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Abstract

A cooperative game with transferable utilities, or simply a TU-game, describes a situation
in which players can obtain certain payoffs by cooperation. A solution mapping for these
games is a mapping which assigns to every game a set of payoff distributions over the
players in the game. Well-known solution mappings are the Core and the Weber set. In
this paper we consider the mapping assigning to every game the Harsanyi set being the
set of payoff vectors obtained by all possible distributions of the Harsanyi dividends of a
coalition amongst its members. We discuss the structure and properties of this mapping
and show how the Harsanyi set is related to the Core and Weber set. We also character-
ize the Harsanyi mapping as the unique mapping satisfying a set of six axioms. Finally
we discuss some properties of the Harsanyi Imputation set, being the individally rational

subset of the Harsanyi set.
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1 Introduction

A situation in which a finite set of players can obtain certain payoffs by cooperation can
be described by a cooperative game with transferable utilities, or simply a TU-game, being
a pair (N,v), where N = {1,...,n} is a finite set of n players and v:2Y¥ — R is a
characteristic function on N such that v()) = 0. For any coalition S C N, v(S) is the
worth of coalition S, i.e. the members of coalition S can obtain a total payoff of v(S) by
agreeing to cooperate.

A solution vector of an n-person TU-game is an n-dimensional vector giving a payoff
to any player i € N. A solution function is a function f that assigns a solution vector
f(v) € R" to any game (V,v). A soluton function f efficiently distributes the worth of
the grand coalition if for any game the total payoff it assigns to the players is equal to
the worth v(N) of the ‘grand coalition’, i.e. Y ;cn fi(v) = v(N) for any game (N, v). An
example of an efficient solution function is the Shapley value, see Shapley [10], being the
average of the so-called marginal value vectors.

A solution mapping is a mapping M that assigns to every game (N,v) a set of
solution vectors in IR". Well-known solution mappings are the Core and the Weber set.
The Core of a game, introduced in game theory by Gillies [2] is the set of all undominated
payoff vectors, i.e. at any payoff vector in the Core each coalition gets at least its own
value. The Weber set, see Weber [18], is defined as the convex hull of the marginal value
vectors and contains the Core and the Shapley value. For the subset of so-called convex
games the Core and Weber set coincide.

In this paper we discuss extensively the properties of the solution mapping assigning
to each TU-game the set of all possible distributions of the so-called Harsanyi dividends,
see Harsanyi [4], [5], of the coalitions amongst their members. For this reason we call this
mapping the Harsanyi mapping and the set of solutions assigned to a game the Harsanyi
set. In the seventies this set and related concepts have been introduced independently by
Vasil’ev [12], [13] (both in Russian) and [14], and by Hammer, Peled and Sorensen [3].
Recently this set of solutions has been discussed by Derks, Haller and Peters [1] as the
so-called selectope, being the convex hull of all so-called selector values. In Derks et al this
selectope or Harsanyi set is studied from a set-theoretic point of view and from a value-
theoretic point of view. In this paper we consider both the Harsanyi set and the Harsanyi
Imputation set, being the subset of all individually rational payoff vectors in the Harsanyi
set.

The purpose of this paper is twofold. From a historical viewpoint we recall several
results already stated in the 1975, 1978 and 1981 papers of Vasil’ev. It shows that some
of the results given in Derks et al [1] can be found already in these papers. As mentioned

by Derks et al, some of these results can also be found in Hammer et al [3]. In particular,



these results show that the Harsanyi set has a Core-type structure in the sense that the
Harsanyi set of a game (N,v) is equal to the Core of a well-defined corresponding game,
the so-called Harsanyi mingame of (IV, v).

Besides these historical notes the paper also contains several new results. First,
for any coalition S C N, we provide sharp lower and upper bounds for the minimum,
respectively maximum payoff that coalition S can obtain at a payoff vector in the Harsanyi
set. It shows that a coalition S obtains at least the worth of S in the Harsanyi mingame
and at most the worth of S in the so-called Harsanyi maxgame. Second, we discuss
extensively the relation between the Harsanyi set and the Weber set. In particular we
characterize the Weber set as a subset of the Harsanyi set, in the sense that we show that
we obtain the Weber set when we put certain restrictions on the possible distributions of
the Harsanyi dividends of the coalitions amongst their members. Recall that the Harsanyi
set is obtained when we allow for all possible distributions. To obtain this characterization
we had to prove several results which are interesting in itself. The main result in this
respect characterizes the extreme points of a certain polyhedron in the vector space @,
where () is the set all possible weight systems, such that each weight system in () gives a
distribution of the worth of the grand coalition by assigning to each player the weighted
sum of her marginal values. Third, we prove a result already mentioned in Vasil’ev [14],
namely that the Harsanyi mapping is the only solution mapping satisfying a set of six
axioms, namely convexity, efficiency, dummy player property, sign preserving property,
individually consistency and disjoint additivity. Finally, we give several properties of the
Harsanyi Imputation set. In particular we prove that this set is external stable in the sense
of Von Neumann-Morgenstern.

This paper is organized as follows. In Section 2 we recall some preliminaries and
basic concepts, as well as the solution concepts of the Shapley value, Core and Weber set.
In Section 3 we define the Harsanyi set, recall some historical results and provide sharp
upper and lower bounds for the payoffs in the Harsanyi set. In Section 4 we characterize
the Weber set as subset of the Harsanyi set. The characterization proceeds by a number
of steps, given in some lemma’s and a proposition. The proofs of these steps are given in
the Appendix. In Section 5 we prove the axiomatization of the Harsanyi set. Finally in

Section 6 we consider the Harsanyi Imputation set.

2 Basic concepts

A cooperative game with transferable utilities, or simply a TU-game, is a pair (V,v),
where N = {1,...,n} is a finite set of players and v:2"¥ — R such that v()) = 0 is the
characteristic function yielding for any subset .S of N the payoff v(S) that can be achieved



by coalition S. Throughout the paper we use the notation |S| for the number of players
in coalition S C N. Unless otherwise stated, the set N = {1,...,n} is taken to be a
fixed set of n players and we denote the set V' to be the set of all games with player set
N, i.e. V is the collection of all characteristic functions v on 2. Moreover, we denote
Q) = 2V as the collection of all subsets of N and define Q;, = {S € Q| |S| = k} as the
collection of all subsets of N of size k, 0 < k < n. Further, for all S € () we define the
set 2% = {T € Q|S C T} as the collection of all subsets of N containing coalition S. In
particular, & = Q{ = {T € Qi € T} is the collection of all subsets of N containing
player i, « € N. A payoff vector is a vector x € R" assigning payoff x; € R to player
i € N. For a payoff vector x € R", we denote by z(S) = 3,cq z; as the total payoff to the
players in coalition S € ).

A game v € V is called convez if for every pair S,T € Q holds v(SUT)+v(SNT) >
v(S) +v(T). A game v € V is superadditive if for every pair S, T € Q such that SNT =)
holds v(SUT) > v(S) +v(T). In particular it follows that a convex game is superadditive
and that for all S € Q, v(S) > Y,cgv(i) when v is superadditive, where v(i) = v({i}) is
the payoff that player ¢ can guarantee herself without cooperating with the other players.
For T € , the game u” defined by u’(S) = 1if T C S and u?(S) = 0 otherwise is the
unanimity game with respect to coalition 7. Every unanimity game is convex. A game
v € V is the null game if v = v° given by v°(S) =0 for all S € Q.

Throughout this paper we assume that the grand coalition forms and therefore
restrict ourselves to solution concepts in which the worth v(NN) of the grand coalition is
distributed amongst its members.! A solution vector is said to be individually rational if
any player gets at least her own worth v(z). For a game v € V| the set I(v) of imputations
is the set of all individually rational payoff vectors that efficiently distribute the payoft

v(N) of the grand coalition amongst its members, i.e.
I(v) ={x € R"|z(N) =v(N), z; > v(i), i € N}.

For a game v € V, S € Q and i € S, the marginal value 27 (v) is the contribution of player

i to coalition S in game v when she is the last player joining S and thus is given by

2 (v) = v(S) = v(S\ {i}).
For a permutation m: N — N, assigning rank number 7 (i) € N to any player i € N, define
SI={j € N|n(j) <m(i)}, so ST is the set of all players with rank number at most equal
to the rank number of 7, including ¢ herself and thus ST € Q. Then the marginal value

vector m™(v) € R™ of game v and permutation 7 is given by

mi(v) = 2" (v), i€ N,

)

1Since we don’t assume superadditivity, this does not guarantee efficiency of a solution, because there
may exist partitions {Sy,...,S;} of N such that 25:1 v(S;) > v(N).
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and thus assigns to player 7 its marginal contribution to the worth of the coalition consisting
of all its predecessors in 7. The Shapley value, introduced by Shapley [10], is the solution
function which assigns to each v € V the payoff vector ¢°"(v) being the average of the

marginal value vectors over all permutations, i.e.
1
Sh -
7t (v) = ] %r my (v), i€ N.

The Weber mapping, introduced by Weber [18], is the solution mapping which assings to
each v € V the Weber set W (v) of payoff vectors, being the convex hull of all marginal

value vectors, i.e.
W (v) = Conv{m™ (v)|r € 11},

where II is the set of all permutations on N. So, any convex combination of the marginal
value vectors is in the Weber set and in particular the Shapley value ¥"(v) € W(v).
Clearly, for any x € W (v) holds Y";cy 2; = v(IN), thus z is feasible and efficiently distributes
the worth of the grand coalition N amongst its members. The Core, introduced in game
theory by Gillies [2], is the solution mapping C:V — R" defined by

C(v) =A{z € I(v)|z(S) > v(S), S € Q}.

So the Core is the set of imputations that cannot be improved upon by any coalition S C N
by distributing only their own value v(S). It is well-known that the Shapley value is the
barycenter of the Core when v is convex, see Shapley [11] and Ichiishi [6]. Furthermore
C(v) = W(v) when v is convex.

The dividends A®(v), S € €, of the game v, as defined by Harsanyi [4], [5], follow

recursively from the system of equations

v(S) = > AT(v), Seq.

TCS

It is well-known that

v="> A%)u’,
5eQ
with u® the unanimity game with respect to coalition S. So, any game v can be written
as a linear combination of the characteristic functions of the unanimity games. Observe
that the characteristic functions of the unanimity games are linearly independent, i.e. the
characteristic functions of the unanimity games form a basis for the vector space V of
characteristic functions (see e.g. Rosenmiiller [8], Owen [7]). Hence, the dividends A®(v),
S € ), of the game v can be found alternatively as the uniquely determined coefficients

vg in the representation v = Ygcqvsu®. A game v € V is said to be totally positive (see
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Vasil'ev [12]) if AS(v) > 0 for all S € Q. The set of totally positive games is denoted by
VT and is the closed convex cone in the vector space V. Further, we denote V- = —V*
as the set of totally negative games. Two games v and u are disjoint (see Vasil’ev [12]) if
for any S € Q holds AS(v) - AS(u) = 0. Given a game v € V, we define the two totally
positive games v and v~ by
vt= Y ASwpwfando = > —A%(v)f,
S|AS(v)>0 S|AS (v)<0

where the sum over the empty set is defined to be equal to the zero game 1°

. Clearly,
v = vt —v~ and the pair (N,v") and (IV,v™) consists of disjoint games. From the convexity
of the unanimity games it follows that any totally positive game, being a nonnegative linear

combination of convex unanimity games, is also convex.

3 The Harsanyi set

In this section we consider the set of Harsanyi payoff vectors defined as the set of all payoof
vectors obtained by distributing the dividend of a set S over the players in S for any S € €.
Therefore, let P be the set of dividend share systems py, S € Q, i € S, given by

P={p=[piE&p} >0, SeQandics, Y pi=1 Seq}.

ieS

For p € P, let the payoff vector ¢?(v) € R" be given by

& (v) = Z pPAS(v), i € N,

Seq?

i.e. the payoff ¢(v) to player i € N is the sum over all coalitions S containing i of the
dividend share p of player 4 in the Harsanyi dividend A®(v) of coalition S. We therefore
call ¢f (v) a Harsanyi payoff vector. Observe that, due to the equality v(N) = Y geq A% (v),
for any weight system p € P holds

> () =v(N)

iEN
and thus any Harsanyi payoff vector is feasible, i.e. the Harsanyi payoffs distribute the
total value v(N) over the players in N. In particular it is well-known that ¢P(v) is equal
to the Shapley value 1°"(v) when

1
pfzm, for SeQandi € S.

The Harsanyi mapping is the solution mapping which assings to each v € V' the Harsanyi

set H(v) of payoff vectors given by
H(v) = {¢"(v) € R"|p € P}.



So, the Harsanyi set is the set of all distributions of the total payoff v(N) over the players
in N that can be generated by some weight system p € P. The Harsanyi set as defined
above is the same as the selectope discussed recently by Derks, Haller and Peters [1]
and introduced much earlier already by Hammer, Peled and Sorensen [3]. The notion of
Harsanyi set and related concepts have independently been introduced by Vasil’ev [12] and
[13] (in Russian) and also in Vasil’ev [14]. In this paper we prefer the use of Harsanyi set
instead of selectope, because we want to stress the property of distributing the Harsanyi
dividends instead of the role of the selectors as discussed by Derks et al [1].

In the remaining of this section we consider the structure of the Harsanyi set. First,
for historical reasons we recall some results (Lemma 3.1, Theorem 3.2, Corollary 3.3 and
Corollary 3.4), which have been given already in Vasil’ev [14], [15] (in Russian) and Derks
et al [1] and also in the earlier papers of Vasil’ev [13] (in Russian) and Hammer et al [3].
We refer to these papers for the proofs. In particular these results show that the Harsanyi
set has a Core-type structure. First, for a game v € V| the corresponding game vy € V is
defined by

v (S) =v(S) = [T (N)—v (S)—v (N\S)], Se.

As will become clear later, we call this game vy the Harsanyi mingame. The next lemma

is useful to prove the succeeding theorem.
Lemma 3.1 For any v € V, the Harsanyi mingame vy 1S convex.
Theorem 3.2 For any v € V holds H(v) = C(vg).

The theorem shows that the Harsanyi set can be found easily as the Core of the Harsanyi
mingame vy. Moreover, since vy is convex, it follows that the Harsanyi set is equal to
the Weber set of vy and thus equal to the convex hull of the marginal value vectors of
vy. Since any totally positive game is convex it also follows that for any S € Q holds
v (N) > v (S)+v (N\S) and thus vy (S) < v(S). Clearly, we also have vy(N) = v(N).
This implies the next corollary, which says that the Core of a game is a subset of the

Harsanyi set.
Corollary 3.3 For any v € V holds C(v) C H(v).

For a game v € V| let the normalised v-game v € V' be defined by

9(S) =v(S) = > v(i), Seq,
icS
i.e. ¥ is obtained from v by normalising all worths v(i), ¢ € S, to zero. Then the next

corollary says that the Harsanyi set of a game v is equal to the Core of v if and only if ¥

6



is totally positive and follows immediately from Theorem 3.2 by observing that vy = v if
v € VT and that both C(v) = {v'} + C(v) and H(v) = {v'} + H(?), where v' € R" is the

n-dimensional vector given by v} = v(i), i € N.
Corollary 3.4 H(v) = C(v) if and only if v € V.

The next theorem relates the minimum and maximum payoff that a coalition can
obtain at a payoff vector in the Harsanyi set to the worths of the coalition in the Harsanyi

mingame vy as defined above and the similarly defined Harsanyi mazgame v € V given
by

W (S) = v(S) + [t (N) — vH(S) —vH(N\ S)], S € Q.
Theorem 3.5 For any v € V holds that

vir(S) = min{z(S)|z € H(v)}, SeQ,
and

v(8) = max{z(S)|z € H(v)}, S €.

Proof.
For S € Q, denote Q(S) = {T € QT NS #Pand T\ S # 0} and Q(S) = QN Q(S).
Applying the equality v(S) = Yrcg AT (v) we have for p € P and S C N that

Do) = YD piATw) =33 pi A )+ Y pi AT (v)

i€S €8 TeQt TCSieT 1€S5 TeQ(S)

= v(9)+>. Y plAT(v)

€85 TeN(S)

It follows straightforward that the last term in this expression is bounded from below by

d. > Az > AT

i€S TEN(S) TeQ(S)

with equality for p € P satisfying for each T" € Q(S)
QZ.T =1if i =ip and QiT = 0 otherwise,
where
ir = max{j|je€T\S}if AT(v) >0,
= min{j | j € TN S} if AT(v) <0.

Also the last term is bounded from above by

>, > piAN(v <ZAT

€S TeQi(S) TeQ(S



with equality for p € P satisfying for each T' € Q(5)
pr = 1if i = jp and p; = 0 otherwise,
where

jr = max{j|jeTnS}if AT(v) >0,
= min{j | j €T\ S}if AT(v) <0.

Hence, for any S € (2 we have

min{) ¢l (v)|p € P} = - > AT

€S TeQ(S)
max{» ¢} (v)|p € P} = )+ Y AT(v
i€S T€Q(S)

Therefore, together with

Yo AT ) =v (N) = v (S) —v (N \S) =v(S) — vu(9)

TeQ(S)

and

> AT =vT(N) = vt (S) — v (N \ §) = —v(S) + 07 (9)

T€Q(S)

it follows that for any S € € holds
v (S) = min{x(S)|x € H(v)} and v"(S) = max{z(S)|zr € H(v)}.

Q.E.D.
Theorem 3.5 shows that the minimum, respectively maximum payoffs that the coalitions
S € ) can obtain at a payoff vector in the Harsanyi set are given by the characteristic
functions of the Harsanyi mingame and the Harsanyi maxgame, so that these games provide
sharp lower and upper bounds for the total payoff of a coalition in the Harsanyi set. Besides
the calculation of these lower and upper bounds given in the proof above these bounds also
follow directly from the fact the vy is convex and therefore exact, i.e. for any S € €, there
exists © € C(vy), such that x(S) = vg(S), see Schmeidler [9]. Since H(v) = C(vy) it
follows that

v (S) = min{z(S)|x € C(vy)} = min{z(S)|x € H(v)}, S € Q,

which shows that the lower bound is sharp. To show the sharp upper bound, it follows

from the definition of vy and v that

v (N '\ S) +v"(S) =v(N), S €.



Take S € Q and Z € H(v), such that Z(N \ S) = vy (N \ S). Then
z2(S) =v(N) —2(N\ S) =v(N) —vg(N\ S) =v"(S).

Moreover, for any z € H(V) = C(vg), we have that (N \ S) > vg(N \ S) and thus
z(S) =v(N)—z(N\S) <v(N)—vy(N\S)=1vH(S9), so that the upper bound holds for

any z with equality for 7.

4 Characterization of the Weber set by Harsanyi pay-

off vectors

In this section we consider the relation between the Harsanyi set and the Weber set. Derks
et al [1] have shown that the Weber set is a subset of the Harsanyi set and also provide
conditions on the game v under which the Harsanyi set of v coincides with the Weber set.
In the next theorem we give a characterization for any v € V the Weber set as a subset
of the Harsanyi set consisting of all Harsanyi payoff vectors corresponding to the dividend

share systems in the subset PV of P given by

" ={peP| X ()" Pl >0, S, ie N}

TeQS

Theorem 4.1 For any game v € V, the Weber set W (v) is the subset of the Harsanyi set
H(v) given by

W(v) ={¢"(v) € H(v)| p€ P"}.

To prove the theorem, we have to introduce some definitions. First, let ) be the collection
of all systems ¢, S € Q, i € S, assigning a ‘weight’ ¢© € R to any player 7 in any coalition
S e ie.

Q = {alg = [¢1555}
Observe that the set of dividend share systems P is a subset of the set of all weight systems
Q. For ¢ € @ and S € (), to shorten notation we denote the sum of the weights of the
players in S by ¢(S5), i.e
=
Next, we define the two subsets ); and Q7 of @) by
Qi={geQld > d¢ =1, Se€q},

€S TeQS



and

Qi ={g€Qlg(N)=1land ¢(S)= Y ¢, Se€Q, S#N},
JEN\S

where S U j denotes S U {j}. Next, we define Q" C Q; by
QY ={qe Q¢ >0,ieS, Seq}.

Clearly, both P and Q% are two polyhedra in the vector space @ of all weight systems.
For a polyhedron R C @, let Ex(R) be the set of all extreme points of R. Further, for any
permutation 7 = (7(1),...,7(n)) € Il and S € €, recall that ST = {j € N|n(j) < w(i)}.
Now, for any 7 € II, we define the weights systems p™ € @) and ¢" € @) by setting for all
SeQandie s,

7T,S — 1

D; ) HTS QEST

= 0, otherwise;
and

@ = 1,if §=5T,

= 0, otherwise.
Finally, let the two linear functions F: () — @ and G: @ — @ be defined by

FP(g)= Y (-1)"8lgf i e N, S e,

KA
TeNS

and

Glg)= > 4/, ieN, Se.

TeQS

We now proceed by a number of steps, given in the following lemma’s and the main
result given in Proposition 4.5. For the proofs we refer to the Appendix. Recall that
Q. ={5 € Q| |5] =k}

Lemma 4.2 For any n > 1 holds that ()1 = Q7.

Lemma 4.3 For any ¢ € Q" holds

Y qS)=1,k=1,...,n

Sey,

Lemma 4.4 For all 7 € I1 holds:
(i) " € Ex(Q"Y),

10



(i)  p" € Ex(P"),

(i) F(p") =",

(i) G(g") =p".

Using the results of Lemma 4.2 and Lemma 4.4, the next proposition has been proven
in Vasil’ev [16]. This proposition plays a central role in proving the main result given in
Theorem 4.1 and is interesting in itself because it characterizes the extreme points of the

set Q". In the Appendix the original proof given in Vasil’ev [16] is completely renewed
and substantially shortened by using the property of Q" given in the new Lemma 4.3.

Proposition 4.5 For any n > 1 holds Ex(Q") = {q"|r € 11},
Finally we prove in the Appendix the next lemma’s.

Lemma 4.6 The functions F' and G satisfy

(i) G is a nondegenerate linear operator,

(ii) F=G1,

(iii) G(QY)=PW.

Lemma 4.7 For allv € V and any 7™ € II holds
¢ (v) =m" (v).

The proof of Theorem 4.1 now follows easily from Proposition 4.5, Lemma 4.6 and Lemma
4.7.

Proof of Theorem 4.1.
Since for any nondegenerate linear operator ® it is well-known that the image B = ®(A) of
any convex polyhedron A is again a convex polyhedron with the extreme points coinciding
with the images of the extreme points of A, i.e. Ex(B) = {®(a)la € Ex(A)}, it follows
immediately from Proposition 4.5 and Lemma 4.6 that Ex(P") = {p™|r € II}. So, for
p € PV, there exist A; > 0 with >, ey A\ = 1 such that

p=> A"

Tell

To simplify notation, denote ¢*(v) = f(p,v). Then, together with Lemma 4.7 it follows
that

¢r(v) = fp,v) = F(Q_ Aap™,v) = D Aef (p70) = Y Aem™ (v)

mell mell mell
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and thus f(p,v) = ¢P(v) € W(v). On the other hand, suppose x € W(v). Then there exist
Ar > 0 with > cq Ar = 1 such that
z = Am(v) = D Af(p",0) = f(3_ Axp", ) = f(p,v) = & (0)

mell mell mell

with p = Y cn Ap™ € PWV. Q.E.D.

To conclude the characterization of the Weber set, we define for ¢ € Q" the payoff vector
P?(v) € R" by

W)= @7 (v), i €N,
Seqi
i.e. the payoff ¥!(v) to player i € N is the sum over all coalitions S containing i of the
weight g7 of player i in the marginal value 2 (v) of i to coalition S. Recall that any ¢ € QW

satisfies the condition

> > a4 =1

i€S TeQS

for all S € Q. Taking S = {i} we obtain

> gl =1,

Te!
i.e. for any ¢+ € N we have that the sum of the weights of ¢ in the coalitions containing
i is equal to one, implying that ¢](v) is a weighted sum of the marginal contributions of

player i. It follows straightforward, see for instance Vasil’ev [15] that for any ¢ € QW it
holds that

with p = G(q) € P". Since ;e ¢ (v) = v(N) for any p € PV it follows that

> i) = 3 67 (w) = u(N)

iEN iEN
and thus for any ¢ € Q" the payoff vector ¢! (v) distributes the total payoff v(IN) over
the players in N. In particular it is well-known that 1/7(v) = 95" (v) for the weight system
g € Q" given by

S| —Dl(n—|S!
as:(! | — D!(n —| D,ieS,SeQ,

: n!
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5 Axiomatization of the Harsanyi set

In this section we provide an axiomatization of the Harsanyi solution mapping set H: V —
R", i.e. the value mapping assigning the Harsanyi set H(v) to any v € V. To do so, first
we state six reasonable axioms to be satisfied by a value mapping M:V — RR", see also
Vasil’ev [14].

Axiom M
(i) A value mapping M is convex if M(v) is convex for any v € V.

(ii) A value mapping M has the efficient distribution property when for any x € M (v)
holds ey o = v(N).2

(iii) A value mapping M has the dummy player property when for any i € N such that
v(S) =v(S\ {i}) for all S € Q, holds z; = 0 for all z € M(v).

(iv) A value mapping M is sign preserving if M(v) C R for any totally positive game
v e VT and M(v) CR" for any totally negative game v € V™.

(v) A value mapping M is individually consistent if for any v € V and any i € N holds
M(v;) € M(v), where v; € V is defined by v;(S) = v(S \ {i}) + v(N) — v(N \
{i}) if S € Q" and v;(S) = v(S) otherwise.

(vi) A value mapping M is disjoint additive if for any disjoint pair v and u of games
holds M (v + u) = M(v) + M(u).

We now have the following theorem.

Theorem 5.1
A mapping M:GN — R satisfies (i)-(vi) of Aziom M if and only if M(v) = H(v) for all
velV.

Proof. We first prove that the Harsanyi mapping satisfies all axioms (i)-(vi). Recall that
for v e V, H(v) = {¢P(v) € R"|p € P}, where P = {p = [p?15pf >0, S€ Qandi e
S, Siesp; =1, S € Q) and ¢f(v) = Sgeqi PP A%(v), i € N. Now, for S € Q, let
A(S) € R" be given by

AS)={peR|p;=0, € N\ Sand Y p; =1},

€S

2This axiom requires that v(N) is distributed efficiently amongst its members, not that M (v) is a subset
of the set of efficient payoff vectors. Recall that it is assumed that the grand coalition forms and v(N) has
to be distributed.
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i.e. A(S) is the set of all feasible dividend share vectors within the coalition S extended
to an n-dimensional vector by setting all components with respect to j & S equal to zero.
Clearly A®(v)A(S) is the set of all possible distributions of the dividend A%(v) over the
players in S. Consequently, it follows that H(v) can be written as

H(v) =3 A%(v)A(S). (1)

SeQ
From this representation of H(v) axiom (i) follows immediately from the convexity of each
set A(S).
To show that H satisfies axiom (ii), observe that for any x € H(v), it follows from (1) that
there exist p¥¢ € A(S), S € Q such that
T = Z AS(U)pS’x

SeQ

Since by definition of A(S) we have that p>*(N) = ey pi” = 1 for all S € Q, we get
that

o(N) =D 2= A°)p>*(N) = > A®(v) = v(N).

iEN SeN SeqQ

To show axiom (iii), suppose that i is a dummy player, so v(S) = v(S\ {i}) for all S € ".
It is well-known fact that then the dividend A®(v) = 0 for all S € Q. Since for any
p € A(S) we have that p; = 0if S € Q\ Q' it follows from (1) that z; = 0 for all x € H(v).
Axiom (iv) follows immediately from (1) because A%(v) > 0 for all S € Q when v € V*
and A®(v) <0 for all S € Q when v e V™.

To prove that axiom (v) is satisfied, it follows straightforward from its definition that the

dividends of the game v; are given by

ASw) = X AT(), if 5 = {i},
Te
= AS(v), if S C N\ {i},
= 0, otherwise
For any p € P, let ¢P(v;) be the corresponding payoff vector in H(v;). It follows from the
dividends given above that ¢(v;) = ¢P(v) € H(v) where
7, = pj,j€S, SCN\{i},
- 1L j=i Seq,
= 0, j#4,j€5€Q.

Hence H(v;) C H(v).

14



Finally, to show axiom (vi), let v and w be a disjoint pair of two games in V' and define
z = v+ w. Then it is well-known that A®(z) = A%(v) + A%(w) for any S € Q. Since v
and w are disjoint and thus A®(v) - A%(w) = 0 for any S € €, it follows from applying (1)
that?

H(z) = 3 A%(2)A(S)

Seq
= Yoo AT WA+ Y A%(w)A(S) = H(v) + H(w).
SEQIAS (v)#£0 SEQ|AS (w)#0
Thus the mapping H is disjoint additive.
It remains to show that H is the only mapping that satisfies the axioms (i)-(vi). To do so,
recall that for any game v € V' holds
v=">" A%v)u’.
SeQ
Let M be a mapping satisfying the axioms (i)-(vi). For the unanimity game u°, S € €, let
z € M(u®). Then axiom (ii) requires that ;e y z; = v’ (N) = 1, axiom (iii) that z; = 0 for
any j € N\ S and axiom (iv) that x € R",. Moreover, according to axiom (v) we have that
e(i) € M(u®), i € S, where e(i) is the i-th unit vector, i.e. the vector with i-th component
equal to one and all other components equal to zero. Together with the convexity axiom
(i) it follows that for the unanimity game u®, M(u¥) = A(S) is the unique set of payoff
vectors satisfying the axioms (i)-(v). Since any pair (u®,u”), S # T is disjoint, it follows
from axiom (vi) that the mapping M:V — R" satisfying (i)-(vi) is uniquely determined
by
M(v) =Y A%()A(S) = H(v).
SeQ
Q.E.D.

6 The Harsanyi Imputation set

In this section we consider the Harsanyi Imputation set H’(v) of a game v € V, being the

subset of the Harsanyi set of all individually rational payoff vectors, i.e.
HY(v) = H(v) N 1(v)

First of all, since C(v) C I(v) it follows from C(v) C H(v) that also C(v) C H'(v) =
H(v)NI(v),i.e. any payoff vector in the Core is a Harsanyi imputation. So, the Core of v

30bserve that it is not allowed to split up > oo A%(2)A(S) when there are some S such that A®(v) -
A%(w) # 0, i.e. when v and w are not disjoint.
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serves as a lower bound on the Harsanyi Imputation set in the sense that C'(v) is contained
in H'(v). For a further characterization of the the Harsanyi Imputation set we define for
v € V the corresponding Harsanyi v-game vy € V by

EH(S) = ;’U(Z) + I%lgquH(T)’ S e Q,
where vy is the Harsanyi mingame corresponding to the normalized v-game v. So, in
the Harsanyi v-game the worth of a coalition is the total worth of its members plus the
maximum over the worths of its subcoalitions in the corresponding Harsanyi mingame of

the normalised v-game. The next lemma and theorem are given by Vasil’ev [14].
Lemma 6.1 For any v € V, the Harsanyi v-game Ty 1S convet.

Theorem 6.2 For any v € V' holds
H'(v) = C(vg), if v"(S) > v(i) for all S € 9,
€S
= 0, otherwise.

The theorem says that the Harsanyi set is either empty or equal to the Core of the Harsanyi
v-game Ty. Moreover, since Ty is convex, it follows that in the latter case the Harsanyi set
is equal to the Weber set W (Ty) of 7y and thus equal to the convex hull of the marginal
value vectors of . Clearly, the theorem implies that v(N) = vx(N) when H’(v) is not
empty. In fact, it follows immediately from the definition of Ty that for any v it holds
that Ty (N) > v(N). It can be shown easily that this holds with equality if and only
if v1(S) > Y,eqv(i) for all S € Q. This gives us the next corollary as an alternative

formulation of Theorem 6.2.

Corollary 6.3 For any v € V holds v(N) <vg(N) and

H'(v) = C(vn), if o(N) =Tu(N),

Since vt is totally positive and thus convex, it follows from the definition of v that
v (S) > v(S) for all S € Q. So, the condition v (S) > 3,.qv(4) is satisfied when v is

superadditive, which gives the next corollary.

Corollary 6.4 For v € V holds that H' (v) # () when v is superadditive.
From C(v) C H(v) also the next corollary follows immediately.
Corollary 6.5 For v € V holds that H! (v) = C(vy) when C(v) # 0.
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By theorem 4.1 we know that W (v) C H(v). So, when H!(v) is empty, any payoff
vector in the Weber set and thus also the Shapley value does not belong to the Imputation

set. Together with Theorem 6.2 this gives the next corollary.

Corollary 6.6 For v € V holds W(v) N I(v) = () when there exists S € Q such that
v(S) < Fies (i)

The next theorem states that H!(v) is external stable (in the sense of Von Neumann-
Morgenstern [17]), when not empty. For an imputation z € I(v), we say that y € I(v)
dominates z, denoted by y = x, when there exists a coalition S such that y; > z; for all
i€ Sand Ycqy < v(S). Aset Y C I(v) is external stable when for every z € I(v) \'Y
there exists y € Y such that y dominates z.

Theorem 6.7 For anyv € V holds that H' (v) is external stable, when H'(v) is not empty.

Proof. Suppose H!(v) # (). Since both I(v) = I(?) + {v'} and H'(v) = H!(?) + {v'},
without loss of generality we may assume that v is normalized, i.e. v(i) =0 for all i € N,
and thus 9(5) = v(S) for all S C . Then according to Theorem 6.2 we have that

v (S) >0, for any S € Q.
By definition of vy and v it follows that
v(N\S) +vu(S) =v(N), S€Q
and thus
v (S) = v(N) — v (N\ S) <v(N), S€q.
By definition of vy it holds that vg(/N) = v(N) and thus
v (N) = Iglgaj%ch(S) = v(N).

Observe also that for any ¢ € N, vy (i) =v(i) —v=(N)+v=(S)+v=(N\S) = —[v= (V) —
v=(S) — v~ (N\S)] <0, because v(i) = 0 and v~ is convex. Hence
Ty (i) = maxvg(i) =0

Sc{i}

because vy () = 0. Therefore it follows from Theorem 6.2 that
H'(v) = C(vg) = {z € R}| z(N) = v(N) and x(5) > vy4(S) if |S| > 2}

and thus H'(v) C R.
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When I(v)\ H(v) = (), the theorem is true. So, consider the case I(v)\ H!(v) # ()
and let y be any element belonging to I(v) \ H(v). Since y ¢ H'(v) = C(vg), there exists
S € Q, such that y(S) < Ty (S). Let Sy be a minimal coalition satisfying this inequality,
i.e. y(So) <oy (Sy) and y(T') > vy (T) for any T C Sp, T # Sp. Define 2° = (2?);c5, by

x?:yi—ké, iGSo,

where § = ﬁ(EH(SO) —y(Sp)). Clearly 2°(Sp) = Yics, ¥ = Uu(So) and thus 2° € C(vY,),
where 7Y, is the restriction of Ty to Sy. By Lemma 6.1 the game Ty is convex and thus
there exists an extension z € IR” of 2 in the Core of the game Ty, i.e. a vector x
such that x; = z? for i € Sy and z(N) = vy(N) = v(N), such that z € C(vg). Thus
r € C(vy) = H(v) and satisfies

T, = ZL‘? > Y, 1 E So, and ZL‘(S()) = ﬁH(So)

To show that x dominates y through Sy in the game v it remains to prove that 7y (Sy) <
v(Sp). Since v~ is convex and thus superadditive, we have by definition of vy that vy (Sp) <

v(Sp). Now, suppose that Ty (Sy) > v (Sy). Then, by definition of Ty, there exists T C Sy,
T # Sy, such that T4 (Sy) = vy(T'). Since y is nonnegative, we have that

y(T) < y(So) <V (So) = vu(T) <vu(T),
which contradicts that y(T") > Ty (7). Hence Ty (Sy) = vu(So) < v(Sp). Q.E.D.
Finally, let C*(v) be the classical Core of the game v being the set of undominated
imputations, i.e.
C*(v) = {x € I(v)| there is no y € I(v) such that y dominates x}.

Then it follows from the external stability of the set H(v) that the classical Core is
contained in the Harsanyi Imputation set if the latter set is not empty. So, we have the

following corollary.

Corollary 6.8 For any v € V with H' (v) # 0 holds C*(v) C H!(v).

7 Appendix

To give the proofs, we first introduce some additional notation. First, for g € Q) and S € €2,
recall that q(S) = Y,egq’. Also, recall that Q = {S € Q| |S| = k}. Further, for S € Q
and |S| < k < n, we define

Q=N ={T € Q° |T| =k},
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i.e. Q7 is the collection of all subsets of N of size k and containing S and
Q‘(gk) = U, 0°.

Moreover, we define
Qs ={T C N\ S||T| =k},

i.e. Q% is the collection of all subsets of N \ S of size k.

Proof of Lemma 4.2.
For n = 1, the lemma is true by definition of (); and @);. So, we suppose that n > 2. First
we prove that Q7 C @. Fix an arbitrary ¢ € Q7 and S C Q. Let m = |S| and define

AS=3" % af
1€S TS
and for k=m+1,m+ 2,...,n, define

AL=3" >4

i€S TS
i€S TeQs

and A5, = 0. We prove by induction that
A= N q(T)+ Ap,y, k=m,....n. (2)

TeQ;

First, observe that Q2 only contains the set S and thus

A= T =g+ X =3 qn)+A45,,.

3 S 3 S S
i€S TeN €S TeQ? TeqQs,

Now, suppose that equation (2) holds for k = m,m + 1,...,r — 1 < n. Then we prove
that it also holds for £ = r. By definition of @)} we have that for ¢ € Q7 holds that
qT)=erql = Y jen\T q;‘-mj, T € Q). Hence, it follows that

A5 = > g+ A=Y dD)+> Y q

TeQS | TeQS | €S Teqy )

. TUj T S

= 2 2 Y > W A
TeQS | JEN\T €S TEQS

o TI !/ S

= 2| X e | AL
TS \jFeT'\S ieS

_ T’ s ! S

- Z Z q + AT+1 - Z Q(T) + AT+1-
T'eQs i€T’ TeQs
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Hence, equation (2) is satisfied for kK = r. Applying this equation for k = n it follows that

=Y qD)+A5, =Y q" =

TeQS iEN

So, A5 = ¥ics Sreas qF = 1 forall g € QF and S C Q and thus ¢ € Q.
Second we prove that )1 C Q7. By definition, we have for any ¢ € ()7 that

Y@= 4 =
i€EN 1€EN TeQN
It remains to prove that for any ¢ € Q; and S € Q, |S| < n — 1, holds
Z SU] (3)

JEN\S

To do so, fix an arbitrary ¢ € ;. For S € Q with |S| =n — 1 and thus S = N \ {i} for

some 7 € N we have that

S (@ +a ) =aN\i)+ Y g =
JEN\i JEN\G
With ey ¢ =1 and S = N\ {3} it follows that
S=1-=> ¢ =q¢"= > q,

JEN\i JEN\S

which shows that equation (3) holds when |S| =n — 1. Now, suppose that equation (3) is
valid for any S with |S| =n—1,n—2,...,n—(r—1) > 1 and take some S with |[S| =n—r.
Since ¢ € ) it follows that

1L = > Y d=9d9+> > o

€S8 TeNS 1€S TEQS T#S
_ q(S) + Z Z q;S*uT q(S) + Z < Z SUT Z SUT)
i€S 0£TCN\S 0ATCN\S \icSUT ieT
= +ZZ (SUT) —q(T, SUT))
k=1Tecqk

= q(S)—l—q(]\f)—l—ri1 Y q(SuUT)— > T, SuT)| — > ¢T,SUT),

k=1 |Teqk TGQk'H TeQy

where q(T, SUT) = Yer¢?”T. By applying the induction hypothesis we have for any
k=1,...,r—1 that

aSuD =3 > ¢V= 3 YgT= 3 «T.SuT),

TeQk TeQk JEN\(SUT) TeQkt JET TeQktt
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so that within each of the square brackets in the previous equation the first term is equal

to the second term and thus

1=q(S)+q(N) = > q(T, SUT)=q(S)+1- > ¢

TeQl JEN\S

This proves that equation (3) holds for any S € 2 and thus ¢ € Q7. Q.E.D.

Proof of Lemma 4.3.
From Lemma 4.2 it follows that any ¢ € Q" is also in @} and thus satisfies the relations
q(S) = Yjems quj for all S € Q, S # N. So, for any k£ < n we have that

g =Y Y V=3 ¢V = 3 1)

SeQy SeQ ]EN\S TGQk+1 JjeT TEQk+1

Applying this recursively for k =1,...,n — 1 it follows that

> aS)= ¥ a) =qN)=1, k=1,...n.

SeQy, TeQ,

Q.E.D.

Proof of Lemma 4.4.
We first prove the assertions (iii) and (iv). Fix some 7 € II and ¢ € N. First, consider
S = ST. Then by definition of p™ we have that

F(pr) = Y (~)"=¥prt =1>0.
TeQs
Next, consider S C ST with ST\ S = R # (). Then
Fipm) = 3 (~)/T-Sprt = 3 (—1)ITlpmSUT — Y (—1)T =,
Teas TCR TCh

because in the latter sum the number of positive terms equals the number of negative
terms. Finally, in case that S\ ST # () we have by definition that p>" = 0 for all T € Q°
and thus £ (p™) = 0. Summarizing we have shown that for all i € N and S € © holds

FS(pf) = 1if8=57,

= 0 otherwise,

which shows that F(p™) = ¢", = € II, which proves assertion (iii). On the other hand,

assertion (iv) follows directly from the definition of ¢™ by observing that

p T, ™S
Giq") = > " =¢q
TeQS

= 1if SCST,
= ( otherwise
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and thus G(¢™) = p™.
To prove assertions (i) and (ii), first observe that F\(p™) = ¢™, so that for all i € N
and S C Q holds

F(p)= > ()8t = g% >0,
TeQS

which shows that p™ € PY. On the other hand, from G(¢™) = p™ it follows for all S € Q
that

S =Y G =Y =1,

€S TS €S €S
which shows that ¢" € QY. To prove that p™ and ¢™ are extreme points of the compact,
convex polyhedrons P" and Q"W respectively, it follows from the nonnegativity of the
elements of P" and Q" and the equalities Y ,cgp; = 1 and Ygeqi ¢F that for any i € N
and S € O

0<p’ <1, for any p € PV
and
0<¢’ <1, forany g € QV.

Now, suppose that for some 7 € II we have that p™ = %(p + p) for some p, p € PY. Since

pf’s € {0,1} it follows from the inequalities above that we must have that
pi® =pf =p;, forallie N, S €

and thus p™ = p = p, which proves that p™ € Ex(P"). Analogously it follows that
¢~ € Ex(Q"). Q.ED.

Proof of Proposition 4.5.

For n = 1, the lemma is true by definition. So, suppose n > 2. Because of (i) of Lemma
4.4 we only have to prove that Ex(Q") C {¢"|r € II}. Let q be an extreme point of Q".
We first prove that for any S € Q holds that ¢ € {0,1} for all i € S. To do so, let m,
0 < m < n, be the largest number such that for any S with |S| < m holds that ¢© € {0,1}
for all ¢ € S and thus also ¢(S) € {0,1} because of Lemma 4.3. When m = n, ¢ satisfies
the requirements. It is clear, that in case m # n we have m < n — 1, since otherwise, when
m = n—1, we have for all j € N that ¢(N\j) € {0,1}. Hence it follows from ¢(N\ j) = qjv
that ¢ € {0,1} and hence ¢/ € {0,1} for all i € S and S € , which contradicts to the

equality m =n — 1.
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Now, suppose, 0 < m < n — 1, i.e. there exists S; and j; € S; with |S;| =m +1
and 0 < qfll < 1. Then we prove that ¢ is not an extreme point of Q" by constructing a

nonzero solution b € @) of the homogeneous system

b(N)=0and b(S) = > b7, S€Q,S#N. (4)
JEN\S

When m = 0, and thus S; = {ji}, there exists an index k; # j; such that 0 < q,:fll <1,
where T} = {k1}, because according to Lemma 4.3 Y gcq, ¢(S) = Yien q;-{i} = 1. When
m > 1, take S = 51 \ {j1}. Since |S| = m and thus ¢(S) € {0,1}, it follows from ¢(S) =
2 jen\S quj > qfll > 0 that ¢(S) = 1 and thus there exists at least one other element
ki € N\ S such that ¢! > 0, where Ty = SU {k}. In both cases (m = 0 and m > 1),
we have that both ¢(S;) > 0 and ¢(71) > 0 and thus it follows from ¢(R) = X ;cn g qJRUj
for all R € Q\ {NN} that there exists jo» € N\ Sy and ks € N \ T} such that qf;UjQ > 0,

1

respectively qgQ Yk2 > 0. Now, proceeding the way j, and k, were constructed, we get two

sequences ji, jo, - - - jn-m and ki, ko, ..., ky  in N\ S satisfying for r =0,...,n —m — 1,

Sr41
quJrl > 0’

Try1
QkT_H > 07

where S =Ty =S, Spp1 = S, U{jr1} and Ty =T, U{k, 1}, 7 =0,...,n—m—1 (with
So = To = () in case m = 0). Since by definition S; # T7, the sets S, and T, are strictly

increasing in r and S,,_,, = T,,_, = N, there exists an £* < n — m such that
Sp# T, r=1,...0*—1and Sp = Tj-.
Let
Gmin = min{qf;, g, r=1,...,0%
By construction we have that ¢.,;, > 0. Define b € @ satisfying the conditions in (4) by

bzR - QminifR:STai:jT7r:17"‘7€*7
=  ~Qmin 1fR:TT7 i:kﬂ 7“:17""6*’

=0 otherwise.

Because b satisfies the conditions of (4), both ¢ + b and ¢ — b are in Q}. Moreover, by
definition, all components of ¢+ b and g — b are nonnegative and thus both weights systems
belong to Q" , while ¢ = 3((q+b)+ (¢—b)). Hence, g is not an extreme point of @". This
contradiction proves that ¢/ € {0,1} for any 7' € Q and any i € T when ¢ is an extreme
point of Q.
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It remains to show that any extreme point belongs to {¢™|m € II}. Since by definition
Sics Sreas ¢ = 1 for any S € Q, we have by taking S = N that >,y ¢ = 1. Since
g €{0,1} for all i € N, there exists a unique index i,, € N, such that ¢)' =1 and ¢}’ =0
for all j # 4,. Since Q" C Q, it follows from Lemma 4.2 that the equality relations in Q}
hold. Taking some j € N and S = N\ {j} we have ¢(N \ {j}) = ¢} and thus

q(N\j) = 1if j =iy,
= 0if j # iy
N\in

Hence, there exists a unique index 7,_; such that ¢; ' = 1 and qj-v\i" =0 for all j &

j
{in,in_1}. In general, for given k, 2 < k < n, let i,...,i, be a collection of indices in N

and such that for r =k, ..., n,
@t o= 1ifi=1i,,
= 0, ifies,
where S, = N\ {i,,...,i,} (with S,;1 = N). For Sy it follows from applying the equality
(holding for any ¢ € QF = Q1)

a(S) = 3 =g =1

JEN\Sy

Applying that ¢7 € {0,1} for all i € S € Q it follows that there exists a unique index
ix—1 € Sk such that

¢ o= 1ifi=ip_y,
= 0, ifi € Sp_q,
where Si_1 = Sk \ix_1. So, applying this procedure subsequently for k = n,n—1,...,2, we
get a uniquely determined sequence iy, 4,1, ..., such that ¢ = ¢™ with 7 = (i1, ...,14,) €
IT. This shows that ¢ is in {¢"|r € IT}. Q.E.D.

Proof of Lemma 4.6.
(i) To prove that G is a nondegenerate linear operator we have to show that G(q) = 0
implies that ¢ = 0. To do so, suppose G(q) = 0. Then G¥(q) = ¢ =0 for any i € N. We
proceed by induction and suppose that G(q) = 0 implies that ¢© = 0 for any i € N and
any S € Qi for r +1 < k < n. Consider S € Q.. Then

0=Gg)=¢+ > a =a

TeQS T#S

and thus ¢ = 0 for any i € N and S with |S| = r. It follows by the induction hypothesis
that ¢7 = 0 for all i € N and any S € Q.
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(ii) To prove that F' = G~ we have to show that ¢ = F(p) is the solution of G(q) = p. So,

consider the system of linear equations

ZqiT:pf, SeQ, ieN.

TeNS

Clearly, for S = N we obtain that
¢ =p =F"(p), ieN.
Again we proceed by induction and suppose that for r +1 < k < n holds
=F?(p), i€ N,S € Q.
Consider S € Q. Then it follows from p? = G (q) that

@ =p- > @
TeQS  T#S
and thus by applying the induction hypothesis that
Rl YD WS

TeQS T#S T'"CN\T

By observing that TUT" = SU[(T'\ S) UT’] and denoting S’ = (T'\ S) UT" the latter

expression can be rewritten as

DS p( > <—1>'T">:pf+ > OF = FE ).

S'CN\S,S"#£0 T'CS"T'#S’ S'CN\S,S’#0

(iii) To prove that G(QW) = PV we first show that G(q) € PV for all ¢ € Q". Let
q € Q. Since q > 0, it follows by definition of G that G(q) > 0. Moreover,

S (-)TSIGT (q) = FF(G(9) = ¢}

and thus Yyeos(— DTG (¢)F > 0. Finally,

Y@= > a4 =

icS €S TeQS

Hence G(q) € PY. Second, we show that for every p € PV, there exists ¢ € Q" such that
G(q). For some p € PV let ¢ = F(p). Then G(q) = p because G(q) = G(F(p)) =
G-G L(p) = p. To prove that ¢ € Q" observe that ¢ = F(p) > 0. Further, for any S € Q,

> > @ =2 G(Fp)=3p =1

€S TS €S €S
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Hence ¢ € QW. Q.E.D.

Proof of Lemma 4.7.
From the definition of p™ it follows that

) = Y AT = Y A%

Seqi SeQi|SCST

= 0(57) —o(S7\ {i}) = m (v).

Q.E.D.
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