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Abstract

This paper considers a simple Continuous Beliefs System (CBS) to investigate
the effects on price dynamics of several behavioral assumptions: (i) herd behaviour;
(ii) a-synchronous updating of beliefs; and (iii) heterogeneity in time horizons
(memory) among agents. The recently introduced concept of a CBS allows one to
model the co-evolution of prices and the beliefs distribution explicitly, while keep-
ing track of the unpredictable nature of individual preferences (Diks and van der
Weide, 2003). As a benchmark model we take a simple CBS, which in a market
with many traders exhibits a random walk driven by news. Using the explicit na-
ture of the dynamics of the CBS we show that the introduction of herding modifies
the random walk to an ARIMA(0, 1, 1) process, which is observationally equiva-
lent to a reduction of the number of market participants. In terms of returns the
model predicts MA(1) structure with a negative coeffient. Asynchronous updating
leads to an MA(1) model for returns with GARCH(1, 1) innovations, and predicts
a relation between the ARCH and GARCH coefficients. Heterogeneity in memory
leads to long-range dependence in returns. In the empirical section we perform a
modest ‘reality check’ concerning the predicted sign of the MA coefficient and the
relation between the ARCH and GARCH coefficients for exchange rate data.
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1 Introduction

The current literature on agent based economic models can be roughly divided into
two types: (i) computational finance models and (ii) economic dynamic models. Both
approaches aim to discover what is behind the stylized facts commonly exhibited by
empirical financial time series.

In computational finance, artificial stock markets are used as a tool for simulating
time series of aggregate variables, such as prices, volumes, etcetera (for an overview,
see LeBaron, 2000). To improve the understanding of markets with a large number
of interacting heterogeneous agents, LeBaron et al. (1999) for example developed the
Santa Fe artificial stock market. In the Santa Fe market, the actions of agents, which are
based upon their expectations, are explicitly modelled and traced for each individual
agent. With computers becoming cheaply available and faster, these artificial markets
allow for more and more detailed modelling. Although detailed models may possibly
generate more realistic price dynamics, their increasing complexity also makes sim-
ulation less attractive as a tool for the analytic study of the mechanisms linking the
heterogeneity of beliefs with the stylized facts of prices.

The economic dynamics literature follows a somewhat different route. There agent
based modelling explicitly aims at an analysis of the joint dynamics of beliefs and
prices (see e.g. Brock and Hommes, 1997, 1998). To achieve the necessary analytical
tractability, several simplifying assumptions are usually made, such as a continuum of
agents who at each time can choose from a finite number of belief types. Typically a
low dimensional deterministic dynamical system is derived, allowing the modeller to
perform a detailed bifurcation analysis, providing insights in the long-run behaviour
of the dynamics for different economic and behavioral parameters. The natural trade-
off of this approach is that it at best provides an approximation to the deterministic
aspects of the price process of interest. Indeed, the ‘holy grail’ in economic dynamics
is beyond any doubt the heterogeneous agent model that is just as realistic in terms of
its price dynamics as it is tractable analytically.

In previous work (Diks and van der Weide, 2003) we introduced the concept of
a continuous beliefs system (CBS). This framework is built around a continuous be-
liefs space representing the possible point predictors agents can choose from. On this
space a time dependent beliefs distribution is defined, which is updated according to
a continuous choice model. As new market prices become available, the beliefs distri-
bution is updated depending on past performances of strategies. Coevolution of the
beliefs distribution with price dynamics thus arises as newly realized prices feed the
ongoing evaluation of the strategies by the agents. As is natural in a continuous choice
setting, individual choices are considered to be random variables, distributed accord-
ing to the beliefs distribution. The preferences of agents provide an endogenous noise
source which affects price dynamics. Because the randomness in prices can be associ-
ated naturally with the diversity of beliefs, the latter has been labelled a ‘natural source
of randomness’.

Diks and van der Weide (2003) discuss several scenarios under which the natu-
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ral randomness in prices does not average out in the limit as the number of agents
tends to infinity. These include: (i) a disproportionate distribution of market impacts;
(ii) particular combinations of utility functions and predictors, and (iii) dependence
among agents, which may arise for example when agents partly coordinate on a ran-
dom variable, not necessarily related to economic fundamentals (‘sunspots’). All these
examples are based on a violation of at least one of the conditions of the law of large
numbers. In the last case (dependence) it is often impossible to distinghuish between
an infinite number of dependent agents, or a finite number of independent agents.
For convenience we therefore introduced the notion of an effective number of agents,
neff , defined as the number of independent agents required to obtain stochastic price
dynamics with similar stochastic dynamics. For a finite effective number of agents
the dynamics is random by construction. In general, a CBS gives rise to a random dy-
namical system, allowing for the stochastic price dynamics to be described explicitly.
It therefore offers an analytic alternative to the simulation based studies commonly
performed in computational finance.

In sum, a CBS shares several advantages of both computational finance models
and economic dynamic models. Rather than obtaining the stochastic macroscopic
dynamics through laborious simulation, the macroscopic behaviour of a CBS with
agents who can choose among a continuum of alternative strategies, can often be de-
rived analytically. The aggregate behaviour can typically be captured in a few simple
dynamic equations, for an arbitrary number of agents. The analytic tractability can
be used to study features such as the conditional mean and variance of prices analyt-
ically, and relate these to behavioural characteristics.

The objective of this paper is to examine the effects on price dynamics of a num-
ber of behavioral assumptions. We introduce a simple benchmark CBS and expand
it in the following directions: (i) herd behavior; (ii) a-synchronous updating of be-
liefs; and (iii) heterogeneity in the memory of agents. The behavioral models ob-
tained in this way give rise to aggregate dynamics which are represented by well-
known classes of econometric models. At the center is the random walk obtained for
our benchmark CBS. We will show that that: (i) herd behaviour introduces moving av-
erage (MA) structure yielding an ARIMA model; (ii) an ARIMA model with GARCH dis-
turbances is obtained if beliefs are not updated synchronously; and (iii) a fractionally
integrated (ARFIMA) process with long-range dependence is obtained if the memory
of agents exhibits heterogeneity. As an immediate result the parameters of these stan-
dard econometric models can be related directly to the parameters of the behavioral
model.

Near the end of the paper we will only carefully scratch the surface of the possible
empirical applications. This is done by estimating some of the stylized models using
daily exchange rate data. We wish to emphasize honestly at the outset, however, that
while interpreting the empirical results in terms of behavioral parameters, one should
keep in mind that the models are stylized and, for clarity of exposition, deliberately
stripped from a range of features that may become important for a realistic summary
of the data. For example, we are aware of the fact that our natural source of random-
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ness is not the only relevant source of randomness, and that more factors than those
included in our behavioral model may be responsible for MA and/or GARCH structure
in the empirical data. Although omitting additional relevant model aspects will surely
bias our parameter estimates, we consider comparing the signs of the estimated pa-
rameters with those expected from our theory a sensible ‘reality check’. If successful,
such an empirical validation may hopefully open doors to more detailed empirical
assessments in the future.

Finally note that inherent in our approach is the assumption that the agents believe
in structure in prices that can be profitably exploited by ‘technical trading rules’ sum-
marized in terms of point predictors, which we will refer to interchangeably as strate-
gies or beliefs. Empirical evidence supporting this belief in predictability in the foreign
exchange markets is provided by e.g. Sweeney (1986), Taylor and Allen (1992), Levich
and Thomas (1993) and LeBaron (1999). Furthermore, our approach is entirely built
around the heterogeneity of beliefs. Some arguments for expectations being heteroge-
neous have been provided by, among others, Frankel and Froot (1990). In a theoretical
exchange rate model, Frankel and Froot (1988) particularly employ the heterogeneity
of expectations to explain some of their empirical findings.

In the following section we briefly review the basic concepts of a CBS. The intro-
duction of the benchmark CBS and its extensions are described in section 3. In sec-
tion 4 the models will be subjected to a basic empirical validation. Section 5 con-
cludes.

2 Continuous beliefs systems

In this section we briefly review the concept of a continuous beliefs system. The main
ingredients for describing the co-evolution of prices and the beliefs distribution in a
CBS are the following. As is common in economic dynamics models, agents are as-
sumed to predict future prices by using a point predictor which is a function of the in-
formation available to them (we typically have in mind past realized prices). The point
predictors agents can choose from are represented in a beliefs space Ω, parameterized
by a continuous parameter θ, called the belief parameter. Each value of θ ∈ Ω repre-
sents a predictor xe

t+1(θ) of the next price in terms of the information Ft available to
the agents. For example if agents believe in a linear world and expect tomorrow’s price
xt+1 to be a linear function xe

t+1(θ) = θ0 + θ1xt + . . . + θdxt−d+1 of the last d prices,then
the beliefs space consists of the d+ 1-dimensional Euclidean space Rd+1.

Given the individual beliefs {θi,t−1}, a realization of the price xt is obtained via some
market clearing mechanism. Agents’ utility functions and predictors imply individual
demand functions, and the market price is defined to be the unique price xt for which
the market clears.1 Of course the appropriate market clearing price equation depends

1Uniqueness of market clearing prices is not self-evident. However, if demands are strictly decreas-
ing in xt, as will be the case in our benchmark CBS, uniqueness of clearing prices is guaranteed.
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on the context, and we will have to provide some additional arguments to justify our
particular choice made for the benchmark model later.

As new prices become available, agents update their evaluations of parameter val-
ues by confronting them with the newly arrived information. As agents have dif-
ferences in tastes and interpret identical information differently they will typically
choose different predictors. This is captured by a continuous choice model, which
defines a probability distribution on the beliefs space Ω. The probability density func-
tion of this time dependent beliefs distribution is denoted by φt(θ). The actual belief
parameters θi,t individual agents use to base their next prediction on are modelled as
random variables distributed according to φt(θ). In this way endogenous randomness
enters the price dynamics in a natural way. In the simplest case the θi,t are assumed to
be independent conditional on information available up to and including time t.

To see how the beliefs distribution evolves, let us consider the time when xt has
just been quoted. After xt becomes public, agents re-evaluate the strategies using a
performance measure, πt(θ). The performance depends on past realized prices and
might for example be based on ex post prediction errors, or the ex post profits realized
by a strategy. A typical choice is to take πt(θ) to consist of minus the ex post squared
prediction error:

πt(θ) = −(xe
t (θ)− xt)

2. (1)

This choice is less restrictive as it may seem, since for φt(θ) only differences in perfor-
mance play a role. Using this property it can be shown that minus squared prediction
errors are equivalent to risk adjusted profits when agents hold identical beliefs about
conditional variances (see e.g. Hommes, 2001). In practice, decisions to change strate-
gies are not based on yesterday’s performances only, but rather on the success over a
larger history. Indeed, financial analysts typically test their candidates on a large sam-
ple of past price history, also known as back-testing. Strategies that have performed
best over some history of the sample are more likely to be selected for future trading.
The simplest way to implement, or mimic, this back-testing is to consider a geomet-
rically down-weighted average of past performances rather than only the last perfor-
mance, so that the weighted average utility becomes:

Ut(θ) = (1− α)
∞∑
i=0

αiπt−i(θ),

which can be recast into the more practical form

Ut(θ) = αUt−1(θ) + (1− α)πt(θ). (2)

Given the average past utility the continuous logit model provides the following
pdf for the beliefs distribution just after time t:2

φt(θ) =
eβUt(θ)

Zt

, (3)

2In Diks and van der Weide (2003) the right-hand-side was multiplied by a so-called opportunity
function ϕ(θ) which we take equal to unity here.
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where Zt is a normalization constant independent of θ. The parameter β is referred
to as the intensity of choice. The inverse 1/β is also known as the propensity to err.
If agents are sensitive to small differences in utility, this will be reflected by a large
value of β. Notice that Eq. (3) implies that only differences in performance play a role.
Modifications of πt(θ) that are independent of θ will be absorbed by the normaliza-
tion factor Zt, leaving φt(θ) unchanged. With this in mind it is not surprising that risk
adjusted profits and minus squared prediction errors turn out to be equivalent under
certain conditions.

Substitution of Eq. (2) into Eq. (3) gives

φt(θ) =
eαβUt−1(θ)+(1−α)βπt(θ)

Zt

=
[φt−1(θ)]

αe(1−α)βπt(θ)

Z ′t
, (4)

which expresses how a new beliefs distribution can be obtained from the previous
beliefs distribution and the last performance measure. The variable Z ′t is again a nor-
malization constant. Although φt(θ) is an infinite dimensional state variable, the time
evolution of φt(θ) can often be fully specified by a finite number of variables such as
its first k moments, in which case the dynamics becomes finite dimensional. In sum-
mary, the expectations feedback can be represented schematically as

. . . xt−1 → φt−1(θ) ; xt → φt(θ) ; xt+1 → . . . ,

where “→” indicates a deterministic step and “;” a step involving endogenous noise.
It is important to note that the beliefs distribution φt(θ) is determined only by the

performance measure and past realised prices, and otherwise evolves independently
of the individual choices of agents. The beliefs distribution is a convenient concept
introduced in the choice literature to model the fact that agents have idiosyncrasies
in tastes, and that their choices are not identical given identical information. The fact
that identical information is interpreted differently by agents is confirmed empirically
by Kandel and Pearson (1995). The strategies θi,t used by the agents, from the point of
view of the econometrician, are random variables, representing the individual choices
of agents, so that xt+1 is a stochastic variable, even in the absence of exogenous shocks.

3 A simple benchmark CBS and its extensions

In this section we introduce a benchmark CBS and examine the effects on the dynam-
ics of extending the model in the following behavioral directions: (i) herding, (ii) asyn-
chronous updating, and (iii) heterogeneity in memory. The CBS formulation enables
one to obtain insights into how these behavioral assumptions affect the interaction
between the stylized facts and the unobserved beliefs distribution. The benchmark
model is an extremely simple CBS deliberately stripped from any features that are not
of direct interest. Although taking such a highly stylized model as a reference point
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may seem overly restricted, it clarifies the exposition and helps to isolate the effects of
each of the extensions.

We wish our benchmark CBS to be as simple as possible while preserving economic
relevance and bringing out the essentials of the CBS concept. Typically a CBS will be
used for modelling the joint dynamics of beliefs and prices of well-specified economic
units, such as shares, which are traded sequentially in a large market. Prices in such
markets are determined by the expectations held by agents regarding future prices and
cash flows, as well as their preferences concerning returns and risk. Agents interact
by submitting demand functions depending on expected utility, while their realized
utility is determined by realized market clearing prices. Regardless of preferences, it is
clear that better abilities to predict future prices given the information available will
help agents in realizing a higher utility. In this sense the setting resembles an ever
ongoing version of Keynes’ beauty contest.

Motivated by these arguments we consider a very stylized market mechanism which
assumes prices to equal the average prediction over all agents in the market, i.e. the
market expectation:

xt =
1

n

n∑
i=1

xe
t+1(θi,t−1), (5)

where n denotes the number of agents. Price equations used in economic dynamic
models often involve similar market expectations. Depending on the type of market,
also the risk free interest rate and expectations concerning dividend payments may
enter the price equation. We have in mind agents who are myopic in the sense that
they are concerned only with maximizing their one-step-ahead utility. At each time
then, agents act as if they are entering the market today while knowing that they will
leave the market tomorrow. As a result, only their expectations concerning the next
price and additional cash flows (such as dividends) play a role. Typically, dividend
payments (if any) are rare and announced well in advance, which means that expecta-
tions regarding short run profits are driven by expectations concerning future prices,
rather than dividends. If, moreover, time intervals are sufficiently short (e.g. one to five
days, see Lehmann, 1991) the interest rates over a single interval are sufficiently small
for agents to consider their predicted future price to be a ‘fair price’ today as well. Un-
der those conditions, if we assume agents to be mean-variance optimizers the market
clearing price is given by the right hand side of Eq. (5).3

The simplest continuous class of point predictors consists of a continuous range
of different constants. We incorporate this by saying that agents with belief θ predict

3A mean-variance optimizing agent with belief θ expects a risk-adjusted short-term profit of
dt[xe

t+1(θ) − xt] − 1
2cd

2
t , where dt is his demand and c is a risk aversion parameter times the per-

ceived conditional variance of xt+1. Maximizing this with respect to demand dt, gives the demand
function dt = (xe

t+1(θ) − xt)/c. If c is homogeneous among agents, the unique equilibrium price is
given by Eq. (5). Heterogeneity in risk aversion and or perceived risk would lead to a weighted average
xt =

∑
wix

e
t+1(θi,t+1)/

∑
wi with weights wi = c−1

i , which in a large market is equivalent to Eq. (5).
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tomorrow’s price to be equal to θ:

xe
t+1(θ) = θ.

Heterogeneity will arise if agents employ different beliefs in that they have in mind dif-
ferent parameter values θi,t. The conditional variance Vart[θi,t] can then be considered
to be a measure for the degree of heterogeneity. Forecast surveys of foreign exchange
market participants, for example, indicate that such a dispersion of beliefs indeed ex-
ists, as found by Frankel and Froot (1990). An argument they provide in favour of het-
erogeneity is the high trading volume observed in the foreign exchange market, since
it takes differences of opinion to trade.

For the performance measure we take minus squared prediction errors (Eq. 1), and
memory is included in the utility function through Eq. (2). Having observed and com-
pared overall performance, all agents subsequently adapt their beliefs. The new distri-
bution of beliefs is determined by means of the continuous choice model, and is given
by Eq. (3). Because the utility function is a quadratic function in the belief parameter θ,
it follows that, for all t, the distribution of beliefs is described by a normal distribution:

φt (θ) =
1√
2πσt

exp

[
−1

2

(
θ − µt

σt

)2
]
. (6)

Normality implies that the beliefs distribution is fully specified by its mean µt and vari-
ance σ2

t . Using Eq. (4) it can be seen that the dynamics of µt and σt is governed by:

µt = α

(
σ2

t

σ2
t−1

)
µt−1 + 2 (1− α) βσ2

t xt

1

σ2
t

=
α

σ2
t−1

+ 2 (1− α) β.
(7)

In the long run σ2
t will converge to σ2 = 1

2β
, and the dispersion of beliefs thus

tends to a constant proportional to the propensity to err. If the propensity to err is
high, agents are less sensitive to differences in performances of strategies. As a conse-
quence, a large propensity to err implies a larger dispersion of beliefs. If we substitute
σ2 = 1

2β
into the dynamics for the average belief µt, we obtain:

µt = αµt−1 + (1− α)xt. (8)

Having derived the dynamics for beliefs, we now shift focus to its interaction with
the price equation Eq. (5) which in the constant predictor case becomes:

xt =
1

n

n∑
i=1

xe
t (θi,t−1) =

1

n

n∑
i=1

θi,t−1,

For simplicity, we consider the system in the limit as the number of agents tends to in-
finity. In the absence of dependence among agents, the law of large numbers applies,
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and it follows that the observed price quoted as the average prediction will converge
to µt−1:

xt = lim
n→∞

1

n

n∑
i=1

θi,t−1 = E[θi,t−1] = µt−1. (9)

Together with the ‘dynamics’ of the mean µt described by Eq. (8) this gives:

xt = αxt−1 + (1− α)xt−1 = xt−1.

Thus in the absence of uncertainty, the price will be constant at all times.
Exogenous shocks, such as news, are assumed to affect the price equation only

through the expectations of agents. This assumption appears natural, since the only
way news can possibly affect prices is indeed through expectations of individuals. The
dynamics become

xt = µt−1,
µt = αµt−1 + (1− α)xt + ξt+1,

(10)

where ξt+1 is a noise term representing news shocks arriving between time t and t+ 1.
Upon substituting the first of those equations in the second, it can be seen that µt

follows a random walk driven by ξt. The first equation states that xt simply equals µt−1,
the average belief under agents given all observables up to and including time t − 1,
and the news that has become available before time t.4 In terms of increments we thus
have, in the presence of exogenous shocks {ξt}:

∆xt ≡ xt − xt−1 = ξt.

The random walk model is consistent with the efficient market hypothesis (EMH)
and has been traditionally viewed as the model for financial variables, such as asset
prices and exchange rates. Indeed, the random walk has long been considered un-
beatable, a view epitomized by Malkiel (1990). Only recently it seems that it has to
give in to a growing list of statistical evidence against the EMH, some of which is col-
lected in Lo and MacKinlay (1997). As a consequence we see that more sophisticated
models have begun to make their appearances. Kilian and Taylor (2001), for exam-
ple, introduced an exchange rate model which is close to a unit root process near the
fundamental, but in which the exchange rate is driven back to the fundamental when
their difference becomes too large. They report empirical evidence supporting pre-
dictability of exchange rates at long horizons, but at short horizons exchange rates are
hard to distinguish from a random walk.

4The random walk price dynamics can alternatively be derived with agents forming expectations of
the type xe

t (θ) = Rt + θ, where Rt is a publicly known estimate of the fundamental exchange rate with
incrementsRt −Rt−1 = ξt. In that case µt is stationary, while the exchange rate follows a random walk,
xt = Rt + cnst.
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3.1 Herd behaviour

If the conditions for the law of large numbers (LLN) are not satisfied, the price dynam-
ics may be stochastic in a large (many trader) market even in the absence of exoge-
nous uncertainty. In the introduction we briefly mentioned a number of such ‘sources
of randomness’ that might cause the LLN to fail. These are addressed in more detail in
Diks and van der Weide (2003). Here we will focus on the dependence among agents
arising from herd behaviour, as a source of ‘natural randomness’. It turns out that suf-
ficient correlation between the agents will indeed violate the conditions for the LLN to
apply.

In the literature many different definitions of herding have been described. The
type of herding we wish to address is that where conditional on public information,
the strategies used by the agents exhibit dependence. In particular we have in mind
situations where agents herd to publically announced opinions of others. During each
period some ‘early’ agents reveal their expectations, allowing other agents to adapt
their expectations towards those of the ‘leaders’ before submitting their market orders.
This type of herding is ‘concurrent’ in that it involves agents coordinating simultane-
ously on common signals. Concurrent herding is different from studies that associate
herding with for example informational cascades or learning (see e.g. Bikhchandani
et al., 1992; Avery and Zemsky, 1998 and Nelson, 2002). In informational cascades
uninformed agents try to mimic, or learn from, the more informed by extracting infor-
mation from realized prices. This type of herding therefore has a ‘sequential’ nature.
As one would expect, having in mind ‘concurrent’ or ‘sequential’ herding makes a dif-
ference. For example, Nelson (2002) finds that ‘high correlation among agents’ actions
does not necessarily imply herding’. As in our model dependence among actions must
originate from dependence in strategies, we would refer to such correlation among ac-
tions as herding by definition.

Possible motivations for (concurrent) herding are numerous. First note that ac-
cording to Kandel and Pearson (1995), even though each individual typically has his
own interpretation of public signals only few behave completely independent. A mo-
tivation is that being too different from the rest can be risky and might jeopardize
career perspectives or reputation (see e.g. Trueman, 1994 and Scharfstein and Stein,
1990). Hong et al. (2000) have recently strengthened these arguments by providing
some empirical evidence in favour of them. When delving into experience, they also
find that younger analysts forecast closer to the average forecast, and that they are
more likely to be terminated when they deviate from the consensus.

Even when accurate (short term) forecasting is the only objective agents have, herd-
ing might still be rational. Scharfstein and Stein (1990), as an oblique remark not that:
“...investing is also driven by group psychology, which weakens the link between in-
formation and market outcomes.” Indeed, note that in our benchmark CBS prices are
entirely driven by speculation (group psychology).5 Froot et al. (1992) have given the

5Lux (1995) is another paper that considers the possibility where agents pay more attention to each
other than to the fundamentals. He assumes a market in which initially only optimists and pessimists
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thought more attention, and concluded the following. In the short term, speculative
forces may be stronger than those of the ‘underlying economic system’. As a conse-
quence, price series generally show fluctuations around the fundamental, where one
can always find short periods in time where prices exhibit divergence. In such peri-
ods it is thus rational to coordinate on speculative behaviour (herding) rather than on
fundamentals.

Kirman (1993) describes herding as arising from a process, which involves agents
that make choices first, ‘recruit’ other agents to make the same decision. There are
several possible forms in which this recruiting takes place, which we will not delve into
here. What is important for our model is that there may be mechanisms that introduce
dependence among the strategies selected by the agents. The ‘recruiting’ scenario is
an example mechanism which gives just this type of dependence in our model.

Herding towards a leading agent can be implemented easily in a CBS by introduc-
ing interaction terms into the utility function.6 For simplicity we assume that there
is only a single leading agent. Let θ0,t denote the parameter value announced publi-
cally by the leading agent, which we assume to be distributed according to the orig-
inal beliefs distribution given by Eq. (6). Upon taking a new utility function Ũt(θ) =
Ut(θ)− J(θ − θ0,t)

2, the beliefs distribution of the other agents becomes

φt(θ) = Z−1
t exp

[
βUt(θ)− βJ(θ − θ0,t)

2
]
. (11)

The interaction strength J > 0 can be considered as a measure for the desire of agents
to select a parameter value close to that of the leader. Straightforward comparison
of coefficients of powers of θ in the exponent with those in Eq. (6) gives the following
values for the mean µ̃t and variance σ̃2

t of the beliefs distribution under herding:

µ̃t = µt +
J(µt − θ0,t)

J + 1
≡ µt,

and

σ̃2 =
σ2

1 + σ2J
.

In the latter relation the time indices have been dropped as σ2
t was already known to

be constant over time (see Eq. (7) and the discussion thereafter).
Under the assumption that market weights of individual agents (including the lead-

ing agent’s) are negligible, realized prices are given by the mean of the pdf in Eq. (11):

xt = µ̃t−1 = µt−1 + σλut, (12)

where {ut} ≡ {(µt−1 − θ0,t−1)/σ} is a sequence of independent standard normal ran-
dom variables.

can be distinguished. The evolution of the number of optimists is completely determined by the num-
bers of optimists and pessimists that surround individuals. At a later stage he assumes the presence of
a fundamentalist.

6See Diks and van der Weide (2003), where social interaction is incorporated in a CBS, in analogy
with Brock and Durlauf (2001) who consider social interaction in a dynamic discrete choice setting.

11



If we incorporate the dynamics for the average belief µt, which is given in Eq. (8), it
follows that the market’s price dynamics is described by the following ARIMA model:

xt = xt−1 +
J

J + 1
σ [ut − αut−1] .

The amount of endogenous uncertainty entering the price dynamics is propor-
tional to J/(J + 1). Since this function is increasing in J and takes values between
0 and 1, it is convenient to define a measure of herding λ, via

λ ≡ J

J + 1
,

so that the price dynamics in the absence of news can be concisely stated as

∆xt = σλ (ut − αut−1) , (13)

where ∆xt ≡ xt − xt−1. As herd behaviour acts to affect the effective number of agents,
it should come as no surprise that a change in the extent of herding λ can not be dis-
tinguished from a reduction of the number of agents in the CBS. Only their joint effect
can be identified.7

At this stage all stochasticity in the model can be associated with endogenous un-
certainty. That is, the randomness observed by the econometrician reflects the ran-
dom nature with which individual agents select beliefs from the distribution of beliefs.
If in addition we include independent, identically distributed (IID) exogenous shocks
ξt to the system, we find:

∆xt = σλ (ut − αut−1) + ρξt
∼ η

(
u′t − ψu′t−1

)
,

(14)

where {u′t} is a sequence of IID standard normal random variables, η a scaling param-
eter, and −ψ a moving average coefficient. The relation between our original parame-
ters (σ, λ, α, ρ) and the new parameters (η, ψ) is the following:

η =
(
σ2λ2 + ρ2

) 1
2

ψ =
ασλ

(σ2λ2 + ρ2)
1
2

.
(15)

The equivalence of the two representations in Eq. (14) follows directly from compar-
ing the auto-covariance functions of both representations. While both representations

7Diks and van der Weide (2003) related the amount of endogenous noise to both the mar-
ket impact of agents, and the correlation between agent’s decisions. The effective number of
agents (which is inversely proportional to the variance of endogenous noise) is given by neff =(∑n

i=1 w
2
i + ρ

∑
i

∑
j 6=i wiwj

)
where n is the total number of agents, {wi} represent their market im-

pacts, and where ρ is the correlation between agent’s beliefs. Taking equal weights, wi = 1
n , and letting

n tend to infinity as we do here, only leaves neff = ρ−1.
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describe the same ARIMA(0,1,1) model, the reduction from four to two parameters
shows that the first representation was over-parameterized. The original (behavioral)
model parameters can therefore not be identified all independently. For an introduc-
tion to ARIMA and related models we refer to Mills (1999).

It is worth noting that we have established a link between behavioral finance and
econometric modelling. As a direct result, one can associate the parameters from the
econometric model with economically relevant and/or behavioral quantities. In this
particular example, the scale of the endogenous noise appears in the econometric
model as the product σλ of the dispersion σ of the beliefs distribution and the herding
parameter λ, while ρ measures the size of the exogenous noise.

3.2 A-synchronous updating

So far, as is also common in economic dynamic models based on discrete choice, we
have assumed implicitly that the time scale on which agents re-evaluate strategies is
short with respect to the trading time. It seems reasonable to assume that in the ab-
sence of costs for evaluating and updating beliefs, every agent will indeed decide to
update every period. However, if updating is either time consuming or costly, agents
are likely to update less frequently. Hong et al. (2000) found empirical evidence sup-
porting this view. In their empirical study they concluded that inexperienced analysts
revise their forecasts more frequently than experienced analysts.

In general, if the time scales on which agents review strategies is longer in prac-
tice than the clock rate at which prices/exchange rates are quoted, the dynamics of
both prices and the distribution of beliefs will be affected. Indeed, Brock and LeBaron
(1996) find that time series with more realistic properties, such as strong persistence
of volatility, are obtained in the case of less frequent updating. The effects of the time
scale for evaluations can be incorporated in the model in several ways. One might take
the approach of Brock and LeBaron (1996) where all agents update their beliefs all at
once with a certain fixed probability per time unit.

An alternative approach, which we will follow here, is to assign a probability δ that
individual agents do not update their beliefs, and a probability 1 − δ that individual
agents do update their belief, at each time step. The latter is generally more difficult
to implement, since it implies that the beliefs distribution becomes a mixture with
weight δ on the old utility function, and 1− δ on the new, that is,

φt(θ) = δφt−1(θ) + (1− δ)φ̃t(θ)

φ̃t(θ) ∼ eβUt(θ) ∼ eβ(1−α)πt(θ)[φ̃t(θ)]
1−α.

(16)

Here φ̃t(θ) represents the up-to-date distribution of choices that would be made based
on information up to the recent past, while the actual beliefs distribution φt(θ) is still
partly based on old information. In simple cases, however, where the mean and vari-
ance of the mixture depend on the past utility only through the previous mean and
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variance, a closed form updating rule for the new mean and variance can still be given.
This is demonstrated in the following example.

The average belief and the dispersion of beliefs among the agents that have de-
cided to update are denoted by {µt, σ

2
t }, where σ2

t = σ2 is still constant over time. The
average and the dispersion of beliefs for the entire population is now denoted by µδ,t

and σ2
δ,t. Using Eq.(16) it can be verified that the dynamics of the first two moments of

the beliefs distribution is now governed by:

µδ,t = δµδ,t−1 + (1− δ)µt(
µ2

δ,t + σ2
δ,t

)
= δ

(
µ2

δ,t−1 + σ2
δ,t−1

)
+ (1− δ) (µ2

t + σ2) ,
(17)

where as before (Eq. 8), we have:

µt = αµt−1 + (1− α)xt. (18)

If we take squares on both sides of the first relation in Eq. (17) and subtract both re-
lations to eliminate µ2

δ,t, we find the following dynamics for the dispersion of beliefs
σ2

δ,t:
σ2

δ,t = σ2 + δ
(
σ2

δ,t−1 − σ2
)

+ δ (1− δ) (µt − µδ,t−1)
2 . (19)

Thus the dispersion of beliefs exhibits fluctuations when agents do not move together,
even when the dispersion of beliefs among those who adapt is constant in each period.
The movements are driven by the differences in average beliefs between those who
decide to adapt and those who wait.

The time evolution for the price is now described by the following analogue of
Eq. (12):

xt = µδ,t−1 + λσδ,t−1ut, (20)

where λ is our measure for herding and σδ,t−1 is the time varying standard deviation
of the beliefs distribution. Let us first focus on the average beliefs {µt, µδ,t}. Note that
Eqs (17) and (18) give, respectively,

(1− δ)µt = µδ,t − δµδ,t−1

and
(1− δ)µt = α (1− δ)µt−1 + (1− α) (1− δ)xt,

which together yield:

µδ,t − δµδ,t−1 = α (µδ,t−1 − δµδ,t−2) + (1− α) (1− δ)xt.

If we substitute µδ,t = xt+1 − (λσδ,tut+1) (Eq. 20), and rearrange terms, we obtain:

∆xt = αδ∆xt−1 + λ (σδ,t−1ut − (α+ δ)σδ,t−2ut−1 + αδσδ,t−3ut−2) ,

where, as before, {ut}, is again a sequence of IID standard normal random variables.
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For positive memory (α > 0) and a-synchronous updating (δ > 0), the dynamics of
the differences {∆xt} is described by an ARMA(1,2) process. Interestingly, and in con-
trast with our previous example, the (conditional) variance of the disturbances is no
longer constant. The conditional variance is proportional to the dispersion of beliefs,
which now exhibits endogenous fluctuations. Intuitively, these fluctuations in the de-
gree of heterogeneity can be ascribed to the differences in opinion between those who
decide to update their beliefs and those who believe that updating can wait. According
to Eq. (19), the dynamics of heterogeneity is described by an autoregressive process
of order one, from which one may correctly expect a GARCH(1,1) model to emerge for
the conditional variances. For clarity of exposition we set memory to zero i.e. α = 0,
so that the initial ARMA(1,2) process for {∆xt} is stripped down to a MA(1) process:

∆xt = λσδ,t−1ut − λδσδ,t−2ut−1

≡ εt − δεt−1
(21)

where the conditional variance ht = Vart(εt) = λ2σ2
δ,t−1 is updated according to:

ht = (1− δ)λ2σ2 + δ(1− δ)λ2ε2t−1 + δht−1, (22)

where we have used Eq. (19) together with the fact that for α = 0, Eq. (18) implies
µt = xt, so that Eq. (20) gives µt − µδ,t−1 = xt − µδ,t−1 = ε2t−1. Because 0 < λ2 < 1 a given
GARCH parameter δ implies an upper limit of δ(1 − δ) for the ARCH parameter. Note
that the sum s = δ+ λ2δ(1− δ) of the ARCH and GARCH parameters satisfies 0 < s < 1
for 0 < δ < 1, so that the resulting GARCH process is stable.

3.3 Heterogeneity in memory

In this section we consider the third and final behavioral extension of the benchmark
model: heterogeneity in memory. As the diversity in future time horizons seems rele-
vant, also the diversity in past time horizons may play an important role in the co-
evolution of prices and beliefs. With past time horizons we refer to the history of
price observations used to test candidates for future trading. Agents who are more
concerned with price behaviour on the short-term are more likely to compare perfor-
mances over a smaller sample of recent observations than agents who have a clear
interest in the long-term dynamics. Another reason for agents to use small memory
parameters might be that they believe that the world they live in is inherently non-
stationary, and only recent performances can be considered relevant.

Recently, a number of studies addressed the issue of different (future) time hori-
zons among agents (see e.g. Muller et al., 1997; Dacorogna, 2002). This generalization
is supported by the observation that agents trade at different frequencies. That is, the
population of traders often consists of both long-term traders and short-term traders.
Heterogeneity in agents’ time scale are believed to be responsible for a number of styl-
ized facts. Long term traders naturally focus on long-term behavior of prices thereby
neglecting fluctuations at the smallest time scale, whereas short-term traders are not
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concerned with price movements on the long-run but rather aim to exploit short term
predictability. The effects of the diversity in time horizons on price dynamics have
been studied by LeBaron (2001) in an artificial stock market model. He concluded that
the presence of heterogeneity in horizons may lead to an increase in return variability,
as well as volatility-volume relationships similar to those of actual markets. Dacorogna
(2002) found evidence supporting trading horizon heterogeneity to be responsible for
the slow decay of correlations found empirically.

In the case where the memory parameter α is distributed among agents according
to the pdf ν(α) with 0 < α < 1, the most recent beliefs distribution for each memory
type can be denoted by φ̃α,t(θ). The overall beliefs distribution is then given by

φt(θ) =

∫ 1

0

φ̃α,t(θ)ν(α) dα.

Again, in general it can be very difficult to derive the updating rules for φt(θ) analyti-
cally. However, if closed form expressions for the moments E[αk] with respect to ν(α)
are known, for example, it is possible to derive analytic expressions for some of the
moments, such as the mean µt and variance σ2

t , of the beliefs distribution. This is
demonstrated in some examples below.

Let αi denote the memory of agent i, and µi,t and σ2
i,t represent the first two mo-

ments of the beliefs distribution corresponding to agents with memory parameter αi.
In the case of synchronous updating, it can be verified that σ2

i,t = σ2 for all i, and that
the dynamics of the average {µt} over the entire population is described by:

µt =

∫ 1

0

µt(α)ν(α)dα. (23)

For the mean over agents with memory parameter αi we find

µi,t = αiµi,t−1 + (1− αi)xt

= (1− αi)
∞∑

k=0

αk
i xt−k

=
∞∑

k=0

αk
i xt−k −

∞∑
k=0

αk+1
i xt−k.

Taking expectations on both sides yields:

µt =
∞∑

k=0

Eν

[
αk
]
xt−k −

∞∑
k=0

Eν

[
αk+1

]
xt−k, (24)

where Eν [·] stands for the expectation with respect to the distribution of the memory
parameter among agents, which has pdf ν(α). For a large but finite number of agents,
endogenous noise enters the price equation via

xt = µt−1 + σtλut (25)
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where λ is a measure for the scale of endogenous noise which can either result from
the presence of herding or a finite number of agents, and {ut} a sequence of indepen-
dent random variables with mean zero and unit variance (cf. Eqs (12) and (20)). From
Eqs (24) and (25) we obtain:

xt =
∞∑

k=0

Eν

[
αk
]
xt−k−1 −

∞∑
k=0

Eν

[
αk+1

]
xt−k−1 + σtλut

= xt−1 −
∞∑

k=1

Eν

[
αk
]
(xt−k − xt−k−1) + σtλut.

It follows that the increments ∆xt = xt − xt−1 are described by:

∆xt = −
∞∑

k=1

Eν [α
k]∆xt−k + σtλut.

Upon defining L as the lag operator i.e. Lxt = xt−1, we can reformulate to obtain:(
∞∑

k=0

Eν

[
αk
]
Lk

)
∆xt = σtλut. (26)

If α is assumed to be uniformly distributed on [0, 1], then we have Eν

[
αk
]

= 1
1+k

(see e.g. Linden, 1999, who studies the aggregated AR(1) process with uniformly dis-
tributed coefficients). As the latter does not decay exponentially when k tends to in-
finity, we observe long memory behavior for {∆xt}. Thus for α ∼ UNIF (0, 1), we have:(

∞∑
k=0

Lk+1

k + 1

)
∆xt = Lσtλut,

or equivalently:
− ln (1− L) ∆xt = σt−1λut−1,

where the operator ln (1− L) on the left hand side should be interpreted in terms of its
power series in L.

More generally, we may consider a memory parameter distributed according to a
BETA(a, b) distribution on (0, 1), with pdf

ν(α) =
Γ(a+ b)

Γ(a)Γ(b)
αa−1(1− α)b−1, 0 < α < 1.

The expectation Eν [α
k] can then be expressed as

Eν [α
k] =

Γ(a+ b)

Γ(a)

Γ(a+ k)

Γ(a+ b+ k)
.
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Although we will leave a detailed analysis of the dynamics for some of these more
general cases for future research, we will make some remarks here.

For a = d, b = 1− d, with d ∈ (0, 1), one finds

Eν [α
k]Lk =

Γ(k + d)

Γ(d)Γ(k + 1)
Lk.

Since these correspond to the terms of a Taylor expansion of (1 − L)−d around L = 0,
the sum in Eq. (26) can be written in terms of the following fractionally integrated
process:

(1− L)−d∆xt = σtλut.

Similar processes, when driven by IID normal innovations, are known as fractionally
integrated brownian motion. For d ∈ (0, 1

2
) the latter is invertible and stationary, and

the autocorrelation coefficients are negative (see Hosking, 1981), a property which is
commonly observed in exchange rate returns, for example. Although Hosking refers
to these processes as being short-memory, both the autocorrelation function and par-
tial autocorrelation function decay hyperbolically to zero. Therefore fractionally inte-
grated brownian motion is often referred to as being long-range dependent (see e.g.
Campbell et al., 1997). The fact that we find a related process is in line with the results
of Granger (1980), who showed that aggregation of simple processes with different
characteristic time scales can easily lead to long memory.

However, considering σt to be time independent would be an oversimplification.
Although the variance σ2

t of beliefs among agents using the same memory parameter
α converges to a constant σ2, the belief parameters θt for agents with different mem-
ory parameters α are centered around different values of µt, which depend on α. The
conditional variance of the θt for the population as a whole is therefore given by

σ2
t = σ2 + Varν(µt(α))

where the variance of µt(α) is taken with respect to the distribution ν(α) of the memory
parameter α among the population. For this variance one finds

Varν(µt(α)) = Varν

(
(1− α)

∑∞
k=0 α

kxt−k

)
= Eν

[(
(1− α)

∑∞
k=0 α

kxt−k

)2]− µ2
t ,

where, as before, µt is given by Eq. (23). The first term on the right hand side can
alternatively be expressed as

Eν

((1− α)
∞∑

k=0

αkxt−k

)2
 = Eν

[
(1− α)2

∞∑
m=0

αm

m∑
n=0

xt−nxt−m+n

]
.

Although this is a closed form expression of the second moment of µt(αi) with respect
to ν(α), it seems that this term cannot be expressed in a form which permits simple

18



recursive updating as new prices xt become available. It does however show that the
dispersion of beliefs among agents obeys a non-trivial time dependence in the pres-
ence of heterogeneity in memory, and that the second moment of the innovations
governing the price dynamics will exhibit a likewise complexity.

4 Empirical validation

As a framework for modelling the stochastic dynamics of prices and beliefs explic-
itly, the CBS aims to make insightful how the stylized facts of observed prices may be
traced back to the unobservable diversity of beliefs, and vice versa. In the previous
section we examined the specific role of three different behavioural aspects. By keep-
ing the basic CBS as simple as possible, the three extended behavioral models were
shown to relate directly to familiar econometric time-series models. The basis of the
models was found to be the ARIMA model. Interestingly, a-synchronous updating of
beliefs was found to translate into GARCH-type structure, and long range dependence
(or long memory) emerged for agents employing different time horizons in evaluating
past performance of beliefs (i.e. heterogeneity in memory).

As an immediate result, we find that the parameters of these well-known mod-
els from econometrics suddenly have an economic and behavioral interpretations at-
tached. Although tempting, interpreting these hidden behavioral parameters directly
from the data seems optimistic in this stage. We are aware of the fact that several
relevant behavioral model aspects and economic variables have been ignored. The
addition of relevant other features to the model is likely to affect the GARCH struc-
ture, or to alter the long range dependence. Our models do not capture, for example,
longer range effects as described by Taylor and Allen (1992). Note, however, that the
idea that the degree of fractional integration is a proxy for the degree of heterogeneity
in memory finds support in Dacorogna (2002).

In this light there is little interest in focusing on the exact values of the parameter
estimates. However, it will be interesting to see whether the signs of the MA coeffi-
cients and roughly the size of the GARCH parameters are both consistent with what is
predicted by the theory i.e. the stylized CBSes. Finding negative values for the memory
parameter, for example, is likely not to win support for our CBS. The predicted effects
of the behavioral assumptions are put to the test in this empirical validation. Focus is
in particular on the model obtained in the presence of a-synchronous updating (see
section 3.2, Eqs. 21 and 22). The ARCH and GARCH coefficients that emerge in that
example are given by δ(1− δ) and δ, respectively, where (1− δ) denotes the probability
for each agent to update his belief at any given period in time. This behavioural aspect
of the model thus predicts a relation between the ARCH and the GARCH coefficients,
which can be checked empirically. Moreover, the model predicts a negative MA(1) co-
efficient equal to−δ. Hereby we have set memory to zero, leaving us with a model that
is more tractable, but also with one degree of freedom less. Keep in mind, however,
that in the case of herding we also predicted a negative MA(1) coefficient, equal to −α
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Country MA(1) ARCH GARCH ARCHImplied
max

Belgium −0.05 0.17 0.24 0.18
Germany 0.00 0.15 0.60 0.24
Finland −0.05 0.05 0.95 0.05
France −0.03 0.05 0.91 0.08
Austria −0.03 0.06 0.90 0.09
Singapore −0.08 0.08 0.91 0.08

Table 1: Estimates of an MA(1) model with GARCH(1,1) disturbances for six exchanges rate
returns, and implied ARCH upper limit (last column). The predicted MA coefficient was −ψ
with ψ non-negative (Eq. 15), implying non-positive MA coefficients, as found in all cases.

(see Eq. 13).
The data used to illustrate the model are quotes from the foreign exchange market.

We consider the daily exchange rate of the US dollar against the local currencies of six
different countries. Five of these countries are European: Belgium, Germany, Finland,
France, and Austria, while the last is from South East Asia, namely Singapore. Let pt

denote the amount of US dollars one can buy for one unit of the local currency at time
t. Instead of absolute prices, however, we consider the daily logarithms i.e. xt = log pt,
so that ∆xt denotes the daily log return on the exchange rate. The sample period, from
5-11-1987 until 5-11-2002, includes a total of 3914 observations.

Table 1 reports the estimates of an MA(1) model with GARCH(1,1) disturbances for
all six of the exchanges rate returns. The first three columns list the actual estimates,
whereas the fourth column reports the implied upper limit for the ARCH coefficient
i.e. the upper limit implied by our behavioral model which predicts a relation between
the ARCH and GARCH coefficients (see Eq. 22, and the discussion following it). Ac-
cording to the latter equation, a GARCH coefficient of δ implies an ARCH coefficient
no larger than δ(1− δ). A first look at these results shows that the size of the estimated
ARCH effect indeed satisfies this criterion obtained in the case of a-synchronous up-
dating of beliefs. With only one degree of freedom, namely the extent to which beliefs
are updated in an a-synchronous fashion, it should not be surprising that the exact
size of the estimated MA coefficient is not consistent with the (G)ARCH parameters.
Apart from having set α to zero, the setup is also stylized in other respects. With that
in mind, it is encouraging to see that the signs of the estimated MA coefficient are also
consistent with what we would expect from the theory. In sum, in light of all limita-
tions, we consider the empirical validation successful and hope that it may open doors
to more informative empirical assessments by means of more sophisticated CBSes.

5 Concluding remarks

The purpose of this paper was to make insightful how certain behavioral features may
render some of the well-established stylized facts of observed prices. In order of treat-
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ment, we considered: (i) herd behaviour; (ii) a-synchronous updating of beliefs; and
(iii) heterogeneity in the time horizons (memory) of agents. The adopted framework
is that of the Continuous Beliefs System (CBS) (see Diks and van der Weide, 2003).
We used two qualities of a CBS that are particularly useful. First, it enables modelling
the evolution of the distribution of beliefs in an explicit fashion. Second, it does so
by relating the unpredictable nature of prices with that of the unpredictable nature
of individual preferences. In sum, we used the fact that a CBS allows for describing
the stochastic dynamics of both prices and beliefs explicitly by means of a Random
Dynamical System.

By keeping our benchmark CBS illustrative but deliberately simple, the stochastic
dynamics of each of the three behavioral models was shown to correspond directly to a
model well-known from time-series econometrics. We came across ARIMA, ARFIMA,
and GARCH. This marks our first result, as the stylized facts for which these models
are celebrated may now be traced back to the hidden features of beliefs which we hold
responsible. Here, the ultimate simplicity of the benchmark CBS helped us to isolate
the role of each of the three behavioural features considered.

As we summarize the results for the three models seperately, keep in mind that our
point of departure was a model in which the degree of heterogeneity is constant, and
where price dynamics is described by a random walk. For each behavioral extension
we investigated how it modifies both the dynamics of prices and that of heterogeneity.

The effect of herd behaviour is roughly that of reducing the number of agents in
the market. As such, it increases the amount of endogenous uncertainty, and thereby
the level of volatility. Moreover, it adds moving average structure, leading to an ARIMA
specification in levels or MA in differences. Notably, it does not alter the dynamics of
heterogeneity. The latter remains constant.

Fluctuations do enter the dynamics of heterogeneity when we allow agents to up-
date their beliefs at different frequencies. These fluctuations are found to be driven by
the differences in average beliefs between those who decide to evaluate and update,
and those who believe that updating can wait. If endogenous uncertainty persists in
the market, for example as a result of herd behaviour, a time-varying degree of het-
erogeneity results into a time-varying level of volatility. The extent of persistence in
volatility is governed by the likelihood that individual agents delay the updating of
their beliefs. This result finds support in an earlier study by Brock and LeBaron (1996),
who saw the persistence in volatility of simulated price returns rise to a more realistic
level when allowing for less frequent updating. Interestingly, we obtained an explicit
description of how the updating of beliefs interacts with the volatility process. For our
stylized but yet intuitive example we found the dynamics that to be exactly that of a
GARCH(1,1) model.

Heterogeneity in the time horizons (memory) of agents was found to enrich the
dynamics of both the first and second moment. Assuming a distribution in memory
rather than identical memory for each agent, we encountered one more stylized fact,
namely that of long-range dependence. Leaving aside the volatility process for a mo-
ment, taking a BETA(d, 1 − d) distribution for memory, we obtained the well- known
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fractionally integrated process documented by e.g. Hosking (1981) for the first mo-
ment. When delving into greater detail, we quickly stumbled upon greater complexity.
In particular, the degree of heterogeneity was found to move in mysterious ways. Al-
though the heterogeneity among those who employ identical memory is constant over
time, additional dispersion of opinions is present which can be attributed exclusively
to the fact that not all agents operate at the same time horizon. The latter does not
only add to the overall degree of heterogeneity, it was also found to be time-varying.

To understand the complexity, note that the supply of fluctuations is provided by
the dispersion of average beliefs across groups of agents that are operating at different
time horizons. As memory plays an important role in the updating of beliefs, we find
that the evolution of average beliefs for each of those groups of agents interacts differ-
ently with the price dynamics, given that their memories are different. Heterogeneity
being driven by the diversity of these evolutions, it requires aggregation of these dif-
ferent dynamics to obtain the dynamics of heterogeneity. The latter, although inter-
esting, easily becomes convoluted.

At the end of the paper we included a modest empirical validation to address the
intimate relation between our behavioural models and the more familiar models from
econometrics. As a corollary, the parameters of these time-series models now have
an economic and/or behavioural interpretation attached. For example, our stylized
model predicts a relation between the ARCH and GARCH parameters. Merely as a
‘reality check’, we verified whether both that relation, and the signs of the other coef-
ficients, finds support in the empirical data. In light of all simplifications, we consider
the empirical validation successful, and hope that more informative empirical assess-
ments by means of more sophisticated CBSes can be made in the future.

As a final remark we would like to comment on the difference with the recently
proposed LTL approach of Brock et al. (2003). Although a CBS is more explicit in terms
of the beliefs distribution, the price dynamics of a CBS and an LTL are closely related.
(For a more elaborate comparison, see Diks and van der Weide (2003).) In case the
opportunity function ϕ(θ) (see footnote 2) is normalizable, the LTL coincides with the
deterministic part of the corresponding CBS. However, there are two key differences.
For one, it is not clear how an LTL can be set up with a non-normalizable opportunity
function (which for an LTL corresponds to the pdf according to which strategies are
drawn at random). More importantly, an LTL is a deterministic dynamical system by
construction, and up until now not tailored to dealing with endogenous randomness.
It is exactly the associated stochastic dynamics that plays a leading role in this paper.
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