A Service of

[ ) [ J
(] [ )
J ﬂ Leibniz-Informationszentrum
° Wirtschaft
o Leibniz Information Centre
h for Economics

Make Your Publications Visible.

Derks, Jean; van der Laan, Gerard; Vasil'ev, Valeri

Working Paper

On Harsanyi Payoff Vectors and the Weber Set

Tinbergen Institute Discussion Paper, No. 02-105/1

Provided in Cooperation with:

Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Derks, Jean; van der Laan, Gerard; Vasil'ev, Valeri (2002) : On Harsanyi Payoff
Vectors and the Weber Set, Tinbergen Institute Discussion Paper, No. 02-105/1, Tinbergen Institute,

Amsterdam and Rotterdam

This Version is available at:
https://hdl.handle.net/10419/85885

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/85885
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

T12002-105/1
Tinbergen Institute Discussion Paper

On Harsanyi Payoff Vectors and
the Weber Set

Jean Derks’
Gerard van der Laan?
Valeri Vasil’ev3

I Department of Mathematics, Universiteit Maastricht,

2 Department of Econometrics, Faculty of Economics and Business Administration, Vrije Universiteit
Amsterdam, and Tinbergen Institute,

3 Sobolev Institute of Mathematics, Novosibirsk, Russia.



Tinbergen Institute

The Tinbergen Institute is the institute for economic research of the
Erasmus Universiteit Rotterdam, Universiteit van Amsterdam and
Vrije Universiteit Amsterdam.

Tinbergen Institute Amsterdam
Keizersgracht 482

1017 EG Amsterdam

The Netherlands

Tel.: +31.(0)20.5513500

Fax: +31.(0)20.5513555

Tinbergen Institute Rotterdam
Burg. Oudlaan 50

3062 PA Rotterdam

The Netherlands

Tel.: +31.(0)10.4088900

Fax: +31.(0)10.4089031

Most Tl discussion papers can be downloaded at
http://www.tinbergen.nl




On Harsanyi payoff vectors and the Weber set ! 2

Jean Derks® Gerard van der Laan* Valeri Vasil’ev®

October 4, 2002

I This research is part of the Free University research program “Competition and Cooperation”.
This work was partly done while Valeri Vasil’ev was visiting the Department of Econometrics at
Free University, Amsterdam. Financial support from the Netherlands Organisation for Scientific
Research (NWO) in the framework of the Russian-Dutch programme for scientific cooperation, is
gratefully acknowledged. The third author would like to appreciate also partial financial support
from the Russian Fund of Basic Research (grants 98-01-00664 and 00-15-98884) and Russian
Humanitarian Scientific Fund (grant 02-02-00189a).

2This paper concerns a fully revised version of Vasil’ev and van der Laan (2002).

3J. Derks, Department of Mathematics, Universiteit Maastricht, P.O. Box 616, 6200 MD
Maastricht, The Netherlands, email: jean.derks@math.unimaas.nl

4G. van der Laan, Department of Econometrics and Tinbergen Institute, Vrije Universiteit,
De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands, email: glaan@econ.vu.nl

SV.A. Vasil’ev, Sobolev Institute of Mathematics, Prosp. Koptyuga 4, 630090 Novosibirsk,

Russia, email: vasilev@math.nsc.ru



Abstract

The paper discusses the set of Harsanyi payoff vectors, also known as the Selectope. First,
we reconsider some results on Harsanyi payoff vectors, published by Vasil’ev in the late
1970’s, within a more general framework. In particular, these results state already that the
set of Harsanyi payoff vectors is given by the core of an associated convex game, a result
that recently has been proven by Derks et. al. (2000).

The marginal contribution vectors are examples of Harsanyi payoff vectors so that the
Weber set, being the convex hull of the marginal contribution vectors, is a subset of the
Harsanyi set, which denotes the set of Harsanyi payoff vectors. We provide two character-

izations of those Harsanyi payoff vectors that are elements of the Weber set.
Key words: TU-games, Core, Harsanyi set, Weber set, Selectope.
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1 Introduction

A cooperative game with transferable utilities, or simply a game, describes a situation in
which players can obtain certain payoffs by cooperation. A solution is a mapping which
assigns to every game a set of payoff distributions over the players in the game. Well-known
set-valued solutions are the Core and the Weber set, the set of all random order values. In
this paper these sets are considered in the context of the set of payoff vectors obtained by
all possible distributions of the Harsanyi dividends, see Harsanyi (1959) and (1963), of all
coalitions amongst its members. For this reason, and in honor of Harsanyi, we call this set
the Harsanyi set. In the seventies this set has been discussed independently by Vasil'ev
(1978a, 1978b, and 1980), and by Hammer, Peled and Sorensen (1977) as the Selectope,
being the convex hull of the so-called selector values. Vasil’ev’s papers are in Russian but a
discussion, in English, of most of his results in this context can be found in Vasil’ev (1981).

These papers show that the Harsanyi set encloses the core of the game, and Vasil’ev
furthermore proved that this set has a core-type structure, a result that recently has been
shown independently in Derks, Haller and Peters (2000). In Hammer et al. (1977) the
inclusion of the core is shown with the help of a network flow model, whereas Vasil’ev
(1978a) applies induction techniques. Here, we will copy the approach in Vasil’ev (1980)
and Derks et al. (2000), which is based on a convenient adaptation of the game into a
convex game. In this way, and with the help of the characterization of the extreme points
of the core of convex games in Shapley (1971), not only the inclusion of the core in the
Harsanyi set is proved but also its core-type structure is revealed. The question of which
of the games have a Harsanyi set that coincide with the core, is solved independently both
in Hammer et al. (1977) and Vasil’ev (1978b), as being the almost positive games. A
characterization of the games where the Harsanyi set coincide with Weber set, is given in
Derks et al. (2000).

From a historical viewpoint we recall several results already discussed in the papers of
Vasil’ev. Some of these results are stated here in a more general framework. They concern
the so-called Harsanyi imputations, being the individually rational payoff vectors in the
Harsanyi set. We show that if these payoff vectors exist then they form an externally
stable, core-typed structured, set.

The marginal contribution vectors are examples of Harsanyi payoff vectors so that the
Weber set, being the convex hull of the marginal contribution vectors, is a subset of the
Harsanyi set. We will provide two characterizations of the Harsanyi payoff vectors that
give rise to elements of the Weber set. In these characterizations a combinatorial result,
stated in Vasil’ev (2002), plays a central role. One of the characterizations solves a question

concerning monotonicity of weight systems, raised in Derks et al. (2000).



2 Preliminaries

A cooperative game with transferable utilities, or simply a game, is a pair (N, v), where
N = {1,...,n} is a finite set of players, and v:2Y — TR such that v()) = 0, is the
characteristic function yielding for each subset S of N the payoff v(S) that can be achieved
if the players in S cooperate. Non-empty subsets of the player set are, therefore, called
coalitions. For simplicity we denote v({i}) by v(i), i € N, and we denote the collection of
all non-empty subsets of N by Q ={S C N | S # 0}. A payoff vector is a vector x € R"
assigning payoff z; € R to player ¢ € N. For a payoff vector x € R" and S € (), we denote
with z(S) = Y,cq x; the total payoff to the players in coalition S.

In a game (NN, v), or v for short, the main issue is the distribution of the worth v(/N) of
the grand coalition among the players. A payoff vector = is therefore said to be efficient
if the total payoff x(N) equals v(N); it is said to be individually rational if each player
i € N gets at least its own worth v(7). A payoff vector is called an imputation if it is both

efficient and individual rational; the set of imputations of the game v is denoted by I(v):
Iw)={zeR" | z(N)=uv(N), x;>v(i), i€ N}.

One may consider the elements of the imputation set as those distributions of the grand
coalition worth that 'meet the needs’ of the single players. An efficient payoff vector x that
satisfies x(S) > v(S) for each (multi-person) coalition S € €, is called stable for obvious
reasons. The set of stable payoff vectors is called the core of the game v and is denoted by

C(v):
Cv)={zeR" | z(N)=v(N), z(S)>v(S), Se}.

Unfortunately, the core, and also the imputation set, may be empty.

Let II(N) (or IT) denote the set of all permutations 7: N — N on the player set N. For
a permutation 7w € II, assigning rank number 7 (i) € N = {1,2,...,n} to player i € N,
define the set 7 to be {j € N|n(j) < 7(i)}; it denotes the set of all players with rank
number at most equal to the rank number of 7, including ¢ itself. Then the marginal

contribution vector m™(v) € R" of game v and permutation 7 is given by
mi(v) = v(@) — o'\ {i}), i€ N,

and thus assigns to player 7 its marginal contribution to the worth of the coalition consisting
of all his predecessors in 7.

The well known Shapley value, introduced by Shapley (1953), has been characterized
as being the average of the marginal contribution vectors over all permutations. It is an
element of the convex hull of the marginal contribution vectors of v, denoted by W (v),

and is called the Weber set. Contrary to the core, the Weber set is always non-empty. It
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contains the core as a subset, as shown by Weber (1988); it may, however, have no points
in common with the imputation set (see Martinez and Rafels, 1998); of course this only
occurs in case the core is empty.

The core and the Weber set coincide if and only if the game v fulfills the inequalities
v(SUT)+v(SNT) > v(S)+v(T) for every pair of coalitions S, T € Q (Shapley, 1971
and Ichiishi, 1981). A game is called convex when these inequalities are fulfilled. Examples
of convex games are the so called unanimity games u®, S € €, defined by v®(T) = 1 if
T 2 S, and u®(T) = 0 otherwise.

The dividends A®(v), S € €, of the game v, as defined by Harsanyi (1959, 1963), follow

recursively from the system of equations

v(S) = Y AT(v), Seq.

{TeQ|TcS}
It follows that v = Y gcq A%(v)u®, i.e., each game v can be written as a linear combination
of the unanimity games. The unanimity games are linearly independent, so that they form
a basis for the vector space of characteristic functions; see e.g. Shapley (1953), Rosenmiiller
(1981), Owen (1982). The in linear spaces more standard basis of unit vectors is formed
by the so-called unity games 15, S € Q, defined by 1%(T') = 1if T'= S and 15(T) = 0 for
every coalition T" # S.

3 The Harsanyi set

In this section we consider the set of all payoff vectors obtained by distributing the dividend
of each coalition S over the players in S. To facilitate this distribution we make use of
the weight systems p = (p¥)scq.ics, assigning for each S € Q a weight p{ to every player
1 € S. A weight system p is called a sharing system if all weights are non-negative, and
the weights p?, i € S, sum up to 1 for each coalition S € Q, i.e., the collection of sharing
systems is given by

P ={p=(p})seqics | p >0, pr =1, for each S € Q}.

j€s

For a game v and sharing system p € P, let the payoff vector ¢?(v) € R"™ be given by

gw)= > piA%), €N,

{5eQieS}

i.e., the payoff ¢f(v) to player i € N is the sum over all coalitions S € €, containing 4,
of the share p; of player i in the Harsanyi dividend A®(v) of coalition S. We therefore

call the payoff vector ¢*(v) a Harsanyi payoff vector. Observe that, due to the equality
v(N) = YgeqA®(v), for each sharing system p it holds that > ;cn ¢ (v) = v(IN), and
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thus each Harsanyi payoff vector is efficient. Examples of Harsanyi payoff vectors are the
marginal contribution vectors. To show this, for a permutation = € II, let the weight
system p”™ be given by

i =

S 1 ifie Sand SCrl,
b 0 otherwise,

i.e., for i € S, (p™)7 has value 1 for the unique player i of S having the highest rank
number in 7 and has value 0 for all other players in S. So, for each S € €2 it holds that
>je S(p”);S = 1. Therefore p™ is a sharing system and thus ¢*" (v) a Harsanyi payoff vector.
Further,

o) = Y A% = Y A - Y A%)
{SCrilieS} SCr SCri\{i}
= o) o\ i) = mi@), i€N,

showing that m™(v) = ¢*" (v). Let H(v) denote the set of all Harsanyi payoff vectors of

the game v, i.e.,

H(v) ={¢"(v) | p € P}.

This set has been introduced as the so-called selectope in Hammer et al. (1977). Indepen-
dently, Harsanyi payoff vectors and the set H(v) have been proposed by Vasil’ev (1978a,
1978b, and 1980). Here, we prefer to call the set H(v) the Harsanyi set instead of selec-
tope, because we want to stress the property of distributing the Harsanyi dividends instead
of the role of the selectors as recently discussed in Derks et al. (2000).

In the remaining of this section we will recall some results on the Harsanyi set and
reposition them in the historical context. These results concern the relationship between
the core and the Harsanyi set, and the geometrical structure of the Harsanyi set. In
particular, we show that the Harsanyi set encloses the core, and has a core-type structure.

To show this, for a game v we consider the corresponding game vy, defined by

ve(S) = v(S)+ > AT (v)
{TeQITNS#£D, T\S#£0, AT (v)<0}

= > AT (v) + > AT(v), SCN.
{TeQTNS#0, AT (v)<0} {TeQTCS, AT (v)>0}
The first expression says that vy (.S) is equal to the worth v(.S) and the sum of all negative
dividends of coalitions T" containing at least one player in S and at least one player outside
S. From this it follows immediately that the game v majorizes the game vy, i.e., v(S) >
vg(S) for all S € Q, and v(N) = vg(N). The second expression shows that vy (.S) is the

sum of all positive dividends of coalitions T containing only players in S and all negative



dividends of coalitions 7" having at least one player in common with S. Since a Harsanyi
payoft vector distributes the dividends of a coalition 7" among the players in 7', it follows
immediately from the second expression that in a Harsanyi payoff vector the payoff to the
players in S is minimized when distributing all the negative payoffs of the coalitions T’
having at least one player in common with S among the players in S N 7T, i.e., for each
S € Q it holds that z(S) > vy (S) for all z € H(v). We therefore call vy the Harsanyi
mingame. The Harsanyi payoff vectors are core allocations of the Harsanyi mingame. More

precisely, we have the next theorem.

Theorem 3.1 (Vasil’ev 1980, Derks et al. 2000).

For each game v, the Harsanyi mingame vy is convez, and H(v) = C(vy).

Proof.

First, we observe that a game v with the property that for each two coalitions S,T € (Q,
S C T, there exists a core allocation = of v with z(S) = v(S) and x(T) = v(T), has
to be convex: for any S,7 € Q and core allocation z with z(SN7T) = v(SNT) and
z(SUT)=v(SUT) we have

v(SNT)+v(SUT)=2(SNT)+2(SUT) =xz(S) +z(T) > v(S) +v(T).

We apply this to the Harsanyi mingame: with little effort one shows that for each two
coalitions S,T € €2, S C T, there is a Harsanyi payoff vector z in the game v such that
z(S) = vy (S) and z(T) = vg(T). We mentioned already that the Harsanyi payoff vectors
are core allocations of vy, so that with our first observation we conclude that vy has to be
convex.

Left to prove is the inclusion C(vg) € H(v). Consider the Harsanyi payoff vectors x™,

with 7 any permutation of N, defined by

r] = > A5 (v) + > AS(v), i€N,
{S|ieS,SCni,AS(v)>0} {S|i€S,SCn—%,AS(v)<0}
with 7! the already defined set of predecessors of i in m, and 7% = {j | 7(j) > n(i)}
the set of successors of i. It is straightforward that x™ is a Harsanyi payoff vector, for
which z™(7') = vg(7') holds for all i € N. Observe that these equalities also hold for
the marginal contribution vector m™(vg): Yicni mF(v) = vy ('), i € N. From this it
follows that ™ = m™(v), and we conclude that the marginal contribution vectors of vy are
elements of H(v). Since the core of a game is contained in the Weber set, the convex hull

of the marginal contribution vectors of the game, we finally conclude that C(vy) C H(v). O

The theorem shows that the Harsanyi set H(v) of a game v has a core-typed structure,

and can be found as the core C'(vy) of the corresponding Harsanyi mingame vy. Moreover,
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since vy is convex, it follows that the Harsanyi set is equal to the Weber set W (vy) of
vg and thus equal to the convex hull of the marginal contribution vectors of vg. In the
proof we saw that such a vector, with respect to a permutation 7, assign to each player ¢
all positive dividends A®(v) of coalitions S where i is the last member, and all negative
dividends of coalitions where player i is the first member with respect to the ranking .
For a discussion on this kind of greedy allocations we refer to Derks et al. 2000).

Since the game v majorizes its Harsanyi mingame, and therefore the core of v must be

a subset of the core of vy, we have the following corollary.

Corollary 3.2 (Hammer et al. 1977, Vasil’ev 1978a).
For each game v we have C(v) C H(v).

Finally, let v be called almost positive if the dividends of the multi-person coalitions

are non-negative. Then we have the following theorem.

Theorem 3.3 (Hammer et al. 1977, Vasil'ev 1978b).

The Harsanyi set and the core of a game v coincide if and only if v is almost positive.

Proof.
Let C(vg) = C(v), and choose, for arbitrary coalition S, a payoff vector z € C(vy) such
that z(S) = vy (S). Since z € C(v) we must have vy (S) = z(S) > v(S) > vy (S), so that
we conclude that vy = v. With the definition of vy in mind it follows that v has to be
almost positive.

On the other hand, if v is almost positive, then vy = v, and thus also C'(vy) = C(v).
O

4 The Intersection of the Harsanyi set and the Impu-

tation set

It is very desirable that a payoff vector is efficient and, if possible, also individual rational
and thus belongs to the Imputation set /(v). In Martinez and Rafels (1998) it is shown
that the intersection of the Weber set and the Imputation set can be empty. This may
also be the case for the intersection of the Harsanyi set and the Imputation set. On the
other hand, in Derks et al. (2000) it was shown that the inclusion of the Harsanyi set in
the Imputation set is equivalent to the coincidence of the Harsanyi set and the core, and
thus occurs if and only if the game is almost positive.

In this section we show that whenever the intersection is non-empty, it is equal to the

core of a well-defined convex game. Further, we show that the intersection, if not empty,
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is externally stable. These results have first been proved in Vasilev (1980, 1988), and are

reconsidered here within a more general framework.

4.1 Existence of Harsanyi imputations

Let H'(v) denote the intersection of the Harsanyi set and the Imputation set, i.e.,
H@w)={z e Hw)| x; >v(i), i € N} ={z € C(vyg)| x; > v(i), i € N}.

We call its elements Harsanyi imputations.
Let w be a game on player set N, and z € RY an arbitrarily chosen vector. We denote

the portion of the core of w that lies above z by C*(w), i.e.,
C*(w) = {zx € C(w)| = > z}.

Clearly, we have H'(v) = C(vyg) N I(v) = C*(w), with w = vy and z; = v(7), i € N. We
show that C%(w) is either empty, or is equal to the core of the game w* defined by

w?(S) = max {w(T)+=2(S\T)}, SCN.

Intuitively, the game w? is observed in case the players are offered to choose between
cooperation in the game w or to be paid according to the (not necessarily efficient) payoff

vector z.

Theorem 4.1
Let w be a game on player set N and z € RY. If there is a coalition T with w(N) <
w(T)+ 2(N\T), then C*(w) = 0; otherwise, C*(w) = C(w?).

Proof.
First, consider the case that there exists a coalition 7' C N such that w(N) < w(T) +
2(N'\ T). Then for each vector y € R" satisfying y > z and y(7') > w(T) it holds that
y(N)=y(T)+y(N\T) >w(T)+2(N\T) > w(N), so that C*(w) is empty.
Second, let w(N) > w(T) + z(N \ T) for all T'C N. Then it follows that

w*(N) = max {w(T)+2(N\T)} =w(N).
Now, suppose that y € C*(w). Then we have, for S C N,

y(S) =y(T)+y(S\T)>w(T)+ 2(S\T), foral T CS,

and thus y(S) > w?(S). This shows that y € C(w?). On the other hand, for each y € C(w?)

we have
y(S) > w*(S) > max {w(S), z(S)}, S C N.
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Together with y(N) = w*(N) = w(N) this proves that y € C(w) and y > z, i.e., y € C*(w).
Hence C*(w) = C(w?). O

The proof shows that the equality w(/N) = w?*(IN) implies C*(w) = C(w?). It should
be noticed that w(N) = w*(N) does not imply that C*(w) is non-empty. For example,
let w be a monotonic game with an empty core (for instance, w(S) = 1 for all non-
empty coalitions S), and z = 0. Then w®* = w, implying w(N) = w?*(N). However,
C*(w) = C(w?) = C(w) = 0.

It is interesting to examine which of the properties of w are invariant under the trans-
formation into w*. In particular, the convexity property is of interest in our context, since
we want to apply the previous theorem on the Harsanyi mingame vy, which is convex.
So, suppose w is a convex game, z € IR"™ an arbitrarily chosen vector and let S, T be
two arbitrary non-empty coalitions. Then there exist coalitions U C S and V C T such
that w*(S) = w(U) + 2(S\ U) and w*(T) = w(V) + z(T \ V). Substracting the equality
2(U)+2(V)=2(UUV)+ 2(UNV) from the equality z(S) + 2(T) = 2(SUT) + 2(SNT)

gives
2(8) = 2(U) 4+ 2(T) — 2(V)=2(SUT) —2(UUV)+ 2(SNT) — 2(UNV).
Taking into account that U C S and V' C T this equality reduces to
2(S\U) 4+ 2(T\V)=2(SUT)\(UUV))+2((SNnT)\ (UnNnV)).
Therefore,
w(S)+w*(T) = wU)+2z2(S\U)+w(V)+2(T\V)
= wUUV)+wUnV)+2((SUT)\(UUV)+2((SNT)\ (UNV))
< w(SUT)+w*(SNT),

and so, also w? is convex.
Now, consider the convex Harsanyi mingame vy and take z € R" with z; = v(i), i € N.
Then (vg)? is convex and thus C((vg)?) is not empty. Applying Theorem 4.1 with w = vy

and z; = v(i), i € N, we obtain the following result.

Corollary 4.2 (Vasil’ev 1980).
The set H'(v) of Harsanyi imputations of a game v is empty if and only if there is a
coalition T with v(N) < vg(T) + YXigr v(i). If non-empty, then H'(v) is equal to the core

of the convexr game (vg)*, with z; = v(i), i € N.

In Rafels and Tijs (1997) it is shown that the Weber set of a game v has a nonempty

intersection with the set of imputations when v fulfills the very mild condition v(N) >
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v(T) + X igr v(i) for all coalitions 7" C N. For instance, this sufficient condition obviously
holds for the large class of 0-monotonic games (v is called 0-monotonic if v(S) > v(T') +
Yies\r v(i) for all T C S, S € N). Since vg(T) < v(T) for all T C Q, the corollary
shows that the set of Harsanyi imputations is not empty if and only if v fulfills the weaker
condition that v(N) > vy (T) + X,er v(i) for all coalitions T C N.

4.2 External Stability

In Rafels and Tijs (1997) it is also shown that the intersection of the Weber set and the
imputation set is externally stable (in the sense of Von Neumann-Morgenstern (1944))
under the condition v(N) > v(T) + X;¢r v(i) for all coalitions 7' C N. In this subsection
we investigate the external stability of the set H'(v) of Harsanyi imputations, when not
empty.

For an imputation x € I(v), we say that y € I(v) dominates x when there exists a
coalition S such that y; > x; for alli € S and Y ;cqy; < v(S). Aset Y C I(v) is externally
stable if for each = € I(v) \ Y there exists y € Y such that y dominates z.

We first prove a more general external stability result in which the notion of a large
core plays a central role. We say that a game v has a large core if for each vector z € R"
majorizing v in the sense that v(S) < x(S) for all coalitions S € €2, there is an imputation

y € C(v) such that y < z. Convex games are known to have a large core.

Theorem 4.3
For each game v and conver game v' with v < v, the intersection C(v') N I(v) is either

empty or an externally stable (w.r.t. v) subset of I1(v).

Proof.
If C(v') N I(v) is empty, the theorem is true. Obviously, the theorem is also true when
I(v)\ C(v') =0, So, it remains to consider the case C(v') N I(v) # @ and I(v) \ C(v'") # 0.

According to Theorem 4.1 we have
Iv)NCH) =C@")
where v" = (v')?, with z; = v(i), i € N, i.e.,

o"(8) = max {(T)+ >, v(@)}, SCN.
1€S\T
Take an element y of I(v) \ C(v'). To prove the theorem, we construct an imputation 3’ of
vin I(v) N C(v') that dominates y.
Since y ¢ C(v'), there is at least one coalition S with y(S) < ¢/(S) and thus also

~

y(S) < v"(8S), since v’ < v”. Choose a coalition S such that y(S) < v"(S) and y(T) > v"(T)
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for each subcoalition 7 of S. Now, increase all coefficients y;, i € S , by the same amount
15|72 (v"(S) — y(5)), and all other coefficients by a sufficiently large amount such that the
thus obtained allocation, say z, majorizes v”, i.e., v"(T) < z(T) for all T € Q. Since v"
is convex because v’ is convex, v” has a large core. This implies the existence of a vector
y' € C(v") such that 3/ < x. Since

V'(8) < 9/(S) < (8) =D (wi + 1571 (0"(S) — y(S))) = "(5),
i€S
it follows that v”(S) = /(S) = 2(S). With y/ < & we conclude that ¢} = z; for all i € S,
and thus y; = x; > y; for all ¢ € S.

Finally, we have to show that /(S) < v(S). From i € C(v ”) we gain y' € C(v')N1(v).
Further, v”(S) = /(T + Xic\7 v v(i) for some T'C S. When T = S, then v(S) = i/(g)
Suppose T # S. It follows from y(T) > v"(T) for each proper subcoalition T" of S and
y; > v(i) for all 4, that v"(S) < y(T) + ZleS\T yi = y(S) < v'(S) < v”gg); we zirrive at a
contradiction. Hence T' = S and thus v”(5) = v/(S) < v(S), so that /(S) = v”"(5) < v(S).
Since y, > y; for all i € S it follows that v/ dominates y, proving that C (V)N I(v) is an
externally stable subset of I(v). 0

To apply this theorem to the set of Harsanyi imputations, recall that H'(v) = C(vg) N

I(v), the Harsanyi mingame vy is convex, and vy < v. This gives us the following result:

Corollary 4.4 (Vasil’ev 1988).

The set of Harsanyi imputations of a game is either empty or externally stable.

Together with Corollary 4.2 it follows that the set of Harsanyi imputations is externally
stable if and only if v(INV) > vy (T) + Xzr v(i) for all coalitions T' C N.

Observe further that, by Corollary 4.4, the Harsanyi imputation set should contain all
the non-dominated imputations. These imputations constitute the well-known Domination
core. The core is always contained in the Domination core, but not vice versa in general; it
may happen that the core is empty whereas the Domination core is non-empty. Therefore,

Corollary 4.4 is a refinement of Corollary 3.2.

5 Characterizing the Weber set by Harsanyi payoff

vectors

In this section we consider the relation between the set H(v) of Harsanyi payoff vectors
and the Weber set W (v). In Derks et al. (2000) the games are characterized for which

these two sets coincide. For this, a combinatorial approach was needed that is elaborated
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in Derks and Peters (2002). In this section we will focus on the characterization of those
sharing systems for which the corresponding Harsanyi payoff vector is an element of the
Weber set.

An element of W(v) is a weighted combination of the marginal contribution vectors,
and as such it assigns to each player a weighted combination of his marginal contributions
to the coalitions. In order to capture this kind of payoff vector consider a weight system
q = (¢7)seca.ics with arbitrarily (possibly negative) values ¢ for S C Q and i € S, and

define the following payoff vector in an arbitrary game v:

W)= S ¢@w(S)—v(S\{i})), ie€N.

{5eQieS}

Efficiency of a payoff vector 1{(v) is equivalent to
¢"(N)=1and ¢°(S) = ¥jus qfuj for each S € Q, S # N, (1)

where ¢°(T) denotes, as usual, the summation ;e ¢°, with ST € Q, T C S. For a
proof we refer to Weber (1988). The extreme elements of the polytope Q* consisting of
the non-negative weight systems that fulfill (1),

Q" = {q=(¢%)seaies | 4> 0, ¢N(N) =1, ¢°(S) =3 ¢;"V, S e\ {N}},
jgs

are described first in Vasil’ev (2002, in Russian) (see also Vasil’ev and van der Laan (2002)

for a similar approach, in English). These are of the following form, with 7 running through

all permutations of IV,

() = { b 5=, 2)

0 otherwise.

This combinatorial result appears to be of crucial importance in the remaining of the paper.

Theorem 5.1 (Vasil’ev 2002).
The extreme points of the polytope Q* are the elements q™, © € II.

Proof. We sketch the outline of the proof as provided in Derks (2002), to which we refer
for further details. The elements ¢™, = € II are contained in Q* and have the property that

for each g € Q* there is 7w € II and scalar € > 0 such that ¢ > eq™.

Further, the set Q* is of the form F(A,b) = {z € RY | Av = b}, with b € R™ and A an
(m x k)-matrix. With little effort it can be shown that for any (finite) subset F' of F'(A,b)
satisfying

for each x € F(A,b) there is y € F and scalar ¢ > 0 such that x > ey

11



it holds that F' contains all extreme elements of F'(A,b). From this we conclude that the
extreme points of * are among the elements ¢", m € II. By symmetry reasoning all these

elements are extreme. O

The payoff vectors 17" (v) corresponding to the permutations 7 € II are the marginal
contribution vectors of the game v:
)= 3 (@)FS) —u(S\{i}) = (v(r) = v(x' \ {i})) = m (v).
{5eQieS}

This gives the next theorem.

Theorem 5.2
For each game v the Weber set W (v) is given by

W(v) ={¢(v) [ ¢ € Q"}. (3)
Proof.

One easily shows that for each two ¢,q € Q* and scalar 0 < A < 1 we have
PON() = M () + (1= N (v),

so that with the help of Theorem 5.1 we may conclude that {1)?(v) | ¢ € @Q*} is a convex
set, spanned by the elements 1?(v), with g extreme in Q*, i.e., {%(v) | ¢ € Q*} is the con-
vex hull of the elements ¥7 (v), 7 € II, and these payoff vectors are equal to the marginal

contribution vectors, so that (3) holds. O

To examine the relation between Harsanyi payoff vectors ¢f (v) = Y (scqpesy 1§ A% (v),
with p € P, and the payoff vectors 1?(v) in the Weber set, we first show that for any
weight system p = (pf)secaics (p is not restricted to be a sharing system from P) there

exists a weight system ¢ = (¢7)seq.ics, and reversely, such that
¢ (v) =(v), for all games v.

To show this we use the so called Moebius transformation, which describes a unity game

as a weighted sum of the unanimity games: 1% =37 scry (—D)IT=I81y T S € Q.

Theorem 5.3
Let p and q be two weighting systems. Then the following assertions are equivalent:
1). &P (v) = i(v) for all games v; (4)
2). @ =Y (=D)T=ISIpT " for each S € Q and i € S; (5)
{T]scT}
3). pi= > q, foreachSeQandic€S. (6)
{T|scT}
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Proof.

1) implies 2): By applying ¢* and 7 to the unanimity games, respectively unity games,
one simply derives that for each S € Q and i € S we have ¢ (u¥) = pf and ?(1%) = ¢7.
Since ¢P(v) = ¥9(v) for all v it follows that

¢ = yi(1°)
_ ng( ¥ <—1)'TS'uT)

{rlscr
= Y ()Tl
{T|scr}
= > ()T
{T|scr}
= Y (—1)TsyT
{r|sCT}

2) implies 3): Notice that for given set U C N it holds that > (pircpy (—1)1Y71 equals 1
if U is the empty set and 0 for all other U. Then, for S € Q and i € S, it follows from
assertion 2) that
T Ul-ITI,p
Z & = Z Z | =l \
(T|SCT} {(T|SCT} {U|TCU}

= > X (T
{iscuy (riscTeu)

e

{U|scu} {T|TCU\S}
= 1.
3) implies 1): The unanimity games form a basis of the game space. So, it is sufficient to
show that the linear solutions ¢” and 1 coincide on the set of unanimity games. Therefore,
consider an arbitrary unanimity game u°. Since AT(u%) = 1if T = S and AT (u%) = 0
otherwise, it follows that ¢(u®) = 0 if i is not in S. Also, a player i outside S is a null
player in v¥ and thus ¥{(u”) = 0. Hence ¢! (us) = ¢(u®) = 0 if i ¢ S. Further, for i € S,
we have ¢‘f(u5) = p%g- and 1/)?(“5) = Z{TEQMGT} %T(US(T) - US(T \ {@})) = Z{T|S§T} %T-
Now it follows from 3) that ¢?(u®) = 1%(u”). 0

Strongly related results can also be found in Vasil’ev (1988) and Dragan (1994). For
example, in the latter paper it is showed that for each linear solution ¢ the weight systems
p and ¢, defined by ¢° = ¢(1°) and p° = ¢(u®) for all S € Q, fulfill the equations (5) and

(6).
Theorem 5.3 simply states that any solution given by a weighted sum of dividends can

be transformed to a solution given by a weighted sum of marginal contributions and vice
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versa. The equations (5) and (6) are the transformation rules between the weight systems
p and q. These results will be used in the next theorem for characterizing the Weber set
of a game v as a subset of the Harsanyi set. To do so, we define the subset P* of the set

P of sharing systems by
Pr={pepP| > (-)"pI>0, 5€0, iecs}
{T|SCT}

We now have the following lemma.

Lemma 5.4
Let p and q be two weight systems such that for all S € Q and i € S it holds that p; =
Sriscry 6 - Then q € Q* if and only if p € P*.

Proof.

Suppose g € Q*. We prove that p € P*. First, from ¢ > 0 it follows immediately that p > 0.
Second, from expression (3) we know that ¢?(v) € W(v) and thus > ;cn ¢f(v) = v(N).
Applying this to the unanimity game v = v® we obtain that

1= Y gl =>viw®) =3 > ¢ (W*(T)—u®(T\ {i})

ieEN €S i€S {T|SCT}
= > > 4= > d©)
i€S {T|SCT} {T|SCT}

Hence, for all S € € it follows that

Yo=Y Y 4 =1,

ies 1€S {T|SCT}

and thus p € P. Finally, from Theorem 5.3 we have that >~ scry (—D)IT=ISIpE = ¢35 > 0,
for all S € 2 and i € S and thus p € P*.

Next, suppose that p € P*. We prove that ¢ € Q*. First, from p € P* it follows with
the second assertion of Theorem 5.3 that ¢ = Y rjscry (—1)77SIpl > 0 for all 5 € Q

and ¢ € S. Second, since p is a sharing system it follows that

FN) =3 S (DTS = 3T (1) WIEININ —

iEN {T|NCT} i€EN

Moreover, for a coalition S # N it holds that

*(S) = Y > ()TE

i€S {T|SCT}

= X (ms)
{TIscT}

= X T s)
T|SCT
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= Z (_1)ITHS\_ Z Z IT\ \S\T

{T)sCcT} {TI1SCT} jeT\S

= 0+Z Z (_1)\T\—ISI—1p§F

JE€S {T|SujCT}

_ Z SU]‘

Jjés

This shows that g € Q*. O

We now arrive at the following conclusion, stating that the Weber set of a game is
the subset of the set of Harsanyi payoff vectors when restricting the set of feasible sharing

systems to P*.

Theorem 5.5
For each game v, the Weber set W (v) is the subset of H(v) given by

W(v) = {¢(v) [p € P"}.

Proof.

The theorem follows from expression (3), Theorem 5.3 and Lemma 5.4. O

We conclude this paper by proving that each sharing system p € P* is monotonic,
implying that each payoff vector in the Weber set is a Harsanyi payoff vector resulting
from a monotonic sharing system. A sharing system p € P is called monotonic if pf > pI
for all players : € N and coalitions S, T' € Q with ¢ € S and S C T. Further, for p € P,
1 € N and coalitions S, T € ) with 1 € S and S C T, denote

MP(S,T) = 3 (=178l
{U|scucr}

Then p € P is called strong monotonic if MF(S,T) > 0, for all s € S and S, T € Q
with S C T. Now, strong monotonicity implies monotonicity: clearly, when p is strong
monotonic, then for all S € Q and T'= S U {5} for some j & S, it follows that

ME(S,S U{j}) = (=1)°p] + (=1)'p; "V} > 0

and thus p?¥ > pis Y }, implying that p is monotonic. Surprisingly, we have the following
result.
Theorem 5.6

A weight system p € P is strong monotonic if and only if p € P*.
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Proof.
First, when p € P is strong monotonic, we have for all S € (2 and ¢ € S that

MP(S,N)= Y (=D Flp7 > 0.
{U]sCU}
So, when p € P is strong monotonic, it follows that p € P*.
To prove the reverse, observe that for S, T' € ) and player i € S C T we have, for any

J¢T,

MP(S,T) = > (=)PpY
(wiscucTy

D DI G Vit

{UISCUCTU{j},igU}

- > (=Dl - > (—n)/vslpY
{WISCUSTUG wlsuGICUCTUEY

= MP(S,TU{j})+ M (SU{j}, TU{j})
Applying this rule two times, for each k ¢ T'U {j}, we obtain
MP(S,T) = M{(S,TU{j k})+ M (SU{k},TU{j k})
+MP(SULG}L T UG k) + MP(SU {5, k), T U{G k).

Let hi, ho, ..., h,— 1) be a sequence of elements not in 7. Then, continuing as above by
subsequently adding hy to T'U{hy,...,he_1} for £ =1,... ,n —|T|, we obtain
MP(S,T)= > MP/(SUU,N).
{UIUCN\T}

Since the right hand terms are all nonnegative, when p € P*, it follows that MF(S,T) > 0,

1€ S CT, and thus p is strong monotonic.

This result, together with Theorem 5.5, provides us a new characterization of the ran-

dom order values within the set of Harsanyi payoff vectors.

Corollary 5.7
For each game v, the Harsanyi payoff vector x € H(v) belongs to the Weber set W (v) if

and only if there exists a strong monotonic sharing system p such that x = ¢P(v).
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