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Simulating Tail Probabilities in GI/GI/1 Queues and Insurance Risk

Processes with Subexponential Distributions

Nam Kyoo Boots� and Perwez Shahabuddiny

Abstract

This paper deals with estimating small tail probabilities of the steady-state waiting time in a

GI/GI/1 queue with heavy-tailed (subexponential) service times. The interarrival times can have

any distribution with a �nite mean. The problem of estimating in�nite horizon ruin probabilities in

insurance risk processes with heavy-tailed claims can be transformed into the same framework. It

is well-known that naive simulation is ine�ective for estimating small probabilities and special fast

simulation techniques like importance sampling, multilevel splitting, etc., have to be used. Though

there exists a vast amount of literature on the rare event simulation of queuing systems and networks

with light-tailed distributions, previous fast simulation techniques for queues with subexponential

service times have been con�ned to the M/GI/1 queue. The general approach is to use the Pollaczek-

Khintchine transformation to convert the problem into that of estimating the tail distribution of a

geometric sum of independent subexponential random variables. However, no such useful transforma-

tion exists when one goes from Poisson arrivals to general interarrival-time distributions. We describe

and evaluate an approach that is based on directly simulating the random walk associated with the

waiting-time process of the GI/GI/1 queue, using a change of measure called delayed subexponential

twisting { an importance sampling idea recently developed and found useful in the context of M/GI/1

heavy-tailed simulations. Some quantities other than those mentioned above can also be estimated

via this approach.

Keywords: Simulation analysis methodology, variance reduction, importance sampling, rare

event simulation, heavy tailed distributions, subexponential distributions, insurance risk, uid queues,

GI/GI/1 queues.

1 Introduction

This paper deals with estimating tail probabilities of the steady-state waiting-time random variable in

a GI/GI/1 queue with heavy-tailed service times. In particular, if W is the steady-state waiting-time

random variable, then the problem is to estimate P (W > u) where u is large.

�Dept. of Econometrics and Operations Research, Vrije University, De Boelelaan 1105, 1081 HV Amsterdam, Nether-

lands. Email: nboots@econ.vu.nl
yDept. of Industrial Engg. & Operations Research, Columbia University, New York, NY 10027, USA. Email:
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The GI/GI/1 queue is strongly related to the single-source uid queue (see, e.g., [12]). This is a

bu�er with a constant out-ow rate and fed by a uid source which alternates between the on-state and

the o�-state. In the on-state, the source sends uid into the queue at a certain �xed rate. Assume the

times in the on-state to be subexponentially distributed and the times in the o�-state to be generally

distributed. Then with proper re-interpretation, the techniques in this paper can be used to estimate

the steady-state probability that the bu�er content in the uid queue exceeds u at the beginning of an

on-period. Problems like estimating P (W > u) for the GI/GI/1 queue for large u and the above measure

for uid queues, arise, for example, while estimating probabilities of extreme delays and congestion of

packets in communication networks or the packet loss probabilities in such networks. While the queuing

systems used to realistically model communication networks are usually much more complex than the

GI/GI/1 queue and the single source uid queue, this work may be viewed as one of the �rst steps in

the rare event simulation of those models in the heavy-tailed setting.

However, this is not the only reason why the GI/GI/1 queue has been widely studied in both the

light-tailed (see, e.g., [15, 31, 36, 34]) and heavy-tailed setting (see, e.g., [1, 10, 11, 35]); the other

reason is its connection with a canonical random walk that arises in many engineering and scienti�c

applications. In particular, it is well-known that P (W > u) for the stable GI/GI/1 queue corresponds

to the probability that the maximum of a random walk, whose increment (in this case, the di�erence of

the service time and the interarrival time random variable) has a negative expectation (thus the random

walk has a negative drift), exceeds a high level u. Many other problems in engineering and �nance can

be transformed into the same framework as above. For example, an \inverted" version of this random

walk occurs when modeling the capital process of an insurance company with initial capital u, a �xed

premium collection rate, random claim sizes (that may be subexponentially distributed), and generally

distributed interarrival times of claims (see, e.g. [19]). In this case, the probability mentioned above

corresponds to the probability of eventual ruin, i.e., the company eventually goes bankrupt. This will be

described in more detail later. Another example is the \dam problem" that is studied by civil engineers

and deals with the overow probabilities of dams and reservoirs (see, e.g., [34]).

The technique we develop in this paper is for the basic random walk problemmentioned above. Hence

it can be used for any estimation problem that can be transformed into this random walk problem.

However, for simplicity, we will only describe in detail the problem of estimating P (W > u) in the

GI/GI/1 queue and the probability of eventual ruin in the insurance model. The same basic simulation

technique can also easily be extended to simulate for tail probabilities of the (busy) cycle maxima in the

GI/GI/1 queue with heavy-tailed service times. This is stated as an open problem in [5, 8] for even the

M/GI/1 case and is the ingredient needed to extend the results in [8] obtained for light-tailed service

times to heavy-tailed service times.

A large body of work already exists for the rare event simulation of queues and networks of queues

(cf. insurance risk processes) for the case where service times (cf. claim sizes) and related quantities

are light-tailed (e.g., [2, 16, 24, 13, 33, 21, 36, 14, 20]; for a partial survey see [28]). In this paper

we call a distribution light-tailed if its moment generating function is �nite in some neighborhood of
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zero. Importance sampling is a widely used technique in the setting of light-tailed random variables. It

involves simulating the system with a new probability dynamics (i.e., a change of probability measure)

that makes the rare event happen more frequently and then adjusting the �nal estimate. The change

of probability measure frequently used in the light-tailed case is called \exponential change of measure"

or \exponential twisting" (see, e.g., [38, 13, 2, 29]). Let f(�) be the density function of a non-negative

random variable X and letMX(�) be its moment generating function. In a queue, the X may correspond

to a service time random variable or an interarrival-time random variable. Then

f�(x) �
e�xf(x)

MX(�)

is said to be the density obtained by exponentially twisting f(x) by an amount �. If the rare event of

interest is facilitated by the X being large (cf., small) then one uses a � that is positive (cf., negative)

so that more large (cf., small) samples of X occur under the new measure. However, just arbitrarily

choosing � may result in highly unstable estimates, and large deviations theory has to be used to

determine the best � to be used in each case.

Recent data in the telecommunications area shows that very frequently quantities like service times

(and related quantities) exhibit heavy-tailed behavior (see, e.g., [30]). Note that exponential twisting

relies on the existence of the moment generating functions in a neighborhood of zero. When f(x) is

heavy-tailed then the moment generating function is in�nite for all � > 0. Consequently most of the

techniques and theory developed for rare event simulation in the light-tailed setting are not valid here.

One of the �rst works in the area of rare event simulation for systems with heavy-tailed random

variables is [4]. They considered the problem of estimating the probability of ruin for insurance claim

processes with Poisson claim arrivals and subexponentially distributed claim size. This is equivalent

to the problem of estimating the steady-state waiting-time tail probability in an M/GI/1 queue with

subexponential service times. They came up with an innovative algorithm based on conditioning and

proved that it works for subexponential service times with a regularly-varying tail. Later, [6] gave an

importance sampling change of measure for the same problem that also works for other subexponential

distributions, but only if the traÆc intensity is below a certain level. A framework for importance sam-

pling for systems with subexponential distributions was presented in [27]. The idea was \subexponential

twisting", i.e., twist at a \subexponential rate" rather than at an exponential rate as is done in exponen-

tial twisting. One way of doing subexponential twisting is \hazard rate twisting". Let �(x) � f(x)= �F (x)

be the hazard-rate function corresponding to f(x) and let �(x) =
R x
s=0

�(s)ds be the hazard function.

Note that the tail of any distribution, �F (x), may be represented as e��(x). In hazard rate twisting, the

tail of the new distribution function is given by

�F�(x) = e��(x)(1��) (1)

where 0 � � < 1. As was the case for exponential twisting, an appropriate � has to be chosen for

the given application. In [27] it was formally shown that a \delayed" version of hazard rate twisting

is eÆcient for the case of estimating P (W > u) in M/GI/1 queues for all traÆc intensities (provided
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the queue is stable) and for almost all subexponential distributions. Independently of [27], [6] gave a

re�nement of the importance sampling algorithm in [5] that also worked for all traÆc intensities.

All the above techniques relied on the Pollaczek-Khintchine transformation to simulate the M/GI/1

queue. Using this transformation one can express P (W > u) as P (
PN

i=1 Yi > u) where the Yi's are

independent and have the integrated-tail distribution of the service times (explained later), N is a

geometric random variable with parameter �, where � is the traÆc intensity (i.e., the ratio of the expected

service time to the expected interarrival time), and N is independent of the Yi's. In the importance

sampling techniques in [6] and [27], the \new" distribution is chosen for the Yi's; the distribution of the

N is left unchanged. However, once we go from Poisson arrivals to generally distributed interarrival

times, the distributions of the N and the Yi's are no longer known in explicit form.

In this paper we attempt to go beyond the restriction imposed by the Pollaczek-Khintchine trans-

formation, and simulate the random walk associated with the GI/GI/1 queue directly using delayed

subexponential twisting. In the light-tailed case large deviations theory is used to come up with eÆ-

cient changes of measure. However as mentioned in [3], Pg. 287, and as illustrated by counter examples

in [5], it seems that large deviations ideas do not yield good changes of measure in the heavy-tailed case.

Hence it is diÆcult to come up with techniques that satisfy the standard criterion called \asymptotic

optimality" (see, e.g., [28]; sometimes also called \asymptotic eÆciency") that is used to classify a rare

event simulation technique as eÆcient (many of the light-tailed simulation techniques and the three

heavy-tailed simulation techniques mentioned have been shown to be \asymptotically optimal" under

certain assumptions). We show that if we are willing to tolerate a small amount of bias in our estima-

tor, then we can make use of some sample path large deviations ideas in the heavy-tailed setting for at

least one class of subexponential distributions. Hence we develop a slightly weaker criterion, which is

intended to tolerate a small amount of bias. Techniques satisfying the weaker criterion are as good for

most practical purposes as the techniques satisfying the usual one, since this criterion requires that the

bias be at most of the same order as the statistical variability in an asymptotical optimal estimator.

The new criterion is based on the observation that many times the reason why importance sampling

does not work well is that the likelihood-ratio on some \small" set (i.e., note that \small" here is in

comparison with the rare set, the probability of which we are trying to estimate) is highly variable; if

we exclude this set when we conduct importance sampling, then one gets very good estimates for the

remaining \large" part. Now in most simulation experiments in practice one tries for a �xed relative

error (the con�dence interval half-width divided by the probability one is trying to estimate) of say Æ0

(usually somewhere between 0.01 and 0.1). And the Æ0 is usually chosen independent of the rarity of the

overall event (i.e., whether one is estimating a probability of 10�2 or 10�9 one attempts to achieve the

same relative error). If the relative bias, i.e., the ratio of the \small" set probability to the probability

to be estimated is of the same order as Æ0 (and remains so as the event of interest becomes rarer), then

we are not losing much from the practical point of view when we exclude the small set. We call a

technique large set asymptotically optimal if it is able to estimate the probability of such a large set in

an asymptotical optimal fashion; we make this more precise later.
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Roughly speaking, the class of subexponential distributions most commonly used in practice can be

categorized into the following three classes: \Weibull type tails", \lognormal type tails" and \Pareto

type tails"; a more formal categorization will be given later on. These are tails with di�erent degrees

of \heaviness" ranging from least heavy to most heavy. We show that for the class of subexponential

distributions with Weibull type tails we obtain large set asymptotic optimality. For the class of distri-

butions with lognormal type tails, we conjecture large set asymptotic optimality but it is very diÆcult

to formally prove it. For the Pareto type tails we feel that this technique is not large set asymptotically

optimal and hence is not recommended for use in this setting. Fortunately, being the class with the

heaviest tails, the asymptotic approximations for P (W > u) given by heavy-tailed theory are the most

accurate here and fairly close to P (W > u).

Section 2 reviews the random walk formulation for estimating P (W > u) in the GI/GI/1 queue

and the probability of eventual ruin in insurance risk theory, and discusses the basic concepts in theory

of subexponential distributions. Section 3 reviews rare event simulation and importance sampling.

We also formalize the concept of large set asymptotic optimality in this section. Section 4 presents

the simulation algorithm and conditions on the parameters of the service-time distribution and the

simulation algorithm that guarantees large set asymptotic optimality. In this section we also present

bounds on the variance and prove the large set asymptotically optimal property. Practical insights into

the simulation algorithm as well as conjectures for distributions that do not satisfy the assumptions of

Section 3 and Section 4 are presented in Section 5 and Section 6. Experimental results are presented in

Section 7. Section 8 summarizes some further research we are doing in this area.

2 Preliminaries and related results

We start with some commonly used notation. For any functions z1(x) and z2(x), we use the notation

z1(x) � z2(x), to mean that the ratio of z1(x) to z2(x) converges to 1 as x goes to in�nity. Order

statistics of X1; : : : ;Xn are denoted by X(1) � � � � � X(n). The maximum of zero and x is denoted

by fxg+. We de�ne F (y) = inffx : F (x) = yg: If the inverse function of F is well de�ned, then

F � F�1. Finally, the indicator function is denoted by I(�) and �F (x) := 1� F (x).

2.1 The model

Let F be the cumulative distribution function of the service-time random variable X. We assume that

F has a density f . Let �(x) � f(x)= �F (x) be the hazard-rate function corresponding to f(x) and let

�(x) =
R x
s=0

�(s)ds be the hazard function (e.g., [9]). It is well-known that �(x) = � log �F (x). We

assume that the �rst customer arrives at epoch 0 to an empty system and hence has a waiting time in

the queue W1 = 0. Let (�n)n�1 be the sequence of i.i.d. interarrival times and (Xn)n�1 be the sequence

of i.i.d. service times, i.e., Xn is the service time of the n-th customer and �n the time between the

arrival of customer n and n + 1. We assume both the interarrival-time distribution and the service-

time distribution to have �nite means, the traÆc intensity � = E[X]=E[�] to be smaller than 1 and the
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sequence of interarrival times to be independent of the sequence of service times. An insightful recursion

for the waiting time can be derived; if Wn denotes the waiting time of the n-th customer, then it is

well-known that Wn satis�es the so-called Lindley's recursion Wn = fWn�1 + Xn�1 � �n�1g+, n � 2,

see, e.g., Feller [22]. Expanding this relation recursively gives

Wn = max

(
n�1X
i=1

(Xi � �i); : : : ;

n�1X
i=n�2

(Xi � �i); Xn�1 � �n�1; 0

)
: (2)

De�ne the random walk (Mn)n�2 by

Mn =

n�1X
i=1

(Xi � �i); (3)

with i.i.d. increments Xi� �i and let M1 � 0. De�ne � = �E[X � �] = E[X](1��)=�, i.e., the negative
of the expected value of the increments of the random walk (Mn)n�1. Since E[X] < E[�], � > 0. Hence

the random walk has a negative drift and P (supn�1Mn > u)! 0 as u!1. It is easy to see from (2)

and (3) that Wn has the same distribution as max1�i�nMi. Thus the steady-state waiting time W has

the same distribution as supn�1Mn. Thus P (W > u) = P (supn�1Mn > u) = E[I(supn�1Mn > u)]

and we simulate for P (W > u), for large u, via the random variable I(supn�1Mn > u). Let

�(u) = inf fn : n 2 N;Mn > ug ;

be the hitting time of level u. Note that �(u) is an f1g[N-valued random variable and P (supn�1Mn >

u) = P (�(u) < 1): There is a signi�cant amount of literature for eÆciently estimating quantities

like P (supn�1Mn > u) for large u when both the Xi's and �i's are light-tailed (e.g., [2, 29, 38]).

The basic contribution of this paper is to develop an eÆcient technique for the case where the Xi's are

subexponentially distributed; the interarrival-time distribution can either be light-tailed or heavy-tailed.

2.2 Ruin probability in a renewal insurance risk process with subexponentially

distributed claims

An important quantity that is studied in insurance mathematics is the ruin probability. We show that

the results derived in this paper can also be applied to the renewal risk model where the possibility of

large claims are modeled by using subexponentially distributed claim sizes. For more information about

the use of subexponentially distributed claim sizes in risk processes and about risk processes in general,

we refer the reader to [18] and the review paper [19].

Consider a insurance risk model where the period between the arrival of claim n�1 and n is denoted

by �0n and the size of claim n is denoted by X 0n. We assume both the sequence of interarrival times

and the sequence of claim sizes to be i.i.d. and the two sequences to be independent of each other. We

also assume that both interarrival times and the claim sizes have �nite means. Premium comes in at
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a constant rate c. Let u denote the initial capital and let N(t) denote the number of arrivals in the

interval [0; t]. Then the capital at time t, i.e. fU(t)gt�0, is given by

U(t) = u+ ct�
N(t)X
i=0

X 0i; t � 0:

A quantity of interest is the probability of ruin before time T with initial capital u:

 (u; T ) = P (U(t) < 0 for some t < T ):

The probability of ultimate ruin  (u) is given by  (u;1). Since ruin can only occur at the claim arrival

times,

 (u) = P (U(t) < 0 for some t � 0) = P

0@u+ ct�
N(t)X
i=1

X 0i < 0 for some t � 0

1A
= P

 
u+ c

nX
i=1

�0i �
nX
i=1

X 0i < 0 for some n � 1

!
= P

 
sup
n�1

nX
i=1

�
X 0i � c�0i

�
> u

!
:

If we take �n = c�0n andXn = X 0n, and as in (3), de�ne the randomwalkM1 = 0 andMn :=
Pn�1

i=1 (Xi��i)
for n � 2, then  (u) = P (supn�1Mn > u) = P (�(u) <1) and we get the same random walk estimation

problem as before.

2.3 Subexponential distributions and GI/GI/1 queue asymptotics

For details about subexponential distributions we refer the reader to [18]. Below we give a short

summary.

The de�nition of subexponentiality is due to [17]:

De�nition 2.1 The distribution F is subexponential (denoted by F 2 S) if and only if

P (X1 + � � �+Xn > u)

nP (X1 > u)
! 1 (u!1); (4)

for all n.

The integrated tail of F is de�ned by FI(x) =
R x
0
�F (y)dy=E[X] when E[X] <1. Let �I(x) be the

hazard-rate function and �I(x) be the hazard function corresponding to FI . In this paper FI rather than

F is assumed to be subexponential. Since the most interesting distributions which are subexponential

have integrated tails that are also subexponential and vice versa (this is certainly the case for the ones

we use in this paper; see also [18]), we continue using the phrase \subexponential service times".

For the GI/GI/1 queue with subexponential service times, the asymptotic waiting-time distribution

is given by [32]:

P (W > u) �
�

1� �
�FI(u): (5)
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Note that in the asymptotics of the waiting-time distribution, the interarrival-time distribution plays

a role only via its �rst moment. Our technique works under the following assumption on the service

times:

Assumption 1 FI 2 S and F is in the maximum domain of attraction of the Gumbel distribution

(denoted by F 2MDA(Gumbel)).

F 2MDA(Gumbel) means that maxnXn converges, when properly normalized, to the Gumbel

distribution. This is a result from extreme value theory. A function that plays an important role in

extreme value theory is the so-called auxiliary function a(u). The function a(u) is de�ned to be any

function such that

a(u) �
R
1

u
�F (x)dx

�F (u)
= E[X]

�FI (u)
�F (u)

:

For details we refer the reader to [26, 7, 18]. Examples of subexponential distributions that satisfy

Assumption 1 are:

� The heavy-tailed Weibull(�; �) distribution with

F (x) = 1� e��x
�

; f(x) = ��x��1e��x
�

(� > 0; 0 < � < 1):

In this case we may take

a(u) =
1

��
u1��:

� The lognormal(�; �2) distribution with

F (x) = �

�
log x� �

�

�
and f(x) =

1

x
p
2��2

e�
1
2 [

log x��

�
]
2

(� 2 R; � > 0);

where � denotes the standard normal cumulative distribution function (cdf). The mean of the

lognormal distribution is given by e�+
1
2
�2 . As auxiliary function we may take

a(u) =
�2u

log u� �
:

The technique in this paper relies heavily on a result in [7]. De�ne a conditional distribution P (u)

of the random walk (Mn) by

P (u)(�) = P (� j �(u) <1): (6)

In case Assumption 1 holds, the asymptotic distribution of the normalized hitting time � under the

P (u)-measure is derived in [7]: �(u)=a(u) asymptotically has an exponential distribution. In particular,

if
P (u)

! denotes convergence in the conditional distribution, then

�(u)

a(u)

P (u)

!
 

�
; (7)
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where  is a standard exponential random variable, i.e., it has mean 1 (recall that �� is the mean

increment of the random walk (Mn)).

An important subclass of the subexponential distributions is the class of regularly-varying distribu-

tions.

De�nition 2.2 The distribution F is regularly varying of index � > 0 (denoted by F 2 R�) if and only

if

lim
t!1

�F (tx)
�F (t)

= L(x)x���1 (x > 0);

for some slowly varying function L, i.e., L is Lebesgue measurable and

lim
x!1

L(tx)

L(x)
= 1 (t > 0):

Note that these distributions may be said to have a \heavier tail" than the ones satisfying Assump-

tion 1. An example of a regularly-varying distribution is the Pareto(�; �) distribution with

F (x) = 1�
�
1 +

x

�

����1
(� > 0; � > 0): (8)

In this case we may take

a(u) =
� + u

�
:

For regularly-varying service-time distributions F of index � > 0 the convergence given by (7) still goes

through, but with

P ( > x) =
�
1 +

x

�

���
: (9)

This is in contrast to F (�) satisfying Assumption 1 where �(u) has approximately an exponential tail

(for large u). It is also one of the key reasons why the techniques which we discuss in this paper are not

useful for distributions that are regularly-varying.

In this paper we pay special attention to the Weibull, lognormal and the Pareto distributions, since

they are not only among the best known subexponential distributions, but they also illustrate the merits

of the di�erent assumptions we use for the service-time distribution. In our subsequent analysis we will

also need the following assumption that is satis�ed by most of the common subexponential distributions;

distributions not satisfying it are mainly pathological cases (see [27] for a discussion):

Assumption 2 The hazard-rate function �(x) is eventually decreasing.
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3 Rare Event Simulation and Importance Sampling

3.1 A New Criterion for Rare Event Simulation EÆciency

Let A(u) denote some event parameterized by u with the property that P (A(u)) ! 0 as u ! 1. For

example, A(u) = f�(u) <1g. The u is called the rarity parameter. De�ne �(u) := P (A(u)) and let �̂(u)

denote an unbiased estimator for �(u), which is obtained by averaging realizations from n i.i.d. naive

simulation replications. If we let dVar [�̂(u)] be the sample estimator of Var [�̂(u)] = Var [I(A(u))] =n,

then a 100(1 � �)% con�dence interval based on the central limit theorem is given by�
�̂u �

qdVar [�̂(u)]z1��=2; �̂u +qdVar [�̂(u)]z1��=2� ;
where za denotes the a-th quantile of the standard normal distribution. A quantity that is a measure

of the precision of an estimator is the relative error, which is de�ned to be the con�dence interval

half-width upon the quantity one is trying to estimate, i.e.,

RE [�̂(u)] := z1��=2

p
Var [�̂(u)]

�(u)
= z1��=2

p
Var [I(A(u))]

n�(u)
:

The estimator �̂(u) is said to have a bounded relative error, if for �xed \n" the relative error remains

bounded as u tends to in�nity (e.g., [37]). Alternatively, the number of samples required to obtain a

given relative error remains bounded as u goes to in�nity. Since rare event simulation techniques with

bounded relative errors are usually very hard to �nd, in the rare event simulation literature one works

with the somewhat weaker notion of asymptotic optimality (a.o.).

De�nition 3.1 \Asymptotically optimal"

�̂(u) is an asymptotically optimal estimator of �(u) i�

lim inf
u!1

log (Var [�̂(u)])

log(�2(u))
� 1: (10)

One typically tries to achieve the same pre�xed relative error for each value of u. Informally,

asymptotic optimality means that the number of replications N required to achieve a pre�xed relative

error is bounded, or grows very slowly as u becomes large; N is smaller than some constant times

� log�(u). This is in contrast to naive simulation where N is proportional to 1=�(u).

In many cases the simulation e�ort per replication is either independent of the rarity parameter u or

grows very weakly with it (e.g., [37, 27]). However, in cases where the growth of e�ort is substantial with

increasing u (e.g., [23] and this paper) it is more fair to use work(u)�Var [�̂(u)] instead of Var [�̂(u)] in

(10) (see, e.g., [23]). Here work(u) denotes the expected computational e�ort per simulation replication

as a function of u. In that case (10) becomes

lim inf
u!1

log (work(u)�Var [�̂(u)])

log(�2(u))
� 1: (11)
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If �̂(u) satis�es (11), then it is called work-normalized asymptotically optimal. As mentioned in the

Introduction, we have not been able to �nd a work-normalized asymptotically optimal simulation al-

gorithm for the GI/GI/1 case and hence we introduce the weaker criterion work-normalized large set

asymptotic optimality, and prove that it is satis�ed under certain conditions.

In the following de�nition, think of Æ as the maximum asymptotic relative bias that one is willing to

tolerate in the simulation.

De�nition 3.2 \Large set asymptotically optimal"

Let Æ 2 (0; 1) be a �xed constant. If

1. there exists a decomposition of �(u) into two positive quantities �(u) = (u) + �(u) s.t.

lim sup
u!1

�(u)

�(u)
� Æ;

2. there exists an unbiased estimator ̂(u) of (u) that is a.o., i.e.,

lim inf
u!1

log (Var [̂(u)])

log(2(u))
� 1; (12)

then ̂(u) is said to be a large set asymptotically optimal estimator of �(u).

In de�ning work-normalized large set asymptotic optimality we simply replace Var [̂(u)] by work(u)�
Var [̂(u)] in (12).

Let �a(u) be an asymptotic approximation to �(u), i.e., �a(u) � �(u). Since �a(u) may be regarded

as an asymptotically unbiased estimator with zero variance, it can be checked in (12) that it is also

large set a.o. Unlike the approximations in the light-tailed setting which are asymptotic in the log (i.e.,

log�a(u) � log�(u)), in the heavy-tailed setting approximations that satisfy �a(u) � �(u) (e.g., (5))

do exist and hence are competitive with large set a.o. rare event simulation methods. We now briey

discuss the advantage and disadvantage of each.

Even if we come up with a.o. simulation methods (in contrast to large set a.o. simulation methods)

for the heavy-tailed case, asymptotic approximations have relative biases going to zero, whereas asymp-

totic optimality is weaker than bounded relative error in the simulation. Also approximations take

negligible computation time as compared to simulation. So the only advantage of simulation methods

is for u �xed (say at u0) and in the \practical range" (in contrast to u ! 1). Then the relative bias

in the asymptotic approximations, i.e., (�a(u0) � �(u0))=�(u0) is also �xed and beyond our control.

However, in simulation one has the choice of decreasing the relative error by running more simulations

(i.e., putting in more e�ort). In this practical range where asymptotic approximations are not accurate,

it is still worthwhile to come up with a.o. simulation techniques if they improve considerably over naive

ones. As mentioned before, this has been done for certain cases in [4, 6, 27].

One would prefer to have this control over the bias for large set a.o. techniques also. However, in

De�nition 3.2, one can also think of �(u0) as a bias term over which one has no control. So on top
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of De�nition 3.2, we place another stringent requirement of having an additional parameter � in the

decomposition that gives control over such bias terms for �xed u.

Condition 3.3 Additional condition in de�nition of large set asymptotic optimality:

For any �xed u, there exists a family of decompositions parameterized by � (i.e., �(u) = �(u) + ��(u))

such that:

lim sup
�!1

��(u)

�(u)
= 0:

With this new additional condition, asymptotic approximations are no longer work-normalized large

set a.o. To simplify notation, we will use (u) � �(u) and �(u) � ��(u).

3.2 Importance Sampling

The simulation method we use in this paper is importance sampling. Suppose the stochastic process

that we wish to simulate is de�ned on some probability space with measure P . Let Q be some other

measure on the same probability space such that P is absolutely continuous relative to Q. One can then

express

�(u) = EQ

�
I(A(u))

dP

dQ

�
;

where dP=dQ is called the likelihood-ratio and subscript Q indicates that the expectation is with re-

spect to the new measure Q. In importance sampling one generates the sample paths under the Q

measure, computes the likelihood-ratio in each case, and estimates �(u) by the sample mean of the

I(A(u))(dP=dQ)'s. The underlying idea is to make the event A(u) (that is rare under P ) not rare under

Q, and in order to get an unbiased estimator we have to multiply the estimator by some correction

factor, which turns out to be the likelihood-ratio.

In the literature, importance sampling for queues is almost exclusively limited to exponential twist-

ing. We illustrate the application of exponential twisting by means of two examples. Let Z1; : : : ; Zk be

light-tailed, non-negative valued, i.i.d. random variables with moment generating function MZ(�) and

density h. Suppose we are interested in the probability P (Z1 + � � � + Zk > u) for large u. Under the

importance sampling measure, the density h is replaced by a version that is exponentially twisted by an

amount of �, i.e., h�(x) = h(x)e�x=MZ(�) for some � > 0. In that case, the likelihood-ratio is given by

kY
i=1

h(Zi)

h�(Zi)
=MZ(�)

ke��
P

k

i=1 Zi :

Hence, an unbiased estimator for P (Z1 + � � �+ Zk > u) is given by

I(Z1 + � � � + Zk > u)MZ(�)
ke�

P
k

i=1 Zi :

and its second moment is bounded by

E
h
I(Z1 + � � �+ Zk > u)[MZ(�)]

2ke�2�
P

k

i=1 Zi
i
� [MZ(�)]

2k e�2�u:
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Then for a given u and k one can choose a � so as to minimize this second moment. Similar methods

hold for the GI/GI/1 queue with light-tailed service times and light-tailed interarrival times where one

simulates the random walk (Mn) mentioned in Section 2.1 directly, but using exponentially twisted

versions of Xi and �i. In this case the optimal � is one that satis�es MX(��)M�(�) = 1 and � > 0; it

can be shown that an unique solution exists under fairly general conditions. The � is then exponentially

twisted by � and the X by ��.
However as pointed out earlier, exponential twisting is limited to random variables which have a tail

that decays at an exponential or faster rate, as then one can come up with a normalizing constant that

turns out to be the moment generating function. Subexponential random variables fail to have such a

�nite normalizing constant. In such cases, as mentioned in the Introduction, one may use hazard rate

twisting (HRT) where the new distribution F� is given by (1). The density corresponding to F� is given

by

f�(x) = (1� �)�(x)e�(1��)�(x): (13)

For Z1 subexponential with density f , HRT leads to a likelihood-ratio of f(Z1)=f�(Z1) and thus an

unbiased estimator for P (Z1 + � � �+ Zk > u) is given by

kY
i=1

f(Zi)

f�(Zi)
I(Z1 + � � �+ Zk > u) = (1� �)�ke��

P
k

i=1 �(Zi)I(Z1 + � � �+ Zk > u):

Under some mild regularity conditions, for the choice of

� � �u = 1�
c

�(u)
; (14)

where c is any positive constant, HRT is proved to be a.o. for estimating P (Z1 + � � �+ Zk > u) in [27].

Weighted delayed hazard rate twisting (WDHRT) extends HRT by introducing a weighting pa-

rameter w and a delaying parameter x?u chosen as a function of u. The WDHRT density is de�ned

by

f�u;x?u(x) =

(
f(x)
1+w for x � x

?
u;�

1� F (x?
u
)

1+w

�
f�u(x)
�F�u(x

?
u)

for x > x
?
u:

(15)

In [27], x?u satis�es

�(x?u) = 2 log

�
�(u)

d

�
;

where d is some constant, the basic intention being that �(x?u) should grow at the rate of log(�(u)).

Note that in this case

P (Z � x?u) =
F (x?u)

1 + w
!

1

1 + w
(u!1) and P (Z > x?u)!

w

1 + w
(u!1):

If we let N be a geometrically distributed random variable with P (N = k) = �k(1 � �) for k � 0,

then it is well-known for the M/GI/1 queue that (e.g., [22])

P (W > u) = P (Y1 + � � �+ YN > u); (16)
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where the sequence of i.i.d. random variables (Yi) are distributed as the integrated tail of the service-time

distribution. In [27] it is proved that for �u given by (14) and for certain choices of x
?
u and w (independent

of u), WDHRT is a.o. for estimating P (Y1 + � � � + YN > u) under some mild regularity conditions.

Unfortunately, these results cannot be applied to the GI/GI/1 queue, since for non-Poisson arrivals,

the Yi's no longer have the integrated-tail distribution of the service times, but another distribution for

which no explicit form is known in general. Besides, P (N = k) = �̂k(1 � �̂) for k � 0 and some �̂ for

which again no explicit expression is known. The techniques in [4, 5, 6] also rely on (16) and hence are

only applicable to M/GI/1 queues.

4 The Simulation Algorithm and Variance Bounds

For the GI/GI/1 case, as mentioned in Section 2.1, we estimate P (W > u) by directly simulating the

random walk (Mn)n�1 and estimate P (supn�1Mn > u) = P (�(u) < 1) (instead of using expressions

like (16)). We use WDHRT for the service times, i.e., we use the density f�u;x?u(x) given in (15) (f(x)

is now the service-time distribution) for some speci�ed w, �u and x?u, to simulate the service times.

This requires some stringent conditions on the choice of x?u and unlike the case in [27], requires w � wu

to depend on u. We argue later in this section why we do not apply any change of measure to the

interarrival-time distribution.

Let Q be the new probability measure corresponding to applying WDHRT to the service times

on the sample paths of (Mn). Let Z denote the resulting likelihood-ratio. In order to prove variance

reduction, we have to upper bound EQ[Z
2I(�(u) <1)] in an appropriate manner. It is useful to rewrite

EQ[Z
2I(�(u) <1)] as E[ZI(�(u) <1)], since we know the asymptotic (and conditional) hitting-time

distribution under the old measure, but we do not know it under the importance sampling measure.

Note that

E[ZI(�(u) <1)] = P (�(u) <1)

1X
k=1

E[Z j �(u) = k]P (u)(�(u) = k) (17)

(see (6) for the de�nition of P (u)(�)). Hence in order to obtain variance reduction it is suÆcient to prove

1X
k=1

E[Z j �(u) = k]P (u)(�(u) = k) < 1;

since naive simulation gives a second moment of P (�(u) < 1). Instead we prove the stronger result

of (work-normalized) large set a.o. For any preselected asymptotic relative bias Æ, we will use the

decomposition

P (�(u) <1) � �(u) = (u) + �(u);

where

(u) = P (�(u) � k0(u)); �(u) = P (k0(u) < �(u) <1)
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and

k0(u) = �
a(u) log Æ

�
= �

�a(u) log Æ

(1� �)E[X]
: (18)

Using (7), we have

�(u)

�(u)
=
P (k0(u) < �(u) <1)

P (�(u) <1)
= P (�(u) > k0(u) j �(u) <1) = P (u)

�
�(u)

a(u)
>
k0(u)

a(u)

�
= P (u)

�
�(u)

a(u)
>
� log Æ

�

�
! Æ

as u ! 1, thus satisfying Part 1 of De�nition 3.2. We will show that (u) = P (�(u) � k0(u)) may

be estimated (work-normalized) a.o. using WDHRT, thus giving a (work-normalized) large set a.o.

estimator for P (�(u) <1). Also note that selecting

k0(u) = �
�a(u) log Æ

�
= �

�a(u) log Æ�

(1� �)E[X]
(19)

gives us the exibility required to ful�ll Condition 3.3 for any �xed u. For simplicity we will use � = 1,

but all the results and proofs go through with Æ replaced by Æ� .

An important question in using WDHRT is the choice of the importance sampling parameters �u,

wu and x?u. It is standard intuition in importance sampling for rare event simulation, that the new

measure we select should induce sample paths to mimic as closely as possible the sample paths under

the original measure conditioned on the rare event happening. The parameters �u, wu and x
?
u are selected

keeping this in mind. Using results from [7], one can heuristically argue that the probability law of the

interarrival times under the P (u)-measure is \rather close" to the probability law of the interarrival

times under the original unconditioned measure, thus we do not apply any importance sampling to the

interarrival times.

For reasons similar to those in [27], we use �u given by the equation

�u = 1�
1

�(u)
: (20)

Furthermore, we argue that wu should become smaller for growing � and u. This can be intuitively seen

as follows: Since a(u) tends to in�nity as u goes to in�nity (see Section 2.3 and [7]) and � is decreasing

as a function of � (if we keep E[X] �xed), from (7) it follows that large � and/or large u tends to give

more mass of the conditioned hitting-time distribution to high values. Therefore the big service time

causing the rare event to happen also tends to take place later. Since wu is controlling the chance of a

big service time (i.e., a service time larger than x?u), it makes sense to write wu as a function of u and

�. A smaller value of wu decreases the chance of a service time larger than x?u, so the big service time

causing the random walk to exceed u tends to happen later. As a consequence, it makes sense to take

a smaller wu for larger � and/or u. In fact we will show that to obtain work-normalized large set a.o.,

it suÆces to use w = wu given by

wu =
c1�

a(u)
; (21)
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where c1 is some positive constant.

We will need the distribution functions F to satisfy the following assumption.

Assumption 3 The F (�) is such that there exists some constant b > 1 satisfying

lim
u!1

�(u)�b+1

wu
= 0:

(For instance, for the Weibull service times with F (x) = 1� e�x
�

, Assumption 3 holds with b > 1=�.)

For reasons similar to those in [27], we want �(x?u) / log �(u). In particular we use x?u satisfying

�(x?u) = b log �(u); (22)

where b is the constant in Assumption 3. Since �(x) = � log(1� F (x)),

x?u = F 
�
1� e�b log �(u)

�
= F 

�
1� �(u)�b

�
;

which is an useful representation of x?u from the computational point of view. Note that x?u goes to

in�nity as u goes to in�nity, because �(u)!1.

Finally, we will also need the following assumption for reasons that will become clear later.

Assumption 4 The F (�) has an auxiliary function a(u) such that

a(u)x?u
u

! 0 (u!1):

Assumption 4 is satis�ed by the commonly used subexponential distributions in MDA(Gumbel),

like the Weibull and the lognormal distribution.

The algorithm for estimating P (�(u) < 1), using the above given values of �u, wu and x�u is as

follows:

Algorithm 1 \Weighted delayed hazard rate twisting of the service times"

1. Draw i.i.d. samples �1; : : : ; �k from the interarrival-time distribution and i.i.d. samples X1; : : : ;Xk

using the density f�u;x?u(x), where k is the minimum of k0(u) and min
n
i :
Pi

j=1(Xj � �j) > u
o
:

2. Compute the likelihood-ratio Z given by

Z =
f(X1)

f�u;x?u(X1)
� � �

f(Xk)

f�u;x?u(Xk)
:

3. An average of many independent samples of ZI
�Pk

j=1(Xj � �j) > u
�
is an unbiased estimator

for P (�(u) � k0(u)) which is used as an estimator for P (�(u) <1).

Theorem 4.1 Algorithm 1 results in a work-normalized large set a.o. estimator for P (�(u) <1) with

(u) = P (�(u) � k0(u)) and �(u) = P (k0(u) < �(u) <1).
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As mentioned before, the only thing which needs to be shown is that the estimator of P (�(u) � k0(u))

is work-normalized a.o. The formal proof is given in Appendix A. Below we describe the basic approach.

First we partition the set f�(u) = kg into several subsets and derive variance bounds on each of

these subsets. Let Ak
n be the set of sample paths of Mn where f�(u) = kg and the number of the �rst

k service times higher than x?u equals n, n � k. De�ne Ak = [kn=1A
k
n, A = [1k=1A

k and A0 = [1k=1A
k
0

(thus A [A0 = f�(u) <1g and A \A0 = ;). For notational convenience, we assume that k0(u) always
has an integer value. In this way we are able to partition the rare event f�(u) � k0g into two sets.

These two sets are,

A \ f�(u) � k0(u)g � [
k0(u)
k=1

Ak; and A0 \ f�(u) � k0(u)g:

We then use the following steps to upper bound E[ZI(�(u) � k0(u))]:

� First, we upper bound E[ZI(Ak
n)] for n = 1; : : : ; k. We show that the upper bound for n = 1 can

also be used for upper bounding E[ZI(Ak
n)] for n = 2; : : : ; k.

� Subsequently, we derive an upper bound on E[ZI(A)I(�(u) � k0(u))] by summing up the bounds

on E[ZI(Ak)] for k � k0(u).

� We also show that for u large enough, A0\f�(u) � k0(u)g = ; and hence P (A0\f�(u) � k0(u)g) =
0: This result follows directly from Assumption 4.

All this is summarized in the following proposition. The proof is given in Appendix A.

Proposition 4.2 For u large enough,

(i) E[ZI(A)I(�(u) � k0(u))] � K1a(u)�(u)e
��I (u)e��u�(u�k0(u)x

?
u+x?u).

where K1 is some positive constant (i.e., quantity independent of u) and

(ii) E[ZI(A0)I(�(u) � k0(u))] = 0:

The a.o. property follows from the idea that exp(��u� (u� k0(u)x
?
u + x?u)), exp(��(u)), exp(��I(u))

and P (�(u) <1) are asymptotically equivalent in the log, and the rate of increase of a(u)�(u) is much

slower than the rate of decrease of exp(��I(u)).

5 Practical issues

In this section we discuss the more practical aspects of the WDHRT simulation algorithm. In order to

prove that Algorithm 1 is large set work-normalized a.o., we make use of the fact that for all u large

enough (say larger than u0), A
0 \ f�(u) � k0(u)g = ;: However, in all the experimental results we

present for Weibull service times, the actual value of u is smaller than u0. Thus it is possible that for

practical values of u, Algorithm 1 induces a lot of variance on the set A0\f�(u) � k0(u)g: In Section 5.1
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we derive an upper bound on P (A0) and an upper bound on the variance of Algorithm 1 on the set

A0 \ f�(u) � k0(u)g that holds for all u: In the previous section we only gave some restrictions on the

values of our parameters. In Section 5.2, 5.3 and 5.4 we give some heuristic arguments to choose them

in the best possible way, since the quality of our simulation results can depend heavily on the particular

choice of some parameters (even though choosing them in this way is not necessary for work-normalized

large set a.o.).

5.1 Upper bounding P (A0) and the corresponding variance

Note that on the set A0 all the service times are bounded by x?u. Let (
~Xi) be a sequence of i.i.d. random

variables with distribution F ~X and density f ~X with

f ~X(x) =

(
f(x)

F (x?u)
for x � x

?
u;

0 for x > x
?
u:

Consider the alternative GI/GI/1 queue with the service times (Xi) replaced by ( ~Xi). It is easy to see

that E[ ~X ] < E[X], since

E[X] = E[X j X � x?u]P (X � x?u) +E[X j X > x?u]P (X > x?u)

� E[X j X � x?u]P (X � x?u) + x?uP (X > x?u)

� E[X j X � x?u]P (X � x?u) +E[X j X � x?u]P (X > x?u)

= E[X j X � x?u] = E[ ~X ]:

Thus E[ ~X ] < E[�], since E[X] < E[�]. This implies that the new queue is also stable. Let ~�(u) be the

hitting time in the new queuing system. From

P (A0) =

1X
k=1

P (�(u) = k j X1 � x?u; � � � ;Xk � x?u)P (X1 � x?u; � � � ;Xk � x?u)

�
1X
k=1

P (�(u) = k j X1 � x?u; � � � ;Xk � x?u) =

1X
k=1

P (~� (u) = k) = P (~� (u) <1);

it follows that P (A0) � P (~�(u) < 1). Since ~X has a �nite support, its moment generating function is

�nite everywhere. We can then use (for �xed u) a variance/expectation bounding method that is also

used for light-tailed theory.

Let M ~X(�) and M�(�) be the moment generating functions of ~X and � respectively. De�ne �x?u > 0

as the solution of

M ~X(�)M�(��) = 1; � > 0: (23)

From importance sampling theory for light-tailed distributions, it is well-known that such a � exists and

is unique, see, e.g., [13] (the proof relies on the convexity of M ~X(�)M�(��)). De�ne the exponentially
twisted density (by amount �x?u) corresponding to

~X by

f
�
x
?
u

~X
(x) =

f ~X(x)e
�
x
?
u

M ~X(�x?u)
;

18



for 0 � x � x?u: Similarly, de�ne the exponentially twisted density (by amount ��x?u) corresponding to
� by

f
��

x
?
u

� (x) =
f�(x)e

��
x
?
u

M�(��x?u)
:

If we denote with ~E the expectation under the importance sampling measure, then

P (A0) � P (~� (u) <1) = E[I(~� (u) <1)]

= ~E
h
I(~�(u) <1)e�[(

~X1��1)+���+( ~X~�(u)��~�(u))]�x?u
�
M ~X(�x?u)M�(��x?u)

��(u)i
� ~E

�
I(~�(u) <1)e�u�x?u

�
� e�u�x?u ; (24)

using (23) and the fact that on the set f~� (u) <1g, ( ~X1 � �1) + � � �+ ( ~X~�(u) � �~�(u)) > u.

In fact, we just proved part (i) of the following theorem:

Theorem 5.1 Let u be �xed and let �x?u be the unique solution to (23), then

(i) P (A0) � e�u�x?u

and

(ii) E[ZI(A0 \ f�(u) � k0(u)g] � e�(u�x?u+c1 log Æ):

Proof. For (ii), note that for x � x?u, f(x)=f�u;x?u(x) = 1 + wu. Hence

E[ZI(A0 \ f�(u) � k0(u)g)] � (1 + wu)
k0(u)P (A0) � e�u�x?u

24�1 + c1�

a(u)

�a(u)

c1�

35�c1 log Æ

� e�(u�x?u+c1 log Æ):

Here we use the fact that (1 + x�1)x � e for all x > 0. 2

Since we have not been able to come up with an useful upper bound on �x?
u
, we have to solve (23)

numerically.

5.2 The choice of b

It is noteworthy that a smaller choice of b corresponds to a smaller x?u and which suggests a smaller

P (A0). Using WDHRT for estimating P (�(u) � k0(u)) implies that in fact no HRT is done on the set of

sample paths in A0. The only di�erence with naive simulation is that the chance of such paths is smaller

under the importance sampling measure for positive wu, and that increases the variance contribution

due to importance sampling on that set of sample paths. This suggests that one should keep the set A0

as small as possible and hence to choose b rather small. For instance, for the Weibull case we have the

restriction b > 1=�. Hence, for � = :5, a choice of b = 2:1 seems reasonable.
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5.3 The choice of wu

Recall that wu = c1�=a(u) for some c1 > 0. To derive an upper bound on the variance using importance

sampling, sum the right-hand side of (31) over 1 � k � k0(u). Then we need to choose wu such that

k0(u)X
k=1

(1 + wu)
k

wu +�(u)�b

�
P (u)(�(u) > k � 1)� P (u)(�(u) > k)

�
(25)

is as small as possible (since the remaining part is not a function of wu). Suppose we use the ap-

proximations P (u)(�(u) > k) � e�k�=a(u) and P (u)(�(u) = k) � �=a(u)e�k�=a(u), which are both

based on (7). To avoid the geometric growth in k of
�
P (u)(�(u) > k � 1)� P (u)(�(u) > k)

�
(1 + wu)

k �
�=a(u)e�k�=a(u)(1 + c1�=a(u))

k, it is required that

e
�

�

a(u)

�
1 +

c1�

a(u)

�
< 1: (26)

Hence we recommend c1 to be selected such that (26) is satis�ed. A more re�ned heuristic for the choice

of c1 is to use the one that minimizes (7), where we use the approximation P (u)(�(u) > k) � e�k�=a(u)

when conducting the minimization. As expected, in all our experiments this optimal c1 satis�es (26)

(see Table 3).

5.4 The choice of Æ

In this paragraph we present some guidelines to choose the relative bias Æ: If we usually want to

achieve a relative error (con�dence interval half-width upon the estimated quantity) of Æ0 in unbi-

ased simulations, it makes sense to choose Æ somewhat smaller than Æ0; say Æ = Æ0=10: We then use

k0(u) = ��a(u) log Æ=� = �a(u) log Æ�=�, with � � 1 (e.g. � = 2). Recall that the factor � is used

because just using k0(u) = �a(u) log Æ=� guarantees that the asymptotic relative bias is less than Æ; the

actual (non-asymptotic) relative bias may be higher than Æ.

6 Relaxing the assumptions on the service-time distribution

In this section we discuss the merits of omitting Assumption(s) 1, 3 and 4. We show that, although

our previous analysis is not valid anymore, omitting Assumption 3 may lead to an eÆcient algorithm

anyway. In Section 6.1 we illustrate this by considering lognormal service times, since this is the most

important distribution that satis�es Assumptions 1, 2 and 4, but not Assumption 3. Of course, similar

analysis can be done for other distributions. More problematic is leaving out Assumptions 1, 3 and 4.

Unfortunately, the important class of regularly-varying distributions falls in this category. We discuss

the particular case of Pareto service times in Section 6.2.
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6.1 Lognormal service times

In this paragraph, we assume the service times to have a lognormal distribution. Recall that Assumptions

1 and 2 are satis�ed. In Appendix B we show that Assumption 4 is also satis�ed. Unfortunately, it is

easy to check that Assumption 3 does not hold, but in Appendix B we argue heuristically that Algorithm

1 may work anyway.

6.2 Regularly-varying service times

For Pareto service times (see (8)),

a(u)x?u
u

=
(� + u)x?u

�u
!1 (u!1);

since x?u goes to in�nity. Hence Assumption 4 does not hold. Also,

a(u)

�(u)
=

(� + u)

�(� + 1) log(1 + u=�)
!1;

as u goes to in�nity. Hence Assumption 3 does not hold. Using standard theory of regularly-varying

distributions, it can easily be checked that these go through for the other regularly-varying distributions.

Therefore, a similar analysis as for the lognormal case becomes impossible. Indeed numerical experiments

give little hope for this case.

Also, from (9) it follows that solving k0(u) from the equation

P (u)(�(u) > k0(u))! Æ (u!1);

gives

k0(u) =
a(u)��

�
Æ�1=� � 1

�
E[X](1 � �)

=
(� + u)��

�
Æ�1=� � 1

�
E[X](1 � �)

: (27)

Hence, k0(u) grows linearly with u and for realistic values of the parameters, WDHRT becomes very

time consuming, since it gives a lot of mass at high values of the hitting time. This implies that the

simulation e�ort grows very fast for increasing u: The following theorem states that, even if one is able

to come up with a method for estimating (u) that has bounded relative error, it still does not guarantee

work-normalized large set a.o.:

Theorem 6.1 Consider Pareto service times with corresponding k0(u) given by (27). For any unbiased

importance sampling estimator ̂(u) of (u) = P (�(u) � k0(u)) with the property that work(u) / k0(u)

and that the relative error of ̂(u) is larger then some positive constant independent of u, the ̂(u) is

not a work-normalized large set a.o. estimator for P (�(u) <1).

Proof. Suppose that the relative error of ̂(u) is larger then some positive constant K1. But then (5)

and the fact that 0 < (u) < 1, imply that there exist positive constants K2;K3 and K4 such that

lim inf
u!1

log (Var [̂(u)]� work(u))

log(2(u))
� lim

u!1

"
log((K1)

2 2(u))

log(2(u))
+

log(K3(u))

2 log(K2P (�(u) <1))

#
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� lim
u!1

"
log((K1)

2 2(u))

log(2(u))
+

log(K3(u))

2 log(K2K4u��)

#
= 1�

1

2�
< 1;

if work(u) / k0(u). 2

7 Experimental results

In this section we present some experimental results using Algorithm 1 (A1) for Weibull and lognormal

service times. We �rst present results for the M/GI/1 queue, since for this case we can compare the

results with those from [27] and [4]. For the sake of comparison we also present estimates based on the

best-known asymptotic approximation (AA) for P (W > u) given by (5). As argued in Section 6.2, A1

fails to be eÆcient for Pareto service times. However, we claimed in the Introduction that in this case

AA is of a better quality than for the case of Weibull or lognormal service times. Experimental results

that compare AA with accurate estimates using the algorithm from [4] for M/GI/1 systems that have

Pareto service times, support this claim. We also present some examples for deterministic interarrival

times and we compare the results with estimates resulting from naively simulating the hitting time of

u in the random walk (Mn).

For the sake of clarity, we present in Tables 1 and 2 a classi�cation of the subexponential distributions

as used in this paper. The Weibull, lognormal and Pareto distribution in this classi�cation correspond,

respectively, to one of the three most important regimes used in the literature.

Table 1: Di�erent assumptions on the service-time distributions

(i) F 2 S, FI 2 S
(ii) F 2MDA(Gumbel)

(iii) �(x) is eventually decreasing

(iv) a(u)x�u=u! 0 (u!1)

(v) �(u)�b+1=wu ! 0 (u!1)

Table 2: When and when not our technique will work

The Roman numbers correspond to the assumptions in Table 1

(i) and not (ii)) A1 will probably not work e.g. Pareto

(i); (ii); (iii); (iv) and not (v)) A1 will probably work e.g. lognormal

(i); (ii); (iii); (iv); (v) ) A1 is work-normalized large set a.o. e.g. Weibull

Note that a regenerative simulation method for estimating P (W > u) based on estimating the

average number of customers in a regenerative cycle (a regenerative cycle is taken to be the period

22



between two consecutive epochs at which a customer arrives at an empty queue) with a waiting time

higher than u, produces very unstable estimates. This unstability is a result of the enormous uctuation

in cycle lengths that are caused by the subexponential service times. Indeed, we conducted some

experiments that support this claim and hence it is not advisable to use this regenerative method.

7.1 Weibull service times

We use Weibull service times, with the speci�c distribution function given by 1� exp(�
p
x), x > 0. It

can easily be checked that E[X] = 2 and this class of distributions satis�es the assumptions in Section 4.

We use k0(u) = maxf�a(u) log Æ�=�; 50g to guarantee that the actual value of k0(u) is not too small.

This can also be interpreted as k0(u) = �maxfa(u) log Æ�=�; 50g, where we take Æ� = 0:001 for u such

that k0(u) � 50 and Æ� such that k0(u) = 50 for the smaller u. We use b = 2:1, consistent with

Assumption 3.

Table 3: Values of the Parameters (For b we use 2.1)

u � = 0:25 � = 0:5 � = 0:75

100 wu = :1693; c1 = :56 wu = :0503; c1 = :50 wu = 0:0135; c1 = :41

x?u = 23:38 x?u = 23:38 x?u = 23:38

�x?u = :125 �x?u = :156; �x?u = :099

e�u�x?u = 3:8E � 6 e�u�x?u = :1:7E � 7 e�u�x?u = 4:9E � 5

200 wu = :1185; c1 = :56 wu = :0364; c1 = :51 wu = 0:0105; c1 = :45

x?u = 30:95 x?u = 30:95 x?u = 30:95

�x?u = :125 �x?u = :122 �x?u = 073

e�u�x?u = 1:4E � 11 e�u�x?u = 2:6E � 11 e�u�x?u = 4:3E � 7

400 wu = :0827; c1 = :55 wu = :0261; c1 = :52 wu = 0:0079; c1 = :47

x?u = 39:58 x?u = 39:58 x?u = 39:58

�x?
u
= :125 �x?

u
= :101 �x?

u
= :059

e�u�x?u = 2:0E � 22 e�u�x?u = 2:4E � 18 e�u�x?u = 6:8E � 11

800 wu = :058; c1 = :55 wu = :0186; c1 = :53 wu = 0:0058; c1 = :49

x?u = 49:26 x?u = 49:26 x?u = 49:26

�x?u = :125 �x?u = :088 �x?u = :0508

e�u�x?u = 4:0E � 44 e�u�x?u = 2:4E � 31 e�u�x?u = 4:9E � 18

The values of the other parameters used by the algorithm are given in Table 3. They were determined

using the heuristic approach described in Section 5. Note that for the general subexponential Weibull

distribution (i.e., � 6= 1=2), it is diÆcult to compute the integrated-tail distribution. This indicates

that even for the M/GI/1 case, Algorithm 1 is easier to implement than the ones in [6] and [27], for
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service-time distributions for which the integrated-tail distribution is diÆcult to compute. However, it

is usually far less eÆcient in terms of CPU time.

Table 4: Estimates of P (W > u) for the M/GI/1 Queue with Weibull(1; 1=2) Service Times. A1 uses

techniques from this paper, AA is the asymptotic approximation and J-S denotes the estimator from [27]

and is used to get relatively accurate estimates of P (W > u): The number in the parenthesis besides the

A1 estimate denotes the eÆciency ratio over naive simulation. The number in the parenthesis besides

the AA estimate denotes the relative bias of AA.

u � = 0:25 � = 0:5 � = 0:75

100 A1 2:31E � 4� 1:7% (2:4E2) 1:38E � 3� 3:4% (3:8) 1:68E � 2� 10:8% (0.07)

J-S 2:30E � 4� 1:3% 1:41E � 3� 1:3% 1:89E � 2� :67%

AA 1:17E � 4(49:1%) 5:00E � 4(64:5%) 1:50E3(92:1%)

200 A1 4:71E � 6� 2:0% (5:9E3) 2:46E � 5� 3:5% (1:5E2) 6:41E � 4� 38:8% (:46)

J-S 4:61E � 6� 1:5% 2:55E � 5� 3:15% 7:37E � 4� 3:3%

AA 3:64E � 6(21:0%) 1:09E � 5(57:3%) 3:28E � 5(95:5%)

400 A1 1:65E � 8� 2:5% (9:2E5) 7:12E � 8� 3:1% (1:3E5) 1:53E � 6� 69:5% (13:7)

J-S 1:66E � 8� 1:6% 7:11E � 8� 2:75% 1:62E � 6� 43:3%

AA 1:44E � 8(13:3%) 4:33E � 8(39:1%) 1:30E � 7(92:0%)

800 A1 5:54E � 12� 3:0% (1:8E9) 2:04E � 11 � 3:1%; (4:5E8) 1:27E � 10� 9:4% (1:5E6)

J-S 5:45E � 12� 2:0% 2:04E � 11 � 1:8%; 1:36E � 10� 7:9%

AA 5:08E � 12(6:8%) 1:52E � 12(25:5%) 4:57E � 11(66:4%)

The results are presented in Table 4. The results from [27], denoted by J-S, were based on 10,000,000

replications, in order to get accurate estimates for comparison purposes. For A1, we use 300,000 repli-

cations for each simulation. The percentages after the estimates are the relative half-widths of the

99%-con�dence intervals, i.e., the relative error of the estimate. Motivated by [25], we de�ne the stan-

dard e�ort of any simulation algorithm as the variance per simulation replication times the CPU time

per simulation replication. The numbers in the parenthesis besides the A1 estimator denote the eÆ-

ciency ratio, which is the ratio of the standard e�ort of naive simulation and the standard e�ort of A1.

For naive simulation the standard e�ort is estimated by using the estimate of P (W > u) from J-S and

then using the formula P (W > u)(1�P (W > u)) for the variance per replication; for the CPU time per

replication we simulate the random walk up to k0(u) (as otherwise there is a positive probability that the

simulation may never end) without using importance sampling. The eÆciency ratio may be interpreted

as the number of times more CPU time naive simulation will need to run to achieve the same relative

accuracy as simulation with the new algorithm. We have not given any performance comparison with

the algorithm in [27], as that algorithm can only be used for the special case of M/GI/1 systems. Indeed,

as mentioned above, for the M/GI/1 case the algorithms in [6] and [27] are much better. The number in

24



the parenthesis besides the AA denote the relative bias of AA, i.e., 100%� j�̂(u)� �a(u)j=�̂(u), where
�̂(u) is the accurate simulation estimate from J-S. Estimates in Table 4 for high values of � are not

accurate for low u and the given number of simulation replications. This is also the case for J-S and

u = 400. However, for large u the asymptotics take e�ect and the accuracy improves. From Table 4 we

also see that for the given choice of run-lengths, AA is outperformed. Also, there is no way to change

the relative bias of AA; in contrast one can increase k0(u) (to decrease the relative bias) and/or run

more simulation replications to improve the estimates from A1.

Table 5: Estimates of P (W > u) for the D=GI=1 Queue with Weibull(1; 1=2) Service Times. The

number in the parenthesis besides the A1 estimate denotes the eÆciency ratio. The number in the

parenthesis besides the AA estimate denotes the relative bias of AA.

u = 150 � = 0:5

A1 1:12E � 4� 2:5%(80:7)

naive simulation 1:10E � 4� 2:5%

AA 6:36E � 5(42:2%)

In Table 5 we present an example where we use deterministic interarrival times. The values of the

parameters are the same as for the case of Poisson arrivals. We use 300,000 replications for A1 and

100,000,000 replications for naive simulation. The large number of replications for naive simulation

were necessary in order to get suÆciently accurate estimates for comparison purposes. The results are

also compared with AA. For the relative bias of AA, we compare AA with the relatively accurate naive

simulation estimate.

7.2 Lognormal service times

For the lognormal distribution we take � = 0, i.e., the density is given by

f(x) =
1

x
p
2��2

e�
1
2 [

log x
�
]
2

with �2 = log(4). One can check that E[X] is again 2. It is diÆcult to implement hazard rate twisting,

since we have no explicit expression for f�u. As an alternative, we apply another form of subexponential

twisting (see [27]) that involves using

f�u(x) =
1

x
q
2��2�u

e
�

1
2

�
log x

�
�u

�2
;

where ��u = �=(1 � �u). We take wu = 0 (see Appendix B for a motivation for this choice) and like in

the Weibull case, we take k0(u) = maxf�a(u) log Æ�=�; 50g. We also use b = 2:1. To compare answers

we use the order statistics conditioning algorithm from [4], which is based on the Pollaczek-Khintchine
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transformation. We denote this algorithm by A-B. We refer the reader to that paper for details on the

algorithm.

Table 6: Estimates of P (W > u) for the M/GI/1 Queue with lognormal(0; log 4) Service Times. A1 uses

techniques from this paper, AA is the asymptotic approximation and A-B denotes the estimator from

[4] and is used to get relatively accurate estimates of P (W > u): The number in the parenthesis besides

the A1 estimate denotes the eÆciency ratio. The number in the parenthesis besides the AA estimate

denotes the relative bias of AA.

u � = 0:25 � = 0:5 � = 0:75

100 A1 3:14E � 4� 10:4% (5:6) 1:06E � 3� 7:0% (:8) 7:14E � 3� 26:6% (0.03)

A-B 3:06E � 4� 2:3% 1:15E � 3� 2:3% 7:59E � 3� 1:8%

AA 2:78E � 4(9:2%) 8:33E � 4(27:6%) 2:49E � 3(67:2%)

200 A1 3:48E � 5� 9:3% (31:4E2) 1:26E � 4� 7:2% (26:7) 5:93E � 4� 32:7% (6:9)

A-B 3:72E � 5� 1:5% 1:23E � 4� 1:6% 6:15E � 4� 3:7%

AA 3:53E � 5(5:2%) 1:06E � 4(13:8%) 3:18E � 4(48:3%)

400 A1 3:29E � 6� 10:1% (3:9E2) 1:04E � 5� 6:3% (3:0E2) 4:64E � 5� 29:3% (1:1E2)

A-B 3:38E � 6� 1:3% 1:08E � 5� 4:1% 3:91E � 5� 4:0%

AA 3:27E � 6(3:3%) 9:81E � 6(9:2%) 2:94E � 5(24:8%)

800 A1 2:19E � 7� 5:2% (5:4E3) 7:00E � 7� 8:1%; (2:2E3) 2:13E � 6� 12:8% (3:4E2)

A-B 2:22E � 7� 1:0% 6:90E � 7� 1:7%; 2:28E � 6� 2:1%

AA 2:19E � 7(1:4%) 6:58E � 7(4:6%) 1:97E � 6(13:6%)

For A-B, in order to draw from FI we use numerical integration. Since this method is rather time

consuming, we use only 1,000,000 replications for A-B. For A1 we use 100,000 replications for � = :25

and � = :5 and 30,000 replications for � = :75. The results are presented in Table 6. Underestimation

of A1 is more severe than for the Weibull case, but for high values of u and moderate values of �,

the estimates seem to be pretty good. Note that this is also a region where the asymptotic estimation

performs quite well. Hence for the case of lognormal distributions, the only advantage of using A1 over

AA is that one can reduce the relative error by using larger number of replications, and/or reduce the

relative bias by increasing k0(u), while the relative bias of AA is beyond our control.

In Table 7 we present an example where we use deterministic interarrival times. The values of the

parameters are the same as for the case of Poisson arrivals. We use 300,000 replications for A1 and

20,000,000 replications for naive simulation. The results are compared with naive simulation and AA.

Once again, for the relative bias of AA, we compare AA with the relatively accurate naive simulation

estimate.
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Table 7: Estimates of P (W > u) for the D=GI=1 Queue with lognormal(0; log 4) Service Times. The

number in the parenthesis besides the A1 estimate denotes the eÆciency ratio. The number in the

parenthesis besides the AA estimate denotes the relative bias of AA.

u = 200 � = 0:5

A1 1:10E � 4� 4:5%(98:2)

naive simulation 1:10E � 4� 5:5%

AA 1:06E � 4(3:8%)

Table 8: Estimates of P (W > u) for the M/GI/1 Queue with Pareto(2; 4) Service Times. AA is the

asymptotic approximation and A-B denotes the estimator from [4] and is used to get relatively accurate

estimates of P (W > u): The number in the parenthesis besides the AA estimate denotes the relative

bias of AA.

u � = 0:25 � = 0:5 � = 0:75

100 A-B 5:24E � 4� :40% 1:79E � 3� :37% 8:92E � 3� :35%

AA 4:93E � 4(6:0%) 1:48E � 3(17:4%) 4:44E � 3(50:2%)

200 A-B 1:32E � 4� :40% 4:21E � 4� :41% 1:59E � 3� :43%

AA 1:28E � 4(2:9%) 3:84E � 4(8:8%) 1:15E � 3(27:3%)

400 A-B 3:31E � 5� :30% 1:03E � 4� :44% 3:39E � 4� :44%

AA 2:27E � 5(1:4%) 9:8E � 5(4:7%) 2:94E � 4(13:3%)

800 A-B 8:31E � 6� :34% 2:53E � 5� :37% 7:91E � 5� :50%

AA 8:25E � 6(0:7%) 2:48E � 5(2:0%) 7:43E � 5(6:2%)

7.3 Regularly-varying service times

To get a complete picture we present some results from the M/GI/1 queue with Pareto service times.

Although A1 does not work well in this case (see Section 6.2), we can still compare estimates obtained

from A-B with the asymptotic approximation AA for the case of Poisson arrivals. Like our experiments

for Weibull and lognormal service times, we take the mean service time equal to 2. The results are given

in Table 8 . We use 1,000,000 replications for A-B to get accurate estimates. From the Tables 4, 6 and

8 we can clearly see that AA gives better approximations for Pareto service times than for Weibull and

lognormal service times. Hence the need for fast simulation techniques in this case is less essential than

in the Weibull or lognormal cases.
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8 Further research directions

We are currently trying to extend the algorithms and results of this paper to queues with Markov

modulated arrival processes, as well as to the estimation of other probabilities in the insurance risk

context, for example, the estimation of the �nite horizon ruin probability  (u; T ) (see Section 2.2).

A Appendix: Proof of Theorem 4.1 and Proposition 4.2

Let X
k;n

(1)
� � � � � X

k;n

(k)
be the order statistics of the service times conditioned on the event Ak

n. Condi-

tioned on the event Ak
n, we can write the likelihood-ratio Z as

Z = (1 + wu)
k

�
�F�u(x

?
u)

(1� �u)(1 + wu � F (x?u))

�n

e
��u

�P
k

i=k�n+1 �

�
X

k;n

(i)

��
; (28)

using (15). To derive a deterministic upper bound on Z we have to derive a deterministic lower bound

on

Dk
n :=

kX
i=k�n+1

�
�
X

k;n
(i)

�
:

Let x be the minimum value after which �(x) is decreasing.

Lemma A.1 If Assumption 2 holds, then for x?u � x,

Dk
n � (n� 1)�(x?u) + �

�
fu� kx?ug

+ + x?u
�
: (29)

Proof. It is clear that

Dk
n � min

P
k

i=1
zi�u

z1;:::;zk�n2[0;x?u];zk�n+1;:::;zk�x?u

kX
i=k�n+1

�(zi) � min
P
k

i=k�n+1
zi�u�(k�n)x

?
u

zk�n+1;:::;zk�x?u

kX
i=k�n+1

�(zi) =: �D
k
n: (30)

It is actually insightful to consider
Pk

i=k�n+1�(zi) as a cost function that you have to minimize under

some constraints. In this case the cost function is a sum of n increasing and concave (due to Assumption

2) cost functions �n�k+1; : : : ;�k, all of them being identical to �. Now there can be two cases.

Case 1: u� (k � n)x?u � nx?u or u� kx?u � 0

Since the cost functions �k�n+1; : : : ;�k are increasing, it is clear that the optimal solution is to set

zk�n+1 = � � � = zk = x?u. Then the contraint
Pk

i=k�n+1 zi � u � (k � n)x?u is automatically satis�ed.

Thus the �Dk
n is n�(x?u) = (n� 1)�(x?u) + �(x?u):

Case 2: u� (k � n)x?u � nx?u or u� kx?u � 0

Since the cost functions �k�n+1; : : : ;�k are increasing, the optimal solutions will satisfy
Pk

i=k�n+1 zi =

u� (k�n)x?u � nx?u. Since the cost functions �k�n+1; : : : ;�k are identical, concave and increasing, it is

clear that one of the optimal solutions is to set zk�n+1 = � � � = zk�1 = x?u and to set zk to be the rest,
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i.e., zk = u� (k�n)x?u� (n� 1)x?u = u� (k� 1)x?u. Thus the
�Dk
n is (n� 1)�(x?u) +� (u� (k � 1)x?u) =

(n� 1)�(x?u) + � (u� kx?u + x?u)

One can combine the expressions for Case 1 and Case 2 and write �Dk
n as (n � 1)�(x?u) +

�
�
fu� kx?ug

+
+ x?u

�
: Hence from (30), we get (29). 2

Lemma A.2 For u large enough and k � k0(u), the expectation E[ZI(Ak)] can be upper bounded by

E[ZI(Ak)] � (1+wu)
k �(u)

wu +�(u)�b
e�(1��u)�(x

?
u
)e��u�(fu�k0(u)x

?
u
g++x?

u)P (u)(�(u) = k)P (�(u) <1):(31)

Proof. Using Lemma A.1, we �nd

E[ZI(Ak
n)] � (1 +wu)

k

�
�F�u(x

?
u)

(1� �u)(1 + wu � F (x?u))

�n

e��u((n�1)�(x
?
u
)+�(fu�kx?ug

+
+x?

u))P (Ak
n):(32)

Some rewriting gives

�F�u(x
?
u)e
��u�(x

?
u
)

(1� �u)(1 + wu � F (x?u))
=
e�(1��u)�(x

?
u
)�(u)e��u�(x

?
u
)

wu + e��(x
?
u
)

=
�(u)�b+1

wu +�(u)�b
: (33)

Using (33), for n � 1 and u large enough

E[ZI(Ak
n)] � (1 + wu)

k

"
�F�u(x

?
u)e
��u�(x?u)

(1� �u)(1 + wu � F (x?u))

#
e��u�(fu�kx

?
u
g++x?

u)e�u�(x
?
u
)P (Ak

n); (34)

since the right-hand side of (33) goes to zero as u goes to in�nity, because of Assumption 3. Using (33)

in (34) and using the fact that �(u)�b = e��(x
?
u
) (by de�nition of x?u), we get

E[ZI(Ak
n)] � (1 + wu)

k �(u)

wu +�(u)�b
e�(1��u)�(x

?
u)e��u�(fu�kx

?
ug

++x?u)P (Ak
n): (35)

Summing up the left-hand and right-hand side of (35) from n = 1 to n = k and upper bounding P (Ak)

by P (�(u) = k) = P (u)(�(u) = k)P (�(u) <1) yield

E[ZI(Ak)] � (1 + wu)
k �(u)

wu +�(u)�b
e�(1��u)�(x

?
u
)e��u�(fu�kx

?
u
g++x?

u)P (u)(�(u) = k)P (�(u) <1):

Finally, for k � k0(u), we get (31). 2

Lemma A.3 For u large enough,

E[ZI(A)I(�(u) � k0(u))] �
a(u)

�c1Æc1
�(u)e��u�(fu�k0(u)x

?
u
g++x?

u)P (�(u) <1): (36)
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Proof. From (31), the fact that �(u)=(wu + �(u)�b) � �(u)=wu = �(u)a(u)=c1� (using wu > 0 and

�(u)�b > 0) and the fact that e�(1��u)�(x
?
u) � 1, one �nds

E[ZI(A)I(�(u) � k0(u))]

�
a(u)

c1�
�(u)P (�(u) <1)

k0(u)X
k=1

e��u�(fu�k0(u)x
?
u
g++x?

u)(1 + wu)
kP (u)(�(u) = k)

�
a(u)

c1�
�(u)P (�(u) <1)e��u�(fu�k0(u)x

?
ug

++x?u)(1 + wu)
k0(u)P (u)(�(u) � k0(u)): (37)

Then (36) follows from the fact that P (u)(�(u) � k0(u)) � 1 and

(1 + wu)
k0(u) =

�
1 +

c1�

a(u)

��a(u) log Æ

�

=

8<:
�
1 +

c1�

a(u)

�a(u)

c1�

9=;
�c1 log Æ

� e
�c1 log Æ

= Æ�c1

The last inequality follows because (1 + x�1)x � e for x > 0. 2

Proof of Proposition 4.2. For (i), note that from Lemma A.3 and (5), for u large enough,

E[ZI(A)I(�(u) � k0(u))] �
2�

(1� �)�c1Æc1
a(u)�(u)e��I (u)e��u�(fu�k0(u)x

?
ug

++x?u): (38)

Then from Assumption 4, we have that u � k0(u)x
?
u > 0 for u large enough, proving (i). For (ii), note

that for u large enough,

x?uk0(u) =
�x?ua(u) log Æ

�
< u;

because of Assumption 4. This implies that for u large enough,

A0 \ f�(u) � k0(u)g = ;: (39)

2

Proof of Theorem 4.1. First we prove that

lim
u!1

�(u� x?uk0(u) + x?u)

�(u)
= 1; (40)

Since �(x) is decreasing for x � x, �(x) is concave for x � x. Also, using Assumption 4 (which says

that x?uk0(u)=u goes to zero as u goes to in�nity), u� x?uk0(u) + x?u � x for u large enough. Hence,

�(u) � � (u� x?uk0(u) + x?u) � �(x) +
(u� x?uk0(u) + x?u)� x

u� x
(�(u)� �(x)): (41)

The second inequality in (41) says that due to concavity, the slope of the tangent of the function �(u)

between x and u� x?uk0(u) + x?u is at least as high as the slope of the tangent of the function from x to

u: Dividing (41) throughout by �(u), letting u!1, and using the fact that x?uk0(u)=u goes to zero as

u!1, we get (40).
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From (5) we see that (u) � ~K1 exp(��I(u))�=(1 � �) for some positive constant ~K1 and u large

enough. Also work(u) � ~K2k0(u) � K2a(u) whereK2 and ~K2 are constants. Using (40) and Proposition

4.2, it follows that for u large enough,

log (work(u)�Var [̂(u)])

log(2(u))

�
logK2 + 2 log a(u) + logK1 + log�(u) � �I(u)� (1� ��1(u))�(u � x?uk0(u) + x?u)

2
h
log ~K1 + log(�=(1 � �))� �I(u)

i
�

2 log a(u) + log �(u)� �I(u)� �(u)

�2�I(u)
� 1: (42)

To prove the last limit, all we need to show is that

�(u)

�I(u)
! 1;

log �(u)

�I(u)
! 0; and

log a(u)

�I(u)
! 0;

as u!1. Assumption 3 implies that limu!1�(u)�b+1a(u) = 0 and hence limu!1 a(u)
(b�1)�1=�(u) =

0. From the last limit we can conclude that

lim
u!1

log a(u)

�(u)
= 0: (43)

From (43) and the fact that

log a(u)

�(u)
�

�(u)� �I(u) + logE[X]

�(u)
= 1�

�I(u)

�(u)
+
logE[X]

�(u)
;

we see that

lim
u!1

�(u)

�I(u)
= 1: (44)

From (43) and (44) we conclude that limu!1 log a(u)=�I(u) = 0. Finally, from (44), we get

limu!1 log �(u)=�I (u)! 0. 2

B Appendix: Justi�cation for using Algorithm 1 for the case of log-

normal service times

We will need to use the notation and the lemmas of Appendix A.

First, we show that Assumption 4 is satis�ed. Using l'Hospital's rule, we �nd as in [27],

lim
x!1

2�2�(x)

log2(x)
= lim

x!1

�2x�(x)

log x
= 1:

Thus

�(x) � log2(x)=2�2: (45)
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Recall that the auxiliary function a(u) is given by

a(u) =
�2u

log u� �
: (46)

From (45) and (22) we �nd

x?u � e

r
2�2b log

h
log2(u)

2�2

i
: (47)

Since for �xed � > 0 and for x large enough,
p
x � �x, we have also for u large enough,s

2�2b log

�
log2(u)

2�2

�
� �2�2b log

�
log2(u)

2�2

�
= log

�
log2(u)

2�2

�2�2b�
:

It follows that

e

r
2�2b log

h
log2(u)

2�2

i
�
�
log2(u)

2�2

�2�2b�
=

log4�
2b�(u)

(2�2)
2�2b�

: (48)

Substituting (48) in (47), it follows from (47) and (46) that for u large enough,

a(u)x?u
u

�
�2 log4�

2b�(u)

(log u� �) (2�2)
2�2b�

! 0 (u!1); (49)

for � < (4�2b)�1. Thus Assumption 4 is satis�ed. It is easy to check that Assumption 3 does not hold.

We still heuristically argue that Algorithm 1 works for lognormal service times. From (32) and (33),

E[Z j Ak
n] = (1 +wu)

k

�
�(u)�b+1

wu +�(u)�b

�n
e�u�(x

?
u
)e��u�(fu�kx

?
u
g
+
+x?

u)

� (1 +wu)
k �(u)ne�u�(x

?
u)e��u�(fu�kx

?
ug

+
+x?u); (50)

since for large u, �(u) � wu. From (50) it seems plausible to take wu � 0 and we obtain for u large

enough

E[Z j Ak
n] � �(u)ne�u�(x

?
u)e��u�(fu�kx

?
ug

+
+x?u):

We �nd for u large enough,

E[I(Ak)Z] =

kX
n=1

E[Z j Ak
n]P (A

k
n)

�
kX

n=1

�(u)ne�u�(x
?
u
)e��u�(fu�kx

?
u
g
+
+x?

u)P (Ak
n)

= e��u�(fu�kx
?
u
g
+
+x?

u)
kX

n=1

�(u)n+b�uP (Ak
n):
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Hence,

E[ZI(A)I(�(u) � k0(u))] =

k0(u)X
k=1

E[I(Ak)Z]

�
k0(u)X
k=1

e��u�(fu�kx
?
u
g
+
+x?

u)
kX

n=1

�(u)n+b�uP (Ak
n): (51)

Similar as in the proof of Theorem 4.1, we can show with (49) and (51) that for u large enough,

E[ZI(A)I(�(u) � k0(u))] � P (�(u) <1)e��u�(u)
k0(u)X
k=1

kX
n=1

�(u)n+b�uP (u)(Ak
n):

Hence, we have to keep the term

k0(u)X
k=1

kX
n=1

�(u)n+b�uP (u)(Ak
n)

as small as possible. Since �(u)n+b�u is blowing up for growing n, we want P (u)(Ak
n) to decay fast.

Note that this is not a problem in the Weibull case, since there we do not have problems with factors

like �(u)n+b�u because Assumption 4 holds for Weibull service times. One can increase the decay of

P (u)(Ak
n) by raising b. However, as a side e�ect, �(u)n+b�u grows faster in that case. So there is a kind

of trade-o� in choosing b. Unfortunately, we do not know anything about P (u)(Ak
n), since this is a very

complicated probability, which requires detailed insights in the probabilistic behavior of the random

walk (Mn).
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