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1. Introduction 

Retail chains, which operate a chain of stores or outlets, account for the majority of all retail 

sales (Jones and Simmons, 1990).  Retail chains are common throughout the retailing 

industry.  The largest retail chains are department stores and supermarkets.  Taken together, 

all shops or outlets of a certain retail chain usually have a regional, national or international 

geographical coverage.  The success of retail chains is due to their easy recognition by 

customers and the realization of economies of scale through market power in purchasing, 

more efficient and effective marketing and advertising, and lower costs in distribution.  Stores 

within a chain share the same façade, shop format and pricing policy.  Typically, if a retail 

chain owns its own shops, prices are set at the central firm level and are the same for all 

outlets within a certain geographical scope (e.g. national level).  For example, IKEA uses a 

national catalogue for its furniture, where nationwide prices are quoted, and also clothing 

chains such as H&M and C&A have a uniform pricing policy for all their shops.1,2 

Retail chains invest heavily in the attractiveness of their concept, and with some success.  

Consumers clearly have different preferences concerning shops belonging to different chains, 

although the products sold in these different chains may be very similar from a more 

technological point of view.  Thus, outlets are homogeneous when owned by the same firm, 

but they are heterogeneous across firms. 

The location of stores or outlets can be modeled as a linear or circular city problem (as in 

Hotelling (1929) or Salop (1979)), with three main differences.  First, companies may have 

                                                                          

1 An exception to this general pricing rule is that individual shops may decide on the prices for their 
sale articles to clear their stock. 
2 Retail chains not always own all of their shops, with franchising as an important alternative.  
Contrary to retail chains that own their own shops, a franchisor (such as McDonalds or Shell) may 
legally not restrict the determination of sale prices by franchisees, but may recommend sale prices. 
(this legislation is stipulated for the European Union in Commission Regulation (EEC) No 4087/88 of 
30 November 1988 on the application of Article 85(3) of the Treaty to categories of franchise 
agreements (Official Journal L 359, 28/12/1988, pp. 46-52).  In practice, however, the result is that 
prices are still quite homogenous across outlets.  Most customers will even not be aware of any 
difference in prices, especially due to the similarity in shop format and products. 
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several outlets; each with its own endogenously determined location.  Second, within a chain 

outlets are homogenous, but across chains they are heterogeneous.  Third, firms’ prices are 

identical across outlets, i.e., all outlets of one firm charge the same price.  In this paper, we 

modify the circular city model to accommodate these three features mentioned above in order 

to analyze firms’ choice of outlet locations and pricing policy. 

The analysis of multi-store location and competition issues has a troublesome history in 

the economics literature.  Teitz (1968) introduced multi-store competition in Hotelling’s 

original model, and showed that no pure strategy equilibrium exists in the firms’ location 

decisions.  Subsequently, Martinez-Giralt and Neven (1988) using the assumption of 

quadratic transportation cost as introduced by d'Aspremont et al. (1979), obtained an 

equilibrium in which firms agglomerate all their outlets at the same point and at opposite ends 

of the market.3  Hence, in their model neither firm will open more than one store.  Since 

competition between firms with multiple outlets is very common indeed, the outcomes of the 

horizontal differentiation models of Teitz (1968) and Martinez-Giralt and Neven (1988) are 

difficult to accept.  Recently, Pal and Sarkar (2002) approached the issue of multi-store 

competition in a completely different way.  Instead of having consumers choosing which 

outlet to visit taking the different prices and locations into account, they model a situation 

where firms choose the amount they want to sell at each point on the circle assuming Cournot 

competition at each point.  Moreover, the firms bring the products to the consumers’ doors4 

and the question they ask is where the firms will locate their stores to minimize transportation 

costs. 

In analyzing the multiple store location decision issue, we go back to the original model 

of Salop and have consumers buy from the (nearest) outlet they prefer the most.  Firms’ 
                                                                          

3 Martinez-Giralt and Neven (1988) assume that each outlet can choose its own price.  It is easy to see, 
however, that introducing the restriction in their model that all outlets of one firm charge the same 
price, does not affect the results they obtain. 
4 This implicitly assumes that consumers cannot choose to buy at different prices at different points on 
the circle.  Hence, the Pal and Sarkar (2002) model is of a very different nature from the other models. 
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location and pricing decisions are modeled as a three-stage game where firms simultaneously 

choose the number of outlets in the first stage, their locations in the second stage and, 

subsequently, their prices in the third stage.5  Apart from the fact that firms can choose 

multiple outlets, we recognize the fact that consumers have heterogeneous preferences across 

chains even if these chains’ outlets charge identical prices and locate at the same spot.  In 

modeling this second (exogenous) dimension of product differentiation, we follow De Palma 

et al. (1985).6  There are different ways to interpret this assumption.  One interpretation, due 

to De Palma et al. (1985) is that sellers are unable to establish the differences in customers’ 

tastes and the underlying variables.  Firms can at best determine the buying behavior of 

customers’ up to a probability distribution.  Another interpretation is that firms cannot adapt 

their product line (in the short-run) to take these differences in tastes into account.  We 

assume that consumers’ preferences for this second dimension of product differentiation are 

uniformly distributed.  This second dimension in our case includes different tastes for specific 

store formats such as façade, design and layout, image and product collection. 

The resulting model generates a number of interesting outcomes.  First, contrary to Teitz 

(1968) and Martinez-Giralt and Neven (1988), and due to the second dimension of 

heterogeneity, a pure strategy equilibrium where firms employ multiple outlets exists.  More 

strikingly, the location decisions of multi-store firms are completely independent of each 

other.  The spatial distribution of demand determines the specific locations.  If the distribution 

of demand along the circle is uniform, a firm will choose to locate stores equidistantly.  Any 

interlacing structure is an equilibrium, from head-to-head competition (where firms occupy 

the same locations) to perfect interlacing (where the difference between outlets belonging to 

                                                                          

5 It turns out that the analysis is not affected if the first two stages are analyzed as one stage; see also 
Section 3. 
6 They introduced this second dimension of product differentiation in order to restore Hotelling’s 
equilibrium of minimal differentiation that was invalidated by D'Aspremont et al. (1979).  Other 
literature that has analyzed two or more (endogenous) dimensions of product differentiation includes 
papers by Tabuchi (1994), Irmen and Thisse (1998) and Ansari et al. (1998). 
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different chains is maximal).  This indeterminacy result is due to the indifference of each firm 

with regard to the distance between his shops and those of his competitor.  If the distribution 

of demand is non-uniform, a firm differentiates the distance between stores according to the 

density of demand and, generally speaking, each chain has a unique optimal choice of 

locations.  Consequently, if firms have the same number of stores, competition will be head-

to-head.  It follows that market segmentation where each firm has a “home base” of clustered 

outlets cannot be an equilibrium outcome. 

We have two interesting findings in terms of the equilibrium prices that emerge.  First, 

equilibrium prices reflect the dominance of firms in terms of the number of outlets within 

their chain.  Being dominant in terms of the number of outlets, a firm is able to provide the 

nearest store to the larger part of the market.  The resulting market power is reflected in a 

higher price than the competitor’s price, the price difference being increasing in the difference 

in the number of outlets.  Second, and more surprisingly, provided firms have the same 

number of outlets the total number of stores in the market appears to have no influence on the 

pricing decision, i.e., firms charge the same prices independent of the actual number of 

outlets.  This finding, which may seem somewhat counterintuitive at first sight, is explained 

by the fact that when the outlets of a firm are located optimally, the number of outlets of the 

two firms determines the demand each firm faces.  If both competitors have the same number 

of outlets their demand functions are identical and do not depend on that number. 

Above we have already mentioned the literature that is most directly connected to the 

present paper.  If we acknowledge that product line competition is similar to multi-store 

competition, then there is another related literature that comes to the fore.  Brander and Eaton 

(1984) and Klemperer (1992) are important contributions in this field of product line 

competition that use similar models.  The main difference with our paper lies in the fact that 

these papers only analyze and compare exogenously given product lines.  On the other hand, 

contrary to us, they allow firms to charge different prices for the different brands.  
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Interestingly, Brander and Eaton (1984) show that market segmentation can be an equilibrium 

outcome.  Since this is against the gist of our results, it can be inferred that non-uniform 

pricing (across outlets or product lines) is a necessary condition for a segmented market 

structure to arise. 

The paper is organized as follows.  Section 2 describes the model.  The main results are 

given in Section 3 where we sequentially analyze location and pricing decisions for the model 

in the most general form.  Section 4 analyzes location decisions in three special cases.  This 

section provides more detailed results for the cases when distribution of consumers along the 

circle is uniform, when transportation costs are symmetrically linear and, finally, when both 

firms have chosen the same number of outlets in the first stage.  Section 5 provides a 

discussion on how many outlets a firm wants to choose and Section 6 concludes.  Proofs are 

contained in the Appendix. 

2. The Model 

Consider the following circular city model.  There are two sellers (chain owners), each of 

whom can build a chain of outlets.  The location of outlet k of firm i is denoted by  and the 

number of outlets of firm i is denoted by N

k
ix

i.  All locations of firm i on the circle are denoted 

by ( )iN
iii xx ,,1 K=x , i=1,2.  The length of the circle is normalized to be equal to 1.  There is a 

unit measure of consumers distributed around the circle in accordance with a differentiable 

distribution function µ(x), µ(0)=0, µ(1)=1.  All consumers are heterogeneous with respect to 

their preferences over the brands that are offered by the two different sellers.  This type of 

heterogeneity is modeled by assuming that at any given location [ )1,0∈x , where the density 

of buyers is ( )xf ( )xµ′≡ , consumers come in different types, denoted by y, and y is 

uniformly distributed over the range [-λ, λ].  The overall two-dimensional density function of 
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a type y at a location x is, therefore, given by ( ) ( )xfyx λ2
1,h = .  A consumer j of type yj 

whose location on the circle is xj gets a utility ( )( )11 ,xjxdtp −−  if he buys from seller 1 at 

price p1, where ( )ijx x,d  is the distance the consumer has to travel from his location xj to the 

closest location of seller i and t(d) is the buyer’s transportation costs.7  If the consumer buys 

from seller 2, however, his utility is given by ( )( ) jyjxdtp −−− 22 ,x

0>

.  Hence, a buyer of type 

y is willing to pay y (with y being positive or negative) more for the good of seller 1 than for 

the good of seller 2, ceteris paribus.  We assume that every buyer ought to buy a good from 

either of the two sellers and they buy from the seller where the buyer’s utility is maximized. 

′iI

( )( ) )xx 1, −=x

                              

Firms’ production costs are represented by the cost functions Ci(Di), where Di is the 

demand for firm i and C , .  In addition to the production costs, firms have to 

invest I

0>′i 0≥′′iC

i(Ni) in order to build a chain of Ni outlets, where , 0≥′′iI . We assume that 

investment costs Ii and operational costs Ci are not very high such that both firms are always 

willing to build at least one outlet.8 

Firms’ location and pricing decisions are modeled as a three-stage game where in the 

first stage firms simultaneously decide how many outlets to build, in the second stage they 

choose their locations and, in the third stage, having observed each other outlets’ locations, 

they simultaneously choose prices.  Firms maximize their profits. 

Given the sellers’ locations xi and prices pi, for any location  we define a 

marginal type y

[ )1,0∈x

*(x) as the consumer’s type who is indifferent between buying from either of 

the sellers.  All types y>y*(x) prefer buying from seller 1, while all types y<y*(x) prefer buying 

from seller 2.  The marginal type itself is determined by 

( )( ) (yxdtpdtp *
221 , −−−− x , 

                                            

7 We could easily add a reservation price to this utility function assuming that the reservation price is 
high enough so that consumers will always buy one of the products. 
8 In Section 5, we will make this assumption more precise. 
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and takes the following form: 

( ) ( )( ) ( )( )2121
* ,, xx xdtxdtppxy −+−= . 

We assume that ( ) [ λλ,* −∈xy ], i.e., λ is sufficiently large in comparison with the 

transportation costs.  This, in fact, implies that at every location x, there is an indifferent 

consumer.  Then, the measure of buyers at location x who prefer to buy from seller 1 is 

( )
( )

( ) ( )( ) ( ) ( ) ( )( ) (( )( )2121
* ,,

2
1

2
1,

*

xx xdtxdtppxfxyxfdyyxh
xy

+−−−=−=∫ λ
λ

λ
λ

λ

) . 

Hence, total demand for seller 1 becomes: 

( )
λλ 222

1,,, 2121
21211

TTppppD −
−

−
−=xx , (1) 

where , i=1,2.  T( ) ( )( ) ( )∫=
1

0
, dxxfxdtT iii xx i has a straightforward interpretation: it is simply 

the sum of the transportation cost of all consumers to travel to an outlet of firm i.  Finally, 

operational profit firm i gets is given by 

( ) iiiii DCDpTTpp −=2121 ,,, ( )π . (2) 

It should be noted that we have not made any specific assumptions about the shape of the 

transportation cost, the density of consumers along the circle and whether consumers can 

travel in both directions along the circle or there is a directional constraint.9  In the next 

section, we analyze the model in this general form.  The main assumption that is incorporated 

in this general model is the one with respect to the second dimension of consumer 

heterogeneity, namely that this heterogeneity of the preferences over brands is important 

enough (λ is large) and that consumers are distributed uniformly along this second dimension.  

Without these assumptions the analysis becomes technically very complicated. 

                                                                          

9 In some applications, such as television news scheduling and bus and airline scheduling it is natural 
to assume that consumers can only move forward to the next ‘selling point’.  Literature on these 
applications with directional constraints is quite recent and involves Cancian et al. (1995), Nilssen 
(1997), Salvanes at al. (1997), Nilssen and Sørgard (1998), and Lai (2001). 
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Figure 1.  Division of the total demand over the firms for the linear bidirectional 

transportation costs. 
Figure 1 gives, for some arbitrarily chosen parameter values, an illustration how demand 

is divided between the firms at given locations and prices for linear transportation costs when 

buyers can travel in either direction along the circle.10 

3. Location and Pricing Decisions: General Results 

In this section we analyze the last two stages of the model in its general form using backwards 

induction.  We first analyze the last, price competition stage of the game and derive Nash 

equilibrium prices for given N1 and N2 and given location choices.  Then we study the second 

stage of the game, where firms choose their locations. 

From the previous section we know that in the 3rd stage of the game demands are given 

by expression (1), where Ti depends only on the locations of firm i.  In a lemma stated and 
                                                                          

10 Non-linear transportation costs will generate similar pictures but with curved segments instead of 
straight lines. 
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proved in the Appendix we show that every subgame in the 3rd stage has a unique Nash 

equilibrium provided that λ is large enough. 

The main result of our paper can then be formulated as follows. 

Proposition 1.  For any number of outlets N1 and N2 chosen in the first stage the 

corresponding subgame has a subgame perfect Nash equilibrium.  This equilibrium is unique 

for all generic spatial distributions of buyers and has the following properties: 

a) Each firm chooses its locations in order to minimize the sum of the transportation costs 

of all consumers to travel to its outlets. 

b) The location choices of the two firms are in dominant strategies.  Moreover, equilibrium 

locations of a firm depend only on the number of outlets it has chosen in the first stage 

and do not depend on the number of outlets the other firm has. 

c) All locations of a firm are distinct, i.e., no two locations of the same firm coincide. 

d) The equilibrium price and profit of a firm are strictly increasing and bounded functions 

of its own number of outlets and strictly decreasing functions of the number of outlets of 

its rival. 

As it follows from equation (1), the number of outlets firms have and their locations 

affect firms’ profits only through T1 and T2.  It turns out that the profit of firm i monotonically 

decreases with respect to Ti.  Consequently, the firm chooses locations of its outlets that 

minimize the sum of transportation costs of all consumers Ti, as stated in part (a) of 

Proposition 1.  In order to understand the monotonic influence of Ti on profit πi, it is useful to 

disentangle the way in which a firm’s choice of locations affects its own profit.  First, firm’s 

profit πi directly and negatively depends on Ti.  We label this the direct effect.  Second, the 

choice of Ti strategically affects the second stage equilibrium prices  and  which, in 

turn, also affect firm’s profit π

* *
1p 2p

i.  This strategic or indirect effect of Ti on profit is positive. 
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It turns out that the direct effect always dominates the indirect effect.  Indeed, the direct 

effect accounts for extra demand a firm can get by shifting its demand curve upwards.  The 

indirect effect, on the other hand, accounts for a loss of demand due to the price reaction of 

the competing firm in order to partially recover the initial allocation of demand between the 

firms. 

An interesting consequence of having an equilibrium in dominant strategies (part (b) of 

Proposition 1) is that firms do not need to observe the choice of the number of outlets N1 and 

N2 made in the first stage.  Hence, even if both firms did not observe the number of outlets 

chosen in the first stage of the game, they would still choose the same locations.  This non-

observability of the outcomes is equivalent to simultaneity of choosing both the number of 

outlets and all their locations.  Consequently, Proposition 1 remains valid for the 

corresponding changes in the game structure. 

Similarly, even if one firm were able to observe the location choice of the other firm 

before choosing its own locations, it would still choose the same locations.  This availability 

of extra information is equivalent to making the second stage of the game sequential.  Thus, 

Proposition 1 remains valid also for this change in the game structure. 

The fact that generically no two locations coincide (i.e., part (c) of Proposition 1) is, at an 

intuitive level, a consequence of the fact that firms want to minimize the transportation costs 

of the consumers.  Two separate locations will in this sense always be better than two outlets 

on one location.  Part (d) of Proposition 1 is mainly explained by the fact that if a firm has 

more locations, consumers are (generally speaking) more keen to buy from that firm as 

transportation costs will be lower.  This increase in a firm’s demand curve translates itself into 

higher equilibrium prices and profits. 

It is difficult to characterize the location choices any further on the current level of 

generality.  In the next section we derive more detailed results in three special cases under 

more restrictive assumptions. 
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4. Equilibrium Locations and Prices: Three Special Cases 

We can derive some interesting properties of location choices and price decisions by making 

some specific assumptions with regard to distribution of consumers, transportation costs and 

number of outlets.  We begin the investigation of the equilibrium locations by assuming linear 

transportation cost.  Then we look at location decisions when consumers are uniformly 

distributed around the circle while keeping transportation costs general.  Finally, we show 

what happens if both firms have decided to build the same number of outlets for any 

distribution of consumers along the circle. 

Linear transportation costs 

When transportation costs are linear equilibrium locations exhibit the following local 

property: firms choose more outlets where more consumers agglomerate.  This result is 

formally stated and proved in the next proposition. 

Proposition 2.  Suppose that transportation costs are linear: t(d)=τd.  Then, for any two 

given outlet locations of firm i,  and , with exactly one intermediate outlet , the 

intermediate outlet is located closer to  than to  if, and only if, the average density of 

buyers in the interval 

1−k
ix 1+k

ix k
ix

−k
ix 1+k

ix1

( )k
ix 1−k

ix −k
i 2

1−  is higher than in the interval 

. 

( )k
ixx ,

( )( )k
i

k
i

k
i

k
i xxxx −+ +1

2
1,

Proposition 2 is a consequence of the fact that in the general model firms choose 

locations so as to minimize the aggregate transportation costs of the consumers.  When 

transportation costs are linear this intuitively implies that firms locate their outlets where there 

are more consumers.  If transportation costs were not linear, the equilibrium locations would 

have had a similar flavor, but then we would have to compare equilibrium location decisions 
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across different distributions of consumers, µ1(x) and µ2(x): if under µ1(x) a firm would have 

chosen the location of two of its outlets at certain spots and if the distribution density under 

µ2(x) would be higher between these two locations than under µ1(x), then the distance between 

these two locations would be smaller under µ2(x) than under µ1(x). 

Uniform spatial distribution 

We now shift our attention to the special case where consumers are uniformly distributed over 

the circle.  We will show that in this case, firms choose equidistant location structures. 

Proposition 3.  If consumers are uniformly distributed over the circle then all the subgame 

perfect equilibria have firms spread their outlets evenly over the circle.  This equilibrium is 

unique up to the choice of the first outlet of each firm. 

Since firms choose locations that minimize the sum of consumers’ transportation costs 

(see part (a) of Proposition 1), this ‘equidistant’ result for a uniform distribution is 

straightforward.  It also follows from Proposition 3 that if both firms have more than two 

outlets, a form of market segmentation where each firm has its own “home base” where they 

cluster their outlets together cannot be an equilibrium outcome.  When both firms have an 

equal number of outlets, outlets of the two firms have to alternate so that an interlacing 

structure emerges. 

Equal chain sizes 

We finally return to the generic distributions considered in the previous section and consider 

the special case where both firms have the same number of outlets, i.e., N1=N2=N.  

Proposition 1 implies that the two firms then choose the same locations for their outlets.  

Thus, firms will be competing head-to-head, i.e.,  and by the definition of Tkk xx 21 = i, T1=T2.  
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This, in turn, has an important implication as in this case the expression for demand in 

equation (1) simplifies into 










−
−=

−
−=

λ

λ

22
1

22
1

12
2

21
1

ppD

ppD
 

This shows that if both competitors have the same number of outlets their demand functions 

are identical and, more importantly, do not depend on that number.  Thus, the corresponding 

equilibrium prices and profits are insensitive to changes in the number of outlets of both firms 

N.  Firms charge the same prices if they have the same number of outlets, regardless of that 

number. 

5. On the Number of Outlets 

The only question that remains open now is the choice of the number of outlets in the first 

stage.  Substituting the optimal (minimized) ( )iii NT *=T  into the profit functions  

we get the reduced-form profit functions in the first stage: 

( )21
* ,TTiπ

( ) ( ) ( )( )2
*

2, NT1
*

1
*

21
** , NTNN ii ππ ≡ .  

In Section 2 we assumed that investment costs Ii and operational costs Ci are small enough so 

that both firms are always willing to build at least one outlet.  We can now make this 

assumption more precise.  Formally, we assume that ( ) ( ) 01,1 >−− ii IN**
iπ  for all N-i and 

i=1,2. 

Proposition 1 states that  decreases with N**
iπ -i and increases and is bounded with respect 

to Ni.  Thus: 

( ) ( ) ( ) ( )( )1,01,lim1,, ********
iiiiNiiiii TNNNN

i
−∞→− =<≤ ππππ . 

In other words,  is bounded uniformly.  On the other hand, investment costs  are 

convex and increasing, thus unbounded.  This implies that 

**
iπ ( ii NI )
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( ) ( )( ) −∞=−−∞→ iiiiiN
NINN

i

,lim **π , 

where the convergence is uniform.  That is, no firm is going to build infinitely many outlets.  

Hence, there exists a number  such that building more than  outlets and getting negative 

pay-off, is strictly dominated by building 1 outlet and getting positive pay-off.  This implies, 

in turn, that the strategy space can be safely assumed to be finite and, consequently, the 

reduced form game always has a Nash equilibrium (possibly in mixed strategies).  This is the 

content of the following proposition. 

N̂ N̂

Proposition 4.  The game always has a subgame perfect Nash equilibrium that can involve 

mixed strategies in the first stage.  In equilibrium both firms build a finite number of outlets. 

Unfortunately, we cannot be more specific than this about the number of outlets chosen 

by firms in equilibrium.  There may be asymmetric equilibria where one firm has more 

locations than the other.  Also, due to the fact that Ni has to be an integer number, it may 

happen that a pure strategy equilibrium does not exist and that the only equilibrium number of 

locations is in mixed strategies. 

6. Conclusion 

In this paper, we have analyzed a model where firms choose multiple outlets and uniform 

prices across outlets to compete in the market place.  The products the firms produce are 

horizontally differentiated.  Contrary to conventional wisdom in this field (see, e.g, Teitz 

(1968) and Martinez-Giralt and Neven (1988)), we obtain that a pure strategy subgame 

perfect Nash equilibrium where firms choose different locations for each outlet exists.  

Moreover, for all generic distribution functions, this equilibrium is unique.  Firms, 

independent from each other, choose locations that minimize transportation costs.  When 
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firms choose an equal number of outlets, they choose identical locations.  Consequently, 

market segmentation can never be an equilibrium.  Firms that dominate in terms of number of 

locations charge higher prices and if the two firms have an identical number of outlets, 

equilibrium market prices are independent of the number of outlets chosen. 
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Appendix 

Lemma 1.  For any locations x1 and x2 chosen in stage 2 and for any cost functions Ci the 

third stage subgame has a unique Nash equilibrium in prices if λ is taken to be large enough.  

Equilibrium prices are continuously differentiable functions of T1 and T2. 

Proof of Lemma 1 

Maximizing firm i’s profit (2) with respect to pi yields ( ) (( ) 0)~~~2 =′+− iiiiii pDCppDλ .  This 

first order condition defines a unique reaction function ( )21,,~ TTpp ii −  of firm i.  To this end 

define a function ( )11 pF  as ( ) ( ) ( )( )111 pDC11111 2 ppDpF ′+−≡ λ .  It is easy to see that 

( ) ( ) ) 0020 11 >+= CDF ( )( 011′ Dλ  as ( )01D  must be positive at zero prices for the firm to make 

non-negative profits.  Then, as the demand D1 is linear in p1, there exists a price 01 >p  such 

that ( ) 011 =pD . Hence, it must be true that ( ) ( ) 01 <− p0111 ′= CpF , otherwise the firm is again 

would make losses.  Finally, F1 is a decreasing function as ( )2 112
1 ′′ 0<1 −−=′ DCλF .  Thus, 

there exists a unique reaction function ( ) ( )1212 ,0,,1
~ pTT ∈pp  satisfying ( ) 0~

11 =pF . 

Similarly, the second reaction function is given by ( ) 0~
22 =pF , where 

( ) ( 222222 2 DCpDpF ′+−≡ )λ .  For every pair (T1, T2) the third stage Nash equilibrium in 

prices ( )*
2

*
1 , pp  is determined by the following system: 

( ) ( )
( ) ( )

( )
( )





′+=

′+=
⇒







=

=

222
*
2

111
*
1

21
*
1221

*
2

21
*
2121

*
1

2

2

,,~,

,,~,

DCDp

DCDp

TTppTTp

TTppTTp

λ

λ
 (A.1) 

We will show that for all sufficiently large values of λ this system has a unique solution.  To 

this end we rewrite the system using λγ 1= ,  and the definition of the demands D*
ii pz γ= i: 
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( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )




−+=′−−−+=

−+=′−−−+=

2122
1

12
1

22122
1

12
1

2

2112
1

22
1

11212
1

22
1

1

,11
,11
zzRzDCTTzz
zzRzDCTTzz

γγ
γγ

, 

where Ri and all their first order partials are finite.  At γ=0 the system has a unique solution 

.  On the other hand, the solution z( ) ( ) 100 21 == zz i continuously depends on γ at γ=0 as: 

( ) ( ) ( )( )
( ) ( ) ( )( )




+−=′

+−=′

1,121,10
1,121,10

213
1

2

123
1

1

RRz
RRz

 

Hence, there exits a Λ such that for all Λ>λ  the system has a unique solution. 

In order to show that equilibrium prices ( )21
*
1 ,TTp  are continuously differentiable one 

can differentiate (A.1) and solve for partials 
1

*
1

T
p
∂
∂  and 

1

*
2

T
p
∂
∂ : 

( )
( ) ( )

( )
( ) ( )










′′+′′+
′′+

=
∂
∂

′′+′′+
′′+

−=
∂
∂

1122

22

1

*
2

1122

11

1

*
1

6
2

6
2

DCDC
DC

T
p

DCDC
DC

T
p

λ
λ

λ
λ

, (A.2) 

that ends the proof. ■ 

Proof of Proposition 1 

We first show that if equilibrium exists it must satisfy properties (a), (b) and (c) of 

Proposition 1.  Then, the existence of dominant strategies for both firms guarantees the 

existence of subgame perfect Nash equilibrium.  Finally, we prove its uniqueness and 

establish part (d) of Proposition 1. 

In any subgame (N1, N2) the locations x1 and x2 hence, T1 and T2 as well, are chosen in 

the second stage so as to maximize the reduced-form profit functions 

( ) ( ) ( )( )2121
*
221

*
121

* ,,,,,, TTTTpTTpTT ii ππ ≡ . 

Differentiating  w.r.t. T*
1π 1 and taking into account (A.1) and (A.2) yields: 
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( )
( ) ( ) 0

6
4 *

1*
11

*
22

*
11

1

*
1 <

′′+′′+
′′+

−=
∂
∂ D

DCDC
DC

T λ
λπ . 

It follows that each firm minimizes the sum of the transportation cost of all consumers to 

travel to one of its outlets.  Each firm thus chooses its locations to minimize the 

corresponding Ti and part (a) of Proposition 1 is proven. 

It is easily seen now that due to the monotonicity of  w.r.t. T*
1π 1 firm 1 has a dominant 

strategy, namely choosing locations in such a way that T1 is minimized irrespective of T2.  

The existence of the optimal location structure follows from the facts that, first, the reduced-

form profit function  is continuous in T( 21
*
1 ,TTπ ) 1, which, in turn, continuously depends on x1 

and, second, the feasible set for x1 is compact.  Thus, part (b) of Proposition 1 is proven. 

In order to show that all equilibrium locations are distinct we setup the problem of 

minimization of T1 and derive the first order conditions.  In case of no directional constraints 

they take the following form: 

( ) ( )
( )

( ) ( )
( )

∫∫
−+

−−

+

−

−′=−′

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

xxx

x

k
i

x

xxx

k
i dxxfxxtdxxfxxt

1
2
1

1
2
1

, k=1,…,Ni, (A.3) 

It is easily seen that if  for some k then it must hold for all k=1,…,N1+= k
i

k
i xx i, which is 

impossible.  In case of directional constraints the arguments are the same.  Thus, no two 

locations coincide and part (c) of Proposition 1 is proven. 

In order to proof the uniqueness of the subgame perfect Nash equilibrium for all generic 

distributions we proceed in two steps.  First, we show that every solution to (A.3) is an 

isolated solution, i.e., the solution is locally unique.11  Thus, there can be generically only a 

finite number of solutions.  Then, we show that if a given distribution µ is such that (A.3) has 

multiple solutions, each one generating the same profit level to the firm, then the profit 

generated by each solution has different sensitivity to all generic changes of the distribution.  

                                                                          

11 The arguments can be easily adjusted for the directional constraints case. 
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This implies that in case of multiple local maxima, all of them yield different profits and, 

therefore, generically there exists a unique location pattern that maximizes the firm’s profit. 

The F.O.C. (A.3) forms a system of equations ( ) 0xF =i .  The Jacobian matrix of F has 

the following structure: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( )

( )

( ) ( )
( ) ( )















+=′−

−=′

=−′′+′+′−′

=
∂
∂

++

−−

+

−

++−−

+−

+−

+

+

+−+− ∫

otherwise ,0
1 if ,

1 if ,-

 if ,02

222
1

222
1

22222
1

11

11

1
2
1

1
2
1

1111

kjft

kjft

kjdxxtftftxft

x
F

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

xxxx

xxxx

xx

xx

k
i

xxxxxxxxk
i

k
i

j

µ

 

It is clearly seen that ( )k
ixf , i.e., the distribution density at the exact location , affects only 

the corresponding diagonal entry in the Jacobian matrix of F and has no influence on any 

other entries.  Hence, the Jacobian generically has full rank and, therefore, every solution of 

 is locally unique. 

k
ix

( ) 0xF =i

Now let us suppose that there are multiple solutions of ( ) 0xF =i .  In particular, let  

and  be two solutions, i.e., 

ix̂

ix̂̂ ( ) ( ) 0xFxF == ii
ˆ̂ˆ  provided x .  Both locations generate the 

following total transportation costs (in case of no directional constraint): 

ix̂i
ˆ̂ ≠

( ) ( )( ) ( )∫=
1

0

ˆ,ˆ dxxfxdtT iii xx  and ( ) ( )( ) ( )∫=
1

0

ˆ̂,ˆ̂ dxxfxdtT iii xx . 

Suppose that µ is such that ( ) ( )iiii T xx ˆ̂ˆ =T , i.e., this two solutions  and x  generate the same 

level of transportation costs, thus, profits as well.  Let us consider the following perturbation 

of the distribution density function: 

ix̂ i
ˆ̂

( ) ( )xhxf α+ , where h is an arbitrary function satisfying 

.  Then, both T( ) 0
1

0

=∫ dxxh i become functions of α.  Their derivatives α are given by: 
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( ) ( )( ) ( )

( ) ( )( ) ( )











=

=

∫

∫
1

0

1

0

ˆ̂,ˆ̂

,ˆ,ˆ

dxxhxdtT
d
d

dxxhxdtT
d
d

iii

iii

xx

xx

α

α
 

This is so because  and  are maximizors of ix̂ ix̂̂ ( )ii xT  (envelope theorem).  Then, 

( ) ( )( ) ( )( ) ( )( )( ) ( )∫ −=−
1

0

ˆ̂,ˆ,ˆ̂ˆ dxxhxdtxdtTT
d
d

iiiiii xxxx
α

 

The last expression generically is not equal to zero as x  and h is an arbitrary function.  

Thus, every locally optimal location pattern generates generically different profit levels and, 

therefore, there exists a unique equilibrium location that maximizes profit. 

ii x̂ˆ̂ ≠

Finally, we derive the relations between the size of a chain, prices and profits.  One may 

verify that T  strictly decreases with N( ii x̂ ) i.  Indeed, adding up one additional outlet to the 

firm’s locations leads to a strictly higher profit due to the possibility of imitating the “old” 

pattern with two coinciding outlets, which is strictly sub-optimal.  Then, in the proof of 

Lemma 1 we already derived that 0
1

*
1 <

∂
∂

T
p  and 0

1

*
2 >

∂
∂

T
p , hence,  strictly increases and  

strictly decreases with N

*
ip *

ip−

i.  Similarly, 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )












>
′′+′′+

′′+
=








+

∂
∂

=
∂
∂

<
′′+′′+

′′+
−=








−

∂
∂

=
∂
∂

0,
6

4,1

0,
6

4,1

21
*
2*

22
*
11

*
22

21
*
2

1

*
1

1

*
2

21
*
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22
*
11

*
11

21
*
1

1

*
2

1

*
1

TTD
DCDC

DCTTD
T
p

T

TTD
DCDC

DCTTD
T
p

T

λ
λπ

λ
λπ

, 

hence,  strictly increases and  strictly decreases with N*
iπ

*
i−π i. 

Finally, as the F.O.C. (A.3) implies that ( ) 0lim 1 =− −

∞→

k
i

k
iN

xx
i

 for all k, the following limits 

can be readily shown: ( ) 0ˆlim =
∞→ iN

T
i

ix , ( )( ) ( iiiii TpTT −− = ,0,ˆ *x )iN
p

i ∞→
lim *  and 

( )( ) ( )iiiiiiN
TTT

i
−−∞→

= ,0,ˆlim ** ππ x , that ends the proof of Proposition 1. ■ 
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Proof of Proposition 2 

Rewriting (A.3) for t(d)=τd yields: 

( )
( )

( )
( )

∫∫
−+

−−

+

−

=

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

xxx

x

x

xxx

dxxfdxxf
1

2
1

1
2
1

. 

Writing ( ba
f

, )  for the average density over an interval ( )ba, , results in 

( ) ( )( ) ( ) ( )( )k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i xxxx

k
i

k
ixxxx

k
i

k
i fxxfxx

−+
+

−−
−

+− −=− 1
2
11

2
1 ,

1
,

1 . 

The statement of the proposition then follows immediately. ■ 

Proof of Proposition 3 

Rewriting (A.3) for f(x)=1 yields ( )( ) ( )( )k
i

k
i

k
i

k
i xxtxxt −=−′ +− 1

2
11

2
1 .  It can be easily verified that 

in the case of the directional constraint, when buyers have to travel only clockwise to the 

nearest outlet of the seller, (A.3) takes the following form: ( ) ( )1−−=− k
i

k
i

k
i xxtx1+k

ixt . 

As , it is easy to see that 0>′t ( )11
2
1 −+ −= k

i
k
i

k
i xxx  in both cases.  Hence, an equidistant 

location structure is the unique optimum for any given Ni. ■ 
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