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Abstract

We propose a general framework for studying the evolution of heterogeneous be-
liefs in a dynamic feedback setting. Beliefs distributions are defined on a continuous
space representing the possible strategies agents can choose from. Agents base their
choices on past performances. As new information becomes available strategies are
re-evaluated and the beliefs distribution is updated using a continuous choice model.
This approach gives rise to price dynamics in which the beliefs distribution evolves
together with realized prices. The statistical properties of the endogenous random
price fluctuations are fully determined by the model. The structure of the macro-
scopic model depends on the class of predictors and on the performance measure used
by the agents. Whenever a well-known econometric model is obtained, an economic
interpretation of the model parameters can be given, as is shown here for an ARCH
model. The approach is illustrated with several examples and empirical applications.
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1 Introduction

As little as it takes one to realize that expectations about future prices are essential for
investment decisions made by market participants, as difficult it is to study the interaction
between prices and expectations empirically. Expectations, let alone the beliefs on which
they are based, are hardly ever directly observable in practice. For stock markets, for
example, one typically observes realized prices, reflecting market aggregated expectations
rather than individual expectations.

Although realized economic observables such as prices can be viewed as some (dis-
counted) market aggregate of expectations among market parties, this does not imply that
the time series properties of the aggregates can be modeled easily in terms of market aggre-
gates only. On the contrary, recent results indicate that, to a large extent, the dispersion
of beliefs among market participants bears important consequences to the behavior of the
aggregates over time. In the recent literature on heterogeneity several theoretical models
have been proposed and a number of relations between heterogeneity and stylized facts
were derived and validated empirically. Shalen (1993) and Michaely and Vila (1996), for
example, marked that dispersion of beliefs enhances both trading volume and volatility.
This supports the empirical evidence reported by Gallant et al. (1992) of a positive cor-
relation between the two. Recent work also indicates that heterogeneity of expectations
might be responsible for several other empirical observations. For example, Diether et al.
(2002) presented evidence that the dispersion of opinions on future returns affects future
earnings negatively, while Ziegler (2002) found that heterogeneity of beliefs can lead to the
well-known “smile effect” in implied option volatility.

Considering the fact that the effects of heterogeneity have been studied so extensively,
surprisingly little is known about the dynamical feedback between market aggregates and
heterogeneity among agents. Although the effects of heterogeneity on observables are fairly
well understood, current theory does not seem to include a detailed description of the re-
sponse of heterogeneity to incoming observations, and the implications of endogenously
evolving heterogeneity on the time series properties of observables. The aim of this paper
is to develop a general framework for studying these issues. This is done by constructing
an expectations based economic dynamical model which includes a full description of the
nature of the dynamical feedback between realized prices and the distribution of beliefs.
Insights into the nature of this feedback can help explain several observations made in the
literature on heterogeneity in expectations. Moreover, at a more fundamental level, the
long-run objective motivating the approach developed here is to enable one to study the
time evolution of heterogeneity among agents via the interaction between publically avail-
able information and the distribution of beliefs of market participants. Future empirical
applications of the concept might eventually allow one to visualize the evolution of beliefs
and heterogeneity from observed time series data. The current paper should be considered
a first step in this direction, focusing on the development of the general methodology while
illustrating implications and potential applications with examples.

The context we have in mind is one in which the beliefs of individual agents are updated
when new public information (e.g. prices) becomes available. The investment decisions



made by the agents, based on their expectations, in turn determine the new price. To
this end we introduce the concept of a continuous beliefs system (CBS), which, in short,
contains the following basic ingredients.

A central role is played by the beliefs space, ), in which a class of possible predictors,
given a public information set, is represented by a continuous parameter . At any time ¢
agents form beliefs regarding future economic variables by deciding on a belief parameter
in the beliefs space. They do so by evaluating the possible strategies, given the information
available prior to time ¢, using a performance measure. This performance measure might
be based, for example, on the history of past prediction errors, or on profits a strategy
would have realized in the past. Individual agents choose the strategy which optimizes
their expected utility, but since individual agents differ in tastes, they will typically differ
in the strategy they will choose for the next period. The distribution of beliefs over the
beliefs space is described by a probability density function (pdf) ¢,(#), called the beliefs
distribution. The beliefs distribution can be thought of as representing the empirical fact
that even when agents have identical information, they still have differences of opinion
regarding future revenues (see e.g. Frankel and Froot, 1990; Kandel and Pearson, 1995).
The specific form of the beliefs distribution given the history of realized past observables,
can be expressed in terms of past performances using a continuous choice model. The belief,
(or predictor, or strategy) 6;, actually employed by agent ¢ at time ¢, from the modeler’s
point of view, is considered to be a random variable distributed according to the beliefs
distribution. Given the individual beliefs of agents prior to time ¢, their net demand
functions determine the next observable (price) to be quoted publically. This involves
some aggregation mechanism, such as a market maker setting the price so as to obtain
zero aggregated net demand. After this observable becomes public, the performances of
strategies can be re-evaluated, a new beliefs distribution arises, etc. From a dynamical
point of view, the ongoing evolution of strategies by agents as new information becomes
available results in an evolution of the distribution of beliefs over time, while the beliefs
distribution in turn determines the properties of the aggregate observables.

The CBS approach has several theoretical implications. A dynamical system is obtained
in which the beliefs distribution co-evolves together with aggregate observables such as
prices. An explicit feedback relation between aggregate economic observables and the
beliefs distribution is obtained, and often analytically tractable equations are found for the
aggregate observables and the first few moments of the beliefs distribution. In this respect
the approach is more convenient for studying the evolution of beliefs than the approach
of Brock et al. (2001), although we should say that their motivation was also completely
different from ours. Their ‘large type limit’ (LTL) approach was developed to investigate
whether the aggregate behaves more realistically in a market where agents can choose
between a large number of alternative strategies. While Brock et al. (2001) consider the
dynamical aspects of a continuum of agents who are allowed to choose from an increasing
number of strategies, we instead start with a continuum of strategies and examine the
dynamics for a finite number of agents. By construction this approach provides more
explicit insights into the nature of the feedback between the aggregate observables and the
beliefs distribution, for any number of agents.
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Another essential difference between the LTL approach and ours can be found in the
stochastic aspects of the models obtained. In a CBS the predictors used by the agents
are modeled by the continuous choice model. Given the model parameters, the beliefs
distribution can be determined explicitly by the econometrician in terms of past realized
observables. That is, the beliefs distribution is a deterministic function of past observ-
ables. However, the fact that the strategies used by the agents are modeled as random
variables, distributed according to the beliefs distribution, provides a natural mechanism
for endogenous randomness. By construction, the dynamics for a finite number of agents
is stochastic. Even if the number of agents tends to infinity, there may be conditions un-
der which the individual choices of agents do not average out to give a deterministic law
for the aggregate observables. If the dependence among the agent’s choices is sufficient,
aggregates may remain random for an infinity of agents. Also, for some combinations of
the class of predictors and the performance measure, the conditions for the law of large
numbers may not be satisfied, providing another source of randomness which does not
vanish if the number of agents increases.

The natural sources of randomness of a CBS provide theoretical mechanisms which
might help explain part of the market fluctuations we observe in daily life. For example,
the randomness might provide an extra source of excess volatility in markets as described
by Shiller (1981), while the usual agent based models, such as that proposed by Brock and
Hommes (1997), only attempt to uncover the deterministic part of excess volatility. The
stochastic properties of the CBS approach might also prove useful for examining the sta-
tistical aspects of agent models analytically, rather than through the laborious simulations
usually performed in computational agent models (for an overview, see LeBaron, 2000).

Apart from theoretical consequences, the natural randomness in the model also pro-
vides some extra grip on agents based empirical research. The stochastic aspects of the
feedback dynamics opens the door to possible empirical applications, since the magnitude
and distribution of the noise terms in the dynamic feedback equations can be derived an-
alytically. The latter is of direct importance to model estimation, since it implies that
this can be done by standard maximum likelihood methods. To the best of our knowl-
edge, in the literature, the effects of endogenous noise have only been studied with random
shocks with ad-hoc distributional properties, modeled as additive noise on the price equa-
tion without further theoretical justification. In fact, in some of the applications presented
later it will become clear that most of the nontrivial structure arising from heterogeneous
beliefs feedback loops resides in the noise rather than in the deterministic skeleton. In a
stylized example of a CBS in which agents have AR(1) beliefs regarding returns, we show
that the returns dynamics is equivalent to a linear random coefficient model, in which the
mean and variance of the beliefs distribution appear as time-varying coefficients. Since the
class of random coefficient models obtained contains the ARCH model as a specific case,
a straightforward interpretation of ARCH parameters can be given in terms of economic
quantities. To illustrate a possible application we estimate the (effective) number of active
market parties across markets and over time, and briefly touch upon the issue of visualizing
the evolution of beliefs and heterogeneity from observed time series data.

This paper is organized as follows. In section 2 the concept of a beliefs distribution
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in a continuous beliefs space is introduced, as well as its form given by the continuous
choice model. Section 3 introduces the concept of a continuous beliefs system in which the
co-evolution of beliefs and public information such as market prices is taken into account.
As an illustration the implied dynamics in a standard asset pricing context is examined.
In section 4 the mechanism by which endogenous noise arises from the dynamic continuous
choice dynamics is described, and the role of the number of agents and their dependence
considered. In section 5 potential empirical implications are discussed in the context of an
extremely simple stylized model. Section 6 summarizes and discusses the results.

2 Continuous beliefs distributions

This section describes how a continuous beliefs distribution is obtained in a continuous
choice setting in which agents are faced with a single choice. The dynamic aspects, which
involve expectations feedbacks, are postponed to the next section. The continuous choice
model has some analogy with the discrete choice model. With the proper additional mea-
sure theoretic structure the discrete choice model, and mixed discrete/continuous choice
models, can in fact be considered as special cases of the continuous choice model. For
clarity of exposition we will not delve deeply into measure theoretic arguments, but rather
present both models starting with the more familiar discrete choice model, referring the
interested reader to the literature cited for more detailed analogies.

Agent based models represent market participants as (a typically large number of)
agents, who can select among a number of alternative strategies. If the strategies among
which the agents can choose consists of a finite set of strategies, s1, ..., s, say, then agents
employing strategy s;, i = 1,...,m are said to be of type i. McFadden (1973) derived an
expression for the probability p; that an individual will select strategy i, starting from the
concept of random utility functions. It is assumed that the utility function of agent j can
be written as

Vi(s) = U(s) + €;(s)

where U(s) is a non-stochastic “common” utility function representing the tastes of the
population, and ¢;(s) is stochastic and reflects the idiosyncrasies of individuals in tastes.
The individuals choose the alternative which optimizes their utility. Under the assumption
that the disturbances of the utility function follow an extreme value distribution, it can be
shown that this leads to the multinomial logit model:

BU(s:)
pi = Z;’;l eBU(s1)’
where U(s;) is the utility associated with alternative I. The parameter J is referred to as
the intensity of choice, and is related to the scale of the noise term ¢€;(s). The larger the
value of 3, the smaller the noise, and the larger the probability that an agent chooses the
option which actually optimizes U(s). This is why 1/ is sometimes interpreted as the
propensity of agents to err, presuming they actually all wish to optimize U(s).



In the presence of a continuum of belief types it is convenient to introduce a finite
dimensional parameter space {2, containing all possible alternatives that can be selected
by the agents. In our context, each possible choice, that is, each element # in ) uniquely
represents a possible strategy, and ) will be referred to as the beliefs space. Note that
the choice of the beliefs space is not unique, since any one-to-one transformation of the
beliefs space 2 into another space, €)', say, will again yield a suitable beliefs representation.
In analogy with the discrete choice model, we wish to represent the diversity of belief
types by a probability distribution function over the beliefs space. The distribution of
strategies can be obtained from the generalization of the discrete choice model referred to
as mixed discrete/continuous choice models. Let us denote the pdf associated with the
beliefs distribution by ¢(#). As in the discrete choice setting, it is convenient to adopt a
random utility approach (Hanemann, 1984; Dagsvik, 1994; Resnick and Roy, 1994). The
random part of the utility function of an agent will eventually determine which strategy
that particular agent considers optimal. Therefore, the strategies employed by individual
agents in a random utility framework are random variables (note that this does not imply
that individual agents perceive their own utility functions to be random, only that they are
random to the econometrician). If we let #; denote the strategy adopted by agent ¢, then
the pdf ¢(#) is the probability density function associated with the random variables 6;, or
the relative likelihood that agent i selects a strategy in an infinitesimal neighborhood of
6. The continuous choice analogue of the multinomial logit model is the continuous logit
model (see e.g. Ben-Akiva and Watanatada 1981; Dagsvik, 1994):

BU0)
o0) = =20, )

where Z is a normalization constant, given by
7= / VD) 5(9)dy.
Q

As in the discrete choice setting, 3 represents the intensity of choice. The function () is
nonnegative, and can be used to put different weights on different parts of the beliefs space.
We refer to ¢(f) as the opportunity function. The introduction of ¢(6) is not an additional
expansion of the model, but necessary for obtaining a representation that is consistent in
that all averages determined from the beliefs distribution should remain invariant under
a re-parameterization of the beliefs space 2. Following the mathematical convention, the
beliefs distributions obtained with choice models that are equivalent in this sense will be
called equivariant. From a modeling point of view, a choice model is fixed as soon as it
is specified up to a certain equivariance class. Formally, () represents the integration
measure in the beliefs space 2. In economic applications the opportunity function can be
thought of as reflecting the a prior: faith of individuals in parameters within certain regions
of the parameter space. If agents have a tendency to avoid strategies in certain parts of the
parameter space, for example because extreme parameter values are implausible to agents,
this will be reflected by small values of ¢(f) in those regions of the parameter space. In



that case, such “extreme” strategies need to outperform more common strategies to a large
extent in order to convince the agents of their use.

The beliefs distribution is equivariant under one-to-one transformations of €2, provided
that the opportunity function is transformed properly when moving from one parameteri-
zation to another, as stated in the following proposition.

Proposition 1 The beliefs representation is independent of the parameterization of 2, if
the opportunity function ©(0) transforms as a density function under one-to-one measurable
coordinate transformations g : Q0 — Q', that is, ¢'(0") =| J-1(8') | p(g7'(¢')), where
Jy-1(0") is the Jacobian of g='(-) evaluated at ¢'.

Proof: Requiring that the pdf ¢(6) transforms as a density leads to
¢'(0') =| Ty (0') | B9 (9")).
From the definition of ¢(#), after substituting U(g~"(¢")) = U'(¢'), one obtains
O ) =] Ty (8) | SO (g0,
which implies ¢'(6') =| J,-1(8") | ¢(g7(8")). 0

Generally speaking, we neither need to require that ¢(f) be a pdf, nor that it is in-
tegrable in order for the distribution of beliefs ¢(f) to be well-defined. For example, if
Q=R"™ ¢(f) =1, and U(#) is a quadratic form in # with a single maximum, then ¢(6) is
a multivariate normal probability density function.

As stated above the distribution of beliefs does not always exist. The following propo-
sition provides a necessary and sufficient condition for the existence of the probability
density of beliefs over (2.

Proposition 2 The beliefs distribution ¢(0) given in Eq. (1) is well-defined as a pdf if and
only if Z = [,V p(19) A9 is positive and finite.

Proof: Since V(%) and ¢(f) are non-negative, the function ¢(f) is nonnegative if and only
if [, ePU@ (1) dd is positive and finite, in which case [, ¢(1) d¥ equals one. a

An equivalent way of stating this proposition is that ¢(6) is well-defined if and only
if efU9) is p-integrable, and the integral over 2 is nonzero. It is possible to give some
sufficient conditions for e?U®x(f) to be integrable. For example, if either ¢(6) or e#V®) is
bounded from above and away from zero, and the other has a positive and finite Lebesgue
integral, e?U®(6) is integrable and the integral nonzero. In that case Z is finite and ¢(#)
is well-defined.



3 Continuous beliefs systems

In this section we discuss the co-evolution of economic observables and the beliefs distri-
bution in a CBS. Next to the beliefs space and the beliefs distribution, two additional
ingredients are required. First, we assume that agents evaluate strategies according to
some performance measure, which might for example be based on past prediction errors,
or past profits a strategy would have realized in case it would have been used in the past.
Secondly, a market mechanism, or more generally, an aggregation mechanism is required
which translates the individual beliefs of agents into publically available information.

For clarity of exposition the presentation in this section is biased toward an asset
pricing framework, the modifications required for applications in other dynamic settings
in which beliefs distributions are dynamically updated being straightforward. As is also
common in discrete choice agent models, agents are assumed to be myopic mean variance
optimizers. More generally, one could consider agents who make choices depending on
the entire future, but for the purposes of illustrating the methodology the myopic setting
suffices. Throughout, time will be considered to be discrete in the models. For a recently
proposed generalization of discrete choice models to continuous time, we refer the interested
reader to Dagsvik (2002).

3.1 The evolution of the beliefs distribution

We consider the evolution of a time dependent economic variable, p;, say. The discussion
here focuses around asset prices here, but in general p; might represent any other economic
quantity, such as an exchange rate, bond price, etc., which depends on aggregate expec-
tations. For simplicity we discuss the case where the agents are myopic in that, at time
t, they only form expectations, about the price of the asset at time ¢ + 1 (the next time
they can sell the asset) including possible dividends payed in this period. The information
available to agents just before time ¢ is denoted by F;. In simple cases the information set
could consists of a historic record of prices ps; up to and including p;_1, but in general it
might also include exogenous variables, such as the interest rate. The possible strategies
from which the agent can choose to predict future prices are represented by a function of
the observables in the information set, parameterized by 0, fo(p; 1,pt 2,...) say. For a
fixed price history we can consider this predictor as a function of #. The predictors for a
given information set are denoted by

Pis1(0) = fo(pr—1,pt—2, . . ).

Thus, the prediction of p;,; made by agent i, based on price information up to and including
Pi—1, using strategy 6;; 1, is denoted by p§, (0i+ 1). To give an example of a beliefs space,
the class of d-th order linear predictors consists of all predictors of the form

P1(0) =00+ O1pi—1 + ... 4+ Oape—q.

In this case the beliefs are represented in R4*! and the beliefs distribution is a probability
distribution on this space.



The beliefs distribution based on F; is denoted by ¢; 1(f). Schematically, the expecta-
tions feedback can then be represented as

cee P = G 1(0) 5 pp = Pu(0) = ..

First we consider the formation of the observables p;, for a finite number, n, of agents,
each of which is assigned a strategy according to the previous beliefs distribution ¢, (),
possibly allowing for dependence between agents. We assume that each predictor has a
unique associated optimal trading strategy. Also, we assume that the price p; will be
determined by some aggregation mechanism (one might think e.g. of market clearing), the
outcome of which depends on the agents’ expectations, at time ¢, then, given the agents’
beliefs, or predictors 6;;_; the state variable p, is completely determined by the market
mechanism. In dynamic asset pricing models for example, todays price can be determined
by the present value of aggregate beliefs concerning future prices and dividends:

1 = € e
(I+7)p = - D 0 (Bie 1) + Y

=1

where n is the number of agents and p®(6,;_1) denotes the expected price of individual
i based on past observables available up to and including ¢, and yf, ; expected future
dividends. More generally, one might introduce market weights w;;, denoting the market
weight of the ¢'th agent at time ¢, such that 0 < w;; <1 and >, w;; = 1, which gives:
(14 7)pe = Xy wigpsq (0iz—1) + y5 1 - This will be discussed in more detail in section 4.2.
Alternatively, in a cobweb framework the price equation typically has the form

pr=D"" (% é S(pf(ﬁi,t—1))> :

where S(p§(6;;1)) is firm 4’s supply and %2?21 S(p§(0;:—1)) is the aggregate supply, and
D(p) aggregate demand at a given price p. Note that we have assumed homogeneity in
supply curves, but more generally one might consider cases where firms have different
supply curves S;(p).

Notice that we have only considered point predictors here. Some price formation mech-
anisms can not be formulated in terms of point predictors only, however. For example,
Guesnerie (2002) considers agents who have subset predictors (e.g. an interval) in mind
rather than point predictors. Under certain conditions, the agents can, by a rationality
assumption and a common knowledge argument, agree on a unique trading price. Such
a mechanism could be incorporated in a CBS framework, provided that the more general
predictors can be represented by a finite number of parameters, and the price agents even-
tually agree to trade on can be expressed explicitly in terms of the agents’ individual beliefs
parameters.

Next we consider how the new price affects the beliefs distribution. After p; becomes
part of the information set, agents can re-evaluate the possible strategies. At this point
we wish to invoke the continuous choice model to obtain an expression for the new beliefs



distribution. Although we discussed the continuous choice model in general in the previous
section, a particular CBS requires a specification of the the utility function. The common
(nonrandom) part of the utility function, conditioned upon the information F;, available
just after time ¢, is denoted by U;(6) = U(0; Fyy1). Typically, we consider cases where
Ui(0) is based on a fitness measure of strategies , such as the last net ex post profits or
squared prediction errors. More generally, one can introduce dependence on further past
performances by introducing memory in the model. The evolution of the fitness measure
for strategy 6 can for example be modeled as:

Ui(0) = aU—1(0) + (1 — a)m(0), (2)

where 7,(f) is the performance in period ¢, and « € [0,1) is a memory parameter. The
utility function then becomes a geometrically weighted sum of ex post performances of
strategy 6. An interpretation of the memory parameter « is the following; when analysts
or traders consider new strategies it is common to perform back-testing, that is, to test the
candidate strategies using historic data. The better performing strategies are then more
likely to be selected for actual trading.

Given the observed price p;, U;(#) can be updated, and the pdf of the beliefs distribution
is determined by the continuous choice model:

p(6)e?U ")

0(0) = 52

the time dependent analogue of Eq. (1). By substituting Eq. (2) the effect of memory can
be written as

$u(8) ox p(@)e®? Vi1 OHImITO) o [o(6)]' [y ()] =P, (3)

which gives an update of the beliefs distribution in terms of the previous beliefs distribution
and the last performance measure. Note that in general, since ¢;(#) is an infinite dimen-
sional state variable, this may lead to an infinite dimensional dynamical system. However,
in many cases the evolution of ¢;(f) can be completely described by a finite number of
variables such as its first £ moments, in which case it becomes finite dimensional.

Notice that the beliefs distribution ¢;(f) represents the population distribution, or
marginal distribution of beliefs. One may think of this distribution as the sample distri-
bution that would be obtained in the limit where the number of agents tends to infinity.
The beliefs distribution itself is determined only by the performance measure and past
observations, and otherwise evolves independently of the individual choices of agents. The
statistical properties, however, of the feedback dynamics, do depend on the details of how,
given the marginal beliefs distribution, the strategies actually used by the agents are drawn
from this distribution. There are many beliefs selection mechanisms compatible with a
given beliefs distribution, differing in dependence among strategies used among agents and
over time. Dependence among traders could arise for example by the exchange of private
information or coordination on publically announced predictions. For the moment we have
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in mind a situation where, given F;, the strategies 6;; ; are independent and distributed
according to ¢, 1(6). Later we will relax this assumption.

In interpreting the price equations it is essential to realize that the 6;; are random
variables, representing the individual strategy choices of agents. The dynamical system,
at least for a finite number of agents is stochastic. In some of the later sections we will
examine the dynamics obtained in limits where the number of traders tends to infinity.
In doing so, one can appeal to the central limit theorem and the law of large numbers
to obtain some asymptotic properties of the dynamics. As stated above, we only focus
on examples in asset pricing contexts here, hoping to consider other contexts in future
research.

3.2 Example: asset pricing with continuous AR(1) predictors

We consider two examples CBSes with AR(1) predictors. The role of the performance
measure is investigated by focusing on two cases: squared prediction errors and squared
logarithmic prediction errors, leading to normal and log-normal beliefs distributions re-
spectively.

The equilibrium price in a dynamic present value asset pricing model is given by

1 n
(L7 pe == pfa (i) + 9. (4)
i=1

where g denotes the (public) expected dividend payment y;,; during the next period. The
market clearing equation thus states that today’s price is the sum of of the average expected
future price and expected dividend, discounted by the risk free interest rate. Note that
again each predictor has equal weight. For the effect of non-uniform weights we refer to
section 4.2.

For illustrational purposes we will focus on a simple class of linear predictors, in which
agents choose a strategy 6 that represents their perceived future growth rate. The expected
price at time ¢ + 1 associated with predictor # is then

Pt (0) = 0p; 1.

The utility function associated with belief type 6 is given by Eq. (2). The only ingredient
missing from the CBS so far is the performance measure used to evaluate strategies. In
the following subsections we examine two common performance measures, based on past
squared prediction errors and squared logarithmic prediction errors. The price equation in
both cases reads: |
(1+r)p = - > b pi1 + 7 (5)
i=1
where 0;;_, is the strategy chosen by agent 7 just after p;_; became public. We postpone
a discussion of the statistical properties of the equilibrium price to the next section, and
first consider the updating of the beliefs distribution given realized prices, for two different
performance measures.
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3.2.1 Updating with squared prediction errors

First we consider the case where the performance measure is minus the squared prediction
error:

m(0) = — (p(0) — p1)* = — Opr—2 — p1)”. (6)
After the price p; has been established, the distribution of beliefs is updated according to
the continuous choice model. The new distribution characterizing the dispersion of belief
types is then given by Eq. (3). Substituting the expression for m;(f) in Eqn. (6) into
this equation, with a constant opportunity function, ¢(f) = 1 (representing the case with
agents without aversion against using extreme parameter values), gives:

61 (6) o< [¢1-1(0)]" exp [—B(1 — @) (Opr—> — p1)°] - (7)

Since the exponent contains only up to second order forms in # with a negative coeffi-
cient for the quadratic term in 6, the distribution of beliefs in each period can be described
by a normal distribution. Here we implicitly have assumed that ¢;_;(6) is also normal,
which can be justified by assuming that the dynamics has been running since the infinite
past.

If we denote the mean and variance of ¢;(#) by u; and o? respectively, we have

1

60(0) = o exp |~ 0— ] )

Eq. (7) gives

$4(6) o exp [— (0= )’ — B — ) (s — pt)ﬂ . )

o
2
2014

By comparing the coefficients of 6? and @ in the exponents in Egs. (8) and (9), the mean
¢ and variance o7 can be seen to evolve according to

,u_; = ,Ut - +28(1 — a)ppy—2
Ot Ut 1

Lo +28(1 — a)p?
7= free

The remaining terms independent of # are accounted for by the normalization factor Z;.
The mean y; and variance o} are fully determined by past prices, and completely describe
the evolution of beliefs. The mean p; can be interpreted as the average belief, while the
variance o7 is a measure of heterogeneity. The full CBS also involves the price equation,
Eq. (5), which is independent of the performance measure used by the agents.

3.2.2 Updating with squared logarithmic prediction errors

Next we examine the case where the performance measure is taken to be minus the squared
logarithmic prediction error:

m(0) = — (Inp; () — lnpt)2 =—(lnf—Inp, + 1npt—2)2 . (10)
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An argument for using logarithmic prediction errors rather than just mean squared pre-
diction errors is that this error measure is independent of the price level. This leads to
dynamics which scales with the price level and is equivalent before and after possible stock
splits.

Using a uniform opportunity function again, i.e. ¢() = 1, substitution of the expression
for m(0) in Eqn. (10) into Eq. (3) gives:

—1(0)|*exp |— —a)(Inf —Inp; +1n t_22
¢t(0):[¢ (0)]* exp [~ B(1 Z)’( pe+1np_o)’] )

t

In this case the exponent contains up to second order forms in Inf with a negative
coefficient for the quadratic term in In @, which indicates that the distribution of beliefs in
each period can be described by a log-normal distribution of the form

1 _ (ng—pup)?

= 2} 12
\/27r0t08 t (12)

The evolution of the parameters of the beliefs distribution follow again from Eq. (11),
which results in

¢(0)

«
ol

¢1(0) x exp |[—alnf — (Inf — ps—1)* = B(1 —a)(In@ —Inp; + Inp;_5)%|.  (13)

1

A comparison of the coefficients of In# and (In#)? in the exponents in Eqs. (12) and (13),
gives the evolution rules for y; and o?:

my mg 1

— = a——+28(1—a)(Inp; —Inp;,_o)
Ult o,
o
Lo -,
Ut2 ‘71:2—1

where m; = p, — of. Note that o7 does not interact with the other variables, and simply
tends to its steady state value 1/(23) at an exponential rate.

The two examples discussed here are analytically tractable due to the quadratic terms in
the exponent. A closed form analytic derivation of the dynamics might become cumbersome
or even impossible if: (i) the beliefs distributions can not be represented within a finite
parameter class, closed under updating according to Eqn 3 (it is e.g. if m(6) is a finite
order polynomial in #), or (ii) agent’s decisions, rather than by myopic mean variance
optimization, are based on more complicated optimization procedures such as those typical
in a dynamic programming contexts. In those cases simulation and estimation of the
models might still be possible, with the appropriate generalization for the methods known
in discrete choice simulation and estimation (see e.g. Keane and Wolpin, 1994). These
generalizations are beyond the scope of this paper and left for future research.
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4 Natural sources of randomness

Traditionally, randomness in asset pricing has always been associated with exogenous
shocks, for example due to news that affects a company’s future earnings, or fluctua-
tions of the interest rate. The CBS framework provides several possible natural sources
of randomness, through possible randomness of the market aggregate. As stated above,
in a simple asset pricing model, the market price is simply determined by the aggregate
expectation = 37 p§,;(0;, 1), through the relation

12 3
1+7r)p = n zpfﬂ(ei,t—l) + v,

=1

while in a cobweb context the price is the inverse demand function of the aggregate of
supply functions:

n=07 (1325010

In this section we consider the more general case where the observables are determined by
a function, H(-), of an aggregate of a function G(-) of expectations, that is:

pe=H <%§;G (P§+k(9z’,t—1))> : (14)

where k is the number of steps the agents predict ahead of ¢t based on information up to
and including time ¢ — 1. Thus, £ = 1 in a myopic asset pricing model, while £ = 0 in a
cobweb context. For simplicity, H(-) will be assumed to be one-to-one, so that p; given F;
is deterministic if and only if £ Y7 | G(pf,(6i4-1)) is. For convenience, we introduce the
following short-hand notation: G;; = G(pf,;(#i+—1)) and G, = % »1 G The conditional
mathematical expectation and variance, given the information set F;, are denoted by Ey[:]|
and Var[-] respectively.

Next we will elaborate on four natural sources of randomness. Firstly, a finite number of
traders gives rise to stochasticity, because traders are assigned a belief §; ;_; at random from
the beliefs distribution ¢; 1(f). The aggregate G; for finite n then is stochastic unless all
predictions are identical with probability one. Secondly, so far, we have implicitly assumed
that no agents have a dominant market impact. This might not be the case, for example,
if the wealth distribution among agents is fat-tailed. In that case the market impact of
the wealthiest agents might not become negligible when the number of traders tends to
infinity. The conditions for the law of large numbers are then not satisfied, providing yet
another natural source of uncertainty. Thirdly, dependence among agents might prevent
the dynamics from becoming deterministic when the number of agents tends to infinity. If,
for example, agents coordinate (at least partly) on a random variable, such as an exogenous
variable, or on predictors announced by some ‘leading’ agents who quote their predictors
publically, then the stochastic properties of that variable show up in the price dynamics.
In the extreme case where all agents have identical idiosyncrasies, they would all use the

14



same (random) strategy. Finally, for certain combinations of the utility function and the
predictor function pg, ,(6;;—1), the law of large numbers may not apply because the mean
of the individual terms G;; need not exist. In those situations, the limiting price dynamics
might still be defined as a stochastic dynamical system, in the limit where the number of
agents tends to infinity.

Before looking at the various sources of randomness, we start by examining some condi-
tions under which the dynamics become deterministic. Consider the following assumption:

Assumption 1 (Cross-sectional Independence) The strategies 0;; employed by agent i at
time t, for each fized time t are independent random variables, distributed according to the
population distribution of beliefs at time t, ¢4(6).

Assuming independence over agents seems reasonable, since it is always possible to consider
expectations of groups of correlated agents as expectations of a single agent representative
of this group. The effect of dependence then is merely a reduction in the effective number of
agents. A stronger assumption is made if one additionally assumes temporal independence
of the idiosyncratic noise terms of each agent over time. This stronger assumption is
reasonable if the time interval corresponding to one time step in the model is large compared
to the time scale on which idiosyncratic preferences of single agents change over time.

For the following theorem, which is concerned with the almost sure behavior of the
model in the limit where the number of agents tends to infinity, the weaker assumption
suffices. Again we use the notation pf . (0) = fo(pi—1,Pi—2,...) for the expected future
price pyy given the information F;.

Theorem 1 (Law of Large Numbers) Given F, under Assumption 1, if n tends to infinity,
the aggregate

n n

1 1
Gy = ﬁ Z Gi,t = - Z G (P§+k(9i,t—1))

i=1 nis
converges a.S. to
Et[Gi,t] =k [G (pf+k(92',t—1))] )

if and only if E; HG <p§+k(9i,t—1))u < 00.

Proof: By Assumption 1, the strategies 6;;_; conditionally on F; are IID random vari-
ables in €2, which implies that the corresponding predictions pf, (6;,—1) of agents are also
IID. The result is immediate from Kolmogorov’s strong law of large numbers for the IID
random variables G (p§+k(0i,t_1)), given F; (see e.g. Resnick, 1998, p. 220). 0

Note that E}[G,,] = E; [G (p§+k (Om_l))] can be expressed as [ G (p§+k(19)) br—1(9)dd.
Theorem 1 states that, given the information public at time ¢, a necessary and sufficient
condition for the aggregate expectation about p;,; to converge a.s. to the mean expectation
over the beliefs distribution, is the existence of this mean. This result has the following
corollary concerning the dynamics.
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Corollary 1 (Functionally Deterministic Dynamics) Under Assumption 1 the observable
¢ in the limit n — oo almost surely tends to a deterministic functional of the information
Fi available at time t if and only if EJJG(pf1(654-1))] < 0.

We coin the term functional determinism here to make a distinction between the concept
of determinism we describe here and the usual definition of determinism for time series
processes. The term determinism is usually reserved for deterministic processes of finite
order, the reason being that without this restriction any observed time series would allow
a deterministic explanation. That is, functionally deterministic processes can still be non-
deterministic from an empirical point of view, if there is dependence on the infinite past.
For the moment, we note only that functional determinism is a necessary, but generally
insufficient condition for the dynamics to be finite order deterministic.

Of course the dynamics in the limit where the number of agents tends to infinity need
not be realistic. Particularly when the statistical properties of the dynamics are of interest
it would be unnecessarily restrictive to confine attention only to the limiting dynamics.
However, the limiting dynamics can be interpreted as a first order approximation to the
price dynamics for a system with a large but finite number of agents. Later it will become
clear that the random deviations around the deterministic limit in general can not be
represented by a random variable with time-independent distributional properties.

Notice that discrete choice models can be considered as special cases of a CBS (when
allowing for discrete opportunity distributions) in which agents can only choose among a
finite number of alternative strategies 6;, [ = 1,..., m. Provided that the expected future
prices of these strategies are all finite, the average expected price is well-defined, so that
the strong law of large numbers applies, and the dynamics converges to a deterministic
dynamical system with probability one as the number of traders tends to infinity. A
discrete choice setting with a continuum of agents, as considered by Brock and Hommes
(1997), should thus always lead to functional determinism in the absence of exogenous
noise provided that G(pf,,(6;)) is finite for each [ =1,...,m.

4.1 Finite number of agents

In general, for a finite number of agents, the CBS leads to a stochastic dynamical system,
the only exceptions being cases where all G;; = G (p{,,(0i—1)) are identical with probabil-
ity one. In general it might not be straightforward to derive the distributional properties
of the aggregate, unless the G, for each fixed ¢, are jointly normally distributed random
variables. However, in case the mean and variance of the aggregate are finite, one can
appeal to the central limit theorem which states that the distribution of the aggregate
is asymptotically normally distributed. The following theorem and corollary are direct
applications of the central limit theorem.

Theorem 2 (Central Limit Theorem for the Aggregate) Given F;, under Assumption 1,
if n tends to infinity, the random variable

\/’ﬁ (C_‘;t — Et[Gi,t]) = \/ﬁ (% i:lG(p;-k(gi,t—l)) - Et[G(pf—H(gi,t—l))])
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converges in distribution to
W ~ N(0,07)
with
o} = Vary[G (pf,4(0i-1))]
if and only if Ey[|G(pfy1(0i-1))]] < oo and Var[G(py,(0ip-1))] < oo.

Corollary 2 (Asymptotic Normality) If H(s) is differentiable and has a derivative H'(s)
which is non-vanishing at s = Ey[G; 4], then /n (H(ét) - H(Et[Gi,t])) converges in distri-
bution to

W' ~ N(0, H'(E{[G;4]) 7).

Next we will illustrate these results for one of the asset pricing models discussed above.

Example: Logarithmic prediction errors

In this example we consider the asset pricing example discussed in section 3.2.2, with a
performance measure based on logarithmic squared prediction errors. We assume that
agents make decisions regarding their strategy independently of the other agents. In the
asset pricing framework, the aggregation mechanism is given by Eq. (5). The predictors
p§,1(0) are linear in the parameter #, and the price equation is a special case of Eq. (14).

Infinite number of agents: deterministic dynamics Since the conditions of Theo-
rem 1 are satisfied for the distribution of beliefs, if the number of agents tends to infinity,
the stochastic random variable G; = 0,_1p;_; tends to a deterministic limit almost surely.
The average 0, ; of the 6; +—1 converges in probability to

1

My = Ey[0;1] = /¢t—1(?9) dv = exp [Nt—l + 502_1] )

so that the dynamical system in the limit of an infinite number of agents becomes

1, i
(1+7)pe = exp [Mt—1 + —Ut_l] Pi—1+Y

2
m My
—; = « Qt ! +26(1 — a)(Inp; — Inp;_s)
O'lt Of_1
o
- = —+28(1-0a),
of o7

again with m; = p; — o?.

This deterministic dynamical system, or deterministic skeleton, has a fixed point solu-
tion p; = p*, py = p* and 0? = o with p* = §/(1+r—exp[1/(48)]) and p* = 02 = 1/(20).
Note that for all finite positive values of 3 the fixed point price p* is larger than the funda-
mental value §/r. Only when S tends to infinity (i.e. the propensity to err tends to zero)
the fixed point price tends to the fundamental price.
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Finite number of agents: stochastic dynamics Similarly, the central limit theorem
provides a normal approximation for a finite but large numbers of agents. The conditional
variance of 6;; 1, given F; is

Sf = Var,[0; ;1] = e2m—1+"t2*1(e"t2*1 - 1),
so that the price equation for n agents becomes

St
/n

with ¢ ~ N(0,1). Notice that one might consider the “skeleton” value of the price, i.e.
the discounted value of the first two terms on the right hand side, as a first order ap-
proximation to the price obtained for a large but finite number of agents. Notice that an
analogous asymptotic normal approximation will be exact for the squared prediction error
case, even for a finite number of agents n, since there the 6;; are normally distributed (see
section 3.2.1).

1 _
(L+7)p; ~ exp [:ut—l + 5%2_1] Pi—1+ Y+

€t

Volume-volatility relationship A relation between price changes and trading volume
can be derived straightforwardly in the case of normally distributed predictors. The agent’s
demand functions underlying the linear price equation are linear in deviations from ex-
pected revenues, that is, the demand function of agent ¢, prior to time ¢ in terms of the
unknown price p; is

Diy = b(pfy1(0is—1) + v — (1+7)py),

where b is a positive constant related to the absolute risk aversion and perceived risk (which
were assumed constant across agents). Once p; will be quoted, the trading volume required
to match agent ¢’s net demand will be equal to

Vit = |Dig — Dj|.

Notice that summing up these individual volumes over the agents would lead to a “double”
volume as each transaction is counted twice, as well from the buyer’s side as the seller’s side.
Using the predictor function, which gives pf ;(#i+—1) = 6;—1p:—1, and the price equation
(14 7)p; = 0;_1ps—1 + ¥, we can express the demand alternatively as

Di,t = b(ei,t—l - 9t—1)pt—1,

which clearly shows that individual demands depend only on the previous price through the
agent’s deviation from consensus. The expected trading volume to meet agent ¢’s demand
is

Et[Vi,t] = bEt[|(9i,t—1 - e_t—l)pt—l - (ez',t—2 - o_t—Z)pt—ZH-

where, under the assumption of temporally independent idiosyncrasies, each of the terms
have mean zero. The expression for the expected trading volume per agent is obtained
under the condition that all agents update their portfolio every time step. That is, all
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traders are assumed to be active in the market at all times. In practice, the volume will
be determined only by the fraction of agents that are actually trading at any moment in
time.

Following Brock and LeBaron (1996), the total trading volume can now be calculated as
an average of the absolute value of a normally distributed random variable. The expected
trading volume per agent can be expressed as

Ey[Vidl = E[|Z4]],

where Z; is a random variable with conditional mean F;[Z;] = 0 and variance

n—lb2

Var,[Z;] = (Sfp§—1 + Sf—lp?—Q) :

n
The factor (n —1)/n takes into account the covariance of 6; ; with 6,, that is, the fact that
Vary[6;, — 6;] = ”T_l\/art [0;+]. In the case of a utility function based on squared prediction
errors, the beliefs 0;, are distributed normally around their mean M;, and we have

.l
Ey[Vig] o (S?pffl + Sthlpng) .

The conditional variance of p; is equal to SZp?_,/n. For n sufficiently small the stochastic
part of the dynamics dominates the deterministic part and leads to positive correlations
between volume and volatility. A small effective number of agents can arise when there is
dependence between the choices of agents, as we will describe in section 4.3. In this case
similar strong dependence between volume and volatility is to be expected as for a small
number of agents.

4.2 Market impact

In this subsection we briefly examine the effect of market impact. Although interesting, we
consider the study of endogenous wealth effects with continuous choice dynamics beyond
the scope of this paper. Endogenous wealth effects have for example been studied by
Cabrales and Hoshi (1996) in a discrete choice framework with two types of agents.

If the market weight of agent 7 is denoted by w;, such that Y, w; = 1, the market
aggregate becomes

n
Gy = ZwiGi,t
i=1

which has a conditional mean equal to
E, lz wiGi,t] = Et[Gi,t]
i=1

and, assuming conditional independence of 6;;_; given F;, conditional variance

Var, lz wiGi,t] = (Z w? ) Vart[Gi,t]-
i=1

=1
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The term between brackets on the right hand side of this equation, is also known as the
Herfindahl index of concentration. A large concentration thus implies a small effective
number of market participants and vice versa. Later, in the empirical section, we will
estimate the number of market participants from empirical time series. This is done by
introducing an effective number of market parties through the variance equation

et = (2 wf)_l. (15)

4.3 Dependence among agents

The next possible source of randomness we consider here is dependence among agents.
For our purposes it is useful to think of a continuum of agents, from which we select n
agents ¢ = 1,...,n, at random. The following lemma states that the covariance between
predictors of a pair of agents selected in this way, is non-negative.

Lemma 1 The covariance Cov |Gy, Gj] is independent of i and j and nonnegative.

Proof: The independence of the covariance of ¢ and j follows directly from the permu-
tation symmetry of the mechanism by which agents are selected. Now, concerning the
covariance, suppose for the moment that is would be possible to have Var;(G,;) = v, > 0
and Cov[G, 4, Gj4] = A+ < 0, and consider n randomly selected agents from the continuum.
The variance of 3 ; G;; would then be nv; +n(n — 1)\, But if \; < 0 this would become
negative for n sufficiently large, so that the assumption that A\; < 0 cannot be correct. O

For the remaining part of this section we use the conventions introduced in the proof
of the lemma, i.e. v; = Vary[G;¢] > 0 and A, = Cov¢[G,;,G;;] > 0. We consider a CBS
with n randomly selected agents and study the limit in which n tends to infinity. First we
focus on the case where market impacts are equal (w;; = %) The variance of the market
expectation then is given by

12 Ut
Var (— Z Gi,t) =—+
n = n
The first term, proportional to v;, tends to zero as n — oo. However, the second term
converges to ), so that whenever \; > 0 stochasticity will be persistent in the limit of
an infinite number of agents. This result indicates that the remark made by Muth (1961)
that “allowing for cross-sectional differences in expectations is a simple matter because
their aggregate effect is negligible as long as the forecasts are not strongly correlated” only
applies if correlations between the expectations of a random pair of agents is negligible,
that is, if \; < 4, or py K ﬁ, where p; = A\;/v; is the corerlation between agents’
predictors.

More generally, for any given number n of market participants n we can consider the
weights, w;,, for 1 =1,...n. We obtain

Var (Z wiGi,t> = v Z wf + M Z Z W

i=1 =1 i j#t

n(n—1)

At
n
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Both terms in this expression are non-negative, and we will show that they cannot both tend
to zero in the limit. If n tends to infinity, the first term vanishes as before, provided that
the concentration index }°; w? tends to zero. For the second term, we have Y, D WiWy =
1 — Y w?. Since 0 < > w? < 1, the second term only vanishes if the concentration index
tends to 1. This implies that stochastic dynamics are unavoidable in the limit, regardless
of how the market weights are chosen while taking the limit.

Finally, in the presence of dependence, the effective number of agents can be obtained
by relating the variance of the aggregate expectation to v, the conditional variance of a
single expectation G;;. This gives the following generalization of Eq. (15):

-1
n
Meff,t = (Z wi ey Y wiwj) ;
i=1 i g
where p; = A\;/v; is the correlation between agent’s choices. Clearly, larger values of the
correlation coefficient p; lead to a smaller effective number of market parties.

Dependence among agents can be also incorporated directly in the utility function by
adding an interaction term, as shown in Brock and Durlauf (2001). In this way it is
possible to incorporate several scenarios in the CBS. For example, one might consider a
situation where agents coordinate partly on a source of information, being, for example a
public exogenous variable. Such a source of information might, but need not necessarily,
be related to economic fundamentals. In case the ‘signal’ on which agents coordinate is
an independent exogenous noise source, this can be expected to increase correlation of the
agent’s predictors, and hence lead to a smaller effective number of agents. Alternatively,
interaction terms might be used to model agents coordinating on each other. This type of
coordination might also affect the size of endogenous fluctuations. For example, if there
is one agent who announces his strategy publically at an early stage, after which others
coordinate on this (noisy) signal, the endogenous fluctuations will increase. Interaction
scenarios in which the the variance of aggegates decreases appear to be less natural. At first
sight, herding to the mean might seem a possible scenario which might reduce the variance.
However, at least when the beliefs are linear in the beliefs parameter and the aggregate
is also linear, herding to the mean without additional information will only amount to
herding towards the sample mean. This might reduce the dispersion of individual beliefs
around the sample mean, but will not help reducing the fluctuations of the sample mean
itself (which eventually determines the observable) around the average belief ;.

4.4 Inherent Randomness

As a final source of randomness we consider an example of the dynamics in a case where
Py, 1(0i¢—1) does not have a finite conditional mean. Due to the failure of this moment
condition, the aggregate expectation % iz D51 (0is—1) does not tend to a constant, but
tends in distribution to a well-defined random variable when n tends to infinity. The
starting point is an asset pricing model with agents that choose among constant predictors:
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p;,1(8) = 6. For simplicity we put & = 0 (no memory). For the performance measure we
take

m(0) = —log(1+ (0 — p,)?)

which, like the squared prediction error, is maximal for predictions # that are equal to
realized prices. For the beliefs distribution this gives

L'(p)

R A — )2 P
F(%)F(ﬂ _ %) (1 + (9 pt) ) ’

¢t(9) =

from which it follows that

V28 =1(0ip1 —pr1) ~ (28— 1),

a t-distribution with 28 — 1 degrees of freedom. Thus, the 6;, ; are distributed symmet-
rically around p;_ 1, and for § < % the mean does not exist.

For 8 =1, 0;, — p; given F; is Cauchy(0,1) distributed. Since this distribution is closed
under averaging, this gives pf, , ; = % Y1041 —p—1 ~ Cauchy(0,1). The price equation
becomes

(I+7)pe = pr—1 + 7+ ms,

where 7, is a Cauchy(0,1) distributed random variable, the pdf of which is f,,(z) = (7(1+
x?))~!. The result is a first order autoregressive process with a fat-tailed noise term. The
price dynamics is stochastic, and the distribution of the noise term is independent of the
number of agents.

The non-vanishing randomness due to a moment condition failure in this example can
only occur with a continuum of strategies. If the number of strategies is finite, provided
that each of them predicts a finite price, the mean expectation always exists, in which
case, by the law of large numbers, the dynamics become deterministic when the number
of traders tends to infinity.

Before we move to the empirical section, notice that, so far, we have not allowed for the
individual tastes of the agents to change on much longer time scales than that of the price
formation process. This might be modelled by a small probability that agents reconsider
their strategies per time step, giving rise to temporal dependence of the strategies employed
by them. Brock and LeBaron (1996), in a discrete choice setting with dependent agents,
argue that such a mechanism tends to increase the persistence in heterogeneity. In the
asset pricing model described in our examples this can be expected to lead to an increase
in the persistence of volatility.

5 Empirical example

In the previous sections we have developed a framework which is mathematically tractable
and provides insights into the feedback between observables and the distribution of beliefs.
In this section we present, as an illustration, a highly stylized model of asset returns, to
discuss potential empirical applications of a CBS.
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The discussion in the previous sections suggest at least three possible types of empirical
applications. First of all, after deriving the equations for the aggregate observables, one
might use maximum likelihood methods to estimate the macroscopic model from the data.
The model can then be used for several standard purposes, such as prediction and/or risk
evaluation. A second possibility is to use the estimated model parameters for classification
and/or ranking based on the estimated model parameters. The fact that the model param-
eters can be interpreted directly in terms of economic quantities can be very convenient
there. A third possibility is to use the model to estimate the beliefs distribution, and to
visualize its evolution over time. Based on the extremely simple model presented here, we
were able to address the first two issues in full. The third, being visualization of beliefs
over time, turns out to be difficult for the simple model considered here, but not impossible
in principle.

Once more, we state that this empirical section is only meant to serve as an illustration,
and to provide a background for our discussion on potential empirical applications of a
CBS. By no means do we intend to claim that the model discussed here is sufficiently
sophisticated to capture asset price dynamics in full detail.

For convenience we consider a model based on returns rather than prices. Again, the
framework is one in which agents can invest in an asset with uncertain payoff. Agents
are assumed to expect that today’s return r, = In(p;/p; 1) can be expressed in terms of
yesterday’s return r; ; through

ri(0) = 0ry_;. (16)

A performance measure based on squared prediction errors is used,
m(0) = —(r{(0) — )%,

while the utility function again involves memory as in Eq. (2). The realized return is
assumed to be the market expectation of returns:

1 &,
ry = — E Ty (01'7,5,1).
iz

Empirical returns often exhibit small but significant positive autocorrelation at small
lags, which can be captured by taking an opportunity function which is a pdf with nonzero
mean and finite variance. This would then reflect a certain aversion of agents against using
unrealistically large negative or positive parameter values. Upon taking the opportunity
function to be equal to the pdf of a N(jep,02,) random variable, the following dynamical
system is obtained:

1
Ty = My—17T4—1 + hi €, (17)

where 11, is updated according to

M_; = a# +(1—a) <7”t7°t1 + /;OP) :

2
Oy 0% 1

op
= = (1—a) |+ ! -
— = a—5— —a)|r —
o ot e,
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and {e;} represent an IID standard normal process, while the conditional variance h; is

given by
2

041
hy = o2 + =192 .
u n t—1

Here o2 represents the variance of exogenous noise, which we assume independent of the
endogenous noise, and IID normally distributed. The model can thus be interpreted as a
time varying ARCH type model with a time-varying AR coefficient

28(1 — @) 20 alry_i_1T—i—o + L

0-2
-1 = - = (19)
26(1 — o) X2 ofri ;g + alTp

and a time-varying ARCH parameter o7 ; /n, in which

00 -1
= (2000 et s ) (20
i=0 op
The parameters of the model given in Eqs (17) and (18) are the memory parameter «,
the intensity of choice (3, the effective number of traders, n, and the parameters describing
the opportunity distribution: u, and agp. However, the following lemma states that the
model as such is over-parameterized:

Observation 1 The parameters 3 and n enter the dynamics only through their product

Bn.

For a derivation, see appendix A.1. O

As a result, without loss of generality, we may fix § at any positive value and use n
only. For convenience, we choose to take 8 = % Under the assumption that 3 is constant
across markets, n then provides a proxy for the number of market participants. If this
assumption is considered to be too strong, one might alternatively interpret Sn as a single
indicator of market efficiency, which takes into account the (effective) number of market
parties as well as their intensity of choice.

If the memory parameter « is smaller than 1, it is possible, in principle, to use maximum
likelihood methods to estimate the full model from empirical returns time series. However,
in most applications we found that the memory parameter is often close to 1 for empirical
data when daily data are used. This indicates a potential practical difficulty in recovering
ut and o7, since these depend on a long history of past returns, including those before the
period of observation. For « close to 1 large data sets would be required for estimation based
on daily returns data. Indeed, a memory half-time as short as one year (approximately
250 trading days) already implies a value of a of 0.5'/2°0 ~ 0.9972, while downsampling to
obtain reasonably small values of « seriously reduces the number of data available (monthly
data still imply a value of o of 0.5/12 ~ 0.944).

For model estimation purposes (as opposed to estimation of the beliefs distribution,
which will be discussed below) we have first examined the model theoretically in the limit
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a — 1. Tt turns out that the time-varying ARCH model in this limit becomes a standard
ARCH model. Obviously, the time variations in the beliefs distribution can no longer be
estimated in the ARCH limit (in this limit the beliefs distribution is constant). However,
the the model parameters still contain meaningful information regarding the underlying
micro model. For example, the effective number of traders can be estimated from the
ARCH parameter, as we will show next.

In the limit « — 1 the CBS reduces to an ARCH model with an AR(1) coefficient (see
Engle, 1982). This will be shown here assuming stationarity and ergodicity of the model
for any given @ < 1. The stationarity of {r;} requires some restrictions on the model
parameters, such as those imposed in the following lemma.

Lemma 2 The variables p; and 01—2, in the limit o — 1, for all =1 < pop, < 1 and
t

0 < 02, < 0o, converge to

N _ E[TtT‘tfl] _
/]'-Lt 2 E[T?] HMop
— - —=FEr+—=.
o} 02 Iri] + o,
Proof: See appendix A.2. O

Clearly, the model is non-stationary for |uep| > 1, while for —1 < o, < 1 it is stable.
This is not surprising, as the agents, on average, then have a tendency to extrapolate
trends away from equilibria.

Notice that the model can be considered a random coefficient AR model,

o
Ty = (Mtl + % €t> 1+ quéa

where {¢;} and {€;} are independent IID standard normal processes. The term between
brackets exactly corresponds with the average 0,_, = %2?21 0;+—1 of the predictors over
the agents. It is known that random coefficient AR models include ARCH type models as
special cases (see e.g. Tsay, 1987; Bera et al., 1992). The dynamics in the limit & — 1 can

indeed be shown to converge to an ARCH model:

1
re = Y1+ hie (21)
hi = c+ar? .

This model can be estimated straightforwardly by standard maximum likelihood methods.

The relations between the agent model and the ARCH model are as follows. The AR
coefficient v is equal to the mean pi,, of the opportunity distribution, ¢ can be interpreted
as the variance of the exogenous noise, o2, and the ARCH coefficient a satisfies

1
n(v+ =)’

op

a =
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where n is the (effective) number of agents, v the unconditional variance of r, and agp the
variance of the opportunity function, which we had taken to be the pdf of an N (jp, agp)
distribution.The parameter of our interest here is the (effective) number n of market par-
ticipants. To reduce the number of parameters, we assume that agents have little aversion
against using extreme strategies if the market provides evidence in favor of their use. It is
assumed that o7, is large enough to ensure that 1/02, is negligible with respect to v, i.e.
1/0%, < v.! We might alternatively have defined a ¢ through 1/02, = v to replace o2,
In that case, fixing ¥ to any contant would lead to similar results as those presented here
(¢ fixed at zero) in that the relative ordering of the estimates of n are independent of the
value at which 1) is held constant.

Let us consider some applications where the effective number of market parties is esti-
mated. If we denote the estimated ARCH coefficient from the model given in Eq. (21) by
a, the effective number of agents neg can be estimated through

Ner = =,
av

where ¥ is the sample variance of r;. Figure 1 shows the estimated effective number of agents
in a moving time window of 1000 trading days, for daily returns of 5 large stock indices,
the SP500, FTSE, AEX, Hang-Seng and Nikkei indices in the period between January
1, 1988 and October 24, 2002 (3864 trading days). At first sight the plot appears to
provide evidence that the effective number of market parties across markets tend to move
toward eachother over time. However, the results displayed here should be interpreted
with care for several reasons. The first reason is that there is a quite large overlap in data
points between consecutive points plotted. The time window required for estimation of
the ARCH coefficient with a reasonably small standard error turned out ot be as high as
1000. However, the lag between the points in the plot only amounts to 400 trading days.
Therefore, the estimates can be expected to be fairly dependent. This will smooth the
figure and might introduce apparant trends, even when in fact none are present. Some
results which should suffer from dependence to a lesser extent are shown in Table 1. The
estimates in this table correspond to two non-overlapping parts of the same data as used for
Figure 1. The table clearly shows that apart from the Nikkei index, the effective number
of agents for the other four markets has reduced from the first period to the second. The
relative ordering of the these four markets is in line with what one would expect: the SP500
and FTSE are large in terms of the effective number of market participants, followed by
the AEX and the Hang Seng index. The recent increase in the effective number of traders
for the Nikkei might be related to a structural change in the market. From the results
presented so far, it becomes clear that the typical time scale on which the effective number
of agents changes can be very long. The following example demonstrates this.

The time evolution of the effective number of agents for daily SP500 returns over a total
of 113 years, is shown in Figure 2. Here the window is moved by 500 trading days before

'n order to do so, one should verify that this assumption is consistent with the model. See the appendix
for details. There we also discuss the advantage of our approach to starting with a constant opportunity
function.
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a new estimate is calculated. During this long period we estimated an effective number of
agents as low as 3000 in the thirties and as high as 3 million in the late ninetees. It becomes
clear from this figure that the effective number of agents changes on a time scale of decades
rather than years or months. Therefore, the time series might look non-stationary when
only a small portion (e.g. 2 decades) is considered. Taking this into account the behavior
observed in a period as ‘short’ as that of Figure 1 could by no means be representative for
a much longer historic sequence of estimates.

Finally we briefly wish to discuss the estimation of the beliefs parameters over time
in a continuous beliefs system. (For comparison, in the dynamic programming literature
methods for estimating discrete choice models have been described in a dynamic setting.
See e.g. Hotz and Miller, 1993; Keane and Wolpin, 1994). As noted above, the hidden
variables are difficult to identify for a close to 1, since their values depend on a long
price history as described by Egs. (20) and (19). For « close to 1 the conditional AR
and ARCH parameters both tend to constants. The small deviations from these limiting
values, that remain when « is close to, but not equal to, one, are difficult to identify from
empirical data. Possibly these identification problems might be overcome partly by Kalman
filtering techniques (see e.g. Harvey, 1990). However, one of the difficulties that may arise
is that h; is a nonlinear function of the hidden variables, so that one would have to use
a nonlinear Kalman filter, the theory of which is not nearly developed as well as that of
linear Kalman filters. For te moment, we leave the study of optimal estimation methods for
the hidden variables for future research. Instead we focus on some qualitative properties
of the response of the belief parameters to observables, that are relatively insensitive to
the exact model parameters. For example, when « is close to one, both y;/0? and 1/0?
are close to a random walk driven by r;r;_; and r? ; respectively. Therefore, the level of
o? can be expected to decrease (increase) in periods of low (high) volatility. The mean p;
can be expected to increase (decrease) in periods where returns are positively (negatively)
correlated. Figure 3 shows the ‘simulated response’ of the belief parameters over time to
empirical returns of the SP500 index, for a period of 1000 consecutive trading days. In
these simulations « is fixed at 0.95 and % is taken to be equal to v, the unconditional
variance of the returns. While the exact level and smoothness of the simulated responses
will depend on the parameter values, the qualitative properties mentioned above are clearly
visible.

6 Concluding Remarks

Many will agree that most observed economic aggregates, such as prices, are to a large
extent determined by the expectations of those who are active in the market. In turn,
these individual expectations are typically shaped by the observed past, as agents will try to
incorporate the underlying economic laws at force in their expectations. New observations
will provide agents with an incentive to update their beliefs whenever their prior appears
inconsistent with what is observed. Therefore, one would expect that individual beliefs
will coevolve over time with realized prices. Being a hidden variable, it is the distribution
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of individual beliefs that has been of our key interest in this paper. More precisely, it is
the feedback between observed prices and the unobserved beliefs distribution that is at the
heart of our concept — the continuous beliefs system (CBS).

We have defined the distribution of beliefs as a probability density function on a space
of possible strategies, which we denoted the beliefs space. The continuous choice model is
employed to update the beliefs distribution, while the incentives for the agents to switch
are provided by the past performances of strategies. Coevolution of unobserved beliefs
with observed prices thus emerges due to the ongoing evaluation of predictors.

This approach to modeling the evolution of the beliefs distribution over time provides
several insights into the nature of the feedback between economic observables and the
dispersion of beliefs. The results and implications of our concept are at least three-fold.
The first two reflect, we believe, a certain theoretical elegance, while the third potentially
might have important empirical consequences.

Firstly, while being applicable in a wide range of theoretical models where expectations
feedback plays a key role, the concept often allows one to model the coevolution of aggregate
economic observables (such as prices) and the distribution of beliefs explicitly. The beliefs
distribution becomes a state variable of the dynamical system. Moreover, the distribution
is endogenously shaped by the assumptions about the functional form of predictors, and
the type of performance measure (squared prediction error or profits etc.) employed. In
this paper, we have provided some stylized examples that lead to a normal- and a log-
normal distribution for individual beliefs. In these cases, the distribution of beliefs can
thus completely be described by the average belief and the dispersion of beliefs, the latter
of which can be related to the degree of heterogeneity. The CBS then prescribes explicitly
how the dispersion of beliefs affects prices, and in turn how prices affect the dispersion of
beliefs.

Secondly, our concept provides what we refer to as ‘natural sources of randomness’.
In many economic models, noise, which is required when matching stylized facts is the
objective, is often included as additive exogenous shocks. Popular justifications include:
exogenous news shocks, model approximation error, and noise induced by trading. Our
natural source of randomness introduces a type of endogenous uncertainty that can not
be associated with exogenous shocks but rather with the dispersion of beliefs. Moreover,
the endogenous noise term was shown to inherit its statistical properties directly from the
beliefs distribution. To understand where the stochasticity comes from, note that in a CBS
the beliefs distribution describes the likelihood, through the eyes of the econometrician,
according to which individual agents select their beliefs. When the number of agents is
finite, the aggregate belief by definition is a random variable, marking our first natural
source of randomness. From simulation studies (Lux and Marchesi, 1999) it is known that
the stochastic nature of the dynamics in simulated markets vanishes when the number
of agents becomes large. Our results indicate that there might be several machanisms
preventing endogenous noise from becoming insignificant in a large market. This occurs
if, for example: (i) wealth is disproportionately distributed (ii) agents’ choices exhibit
dependence(herding); and (iii) when the combination of the performance measure and the
functional form of beliefs induces nonexiststence of the average perceived price. We refer
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to the latter as inherently random dynamics.

Thirdly, we believe that the two theoretic implications just described might open the
door to a number of potential empirical applications. To start with probably the most
ambitious, it would be desirable to have an implementation of the concept that allows one
to visualize the evolution of beliefs directly from empirical data. Note that if the latter is
feasible, one can derive from that (an estimate for) a measure of the degree of heterogeneity
and its time evolution. As a second empirical application we coin estimation of the number
of effective market participants.

In section 5 we have provided a stylized example that can at best be considered as a
first step in the empirical directions just described. All agents were assumed to employ
AR(1) beliefs, and consider past squared prediction errors as a measure for performance.
Dispersion of beliefs emerges whenever agents disagree on the AR(1) parameter. When
agents have finite memory, the model gives rise to a time-varying AR(1)-ARCH(1) process
for the returns, where the evolving ARCH parameter is proportional to the dispersion
of beliefs. The number of effective market participants enters as a scale parameter. The
traditional ARCH model (with constant parameters) is obtained in the limit where memory
tends to infinity. In that case, the beliefs distribution is static i.e. constant over time.

In our stylized empirical example, we have only been able to address the latter issue
— estimating the number of effective agents. Since the beliefs distribution is hidden, one
would generally need to consider Kalman filters if visualization by means of estimation is
the objective. In a CBS, these Kalman filters easily become of the nonlinear type, so that
estimation of the hidden variables is not straightforward. For this reason, we have confined
ourselves here to the static case where the beliefs distribution is constant over time. Doing
so, the approach partly overlaps with that of a study by Lewbel (1994) in which the key
objective was to estimate a static distribution of AR(1) parameters from empirical data.
However, our example allows us additionally to relate the ARCH parameters to what we
define as the number of effective heterogenous agents in the market. Also the latter might
be considered a measure for the degree of heterogeneity. In general, if a CBS leads to a
feasible and perhaps well-known econometric model, one has as an immediate result an
interpretation of the parameters in terms of economically relevant or behavioral quantities.

Our data set contains the log returns of the indices of six leading stock markets, namely
the S&P 500, FTSE 100, Hang Seng, NIKKEI, DAX, and the AEX. Estimation of the
number of agents in different periods of time indicated that the largest stock market in
terms of the number of active agents is that of the S&P 500, followed by the stock market
in London, the FTSE 100. As these results are in line with what one would expect, we feel
that our first step might indeed be a step in the right direction. Regarding the second issue
— visualizing the evolution of beliefs — we have yet only ‘scratched’ the surface of what we
believe is potentially ‘large’. Our first step has indicated that visualizing hidden beliefs
from empirical data, although difficult, is not impossible in principle. We hope that future
smarter empirical applications of CBS will prove us right.

One can think of many directions for further research. To continue with empirics,
it might be worthwhile to consider nested models that allows one to test hypothesizes
w.r.t. the beliefs of agents. Questions that might be addressed include: (i) Is the degree
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of heterogeneity constant over time, and if not, does it increase/decrease in periods of
high volatility?; (ii) Are the beliefs of agents best described by linear or non-linear rules?;
and (iii) Is it more realistic to agents as updating their beliefs based upon past profits or
prediction errors?

From a theoretical point of view, we believe that a number of extensions and generaliza-
tions might also prove to provide new insights. For example building a bridge between CBS
and that of Rational Beliefs (RB), the latter being a concept recently developed by Kurz
(2001) in which another notion of a beliefs distribution is introduced. In the work of Kurz,
a beliefs distribution describes the individual belief of an agent, and reflects the uncer-
tainty each individual holds regarding future economic variables. This concept is designed
to generalize Rational Expectations (RE) theory where all agents have exact knowledge
about the future. Although Kurz’s approach is different from ours, in particular since a
beliefs distribution represent a different object, Kurz’s definition of ‘Endogenous Uncer-
tainty’ as ‘that component of the volatility of quantities and prices in the economy which
is generated by the distributions of beliefs’ has similar implications. Also he is able to
relate his notion of endogenous uncertainty to common financial market ”anomalies” such
as excess volatility, and ARCH-type structure. When reading the work of Kurz, a logical
extension of the CBS would be to endow agents with notions of uncertainty about future
values rather than having point predictors. Then each agent’s belief is described by a pdf,
so that agents will generally have more dimensions to disagree upon. The distribution of
beliefs, as defined in our CBS, then would become a pdf on a beliefs space of pdf’s.

A Appendix

A.1 Derivation of Observation 1

Defining 67 = 2807 and 62, = 2307, leads to

op
1
Ty = p-1Ti—1 + hi€,
I(;I‘_t; = a;‘:{i + (1 -+ (1 — oz)’;(;;i, (22)
7 = op-+ (-, +(1-a),
where o
O; 1T
h = Z=1li1 2
! 28n Y
which shows that § and n enter the dynamics only through their product. a

A.2 Proof of Lemma 3

The assumed ergodicity, together with the invariance of the dynamics under the simultane-
ous inversion of the sign of all of the r’s: r; > —r, Vs, implies E[r,] = 0, or Var[r,] = E[r?]
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whenever the mean and variance are finite. From Eq. (22) it can be seen that - — —-
t

op

tends to E[r?], provided that E[r?] has a well-defined finite limit for @« — 1. Similarly,

g—té — ’(% converges to the first order auto-covariance E[r;r;_1]. If we define lim, 1 py = p

and lim, ,; 07 = 02, we obtain the following set of equations for y and o:

% - Mgp = Elryr ]
g Uop

1 1

— - — = E[r}].
0_2 O_gp [ t]

The solutions to these equations are

top + Oop E[ryri_1]

1+ 02, E[r] (23)

o> = (E[rf]+ 1/0§p)_1.

This implies that the dynamics in the limit o — 1 can be described by
1
Ty = pri1+ hie, (24)

where h; = 2‘;—17“%,1 + 02, A simple consistency requirement on the first order autocorrela-
tion coefficient and the above time varying AR model for ; shows that in fact p should be

equal to the first order autocorrelation % By inserting this result into the top line
t

of Eq. (23) it can be seen that this implies y1 = puop, for all 0 < 2, < oo. O

A.3 Model restriction consistency

We consider the consistency of the assumption made in section 5 that 1/02, < v = Var(r],
which we used to reduce the number of parameters to be estimated from the model (apart
from putting 8 = %) Since v is a function of the model parameters, it is not immediately
obvious that 1/02, can become small with respect to v. The relation between v and
the parameters can be found by taking the variance on both sides of Eq. (21). Upon
substitution of v = yg, ¢ = 0 and a = (n(v+1/02,))~" we find

— 2 2
U—uopv+n + o,

v
(v+ a%)
op
which clearly shows that the model indeed allows 1/ agp < v. Under this assumption, we
have n ~ ﬁ so that the ARCH parameter can be used, together with the unconditional
variance v, to estimate n, the effective number of market parties.
As an alternative to assuming a model with a normal opportunity function, taking the
limit @« — 1, and then considering large values of ogp, one might alternatively consider
starting with a constant opportunity function ¢(f) = 1. Intuitively, taking a constant
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opportunity function is equivalent to fixing agp at infinity. Indeed, the dynamics in the
limit @« — 1 for any fixed value of ug € (—1,1) obtained with a normal opportunity
function is, in the limit ogp — 00, interpretable as a model with constant opportunity
function. However, problems in taking the limit &« — 1 would arise if one would take a
model with a constant opportunity function as a starting point. One obvious, but not
severe disadvantage would be that, even if convergence of the time varying AR coefficient
it to a constant p could be shown, the value of u would not be interpretable in terms
of the mean of the pdf associated with the opportunity function. More seriously, the
convergence of y; to a constant p would be hard to justify in the first place, since any
value of u € (—1,1) is compatible with a model based on a constant opportunity function.
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First subsample, 1-2500

Index lognes# AR ARCH Var[r]
SP500 5.39 0.049 0.067 0.008
FTSE 5.32  0.061 0.080  0.008
AEX 499 0.033 0.126  0.009
Hang Seng 4.30 0.112 0.264 0.014
Nikkei 426 0126 0.435 0.011

Second subsample, 2501-3864

S&P500 457 0.006 0.148 0.014

FTSE 444 0.049 0.202 0.013
AEX 401 0.066 0.327  0.017
Hang Seng  4.05 0.073 0.216 0.020
Nikkei 496 0.112 0.054 0.014

Table 1: Separate estimates for the first period, from January 1, 1988 until August 1, 1997 (2500
returns) and the remaining 1364 returns, from August 2, 1997, until October 24, 2002. (approx.
the first 10 and the 5 most recent years).
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Figure 1: Estimated effective number of agents, neg, for five big stock indices: the S&P500,
FTSE, AEX, Nikkei (NIK), Hang-Seng (HS). Estimation is based on estimated ARCH parameters
in a moving time window (size 1000 trading days). The window is moved by 400 trading days
for each consecutive estimate. The graph is based on daily returns from January 1st, 1988 until
October 24, 2002.
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Figure 2: Estimated effective number of agents, neg, for the SP500 only, over a period of 113
years. Estimation is based on the ARCH parameter in a moving time window (size 1000 trading
days). For this plot the window is moved by 500 trading days for each consecutive estimate. The
data are daily returns from February 17, 1885 until October 6, 1998. The windows for the points
labelled t = 20, 40 and 60 are roughly centered around the years 1918, 1952 and 1991
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Figure 3: Simulated response of the beliefs parameters to daily SP500 returns. The parameter
values used are a« = 0.95 and ¢ = 1.
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