Menkveld, Albert J.; Koopman, Siem Jan; Lucas, André

Working Paper

Round-the-Clock Price Discovery for Cross-Listed Stocks: US-Dutch Evidence

Tinbergen Institute Discussion Paper, No. 03-037/2

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Menkveld, Albert J.; Koopman, Siem Jan; Lucas, André (2003) : Round-the-Clock Price Discovery for Cross-Listed Stocks: US-Dutch Evidence, Tinbergen Institute Discussion Paper, No. 03-037/2, Tinbergen Institute, Amsterdam and Rotterdam

This Version is available at:
http://hdl.handle.net/10419/85902

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU
Round-the-Clock Price Discovery for Cross-Listed Stocks

Albert J. Menkveld
Siem Jan Koopman
André Lucas

1 Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam, 2 Dept of Econometrics and Operational Research, 3 Dept of Financing and Business Management for the Financial Sector, 4 Tinbergen Institute.
Tinbergen Institute
The Tinbergen Institute is the institute for economic research of the Erasmus Universiteit Rotterdam, Universiteit van Amsterdam, and Vrije Universiteit Amsterdam.

Tinbergen Institute Amsterdam
Roetersstraat 31
1018 WB Amsterdam
The Netherlands
Tel.: +31(0)20 551 3500
Fax: +31(0)20 551 3555

Tinbergen Institute Rotterdam
Burg. Oudlaan 50
3062 PA Rotterdam
The Netherlands
Tel.: +31(0)10 408 8900
Fax: +31(0)10 408 9031

Please send questions and/or remarks of non-scientific nature to driessen@tinbergen.nl.
Most TI discussion papers can be downloaded at http://www.tinbergen.nl.
Round-the-Clock Price Discovery for
Cross-Listed Stocks: U.S.-Dutch Evidence

Albert J. Menkveld, Siem Jan Koopman, André Lucas

Vrije Universiteit Amsterdam

Current Version: October 13, 2003
First Version: February 27, 2003

Abstract
U.S. trading in non-U.S. stocks has grown dramatically. Round-the-clock, these stocks trade in the home market, in the U.S. market and, potentially, in both markets simultaneously. We use a state space model to study 24-hour price discovery. As opposed to the standard “variance ratio” approach, this model deals naturally with (i) simultaneous quotes in an overlap, (ii) missing observations in a non-overlap, (iii) noise due to transitory microstructure effects, and (iv) contemporaneous correlation in returns due to market-wide factors. Our findings suggest a minor role for the NYSE in price discovery for Dutch shares, in spite of its non-trivial and growing market share. The results differ significantly from the variance ratio approach.
Abstract

U.S. trading in non-U.S. stocks has grown dramatically. Round-the-clock, these stocks trade in the home market, in the U.S. market and, potentially, in both markets simultaneously. We use a state space model to study 24-hour price discovery. As opposed to the standard “variance ratio” approach, this model deals naturally with (i) simultaneous quotes in an overlap, (ii) missing observations in a non-overlap, (iii) noise due to transitory microstructure effects, and (iv) contemporaneous correlation in returns due to market-wide factors. Our findings suggest a minor role for the NYSE in price discovery for Dutch shares, in spite of its non-trivial and growing market share. The results differ significantly from the variance ratio approach.
In the last decade, international firms have increasingly sought a U.S. listing, oftentimes achieved through cross-listing their shares at either the New York Stock Exchange (NYSE) or at the NASDAQ. At the end of 2000, 420 non-U.S. firms were listed at the NYSE and generated approximately 15% of total volume that year. The NASDAQ lists even more non-U.S. firms. This trend has prompted many academic studies. Most of them focus on the benefits of cross-listings, such as reduced cost of capital and enhanced liquidity of a firm’s stock (see, e.g., Alexander, Eun, and Janakiramanan (1987, 1988), Foerster and Karolyi (1999), Karolyi (1998), Domowitz, Glen, and Madhavan (1998), Pagano, Roël, and Zechnner (2002), and Miller (1999)).

A relatively unexplored question is how much U.S. trading contributes to price discovery over and above domestic trading. Reasoning could go both ways. On the one hand, the home market being closest to the company’s headquarters and, therefore, closest to where information is produced, may be most important (see, e.g., Bacidore and Sofianos (2002), Hau (2001), and Solnik (1996)). On the other hand, U.S. stock exchanges being the largest and most liquid exchanges in the world may imply an important role in price discovery also for non-U.S. stocks, particularly now that their share in total U.S. volume is rapidly increasing. Chan, Hameed, and Lau (2003), for example, find that trading location matters irrespective of business location for a group of companies that changed listing from Hong Kong to Singapore.

Empirical methodology for measuring contributions to price discovery
was first developed for U.S. stocks trading on the NYSE as well as on regional U.S. exchanges (see Hasbrouck (1995), Harris et al. (1995)). The methodology was further developed in subsequent years and surveyed in a special issue of the *Journal of Financial Markets* edited by Bruce Lehmann (2002, 5:3). The finding in U.S. studies that the NYSE dominates regional exchanges in price discovery is very interesting, but not surprising. The question of whether NYSE dominance extends to non-U.S. stocks cross-listed in the U.S. is more intriguing, as these stocks are now trading on exchanges in different countries and, possibly, different time-zones.

Recent evidence indicates that although both markets contribute to price discovery, the domestic market dominates. Studies on Dutch, German, and Spanish stocks show that the contribution of the NYSE is at most one-third (see Hupperets and Menkveld (2002), Grammig, Melvin, and Schlag (2001), and Pascual, Pascual-Fuste, and Climent (2001)). Eun and Saherwal (2003) analyze 62 Canadian stocks and find that U.S. prices adjust more to Canadian prices than vice-versa for the majority of stocks. Cross-sectional analysis further shows that the U.S. contribution is increasing in its share in total volume. These papers focus on price discovery for the overlapping period. For most non-U.S. stocks, however, this is a relatively short, if not non-existent, period in the trading day.

Our objective is to explore the importance of U.S. trading for *round-the-clock* price discovery, including the non-overlap. In particular, we are
interested in how informative the non-overlap U.S. trading is and how informative U.S. prices are on the unobserved efficient price during the overlap. These issues are explored by assigning day-over-day return variance to economically relevant intraday time intervals.

The empirical literature on round-the-clock price discovery dates back to single market studies comparing variance ratios of open-to-close and close-to-open returns. They generally find trading periods to produce more information than non-trading periods (see e.g. Oldfield and Rogalski (1980), French and Roll (1986), Harvey and Huang (1991), and Jones, Kaul, and Lipson (1994)). A natural extension of this approach to our multiple-market setting is to single out economically relevant timepoints in the day and compare return variances across time, averaged across all stocks. This approach fails for three reasons. First, Ronen (1997) criticizes the standard variance ratio approach as it does not account for contemporaneous correlation. Secondly, microstructure literature warns that midquotes and transaction prices are potentially noisy proxies for the unobserved efficient price due to the market making mechanism (see, e.g., Stoll (2001)). Such noise is negligible for weekly, monthly, or annual returns, but not for intraday returns (see, e.g., Madhavan (2000)). The economic significance of such noise is illustrated by studies on the NYSE and other exchanges, which find that 24-hour returns based on opening prices are, on average, up to 20% more volatile than those based on closing prices (see Forster and George (1996), Gerety and Mul-
herin (1994), Amihud and Mendelson (1987), and Stoll and Whaley (1990)). Such noise is potentially distorting as disproportional noise at some point in the trading day would artificially inflate price discovery around that point.

Third, in our setting, variance pattern analysis involves arbitrary choices for the price in the overlap, as we observe prices in both markets.

In this paper, we use a state space model to account for the three main criticisms of the standard variance ratio approach. Consistent with modern finance, we model the efficient price as a random walk (see, e.g., Campbell, Lo, and MacKinlay (1997)). To study round-the-clock price discovery, we endow this random walk with deterministic, time-varying volatility. Inspired by the microstructure literature, we model the observed midquote as the unobserved efficient price plus short-term, transient noise and we allow for potential market under- or overreaction to information (see, e.g., Amihud and Mendelson (1987)). In the overlap, both midquotes are functions of the same unobserved efficient price plus idiosyncratic noise. To account for cross-correlation in returns, we model returns as the sum of a common and an idiosyncratic factor in the spirit of Hasbrouck and Seppi (2001). The common factor represents macro-economic information or portfolio-wide liquidity shocks (see Subrahmanyam (1991), Chowdhry and Nanda (1991), Kumar and Seppi (1994), and Caballe and Krishnan (1994)).

The model is estimated on a 1997-1998 sample of Dutch blue chips cross-listed in New York. The U.K. excluded, Dutch stocks are the European
stocks that generate most volume in New York. The dataset is rich, since it includes all trades and quotes on both sides of the Atlantic, as well as intraday quotes on the exchange rate and intraday prices on the major Dutch index and the S&P500.

The results demonstrate the empirical relevance of the model, as the estimated variance pattern of the efficient price innovations differs significantly from the pattern based on the standard variance ratio approach. Such an approach was pursued in earlier papers on British and Dutch cross-listed stocks (see Werner and Kleidon (1996) and Hupperets and Menkveld (2002), respectively). The major difference is that the variance ratio approach finds that continued trading in New York after the Amsterdam close is significantly more informative than the overnight period, whereas the state space model does not. This difference is primarily due to significant noise in New York midquotes, which is, implicitly, assumed to be absent in the variance ratio approach. Interestingly, such noise is insignificant for Amsterdam midquotes outside the overlap. We quantify price discovery consistent with existing literature and find that price discovery in Amsterdam is a factor three higher than in New York or the overnight period. These numbers compare to, for example, a factor seven reported for NYSE stocks comparing daytime and overnight price discovery (see George and Hwang (2001)). These results survive a number of robustness tests, including potential non-zero correlation between transient, microstructure noise and efficient price
innovations (see, e.g., Hasbrouck (1993) and George and Hwang (2001)).

The rich model structure allows for a further characterization of round-the-clock price discovery. First, we observe that the overlap accounts for most information, strongest market underreaction, and significant noise. These findings support microstructure theory that argues that in the presence of noise traders, sophisticated, privately informed investors hide their orders by splitting them across markets (see, e.g., Chowdhry and Nanda (1991), Menkveld (2003)) and through time (see, e.g., Kyle (1985)). The decomposition of information reconfirms this claim as the increase in information is firm-specific rather than common. Second, the decomposition analysis further reveals that dominance shifts to common-factor information for the New York pre-opening period. This is consistent with U.S. macro-announcements that are published in this period. Third, the common-factor estimates correlate higher with the local market indices outside the overlap than during the overlap. This reinforces the finding in Chan, Hameed, and Lau (2003) that “price fluctuations are affected by country-specific investor sentiment.”

The rest of the paper is structured as follows. Section 1 presents and discusses a multivariate state space model for midquotes of securities that are traded in different markets. Section 2 elaborates on trading Dutch securities in Amsterdam and New York. Section 3 presents model estimates. Section 4 contains robustness tests and a discussion of the results. Section
5 summarizes the approach and the main conclusions.

1 Model

The principles of the analysis in this paper are based on an unobserved “efficient” price and observed midquotes in two markets that trade the same security. State space models are a natural tool in this setting as the efficient price can be modeled as an unobservable state variable and the midquotes as observations of this variable with measurement error to reflect transitory microstructure effects.

1.1 State Equations

Consistent with standard finance, we model the efficient price as a random walk with a deterministic linear trend. The process for \(n \) stocks and \(T \) intraday timepoints can therefore be described as

\[
\begin{align*}
\mathbf{\alpha}_{t,\tau+1} &= \mathbf{\alpha}_{t,\tau} + \mathbf{f}_{t,\tau} + \mathbf{\eta}_{t,\tau}, & \tau < T, \\
\mathbf{\nu}_{t,1} &= \mathbf{\nu}_{t,T} + \mathbf{f}_{t,T} + \mathbf{\eta}_{t,T}, & \tau = T, \\
\mathbf{\eta}_{t,\tau} &\sim \mathcal{N}(\mu, (\sigma^2) \cdot \text{diag}(c_1, \ldots, c_n)),
\end{align*}
\]

where underlined variables are vectors in \(\mathbb{R}^n \), \(\mathbf{\alpha}_{t,\tau} \) contains the unobserved efficient prices at day \(t \) and timepoint \(\tau \), \(\mathbf{f}_{t,\tau} \) is the unobserved common factor, \(\mu \) is the deterministic mean for intervals starting at timepoint \(\tau \),
and \(c_i \) captures inter-stock volatility differences. For the common factor we assume a random variable with a deterministic time-of-day dependent variance structure

\[
\begin{align*}
f_{t,\tau} &= \xi_{t,\tau}, \\
\xi_{t,\tau} &\sim N(0, (\sigma_\tau^f)^2),
\end{align*}
\]

To ensure identification of the model, we impose the following parameter restrictions:

\[
\begin{align*}
\frac{1}{n} \sum_{i=1}^{n} \beta_i^2 &= 1, \\
\frac{1}{n} \sum_{i=1}^{n} c_i &= 1.
\end{align*}
\]

These restrictions are chosen for ease of interpretation, since round-the-clock price discovery for the “average” stock in the sample is now determined by

\[
(\sigma^{EPI}_\tau)^2 = (\sigma_\tau^f)^2 + (\sigma_\tau^g)^2,
\]

where \((\sigma^{EPI}_\tau)^2\) is the total variance of the Efficient Price Innovation (EPI) for the average stock.

1.2 Observation Equations

Although we do not observe the efficient price, midquotes in either or both markets at time \((t, \tau)\) are the best proxies as they do not suffer from the
bid-ask bounce in transaction prices (see e.g. Roll (1986)). They are, nevertheless, noisy as they suffer from transient microstructure effects, such as rounding errors due to discrete price grids, temporary liquidity shocks, or inventory-management by market makers. The observation equations in our state space model are thus specified as

\[p_{k,t}^k = \alpha_{t,\tau} + \varepsilon_{k,t}^k, \quad k \in \{A, NY\}, \]

\[\varepsilon_{k,t}^k \sim N(0, (\sigma^e_{k,\tau})^2 \cdot I_n), \]

where \(p_{k,t}^k \) contains midquotes for \(n \) stocks traded at market \(k \), \(\varepsilon_{k,t}^k \) is the transitory error due to microstructure effects. The observation error variances depend on the time-of-day and on the market. They are assumed to be equal across all stocks, an assumption that will be relaxed at a later stage.

We extend equation (6) to allow for market under- or overreaction to information, which cannot be excluded ex-ante in high frequency analysis (see, e.g., Amihud and Mendelson (1987)). A natural way to do this is to include a term \(\theta(\alpha_{t,\tau} - \alpha_{t,\tau-1}) \) on the right-hand side of equation (6). This, however, does not allow us to distinguish between, for example, underreaction to firm-specific or common factor information. We prefer the specification

\[p_{k,t}^k = \alpha_{t,\tau} + \theta^k_{\tau-1} \beta f_{\tau-1} + \theta^q_{\tau-1} \eta_{\tau-1} + \varepsilon_{k,t}, \]

where

\[p_{k,t}^k \] contains midquotes for \(n \) stocks traded at market \(k \), \(\varepsilon_{k,t}^k \) is the transitory error due to microstructure effects. The observation error variances depend on the time-of-day and on the market. They are assumed to be equal across all stocks, an assumption that will be relaxed at a later stage.

We extend equation (6) to allow for market under- or overreaction to information, which cannot be excluded ex-ante in high frequency analysis (see, e.g., Amihud and Mendelson (1987)). A natural way to do this is to include a term \(\theta(\alpha_{t,\tau} - \alpha_{t,\tau-1}) \) on the right-hand side of equation (6). This, however, does not allow us to distinguish between, for example, underreaction to firm-specific or common factor information. We prefer the specification

\[p_{k,t}^k = \alpha_{t,\tau} + \theta^k_{\tau-1} \beta f_{\tau-1} + \theta^q_{\tau-1} \eta_{\tau-1} + \varepsilon_{k,t}, \]

where
where the common factor (firm-specific) efficient price innovation up to time \(\tau \) is pre-multiplied by \(\theta^\varepsilon (\theta^\eta) \) to indicate that midquotes underreact (\(\theta < 0 \)) or overreact (\(\theta > 0 \)) to the innovation. When we apply the model, we will determine whether these effects exist by testing the null hypothesis that \(\theta \) is equal to zero.

1.3 Estimation

The proposed model can be cast in general state space form with intra-day periodic variances.\(^1\) The Kalman filter and associated algorithms can be used for inference and signal extraction (see, e.g., Durbin and Koopman (2001)). The parameters are estimated using maximum likelihood. An important advantage of the state space model is its ability to deal with missing values, which are paramount in this dataset, since no observations are available on one of the exchanges during the non-overlap. The estimation was done in Ox using SsfPack software (see Doornik (2001) and Koopman, Shephard, and Doornik (1999)).

2 Setting: Amsterdam and New York

The volume of non-U.S. shares grew to over 15% of total NYSE volume in 2000. European shares accounted for most of this volume—approximately one-third. Not surprisingly, U.K. shares accounted for most European volume, followed by Dutch shares that generated more volume than French
and German shares combined. The cross-listed Dutch shares studied in this paper are NY Registered Shares as opposed to the more common American Depositary Receipts (ADRs). These are, however, not regarded as materially different in the eyes of investors, according to Citibank, one of the key players in the Depositary Services industry. Most important is that both the NY Registered Share and the ADR can be changed for the underlying common share at a small fee of approximately 15 basis points.

Dutch shares trade from the Amsterdam open, 3:30 EST, to the New York close, 16:00 EST, with a one-hour trade overlap as is depicted in Figure 1. To study round-the-clock price discovery, we select 6 economically relevant timepoints inspired by the variance patterns reported in earlier studies (Werner and Kleidon (1996) and Hupperets and Menkveld (2002)). The first timepoint is 4:00, which is half an hour after the Amsterdam open. We choose not to take the actual open as trading might not start directly, creating a missing observation. Subsequent time points in the Amsterdam trading period are 8:00, 9:00, and 10:00. These are, purposefully, located around the economically interesting event times 8:30 and 9:30, since at these times U.S. macro-announcements are published and the NYSE opens, respectively. In the U.S. trading period we further select 11:00 to incorporate the Amsterdam close and 15:30 to study price discovery during the remainder of the trading day. We choose to stay half an hour ahead of the close to minimize disturbance due to last minute trading.
The Amsterdam and the New York Stock Exchange are both continuous, consolidated auction markets in the terminology proposed by Madhavan (2000). Both exchanges release quote and trade information in real time. The main difference is that New York is a hybrid market, because orders can arrive at the floor through both brokers and the electronic Superdot system. Amsterdam is a pure electronic market in which orders are routed to a central market maker (“hoekman”) who manages a consolidated limit order book and makes sure that orders are executed according to price-time priority. Although the market maker has an obligation to “make a market” at times of illiquidity, this is not an issue for the blue chip stocks studied in this paper.

The dataset used in this study consists of trade and quote data from Euronext-Amsterdam and the NYSE for July 1, 1997 through June 30, 1998. Seven Dutch blue chip stocks cross-listed in New York have been selected for the current study: Aegon, Ahold, KLM, KPN, Philips, Royal Dutch, and Unilever. These firms are multinationals in different industry groups and represent more than 50% of the local index in terms of market capitalization.

Summary statistics for trading in the seven Dutch stocks are tabulated in Table 1. They are very diverse as is apparent from trade variable averages such as volatility, volume, and spread. A closer look reveals that they are similar in two important ways. First, for none of the stocks has
New York been able to generate more volume than Amsterdam. Second, quoted spreads are larger in New York, up to almost 300%. This is most likely due to the different market structure in New York, where many orders receive price improvement from the floor. The effective spread, in this case, is a more appropriate measure, as it is based on actual trades. Changing to this measure, we find that differences shrink and for some stocks New York spreads are lower. This result should be interpreted with care, since average trade size is higher in Amsterdam (see Hupperets and Menkveld (2002)). Hence, the average Amsterdam trade potentially bites deeper into the limit order book and, therefore, suffers a higher effective spread. Although finding the most competitive exchange is beyond the scope of this paper, effective spread results show that exchanges are very competitive, which is a promising result in view of the price discovery questions addressed in this study. Comparing Amsterdam to New York based on statistics for the overlapping hour yields a similar picture. The main difference is that average values for all variables are higher during the overlap.

3 Results

As a preliminary analysis we follow the standard “variance ratio” approach and calculate the variance pattern of intraday and overnight returns. The intraday returns are calculated based on the six identified timepoints \(\tau_i \), where we arbitrarily choose the average midquote as a proxy for the price
during the overlap.3 Table 2 reports the variance estimates, which are translated into hourly equivalents to enable comparisons. For the three intervals in the Amsterdam trading period, the average variance equals $3.6 \cdot 10^{-5}$, which corresponds to a standard deviation of 60 basispoints per hour or an annualized volatility of 47%.4 Variance for the hour containing the Amsterdam close is a significant 48% higher. Consistent with existing literature, we translate this finding into stating that price discovery—the information flow per unit of time—in this hour is a factor 1.5 higher (see, e.g., Jones, Kaul, and Lipson (1994), French and Roll (1986), Ronen (1997), and George and Hwang (2001)). Additionally, the Amsterdam non-overlap is a significant factor 2.4 more informative than the NYSE non-overlap, which, in turn, is a significant factor 1.3 more informative than the overnight hours.

To motivate the state space model advocated in this paper, Table 3 reports the autocorrelations for intraday returns. If measurement errors exist and are economically significant, we should find negative first order autocorrelation. Most of these autocorrelations are indeed negative and two of them are significant. We find a significantly positive autocorrelation for the period containing the Amsterdam close. Apparently, markets underreact to information in the New York open, causing persistence in returns for the subsequent Amsterdam close period. Higher order autocorrelations are insignificant, except for the Amsterdam close period, but this appeared to be entirely caused by a specific day in the sample as the autocorrelation
turns insignificant after removing that day from the analysis.

We proceed by re-estimating the intraday variance pattern using the state space model advocated in this paper. We test for significance of parameters at a 95% level and leave out the insignificant ones. The results are in Table 4 and organized in three different panels. Panel A features the estimate of the variance pattern, which is plotted in Figure 2 along with the variance pattern based on the direct “variance ratio” approach reported in Table 2. The state space model estimates differ in two important ways. First, trading in New York after the Amsterdam close is not significantly more informative than the overnight non-trading hours. The main reasons are that the New York midquotes contain significant noise and that the New York market appears to overreact significantly (87%) to firm-specific information. At the same time, the market underreacts to common-factor information, but this effect is much smaller (16%) and, as we will show later, is not robust. Second, most information is attributed to the New York open period, instead of the Amsterdam close period. The reason is market underreaction to both common-factor and firm-specific information (35% and 34%, respectively) in the New York open period. In other words, the information present in the New York open period is not yet fully revealed in midquotes halfway through the overlapping period. This is consistent with the hypothesized behavior of institutional and informed investors, who strategically split their orders both through time and across markets in the presence of noise.
traders (see, e.g., Kyle (1985), Chowdhry and Nanda (1991)). The intuition is that this enables them to hide their orders more easily and suffer less market impact. We attribute the firm-specific underreaction to informed investors and the common-factor underreaction to institutional investors, who, by trading portfolios, are likely to cause commonality in order flow.\(^5\) This is shown to be the major cause of commonality in returns (see Hasbrouck and Seppi (2001)). For partially overlapping markets, it is optimal for these two types of investors to concentrate their orders in the overlap (see Menkveld (2003)). Similarly, the market underreaction (30\%) to firm-specific information in the Amsterdam close period can be interpreted as continued trading in New York by informed investors, who did not yet fully exploit their information in the overlap.

To further characterize round-the-clock price discovery, we decompose information into firm-specific and common-factor information by time of day. Figure 3 illustrates this decomposition and leads to three important observations. First, the significantly larger innovations in the efficient price during the overlap are due to increased firm-specific rather than common-factor information. Apparently, the hypothesized order-splitting is primarily carried out by privately informed traders, as opposed to portfolio-trading institutional investors. Second, the New York preopening period is characterized by common-factor rather than firm-specific information. Although this period is not significantly more informative than the preceding Amsterdam
trading hours, its common-factor component is significantly higher and its firm-specific component is significantly lower. This is consistent with U.S. macro-announcements in this period or, alternatively, with earnings releases by major U.S. companies6 that potentially affect market sentiment for the oncoming U.S. trading day. Third, the “New York only” period is neither significantly more informative on the firm-specific component, nor on the common-factor component.

Panel B reports the estimates of the observation error variance. In the optimization, they converge to zero for all timepoints in Amsterdam outside the overlap. We cannot reject the null of no observation error for these midquotes. For New York midquotes outside the overlap, however, we do reject the null of no observation error. During the overlap both the Amsterdam and the New York midquotes are significantly noisy. The non-zero pricing errors are interesting for two reasons. First, New York midquotes in the overlap are significantly noisier than Amsterdam midquotes. The estimates imply a 33 basispoint standard deviation for New York errors, which is 26\% higher than Amsterdam. This, together with the non-overlap results, is yet another sign of Amsterdam’s dominance in price discovery. The errors are economically significant as they are of the same magnitude as hourly efficient price innovations. The New York midquote at 15:30, just ahead of the close, is noisiest and economically significant, since the error’s standard deviation is more than half the standard deviation of the efficient price in-
novation over the entire NYSE non-overlap, from 11:00 to 15:30. The next morning, just prior to the market open, one should realize that the last New York midquote, although the most recent observation, also bears significant noise.

Figure 4 illustrates price discovery as it plots the estimate of the efficient price and the midquote observations for Royal Dutch. In the three-days-plot (lower panel), we see that midquotes at the timepoints with non-zero noise differ from the efficient price estimate. Particularly interesting is that the efficient price in the overlap is closer to the Amsterdam midquote than the New York midquote. This illustrates our finding that the midquote in New York is noisier.

Panel C reports the stock-specific parameter estimates of “beta” and variance. For five out of seven stocks the beta estimate differs significantly from one, which is, by construction, the sample average exposure to the common factor. Casual comparison of these estimates with “true” betas, as reported in, for example, the Bloomberg system, we find a correlation of 0.82. The correlation is not perfect, since the betas measure different exposures—high- versus low-frequency exposures to market-wide “shocks” or macro factors. Cross-sectional variation is even higher for inter-stock variance differences measured by c_i as for every stock this parameter differs significantly from one. This heterogeneity in beta and variance makes decomposition of the total variance of efficient price innovations into an id-
iosyncratic and a common factor component, stock-specific. The general pattern reported for the “average” stock in Figure 3 should be interpreted carefully. Whereas it is informative on how both components, irrespective of each other, behave through time, it is not informative on how important they are for total variance of a specific stock. To study how this decomposition is affected, we have to inflate the common-factor-variance to idiosyncratic-factor-variance ratio for stock i with $\beta_i^2 \cdot c_i^{-1}$. These factors are reported in panel C and, not unexpectedly, vary significantly across stocks. Interestingly, the common-factor component is highest for Aegon, Royal Dutch, and Unilever. This is probably due to these stocks’ high exposure to the U.S. market in our sample period, as Aegon just took over the U.S. company Transamerica, while Royal Dutch and Unilever were members of the S&P500.

Finally, the state space approach provides us with an estimate of the common factor conditional on the observations, which we can compare with local market indices—the AEX and the S&P500—for each time of day. In Table 5 we report the correlation between the smoothed common factor estimate and index returns. The correlation is highest, 0.57, and significant for the start of the trading day in Amsterdam. This is not surprising as our stocks represent more than 50% of total market capitalization of the index stocks in the sample period.7 It drops significantly to 0.38 in the New York preopening, indicating that the cross-listed stocks, collectively, start price
discovery less related to the remainder of the Dutch market. This effect is particularly strong for the hour containing the NYSE open, as correlation with the AEX now drops to an insignificant 0.08. For the remainder of the trading day, the common factor significantly correlates with the S&P500 with correlation coefficients of 0.21 and 0.28. These levels are lower than the Amsterdam non-overlap, as these stocks, obviously, do not make up a significant part of the S&P500. Interestingly, the correlation with the local market is higher outside the overlap than during the overlap. This reinforces the finding in Chan, Hameed, and Lau (2003) that “price fluctuations are affected by country-specific investor sentiment.”

4 Discussion of the Results

In this section we test our findings for robustness and perform diagnostic analysis on filtered state innovations. And, we discuss the model assumption that measurement error is independent of the efficient price innovation, which microstructure papers indicate might be too strong an assumption. Although all results are discussed in this section, we only report the most important results in tables and figures to conserve space. The results not reported here are available through an appendix that is accessible through the corresponding author’s website.

As our primary interest in the paper is round-the-clock price discovery, we test robustness of the estimated intraday variance pattern in two ways.
First, we split the sample in two subperiods and estimate the model for each period. Second, we allow for stock-specific measurement error variances. The results, reported in panels B and C of Table 6, show that the main results are largely unaffected, i.e. the round-the-clock information pattern, the market under- and overreaction parameters, and the significantly noisier NYSE prices in the overlap. The only difference is that the common-factor underreaction to New York only trading vanishes in the second subperiod.

We base our diagnostic analysis on the scaled filtered state innovations, which should be white noise if the model is correctly specified. Figure 5 shows a plot of (i) the innovations with all stocks in consecutive order, (ii) their empirical distribution against the standard normal, (iii) autocorrelations up to the tenth lag, and (iv) autocorrelations of the squared innovations up to the tenth lag. Innovations are heavy-tailed, a standard phenomenon in empirical finance. Autocorrelations are insignificant. The autocorrelations of squared returns are positive, indicating GARCH effects, but small. Further inspection using scatterplots, however, shows that this may be spurious as they seem to be driven by a few relatively large observations. Though accounting for stochastic volatility might affect the estimates of the confidence intervals, it is unlikely to change the deterministic intraday variance pattern (see Andersen, Bollerslev, and Das (2001)).

The assumed independence of the efficient price innovation and the measurement error seems at odds with common microstructure models. In a
standard structural model, the transaction price at time \(t \) equals the sum of an efficient price and a linear expression in signed volume of the previous two trades (see, e.g., George and Hwang (2001)). Since the innovation in the efficient price is a linear function of the same signed volumes (plus additional terms), the independence assumption for \(\varepsilon_{t,\tau}^k \) and \(\eta_{t,\tau} \) in our state space model could be violated. Ideally, we would relax the assumption to test the robustness of our results, but this is, econometrically, not possible as the model would become underidentified (see Hasbrouck (1993)). Instead, we argue it is unlikely that the issue impacts our main results for three reasons. First, we model midquotes instead of transaction prices, which eliminates one of the signed volume terms in the “transaction price” equation. Second, the remaining signed volume term relates to the cost for a single market maker to carry inventory through time. This is not an issue for the Amsterdam market as it is fully electronic and highly liquid, so that virtually all trades are executed without the intervention of the designated market maker (“hoekman”).8 In New York, the market maker (“specialist”) is an active intermediary, but Madhavan and Sofianos (1998) document that market makers “control their inventory positions by selectively timing the size and direction of their trades rather than by adjusting their quotes.”9. Third, panel D in Table 6 shows that the main results are not affected by pre-setting the correlation to 0.175, which is our best guess based on George and Hwang (2001)).10
5 Conclusion

This paper studies round-the-clock price discovery for cross-listed stocks in markets that do not fully overlap. We propose a state space model for multiple stocks with an efficient price as the unobserved state and midquotes as observations. Compared to other approaches, the model’s appeal lies in its ability to deal naturally with (i) simultaneous quotes in an overlapping period, (ii) missing observations in the non-overlap, (iii) noise due to short-term microstructure effects, and (iv) contemporaneous correlation in returns due to common market-wide factors. As a matter of fact, our specification enables us to estimate the common factor return, conditional on the data. We compare it to the return on the local market indices to find out to what extent the common factor mirrors these indices.

We exploit a rich dataset on Dutch stocks cross-listed at the NYSE with tick data on trades, quotes, exchange rates, and both local market indices. We find that the overlapping period is the most important period in 24-hour price discovery, followed by the “Amsterdam only” period. Least important are the “New York only” and the overnight period, which, perhaps surprisingly, are equally informative. Further evidence of the NYSE’s minor role in price discovery is the significant noise in midquotes throughout the trading day. Amsterdam midquotes, however, are not noisy outside the overlap and significantly less noisy during the overlap. The round-the-clock price discovery process can be further analyzed by decomposing the information by
time-of-day into a firm-specific and a common-factor component. We find that it is firm-specific information that causes the overlap to be relatively more informative. Interestingly, we also find that the NYSE preopening period is characterized by common-factor information, consistent with U.S. macro-announcements that are published in this period. Further study of the common-factor estimate reveals that it correlates highly with the Dutch market index in early Amsterdam hours, but this correlation decreases substantially in the course of the day, as we get closer to the start of trading in New York. The correlation is low and insignificant around the New York open, indicating that the cross-listed stocks exhibit common price discovery independent of the rest of the home market. During New York trading hours, the common factor significantly correlates with the S&P500. Again, this correlation is lower during the overlap than outside the overlap. These findings suggest that efficient price innovations are driven by country-specific investor sentiment (see, e.g., Chan, Hameed, and Lau (2003)).

Notes

1If we define a new state variable $\tilde{\alpha}$ as

$$
\tilde{\alpha}_{t,\tau} = \alpha_{t,\tau} + \theta_{\tilde{\alpha}}^\xi f_{t,\tau-1} + \theta_{\tilde{\alpha}}^\eta \eta_{t,\tau-1},
$$

(8)
we can rewrite the system of equations in (1) and (7) as

\[
\tilde{\alpha}_{t,\tau + 1} = \tilde{\alpha}_{t,\tau} + (1 + \theta^\xi_{\tau})\beta f_{t,\tau} + (1 + \theta^\eta_{\tau})\eta_{t,\tau} \\
\frac{-\theta^\xi_{\tau - 1}}{1 + \theta^\xi_{\tau - 1}}(1 + \theta^\xi_{\tau - 1})\beta f_{t,\tau - 1} + \frac{-\theta^\eta_{\tau - 1}}{1 + \theta^\eta_{\tau - 1}}(1 + \theta^\eta_{\tau - 1})\eta_{t,\tau - 1},
\]

\[
\tilde{\nu}^k_{t,\tau} = \tilde{\alpha}_{t,\tau} + \tilde{\omega}^k_{t,\tau}.
\]

By straightforward re-parametrization, we find

\[
\tilde{\alpha}_{t,\tau + 1} = \tilde{\alpha}_{t,\tau} + \tilde{\beta} f_{t,\tau} + \tilde{\eta}_{t,\tau} + \tilde{\theta}^\xi_{\tau - 1}\beta f_{t,\tau - 1} + \tilde{\theta}^\eta_{\tau - 1}\eta_{t,\tau - 1},
\]

\[
\tilde{\nu}^k_{t,\tau} = \tilde{\alpha}_{t,\tau} + \tilde{\omega}^k_{t,\tau},
\]

where \(\tilde{f}_{t,\tau} \equiv (1 + \theta^\xi_{\tau}) f_{t,\tau}, \tilde{\eta}_{t,\tau} \equiv (1 + \theta^\eta_{\tau})\eta_{t,\tau}, \tilde{\theta}^\xi_{\tau} = \frac{-\theta^\xi_{\tau}}{1 + \theta^\xi_{\tau}}, \) and \(\tilde{\theta}^\eta_{\tau} = \frac{-\theta^\eta_{\tau}}{1 + \theta^\eta_{\tau}}. \)

2 You find the definition of these variables are described in the caption of the table.

3 For all estimates reported in this paper “outliers” were removed for different reasons. First, in 1998 the change to daylight savings time in the Netherlands happened one week before the U.S. As a result, there was no trading overlap from March 30 to April 3, 1998. This period was removed from the sample as it is not representative. Second, at the end of the trading day on October 27, New York prices collapsed by 7%. They fully recovered at the New York open the next day. This overnight period was removed from the sample as it was a clear temporary distortion. Third, on a Unilever
quarterly announcement on May 1, 1998, the share price jumped by roughly 8% on the Amsterdam open. This jump was removed as it clearly was a one-time event and not representative for regular round-the-clock price discovery.

We do realize, however, that for the first interval from 4:00 to 8:00, variance is skewed towards the first two hours after the opening, consistent with the stylized fact of an intraday U-shape in volatility. We still aggregate these trading hours into one period, as we are primarily interested in the role of both markets in round-the-clock price discovery, which motivates the proposed time periods. This is consistent with existing literature that studies average hourly price discovery for trading and non-trading periods by aggregating the full trading period and studying variances of open-to-close returns and close-to-open returns (see, e.g., Oldfield and Rogalski (1980), French and Roll (1986), Harvey and Huang (1991), and Jones, Kaul, and Lipson (1994)).

We do not claim that these two investor types do not overlap. On the contrary, privately informed investors are oftentimes institutional investors.

These releases are typically published before the market opens, so as to give investors time to read and analyze them.

The weight these stocks have in the Dutch market index (AEX), however, is far less as the index is not weighted by market capitalization.
8. This was confirmed by an exchange official.

9. This explains the weak inventory effects documented for the NYSE in Madhavan and Smidt (1993) and Hasbrouck and Sofianos (1993).

10. George and Hwang (2001) report that 9% of the transitory component (“measurement error”) variance and 34% of the permanent component (“efficient price innovation”) is due to signed volume. Following microstructure theory, we assume all correlation between the two components is caused by signed volume. Based on these observations, we estimate the correlation at 0.175. This is easily seen by writing down a simultaneous model of the transitory \((t)\) and the permanent \((p)\) component:

\[
t = c + \varepsilon, \quad \varepsilon \perp c,
\]
\[
p = \alpha c + \eta, \quad \eta \perp c, \quad \eta \perp \varepsilon.
\]

The correlation between \(t\) and \(p\) is now easily calculated as:

\[
\rho_{t,p} = \frac{\text{cov}(t,p)}{\sigma_t \sigma_p} = \frac{\alpha \sigma_c^2}{\sqrt{0.34 \sigma_c \sigma_c \sqrt{0.09 \alpha \sigma_c}}} = \sqrt{0.09 \cdot 0.34} \approx \pm 0.175.
\]

As we can exclude a negative signed volume effect, because we use midquotes and not transaction prices, the remaining signed volume effect for “inventory reasons” suggests a positive sign, i.e. +0.175.
References

Table 1: Summary Statistics Trading Amsterdam and New York

This table contains summary statistics for trading in Amsterdam and New York from July 1, 1997, through June 30, 1998. Panel A contains averages for the full trading day; panel B for the overlapping hour. All variables are 15-minute averages. *Trade Price Volatility* is calculated as the variance of the 15-minute squared returns based on transaction prices and measured in basis points. *Midquote Volatility* is calculated the same way, but based on midquotes. *Quoted Spread* is calculated as the time-weighted average of all prevailing quoted spreads in a 15-minute interval. *Effective Spread* is calculated as the time-weighted average of twice the difference between the transaction price and the prevailing midquote. Both spreads are measured in basis points. *Volume* is the 15-minute average number of shares traded.

Panel A: Trading Statistics Full Day (15-minute averages)

<table>
<thead>
<tr>
<th>Share</th>
<th>AEG</th>
<th>AHO</th>
<th>KLM</th>
<th>KPN</th>
<th>PHG</th>
<th>RD</th>
<th>UN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Price</td>
<td>AMS</td>
<td>922</td>
<td>1,360</td>
<td>1,284</td>
<td>1,005</td>
<td>1,412</td>
<td>730</td>
</tr>
<tr>
<td>Volatility (bp²)</td>
<td>NY</td>
<td>336</td>
<td>1,214</td>
<td>753</td>
<td>376</td>
<td>808</td>
<td>859</td>
</tr>
<tr>
<td>Midquote</td>
<td>AMS</td>
<td>544</td>
<td>1,076</td>
<td>929</td>
<td>642</td>
<td>1,118</td>
<td>600</td>
</tr>
<tr>
<td>Volatility (bp²)</td>
<td>NY</td>
<td>274</td>
<td>799</td>
<td>686</td>
<td>390</td>
<td>743</td>
<td>914</td>
</tr>
<tr>
<td>Quoted Spread</td>
<td>AMS</td>
<td>23</td>
<td>40</td>
<td>37</td>
<td>32</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Effective Spread</td>
<td>AMS</td>
<td>18</td>
<td>26</td>
<td>37</td>
<td>32</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>Spread (bp)</td>
<td>NY</td>
<td>51</td>
<td>106</td>
<td>66</td>
<td>90</td>
<td>38</td>
<td>44</td>
</tr>
<tr>
<td>Volume (1,000 shares)</td>
<td>AMS</td>
<td>34</td>
<td>89</td>
<td>20</td>
<td>53</td>
<td>77</td>
<td>139</td>
</tr>
</tbody>
</table>

Panel B: Trading Statistics Overlapping Hour (15-minute averages)

<table>
<thead>
<tr>
<th>Share</th>
<th>AEG</th>
<th>AHO</th>
<th>KLM</th>
<th>KPN</th>
<th>PHG</th>
<th>RD</th>
<th>UN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Price</td>
<td>AMS</td>
<td>1,437</td>
<td>2,116</td>
<td>2,321</td>
<td>1,779</td>
<td>2,096</td>
<td>1,017</td>
</tr>
<tr>
<td>Volatility (bp²)</td>
<td>NY</td>
<td>933</td>
<td>2,007</td>
<td>1,840</td>
<td>733</td>
<td>1,508</td>
<td>1,291</td>
</tr>
<tr>
<td>Midquote</td>
<td>AMS</td>
<td>1,038</td>
<td>1,708</td>
<td>1,949</td>
<td>1,325</td>
<td>1,783</td>
<td>897</td>
</tr>
<tr>
<td>Volatility (bp²)</td>
<td>NY</td>
<td>888</td>
<td>1,466</td>
<td>1,679</td>
<td>815</td>
<td>1,553</td>
<td>1,284</td>
</tr>
<tr>
<td>Quoted Spread</td>
<td>AMS</td>
<td>23</td>
<td>41</td>
<td>36</td>
<td>31</td>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td>Effective Spread</td>
<td>AMS</td>
<td>20</td>
<td>28</td>
<td>32</td>
<td>28</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Spread (bp)</td>
<td>NY</td>
<td>61</td>
<td>120</td>
<td>83</td>
<td>90</td>
<td>44</td>
<td>47</td>
</tr>
<tr>
<td>Volume (1,000 shares)</td>
<td>AMS</td>
<td>53</td>
<td>124</td>
<td>33</td>
<td>81</td>
<td>123</td>
<td>232</td>
</tr>
</tbody>
</table>

32
Table 2: Hourly Variance for Intraday and Overnight Returns

This table contains estimates of the midquote return variance for different intraday time intervals based on July 1, 1997, through June 30, 1998. All stocks are included. Midquote returns for are first demeaned by subtracting the time-proportional average mean over the entire sample and then scaled to correct for inter-stock volatility differences. Standard deviations are in parentheses.

<table>
<thead>
<tr>
<th>Time Intervals, $\tau_i - \tau_{i+1}$</th>
<th>Event Start (EST)</th>
<th>Event End</th>
<th>AMS</th>
<th>NY PreOpen</th>
<th>NY Open</th>
<th>AMS Close</th>
<th>NY Only</th>
<th>Overnight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start (AMS)</td>
<td>4:00</td>
<td>8:00</td>
<td>9:00</td>
<td>10:00</td>
<td>11:00</td>
<td>15:30</td>
<td></td>
<td>4:00</td>
</tr>
<tr>
<td>End</td>
<td>8:00</td>
<td>9:00</td>
<td>10:00</td>
<td>11:00</td>
<td>15:30</td>
<td>4:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\sigma^2_{\tau_i}$

(*10,000) (0.01) (0.05) (0.05) (0.05) (0.01) (0.00)

Table 3: Intraday Return Autocorrelations

This table presents the raw return autocorrelations up to the second lag of intraday and overnight midquote returns. The midquote in the overlapping interval was arbitrarily fixed at the average of the Amsterdam and New York midquote. The autocorrelations are calculated for the full sample period, from July 1, 1997, through June 30, 1998, and averaged across all stocks. We explicitly account for commonality in returns when determining confidence intervals.

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>Event</th>
<th>Lag 1</th>
<th>Lag 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00-8:00</td>
<td>AMS Only</td>
<td>-0.077</td>
<td></td>
</tr>
<tr>
<td>8:00-9:00</td>
<td>NY PreOpen</td>
<td>0.056</td>
<td>-0.020</td>
</tr>
<tr>
<td>9:00-10:00</td>
<td>NY Open</td>
<td>-0.125*</td>
<td>-0.005</td>
</tr>
<tr>
<td>10:00-11:00</td>
<td>AMS Close</td>
<td>0.251*</td>
<td>-0.170*</td>
</tr>
<tr>
<td>11:00-15:30</td>
<td>NY Only</td>
<td>-0.050</td>
<td>0.039</td>
</tr>
<tr>
<td>15:30-4:00(+1)</td>
<td>Overnight</td>
<td>-0.165*</td>
<td>-0.022</td>
</tr>
</tbody>
</table>

*: Significant at a 95% confidence level.
Table 4: State Space Model Estimation Results

This table contains maximum likelihood estimates of the state space model based on intraday midquotes for the period from July 1, 1997, through June 30, 1998. All stocks are included. The model definition is

\[\alpha_{t,\tau+1} = \alpha_{t,\tau} + \beta f_{t,\tau} + \eta_{t,\tau}, \quad \eta_{t,\tau} \sim N(\mu_{\tau}(\sigma^2_{\tau})^2 \cdot \text{diag}(c_1, \ldots, c_7)), \]

\[f_{t,\tau} = \xi_{t,\tau}, \quad \xi_{t,\tau} \sim N(0, (\sigma^2_{\xi_{\tau}})^2), \]

\[\eta_{t,\tau}^k = \alpha_{t,\tau}^k + \theta_{\tau-1}^k f_{t,\tau-1} + \theta_{\tau-1}^{\eta_{\tau-1}} + \xi_{t,\tau}^k, \quad \xi_{t,\tau}^k \sim N(0, (\sigma^2_{\xi_{\tau}})^2 \cdot I), \]

where underlined variables are vectors in \(\mathbb{R}^7 \), \(p_k_{t,\tau} \) is a vector containing the midquotes for all stocks on exchange \(k \) at day \(t \) and timepoint \(\tau \), \(\alpha_{t,\tau} \) is the unobserved efficient price, \(f_{t,\tau} \) is the unobserved common factor, and \(\theta_{\tau} \) represent the potential under- or overreactions (\(\theta < 0 \), \(\theta > 0 \), respectively) of midquotes to innovations. \((\sigma^2_{EPI_{\tau}})^2 \) is the total variance of the efficient price innovation and thus is the sum of \((\sigma^2_{\xi_{\tau}})^2 \) and \((\sigma^2_{\eta_{\tau}})^2 \), \(\beta \) is the common factor loading, \(C \) controls for volatility differences across stocks, and \(\mu_{\tau} \) is the time-proportional average return over the sample period. Standard deviations are in parentheses.

Panel A: Variance Efficient Price Innovation (*10,000, Hourly)

<table>
<thead>
<tr>
<th>Event</th>
<th>Start</th>
<th>NY</th>
<th>NY</th>
<th>AMS</th>
<th>NY</th>
<th>Over-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start (EST)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>night</td>
</tr>
<tr>
<td>Start</td>
<td>4:00</td>
<td>8:00</td>
<td>9:00</td>
<td>10:00</td>
<td>11:00</td>
<td>15:30</td>
</tr>
<tr>
<td>End</td>
<td>8:00</td>
<td>9:00</td>
<td>10:00</td>
<td>11:00</td>
<td>15:30</td>
<td>4:00</td>
</tr>
<tr>
<td>((\sigma^2_{EPI_{\tau}})^2)</td>
<td>0.35</td>
<td>0.33</td>
<td>0.43</td>
<td>0.38</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>((\sigma^2_{\xi_{\tau}})^2)</td>
<td>0.13</td>
<td>0.18</td>
<td>0.16</td>
<td>0.15</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(\theta_{\xi_{\tau}})</td>
<td>-0.35</td>
<td>-0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((\sigma^2_{\eta_{\tau}})^2)</td>
<td>0.22</td>
<td>0.15</td>
<td>0.27</td>
<td>0.23</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(\theta_{\eta_{\tau}})</td>
<td>-0.34</td>
<td>-0.30</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Variance Measurement Error (*10,000)

<table>
<thead>
<tr>
<th>Time Points, (\tau_i) (EST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00</td>
</tr>
<tr>
<td>((\sigma^2_{\xi_{\tau_i}})^2)</td>
</tr>
<tr>
<td>((\sigma^2_{\eta_{\tau_i}})^2)</td>
</tr>
</tbody>
</table>

– Continued on next page –
Panel C: Other Parameters

<table>
<thead>
<tr>
<th>Share</th>
<th>AEG</th>
<th>AHO</th>
<th>KLM</th>
<th>KPN</th>
<th>PHG</th>
<th>RD</th>
<th>UN</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.98</td>
<td>1.23</td>
<td>0.87</td>
<td>0.87</td>
<td>1.11</td>
<td>1.00</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>c</td>
<td>0.55</td>
<td>1.21</td>
<td>1.54</td>
<td>0.67</td>
<td>1.83</td>
<td>0.75</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.03)</td>
<td>(0.07)</td>
<td>(0.04)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>β² · c⁻¹</td>
<td>1.75</td>
<td>1.25</td>
<td>0.49</td>
<td>1.12</td>
<td>0.68</td>
<td>1.34</td>
<td>1.68</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td>(0.10)</td>
<td>(0.05)</td>
<td>(0.10)</td>
<td>(0.06)</td>
<td>(0.11)</td>
<td>(0.15)</td>
</tr>
</tbody>
</table>

Table 5: Correlation Common Factor and Market Index

This table contains the correlations between the (smoothed) common factor estimate of the state space model and intraday returns on the AEX index and the S&P500 indices for different intraday time intervals. Standard deviations are in parentheses.

<table>
<thead>
<tr>
<th>Time Intervals, τᵢ − τᵢ₊₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event</td>
</tr>
<tr>
<td>Start AMS</td>
</tr>
<tr>
<td>End 8:00</td>
</tr>
<tr>
<td>ρ(Common Factor, AEX)</td>
</tr>
<tr>
<td>0.57 (0.07)</td>
</tr>
<tr>
<td>ρ(Common Factor, S&P500)</td>
</tr>
<tr>
<td>0.21 (0.07)</td>
</tr>
<tr>
<td>ρ</td>
</tr>
<tr>
<td>0.28 (0.07)</td>
</tr>
</tbody>
</table>

35
Table 6: Robustness Checks

This table contains estimates of the efficient-price-innovation (EPI) variance and other parameters for various models. They represent robustness checks of the main results of Table 4. Panel A repeats the estimates of Table 4. Panel B splits the sample in two sub-periods: (i) July 1, 1997, through December 31, 1997, and (ii), January 1, 1998, through June 30, 1998. Panel C allows for stock-specific measurement error variances. Panel D sets the correlation between the efficient price innovation and the subsequent measurement error equal to 0.175, inspired by microstructure theory and empirical work by George and Hwang (2001). Standard deviations are in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>(σ_EPI)^2</th>
<th>θ_τ^2</th>
<th>θ_τ^2</th>
<th>(σ_ε,A)^2</th>
<th>(σ_ε,NY)^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start</td>
<td>NY Pre-</td>
<td>NY</td>
<td>AMS Only</td>
<td>Over-night</td>
</tr>
<tr>
<td></td>
<td>AMS Open</td>
<td>Close</td>
<td>Only</td>
<td>11:00</td>
<td>15:30 4:00</td>
</tr>
<tr>
<td></td>
<td>4:00 8:00</td>
<td>9:00</td>
<td>10:00</td>
<td>11:00</td>
<td>15:30 4:00</td>
</tr>
<tr>
<td></td>
<td>8:00 9:00</td>
<td>10:00</td>
<td>11:00</td>
<td>15:30 4:00</td>
<td></td>
</tr>
</tbody>
</table>

A: Basic Model

<table>
<thead>
<tr>
<th></th>
<th>(σ_ε)^2</th>
<th>θ_τ^2</th>
<th>θ_τ^2</th>
<th>(σ_ε,A)^2</th>
<th>(σ_ε,NY)^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NY Open</td>
<td>NY Only</td>
<td>NY Open</td>
<td>AMS Only</td>
<td>NY Only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B: Analyze Sub-Periods

<table>
<thead>
<tr>
<th></th>
<th>(σ_ε)^2</th>
<th>θ_τ^2</th>
<th>θ_τ^2</th>
<th>(σ_ε,A)^2</th>
<th>(σ_ε,NY)^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NY Open</td>
<td>NY Only</td>
<td>NY Open</td>
<td>AMS Only</td>
<td>NY Only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C: Stock-Specific (σ_ε)^2

<table>
<thead>
<tr>
<th></th>
<th>(σ_ε)^2</th>
<th>θ_τ^2</th>
<th>θ_τ^2</th>
<th>(σ_ε,A)^2</th>
<th>(σ_ε,NY)^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NY Open</td>
<td>NY Only</td>
<td>NY Open</td>
<td>AMS Only</td>
<td>NY Only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D: ρ(η_t,τ−1, ε^k_t,τ)=0.175

<table>
<thead>
<tr>
<th></th>
<th>(σ_ε)^2</th>
<th>θ_τ^2</th>
<th>θ_τ^2</th>
<th>(σ_ε,A)^2</th>
<th>(σ_ε,NY)^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NY Open</td>
<td>NY Only</td>
<td>NY Open</td>
<td>AMS Only</td>
<td>NY Only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Timeline. This figure illustrates the timeline for trading in Amsterdam and New York using Eastern Standard Time. The economically interesting timepoints modelled in this paper are indicated with arrows. Most are self-explanatory, except for the 8:00 timepoint, which was introduced to pick up the potential effect of U.S. macro-announcements and pre-market-open press releases of rival U.S. firms.
Figure 2: Variance Pattern Raw Returns vs. Variance Pattern State Space Model. The top figure illustrates the estimate of the intraday variance pattern based on raw returns of all stocks taking into account inter-stock volatility differences. It is presented on an hourly basis to enhance comparability. The bottom figure represents the variance pattern based on the returns of the unobserved efficient price as estimated by the state space model. The bars represent point estimates; the dotted lines 95% confidence intervals.
The state space model specification allows for decomposition of the efficient-price returns into two components: a common component due to a common (market-wide or macro) factor driving the returns across all stocks and an idiosyncratic component due to firm-specific returns. Hence, the variance can be decomposed by time of day. The efficient-price variance pattern, as depicted in Figure 2, is therefore the sum of two components: the top figure represents the common factor component, the bottom figure the stock-specific or idiosyncratic component. The bars represent point estimates; the dotted lines 95% confidence intervals.

Figure 3: Variance Decomposition into Common and Idiosyncratic Component.
Figure 4: Midquotes and Efficient Price Estimates for Royal Dutch. This figure illustrates the model estimates by plotting for Royal Dutch the estimate of the efficient price against the observed midquote in Amsterdam and New York. The upper panel shows the full sample from July 1, 1997, through June 30, 1998; the lower panel a random sample of three consecutive days: July 21, 22, and 23, 1997.
Figure 5: Diagnostic Analysis of Filtered Innovations. This figure contains four graphs to illustrate the model’s performance. The top left figure plots the scaled filtered state innovations, i.e. the difference between the predicted state conditional on all observations through \(t - 1 \) and the observation, scaled by the standard deviation estimate based on all observations through \(t - 1 \). It plots all stocks in consecutive order. The top right figure shows the empirical density and the bottom left figure shows the correlogram of these innovations. The bottom right figure shows the correlogram of the squared innovations.