requirement refers to the

independence of the errors between origin – destination pairs. The ensuing empirical

analyses are carried out taking into account the above-described constraints imposed

by the data.



9

4.2. Empirical analysis of foodstuffs flows

The aim of our statistical analysis is to explain the allocation of foodstuffs flows

between competing transport modes by some mode-specific background variables.

The dependent variable in our analysis is the share (s) of the total flow of foodstuffs -

on a given link - routed towards its destination by road. Furthermore, it must be

considered that the range of variation of a share is the unit interval [0,1]. In a

regression analysis the error term can vary on the entire real axis; therefore, an

inconsistency arises between the range of variation of the dependent variable and that

of the error term. This discrepancy may be accommodated by transforming the

dependent variable into a new variable g, as follows: g=ln[s/(1-s)]. This new variable

g can vary from – ∞ to +∞. This transformation is possible, if and only if the variable

s (the share of freight routed by road) is different from 1 or 0, i.e., 0<s<1. This is,

however, not the case for the share of foodstuffs flow routed by road, as there are

many zero entries in the spatial data matrix (the flow of freight on these links is routed

entirely via one of the means of transport).

An alternative way to accommodate this discrepancy is to censor the distribution of

the error term like in a two-limit tobit model (Maddala 1985). This model assumes the

existence of a latent variable s* which is not directly observable; instead, we observe

only the realised variable s that is related to the latent variable s*. The latent variable

s* is assumed to be a linear function of the independent variables and reads as follows:

s RC RT TC TT ui i i i i i
* = + + + + +β β β β β0 1 2 3 4 [1]

where u is a normally distributed error term, assumed to be independently identically

distributed (iid) across origin-destination pairs (denoted by the subscript i).

The latent variable s* and the observed variable s are related in the following way:

The corresponding likelihood function (L) reads as follows:

s if s

s s if s

s if s

i i

i i i

i i

= ≤

= < <

= ≥

0 0

0 1

1 1

*

* *

*
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where Φ is the cumulative distribution function of a normal probability function (φ)

with average zero and variance σ2. The effect of a unit change in one of the

independent variables on the dependent variable (measured via the corresponding

slope parameter β) has to be corrected for the effect that the change in the

independent variable has on the probability that s is equal to zero or one (Maddala

1985). This adjustment may be represented as follows:

E s s Ri i i
i i

i i

( | )*0 1 1 2

2 1

< < = +
−
−

σ
φ φ
Φ Φ

[3]

where E represents the expectation operator. The average effect of all other variables

that are not included in the model is captured by the constant term (β0).

We can now estimate the two-limit tobit model presented in equation [2]. However, a

link model specification test (Pregibon 1980) 6 signals that the model is mis-specified

at the 5% confidence level7. One possible cause is most likely the presence of a high

correlation between the regressors, especially with the variables referring to time.

Consequently, we estimated a restricted model (with the following restriction:

β2=β4=0). A likelihood ratio test (LR=6.7, significant at 5%, χ2
(2)(5%)=6) rejects this

restriction. The link model specification test again shows the presence of mis-

specification. In order to cope with these unfavourable results, we tried alternative

functional forms for the regressors, by using a logarithmic specification and adding

quadratic terms, but the model remained poorly specified. In addition, we adjusted the

model by specifying the share of foodstuffs routed by road as a function of the

relative cost (per tonne) and the relative travel time of the two transport modes. The

link test signals once more that the model is mis-specified. Fortunately, the link

specification test did not reject the latter specification, when one includes quadratic

                                                          
6 The link model specification test is very similar to the Ramsey’s RESET (Gujarati 1995) test in spirit.
The dependent variable is regressed against powers of its predicted values (as obtained from the two-
limit tobit model).  One or more significant coefficients would signal mis-specification.
7 All results are available from the authors upon request.
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terms for the relative cost and travel time. Thus, this specification is apparently more

satisfactory. The estimation results concerning this last model are presented in Table

2. The quadratic relationship between the relative road cost (relative to the railway

cost, see section 3.1.) implies that, if the road transport cost is less than half the

railway transport cost, then an increase of the relative road transport cost would

actually increase the share of goods shipped by road. This may be due to some other

comparative advantages (such as flexibility) that the road system may have in

comparison to the railway system. At any rate, the relative cost factor when the road

transport cost is more than half the railway transport cost overrules these factors. The

higher the relative cost of road transport the lower the share of foodstuffs shipped by

the road system, however. The explanatory power of the model is rather low (too

many missing variables) to draw solid inference on the nature of the non-linearity in

the relative costs and travel time variables.

Nonetheless, the flows of foodstuffs predicted by using the parameters estimated from

this last two-limit tobit model highly correlate with the observed flows (the

correlation coefficient is 0.99, significant at 5%).

Table 2: Estimation results of the two-limit tobit model (s= share of foodstuffs flow by road)

Dependent variable: s

Observations 3439

Coeff. Std. Err. LR Test 396

RELC 0.451 0.136 Pseudo R2 0.122

RELC2 -0.451 0.068 90 left-censored observations at s<0

RELT -0.678 0.417 1327 right-censored observations at s>1

RELT2 0.497 0.262 2022 uncensored observations

Constant 1.207 0.059 RELC2=(RELC)2

σ 0.297 0.005 RELT2=(RELT)2

4.3. Empirical analysis of chemical product flows

In this second application, we concentrate on the interregional modal distribution of

chemical products. Here, the dependent variable is the share of the flow of chemical

products that is routed towards a given destination on the road system (s1). The

dependent variable s1 is again a share, as in the foodstuffs application. But, unlike the

case of foodstuffs, here the share of chemical products shipped by road – s1 – happens

to be strictly included in the interval (0,1), 0<s1<1.
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In this case, the straightforward transformation g=ln[s1/(1-s1)] can be applied. This

transformation is very similar to the one applied in the estimation of discrete choice

models (or logit models) for grouped data. The only difference lies in the fact that the

error term associated with this transformation needs not be heteroscedastic.

Consequently, one can use a simple ordinary least squares (OLS) estimation

procedure.

We set out to estimate the following regression:

g RC RD TC TD ui i i i i i= + + + + +β β β β β0 1 2 3 4 [4]

where u is an error term satisfying the usual OLS assumptions (iid across origin-

destination pairs, denoted by the subscript i). The estimated parameters are presented

in Table 3. It appears that an increase in the road transportation cost and in the road

travel distance decreases the share of chemical products shipped by road. On the

contrary, an increase of the rail travel distance (the alternative mode of transport)

tends to increase the share of chemical products shipped by road. These results are

nicely in conformity with what is predicted from demand analysis: the demand of

road transport via a given mode of transport depends positively on the price and

distance of the concurrent mode of transport and negatively on its own price and

distance.

After the above estimation, an application of the Ramsey RESET specification test

(Gujarati 1995) demonstrates that the model is poorly specified. From an inspection

of the residuals, the existence of an outlier can easily be identified. In order to

neutralise its effect a dummy variable (D1) is included, where the value 1 corresponds

to the observation responsible for the outlier, and zero otherwise. The inclusion of this

dummy did improve the statistical fit of the model; in fact, the Ramsey RESET test no

longer signals the presence of mis-specification (RESET=1.62, F(5%)
(12,1713)=1.75).

The R2 indicates that the model can explain only 4% of the variation in the dependent

variable (though this is still significantly different from zero, as the F-test shows).

Therefore, one may draw the conclusion that omitted factors (not included in the

model) probably play a much more important role than the costs and the distance.

Examples of such factors might be the physical geography of areas discouraging the

use of the rail, or the logistic requirement caused by a specific network configuration.

Because of the high correlation between the distance variables and the relative cost

variables, we have also tested the following restriction: Ho: β2 = β4 =0 against the
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alternative hypotheses H1: β1≠0, β4≠0. The restriction is rejected by an F-test at a 5%

confidence level (F=20.04, F(2,1725)
5%=3).

If the average cost is a proxy for the shipment price (i.e., p=RC), the price elasticity of

the demand for freight transport via one mode of transport can be derived as follows:

η βs p

ds

dp

p

s

p
s

s

= =
−

−
F
HG

I
KJ

1 1
1

1 1

1 [5]

This expression, when evaluated at the sample average of p and s, returns an

approximation of the average price elasticity of the demand of freight transport. In our

case, we find that the price elasticity of the share of chemical products shipped by

road is price-elastic (ηsp=-1.23). Consequently, a 10% increase in the average road

cost (about 8 Euros per tonne) would decrease the share of chemical products shipped

by road by 12.3% (i.e. 0.1, from 0.82 to 0.72)8.

Despite some shortcomings in the simple specification of the model, it appears to

successfully capture the behaviour of the flow of chemical products routed by road.

The correlation between the real and the predicted flow of chemical products by road

is even as high as 0.98, significant at a 5%.

Table 3: Results of the OLS model (g= (transformation of) the share of chemical products flow by

road)

Dependent variable: g

Coeff. Std. Err. Observations 1731

RC -0.018 0.004 R2 0.04

RD (/10) -0.018 0.005 F-test 15.43

TD (/10) 0.026 0.005 F(5,1725) at 5% 2.21

TC 0.001 0.002

D1 9.519 1.655

Constant 2.581 0.014 g=ln[s1/(1-s1)]

4.4.  Synthesis

In both empirical analyses presented above we have observed the same pattern of

intriguing results, viz. the existence of spatial flow models that can explain only a

                                                          
8 Buratto (1999) applied discrete choice models to the same data set and found that the share of
chemical products shipped by road is price-inelastic (rigid, ηsp=0).



14

relatively small part of the total variation in the dependent variable but that still

appear to retain a high predictive power. This apparent paradox calls for a closer

examination of the mechanisms deployed during the empirical analysis. The statistical

explanation of this phenomenon clearly emerges after inspection of the descriptive

statistics of both data sets employed in the empirical analyses.

The predictive ability of the econometric models used in our analysis stems from the

fact that, in general, the road flow accounts for a very large share of the total flow of

goods between any two regions. Given the logistic requirements of the commodities

shipped, the road system is almost a captive system. This means that road flows and

total flows are, by definition, highly correlated. Moreover, the low coefficient of

determination of the estimated models implies that the predicted share of freight

shipped by road is almost a constant. Therefore, the predicted flow of freight shipped

by road can almost directly be approximated by multiplying the total flow by the

predicted share of freight shipped by road, and this is by definition highly correlated

with the actual freight flow shipped by road. Thus, we may conclude that the high

correlation between predicted and actual flows does not necessarily derive from the

goodness-of-fit of the estimated models, but rather from structural patterns

incorporated in the databases.

5. Conclusion

In this paper we have explored how the type of data stemming from spatial interaction

models can be used to investigate how the flow of freight transport is distributed

across competing transport modes. In the process, we have encountered various risks

to which the researcher is exposed during the empirical analysis. The first risk is to

draw too much of an analogy between freight transport data and passenger transport

data. To apply the discrete choice models to freight transport data requires the explicit

modelling of the interdependence between the decision making regarding the

individual tonnes of freight and the other tonnes of freight belonging to the same

shipment.

The second type of risk concerns the skewed and biased structural distribution of the

flows of commodities over various transport modes. In this case, the total flow and the

flow of commodities through the mostly used mode of transport are almost

necessarily correlated. The correlation between flows implies that the predicted and
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the observed flow of commodities are highly correlated by definition. This is

especially true if the model does not fit the data very well. This phenomenon calls for

both a thorough examination of the data and a close analysis of the residuals obtained

from the estimated models. As a matter of fact, the estimated parameters and the

results obtained can be trusted only after a close scrutiny of the model specification.

Finally, a caveat is in order. Our analysis does not say that discrete choice models

cannot be used in the analysis of spatial freight flows. Rather, we point to the fact that

the knowledge of agents’ behaviour in the carriers’ market is of foremost importance,

because it affects the specification of the econometric model.
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APPENDIX 1:  The Regional Classification Used


