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Abstract

Portfolio risk is in an important way driven by ‘abnormal’ returns
emanating from heavy tailed distributed asset returns. The theory of
regular variation and extreme values provides a model for this feature of
financial data. We first review this theory and subsequently study the
problem of portfolio diversification in particular. We show that if the
portfolio asset return distributions are regulary varying at infinity, then
Feller’s convolution theorem implies that the portfolio diversification is
more effective than if the underlying distribution would be normal. This is
illustrated by a simulation study and an application to S&P stock returns.

1 Introduction

Risk analysis and management are the bread and butter of the financial industry.
For example, reinsurance companies are in the business of spreading the risk of
insurance contracts, and risk managers at commercial banks perform a daily
measurement of the tail risk of their trading portfolios, known as the Value-
at-Risk (VaR) exercise. The portfolio structure influences the portfolio return
performance and its risk characteristics. One can reduce the portfolio risk, if
defined as the standard deviation, through diversification by virtue of the law
of large numbers, since returns on individual assets are imperfectly correlated
with each other. Apart from the standard deviation, the financial industry
often employs so called downside risk measures to further characterize the asset
risk, since it is widely recognized that large losses are more frequent than a
normal distribution based statistic like the standard deviation suggests. Thus
portfolio risk is in an important way driven by the ‘abnormal’ returns emanating
from heavy tailed distributed asset returns. The theory of regular variation
and extreme values provides a model for understanding this typical feature of
financial data.

We start our essay by reviewing the theory on distributions with heavy
tails. Subsequently, we study one diversification problem in more detail. The
question we ask is how effective portfolio diversification can be for managing



the downside risk. We show that if the portfolio asset return distributions
are regularly varying at infinity, then Feller’s convolution theorem implies that
the portfolio diversification is more effective than if the underlying distribution
were normally distributed. Under normality one can use a ‘square-root rule’ to
calculate the effects of portfolio diversification. As it turns out, with heavy tailed
distributed returns, a modified root-rule can be formulated. The results for the
downside risk of portfolio diversification are illustrated by a simulation study.
An application to S&P stock returns demonstrates the empirical relevance of
the theory.

2 Review of Regular Variation and Extreme Value
Theory

It is well known that many financial time series exhibit a fat-tailed return distri-
bution. For example, this shows up in the higher than normal kurtosis of stock
returns. There are several definitions of a "heavy tailed” distribution. One def-
inition would be to take all distributions which generate a kurtosis above three.
But this class is too broad for what we see in the data. It is not only the higher
than normal kurtosis, but sequential moment plots typically reveal failure of the
higher moments, see Embrechts et al. (1997, pp.311-315). Therefore we define
the heavy tail feature more finely as the class of distributions which exhibit a
power like behavior comparable to the Pareto distribution. The distributions in
this class all have some of the higher moments unbounded.

Throughout the paper we define the return on an asset as the logarithmic
price differential. Thus if P, is the time ¢ asset price, then Xy = In(P;/P;_1)
is the one period return. Suppose X1, Xo, ... is a sequence of independent and
identically distributed (i.i.d.) random variables with a common distribution
function (d.f.) F(z). We identify the class of distributions with heavy tails, as
the distributions which are regularly varying at infinity:

Definition 1 A distribution F(x) varies regularly at minus infinity with tail
index « if

F (—tx)

A m ey =z % a>0,z>0. (1)

To interpret the property of regular variation, we review a number of its
implications. One important implication of regular variation is the connection
between heavy tails and the distribution of the extreme order statistics. Reg-
ular variation is a necessary and sufficient condition for the distribution of the
minimum or maximum to be in the domain of the attraction of the Frechet
limit law (extreme value distribution). Let M,, = max{—X1, —Xa,... ,—X,},
i.e. M, is the maximum loss in a sample of size n. The distribution function of
the maximum loss M, is

P{M, <z}=[1-F(-2)]", x>0 2)



Extreme value theory studies the limiting distribution of M, (appropriately
normalized) as n becomes large, while regular variation characterizes the tails
as  becomes large. For the laws which satisfy (1) and a choice of the normalizing
constant a,, = —F ! (1/n) > 0, we have for loss x that as n — oo

[1- F(fa_lx)]n = G () =exp (27, a> 0,z >0, (3)

n

where % denotes weak convergence. Note that (1) and the definition of a,
imply

(1= F(=ay'2)]" = |1- F<‘“nl)%;;))r ) [1 . x_}

which explains the convergence towards the Frechet limit law exp (—z~%). One
can also show that starting from the limit law, the underlying distribution must
be regularly varying at infinity (see e.g. Leadbetter et. al (1983) for details).

A second (indirect) implication of regular variation is that, to a first order
approximation, all distributions have a tail comparable with the Pareto distri-
bution:

F(—z) = Az=*[1+0(1)], @ > 0, A > 0, (4)

as x — 00. This follows from the fact that all regularly varying distributions are
in the domain of attraction of the Frechet limit law for the distribution of the
maximum. Since this is also the case for the Pareto distribution F(—z) = Ax~,
all these distributions satisfy (4).

A third implication of regular variation is that the tail parts do not decay
rapidly enough for the moments above a to be integrable. From (4) for large «

f(—z) ~ aAz™"1,

so that the density declines at a power rate z—*~! far to the left of the center
of the distribution. This power is outweighed by the explosion of 2™ in the
computation of moments m > a. There are other distributions which exhibit
unbounded moments, but the regular variation requirement imposes a certain
smoothness, such that eventually the tail shape is monotonic.

A fourth implication of regular variation is the simplicity of tail probabilities
for convoluted data. Suppose the data {X;} are generated by a heavy tailed
distribution which satisfies (4). Evidently (4) satisfies (1). From the Feller’s
Theorem (1971, VIIIL.8), the distribution of the sum satisfies

Pr {ZXz < x} =kAxz™*[1+ o(1)], as x — oo. (5)

i=1

Thus the multiperiod return distribution, recall the additivity of the logarithmic
returns, has a tail shape which is identical to the tail shape of the one period
returns, but which is scaled up by the length of the return horizon k. Risk man-
agers in financial institutions often calculate the VaR over a one day investment



horizon as the loss quantile = for which F(—z) = ¢, for a given desired risk level
8. If based on the expansion (4), the VaR is well approximated by AY/*§Y/ for
sufficiently small 8. For regulatory purposes, the VaR must often be calculated
over a multiperiod investment horizon apart from the one day exercise. The
reason is that regulators are concerned about the impossibility of being able to
immediately execute sales for large parts of the portfolio under adverse market
conditions. Thus regulators are interested in the portfolio risk over a multiday
investment period. If one relies on (5), the k-period VaR easily follows from
the one period VaR, holding the risk level é constant, by scaling the one period
VaR with the factor k*/¢. Thus a bank can go from the high frequency estimate
to the low frequency estimate without having to reestimate the parameters by
using this ‘a-root rule’. If the normal model would be used, the appropriate
scaling is by means of the standard ‘square-root rule’. Assume that returns have
bounded second moments. We have the following result from de Vries (2000):
At a constant risk level 6, increasing the time horizon k, increases the VaR
estimate under the normal model by more, i.e. by k'/2, than under the fat tail
model, where the increase is only a factor kY, since a > 2.

We now briefly review the statistical procedures required for using heavy
tailed distributions. An excellent treatise of extreme value theory is given in
Embrechts et. al. (1997) who cover both the probability theory and the sta-
tistical matters. The primary objective of the estimation is to obtain quantiles
z, denoted as VaR, at a given risk level 6. It is common to require estimates
of the VaR not only near the boundary of the range of observed data, but also
beyond the boundary, where the empirical distribution function is of no avail.
Consider two loss probabilities § and ¢ with § < % < t, where n is sample size.
Then from (4) the quantile x5 associated with é follows as below

a —a 1/a
A\ (140 (:rt )
Ts=x¢ | = A .
6 1+o0 (:125_0‘)
This suggests the following estimator: Ignore the higher order terms in the
expansion, replace the probability ¢ by the empirical distribution 2%, replace x;

by the (m + 1)-th descending order statistic, and use an estimator 1//3 for the
inverse of the tail index 1/«
m /e
bs = X0 (—) . 6
Ts (m+1) e ( )

There are two random variables in this statistic: X(,41) and 1//2. Since the
latter appears in the power, this statistic drives the properties of the VaR esti-
mator as long as m/n — 0 as n — oo. For this reason we can concentrate on
the properties of the tail index estimator alone.

The most popular estimator are Hill’s (1975) estimators of the tail index «



and the scale A:

and
~ m &
A= Z(X(m—f-l)) ; (8)

where X(;) is the i-th descending order statistic. These estimators can be in-
terpreted as conditional maximum likelihood estimators. If in (4) there were
no higher order terms, so that the distribution is a Pareto distribution, then
the Hill estimator (7) is the maximum likelihood estimator. With second order
terms present, the Pareto approximation is only good in the tail area. Hence
the statistic is calculated on a subset of the most extreme order statistics. The
difficulty then is the determination of this subset. The choice of the sample
threshold m is not a trivial problem, which was only recently solved by means
of a bootstrap procedure, see Danielson et. al. (2000). In the bootstrap the
asymptotic mean squared error is minimized via a control variate type device.
To guarantee convergence in distribution care must be taken in bootstrapping
with subsamples sizes only!.

3 Diversification Effects and Simulation Study

In the previous section we showed that if the data {X;} are generated by a
heavy tailed distribution for which

Pr{X; < —z}=Az7%[1+o0(1)],« >0, A >0, 9)
as x — oo, then for the convolution
k
Pr{ X; < x} =kAxz"*[1+ o(1)], as x — oo. (10)
i=1

We now use Feller’s theorem for deriving the benefits from cross-sectional port-
folio diversification. Suppose the following one factor model applies

Ri = B;R+ Qi, (11)

where R is the return on the market portfolio and @; is the idiosyncratic risk of
the return on asset ¢. This is the well known Capital Asset Pricing Model from

IRelated to this is the reason for subsampling in endpoint estimation, see Shao and Tu
(1995, pp.123-124); for a continuous d.f. the largest observation is by necessity a downward
biased estimate of the endpoint. This bias can be corrected via a subsample bootstrap pro-
cedure, since a comparison between the subsample resample endpoints and the full sample
endpoint allows one to gauge the extent of the bias.



finance. Consider a portfolio of k assets with weights w;, w; > 0, Zle w; = 1.
We focus on equally weighted portfolios w; = 1/k. Let 3 = % Zle B;. Suppose
the @, are cross-sectionally 7.7.d. distributed and satisfy (9). Conditional on the
market return, using (9), the downside risk of a single asset portfolio is
Pr{R; < —z|R} = Pr{Q;+B,R<—z|R}
= Pr{Q; <—z—(,R R}
A(z+ 6,R)™“[1 4+ o(1)]. (12)
The diversification benefits from the equally weighted portfolio against the
downside risk then follow as
R}

k
1
Pr{k;_lRl_ T

k
R} = Pr{ZQi < k(—z — BR)

= kA(k[; + BR)T[1 + o(1)]
= k' “A(z + BR) 1+ o(1)] (13)

Thus diversification reduces the downside risk at a fixed VaR level whenever
a > 1 (assuming 3 ~ 3,). If a > 2, then diversification is working even better
than if the returns would be normally distributed.

We investigate the diversification effects further by means of a simulation
study. In this study we examine the diversification benefit under the Student-¢
distribution. For this distribution the degrees of freedom equals the tail index.
The Student-t was simulated with respectively degrees of freedom d = 1,2,3
and 6. For the fixed levels of quantiles, we calculate the loss probabilities at
different levels of aggregation. The number of observations was taken 100,000
and each experiment was repeated 1,000 times. The results from the Monte
Carlo experiments are reported in Tables 1 and 2.

In Table 1 we report the empirical loss probabilities for fixed quantiles. The
chosen quantiles are respectively 5%, 1%, 0.5% and 0.05% losses for the non-
aggregated series. The values in the first row of Table 1 are reasonably close
to the pre-set probability levels. We do not report the standard errors of the
simulation to save on space. The probabilities are decreasing monotonically as
the level of aggregation k increases. By the law of large numbers, as more series
are averaged the distribution is degenerating to the sample mean and hence
the probabilities beyond a certain quantile are all decreasing. The effect of
diversification is less pronounced when the degrees of freedom d is smaller. For
example comparing k = 1 to k = 10, the loss probability is decreasing from 5% to
0.684% if d = 2, but to 0.002% if d = 6. Fama and Miller (1972, p. 270) discuss
the case of sum stable distributions, and note that for o < 1 diversification
actually increases the dispersion. For the hairline case d = 1, diversification
does not help but does not hurt either. This explains the invariance in the first
four columns from the Table 1.

To experiment for the case where one does not know the true data generating
mechanism, we compare the aggregation effects calculated from two proxy mod-
els, when the true data are generated by the Student law. The first proxy model



uses the semi-parametric presumption that the distribution is heavy tailed, the
second model is based on the fully-parametric assumption of normality. In case
one works from the presumption of regular variation, we have from (10) the
following first order approximation to the diversification effect

k
1 11—« —
P{EZXig—x}Nk Az, (14)

=1

By means of a Taylor expansion at infinity, one calculates the following param-
d—2

eter values for the Student law o = d and A = ﬂ%%@d = /y/7 and where
I'(-) denotes the gamma function. In the experiment , we assume these parame-
ters are estimated without error. The columns labelled 15T in Table 2 give the
results for this proxy model.

The other proxy model assumes erroneously that the X; are i.i.d. normally
distributed. We do this for the reason that the normal law is so often used as the
workhorse model in finance, even though it does not capture the characteristic
tail feature of the data. Under this model, one calculates the loss probability
for the averaged returns as follows

1< x
P{E;Xig—m}zp{zg—\/%m} (15)

where Z denotes a random variable with the standard normal distribution. For
the centered Student ¢-distribution, E[X] = 0 and Var[X] = d/(d—2), provided
the degrees of freedom is larger than two. Again, we assume these parameters
are estimated without error. The results are reported in columns labelled NOR.

The first column SIM of Table 2 reproduces the results from Table 1,
and give the theoretically correct values.? Table 2 shows that the accuracy
of the normal model is very poor when the percentage loss x is large, since
the normal model underestimates the true probability of the tail part. The
exponential decline of the tails of the normal model is too rapid to measure
the diversification effects of the Student-t. If the threshold value of x is chosen
from the center of the distribution, an approximation via the normal model
fits reasonably well. Note that the crossing point of the normal and fat tail
distributions shifts towards the center as the aggregation level increases. For
example, if £k = 2 the normal model overestimates the probability of loss for
the quantile 2.353. However this normal model underestimates the probabilities

when k£ > 3 for the quantile sé{% = 2.353. For the larger quantiles such as

s = 4.541,s5) = 5.841 and s{); = 12.941 the normal model shows poor
accuracy even when k£ = 1, since the tail feature is already dominant in this
area. Overall the first order approximation based fat tail model provides a good
approximation to the true probability even at a moderate level of aggregation.
Furthermore, the heavy tail model becomes more accurate at higher levels of
aggregation and smaller quantiles.

2Since we reran the experiment for the purpose of Table 2, entries differ slightly from those
that are reported in Table 1.



4 Empirical Analysis of Diversification for Stock
Returns

We provide an application to portfolio diversification effects for a portfolio of
stocks. We analyze daily returns (close-to-close data), including cash dividends,
for companies listed on the S&P 100 index in March of 2001. The data were
obtained from the Datastream. The data span runs from January 2, 1980,
through March 6, 2001, giving a sample size of n = 5,526. Thus more than 20
years of data are considered, including the 1987 Crash. To see the effects of
portfolio diversification, we selected 15 stocks arbitrarily. In Table 3 the list of
selected series is given, and the summary statistics for each stock return series
are presented. On an annual basis the returns are around 10% (multiply u, by a
factor 2.5), have similar second moments, and exhibit considerably higher than
normal kurtosis. This latter feature is also captured by the estimates for the
tail index « in Table 4. We estimate the tail index from the semi-parametric
subsample bootstrap method proposed by Danielsson et al. (2000).* In Table
4, we report the estimate of «, its standard error, the estimate of the scale
parameter A, and the optimal number of order statistics 7 calculated from
the bootstrap procedure. From Table 4 we see that the tail index estimates
range between 1.8 and 4.4, but appear fairly concentrated around 3. The scale
parameter estimates, however, differ considerably.

For the analysis of cross-diversification effects, we averaged the series of stock
returns cross-cumulatively using the particular ordering from Table 3. Thus the
first k series from Table 3 are averaged for the analysis of k-convolution effects.
This particular aggregation method was used to enable a comparison with the
Monte Carlo study from the previous section. At first we take the parameters
a and A from the first stock, and assume these apply to all other stocks as well;
this resembles most closely the set-up of the Monte Carlo experiment. But as
the estimates from Table 4 indicate, both parameters differ across the different
stocks, and we relax the presumption of parameter equality later. Due to the
difference in parameters, it is evident that if the stocks in Table 3 had been
ordered differently, the diversification effects reported under the assumption of
parameter equality would be different. Table 5 presents tail parameter estimates
for the averaged series. One clearly sees that aggregation affects the estimates
of the scale A, but the tail index estimates are relatively constant, which is in
line with the Table 4 results and formula (13).

In Table 6 we analyze the effects of convolution for the tail probabilities. The
numbers in row EMP are the probabilities estimated by the empirical distribu-
tion function. The numbers in the rows labelled NOR (I) give the probabilities
from the normal model based formula (15), using the mean and variance es-
timates reported in Table 4. We report the estimated probability using the
averaged series in rows NOR (II). The row 1ST (I) gives the probability esti-

3We choose the subsample size as ny = n/2. Estimation was performed by searching over
the minimum MSE of the subsample bootstrap estimates by varying i from 10 to ni /2. We
drew 1,000 resamples in the bootstrap procedure.



mates by the heavy tail model using the first order approximation as in (14),
and using the estimates for the tail parameters for stock 1, ALCOA, from Table
4, and assuming that these estimates apply to all other stocks in the portfolio.
From the Table 6, we find that the events beyond the threshold loss s = 0.05 are
already quite extreme cases. The empirical probability of these events is only
0.7% when k = 1. The normal model clearly underestimates the probability of
these events. In particular for £ = 1 at the 0.05, 0.1 and 0.2 loss levels, the
1ST (I) heavy tail based estimates are much closer to the observed probabilities
under EMP, in comparison to the normal based estimates NOR (I).

Next, we discuss the aggregated series k = 5,10, 15. The calculation in rows
18T (I) assume that all stocks are identically and independently distributed.
As is clear from Table 4, the 15 return series do not have identical distributions
cross-sectionally due to variations in the scale parameter A. For this reason
we used an alternative method. First, if we relax the homogeneity of A; but
retain the equality of teh tail indexes, then we have the more general convolution
formula

Pr{X+Y <-—s}~ (4 +4,)s “,

where Pr{X < —s} = 4,57 and Pr{Y < —s} =~ A,;s™%, c.f. (14). Under the
heterogeneity of A;, the equivalent of equation (14) reads

k k
L (i) R a
Pr{E;Xt §—s}~k (;Ai)s : (16)

The estimated probabilities on the basis of (16) are reported in rows 15T (II) of
Table 6. As can be seen from comparing 1ST (I) to 1ST (II), the probabilities
in the column 1ST (I) improve orders of magnitude by using the heterogeneity
of the A;.

As a benchmark, we report the estimated tail probability using the averaged
series itself. Of course, this method is even better since it can directly capture
the dependence and heterogeneity of parameters:

k
1 i T _a
Pr {E 1221 Xt( ) < 5} ~ As (17)

where A, & are the estimated tail parameters using X; = % Zle Xt(z), see Table
5. The estimated values in rows 1ST (III) obtained by this direct method are
reasonably close to the empirical probabilities in rows EMP. The differences
between the numbers in row 15T (I) and 1ST (III) in Table 6 can in large part
be explained by the wide variation in the A;, but relatively stable values of «;.
Comparing rows 1ST (II) and 1ST (III), one notices that the A heterogene-
ity goes a long way towards explaining the aggregation effects, but not all is
explained by the differences in scale.



In future work we intend to relax the assumption of independence in (14).
When there exists a strong dependence between returns, the actual diversifica-
tion effects are smaller than (14). As explained by (11) each individual stock
return contains common components such as the market risk. The idiosyncratic
risk may be diversified fully in arbitrarily large portfolio, but the strong degree
of cross-sectional dependence induced by common risk cannot be diversified.
This may explain why the numbers in column 1ST(II) are further from the en-
tries under EMP compared to the entries calculated with the direct method in
column 1ST(III).

5 Conclusion

This paper first reviewed the theory of regular variation and extreme values,
since heavy tailed distributions provide a good model for understanding the
recurrent sizable losses in the financial market place. Subsequently, we study
the problem of portfolio diversification in particular. We show that if the asset
return distributions are regularly varying at infinity, then Feller’s convolution
theorem implies that the portfolio diversification can be easily calculated, com-
paring with the simplicity of the normal based calculations. This is illustrated
by a simulation study and an application to S&P stock returns. As each stock
return has a distribution with a heavy tail, the prediction by the normal model
is quite poor the for quantiles located far in the tail area. We showed that it is
important to account for differences in scales when computing the diversification
effects of portfolio investment. Per contrast, differences in tail shape were not
large and did not seem to matter much for the diversification effect.
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Table 1. The Probability of Loss for Student’s ¢-Distribution

d=1 d=72

T R B VT Ay R R R
6.314 31.821 63.657 636.619 2920 6.695 9.925 31.598

k=1 4.996  1.000 .001 .0499 4.990 1.000 .4991 .0501
2 4.998 1.001 .500 0499  3.124 0.536 .2611 .0253

3 4.999  0.999 .499 0498 2.238 0.362 .1747  .0167

4 4.997  0.998 .499 0497  1.723 0.271 1311 .0125

) 4.997  0.999 499 0497 1.390 0.216 .1046  .0101

10 4.996  0.998 499 .0495 0.684 0.107 .0519 .0051
15 4.995  0.999 .499 .0497 0.444 0.070 .0341 .0033

d=3 d=6

T R RV VA R R
2.353 4.541 5.841 12941 1943 3.143 3.707  5.959

k=1 5.002 9977 .4989 .0496 5.000 1.000 .4989 .04956
2 2.329 3257 L1491 0129  1.557 .1383 .0515 .00270

3 1.279 .1509 .0675 .0058 0.549 .0264 .0085 .00039

4 0.777  .0846  .0377 .0032 0.209 .0068 .0021 .00009

) 0.507  .0539 .0240 .0020 0.085 .0021 .0006 .00001

10 0.115 0127 .0058 .0005 0.002 .0000 .0000 .00000

15 0.047  .0055 .0025 .0002 0.000 .0000 .0000 .00000

@

Quantile sy ) denotes the 2% quantile from Student ¢-distribution with d degrees

of freedom, and.k denotes the number of convolutions.
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Table 2. The Probability of Loss for Student’s ¢t-Distribution and
Approximations
Quantile s) = 2.353 s = 4.541
k SIM NOR 1ST  SIM NOR 18T
5.002 8.715 8464 9983 4374  1.178
2.329 2735 2.116  .3266 .0105 .2944

1
2
3 1.279 0931 0940 .1514  .0003  .1308
4
3

0.778 0.329 0.529 .0849  .0000  .0736
0.507 0.119 0.339 .0538  .0000  .0471
10 0.115 0.001 0.085 .0126  .0000  .0118
15 0.047 0.000 0.038 .0055  .0000  .0052

Quantile s = 5.841 s =12.941
k SIM NOR 1ST SIM  NOR  1ST
1 4991 0373 5533 04973 00000 05088
2 1495 0001 .1383 .01308 .00000 .01272
3 0674 0000 .0615 00577 .00000 00565
4 0378 .0000 .0346 00325 .00000 00318
5 0239 .0000 .0221 00206 .00000 .00204
10 .0058 .0000 .0055 .00053 .00000 .00051
15 0025 .0000 .0025 .00026 .00000 .00023

Quantile 3;3) denotes the 2% quantile from the Student ¢-distribution with d = 3

degrees of freedom, and k denotes the number of convolutions. The entries in
column SIM are calculated from 1,000 simulations with sample size 100,000,
the numbers in column NOR are from the normal model (15), and the entries
in column 1ST are based on the fat tail model (14).
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Table 3. Selected Stocks and Summary Statistics

Series Name 1y 1o 5 Ly
1 ALCOA 5.54 194 -0.26 13.40
2 AT & T 428 173 -035 7.75
3 BLACK & DECKER 2.04 224 -033 10.57
4 CAMPBELL SOUP 6.30 175 0.28 9.07
5 DISNEY (WALT) 6.63 1.95 -1.30 29.82
6 ENTERGY 453 1.63 -0.97 23.65
7 GEN.DYNAMICS 5.76  1.81 0.27 10.25
8 HEINZ HJ 6.58 159 0.11  6.35
9 JOHNSON & JOHNSON 6.92 1.63 -032 9.46
10 MERCK 7.56 1.58 -0.03 6.32
11 PEPSICO 739 177 -0.04 7.82
12 RALSTON PURINA 7.02 163 0.70 15.40
13 SEARS ROEBUCK 488 196 -0.25 16.83
14  UNITED TECHNOLOGIES 6.11 1.68 -0.10 6.84
15 XEROX 1.02 219 -1.78 33.77

Observations cover 01/01/1980 - 03/06/2001, giving 5526 daily observations.
The sample means (11) are multiplied by 10,000 and the standard errors ()
are multiplied by 100. The 15 and g4 denote the sample Skewness and Kurtosis,
respectively.

Table 4. Left Tail Parameter Estimates

Series a~' (se.) & (se.) A m
1 275 (.028) 3.633 (0.365) 0.140 99
2 .375(.022) 2.670 (0.153) 2.407 303
3 311 .(.027)  3.211 (0.275) 1.126 136
4 226 (.113)  4.428 (2.214)  0.020 4
5 .395(.018) 2.533 (0.117) 4.946 469
6 .565(.019) 1.769 (0.059) 52.98 884
7 310 (.025) 3.223 (0.261) 0.512 153
8 294 (.021) 3.397 (0.242) 0.177 197
9 .301 (.017) 3.322(0.193) 0.222 296
10 .259 (.022) 3.858 (0.326) 0.039 140
11 .269 (.032) 3.713 (0.441) 0.104 71
12 320 (.023) 3.127 (0.227) 0.427 190
13 310 (.020) 3.223 (0.212) 0.593 231
14 229 (.028) 4.361 (0.537) 0.010 66
15 460 (.021) 2.174 (0.101) 21.18 459

The estimate of « is by the bootstrap method of Danielsson et. al. (2000)
with 1,000 resamples. Standard errors are in parenthesis. The values in A are
scaled up by 1,000,000. We also report the estimated optimal number of order
statistics m.

14



Table 5. Tail Parameters of the Averaged Series

Eooat (se) & (s.e.) A m
1 275 (.028) 3.633 (0.365) 0.140 99
5 .349 (.022) 2.868 (0.181) 0.425 251
10 .378 (.019) 2.644 (0.132) 0.611 404
15 357 (.018) 2.798 (0.145) 0.324 374

The estimate of « is by the bootstrap method of Danielsson et. al. (2000) with
1,000 resamples. The values in A are multiplied by 1,000,000. Standard errors
are in the parenthesis. The k denotes the number of individual stocks included
in the averaged series.
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Table 6. Lower Tail Probabilities in Percentages

s k=1 k=5 k=10 k=15
EMP 6.7873 1.7738 90498 92308
NOR (I)  9.8286 0.1941 .00222 .00003
0025 NOR (II) -  1.8426 57558 .52000
1ST (I)  9.2833 0.1340 .02160 .00743
18T (1) - 1.6507 96343 29956
1ST (III) - 16716 1.0540 .98295
EMP 70588 21719 12670 14430
NOR (I) 49007 .00000 .00000 .00000
005 NOR (II) -  .00149 .00002 .00001
1ST (I) 74812 .01080 .00174 .00060

18T (1I) - 13302 07764 .02414
1ST (III) - 22901 16856 .14137
EMP 07240 03620 01810 .01810

NOR (I) .00001 .00000 .00000 .00000
0.10 NOR (L) - .00000 .00000 .00000
18T (1) .06029 .00087 .00014 .00005

18T (1I) - 01072 .00626 .00195
1ST (III) - 03137 .02696 .02033
EMP 01810 .01810 .00000 .00000

NOR (I)  .00000 .00000 .00000 .00000
020 NOR (II) - .00000  .00000 .00000
18T (I) .00486  .00007 .00001 .00000
18T (II) - .00086  .00050 .00016
18T (11I) - .00430 .00431 .00292
The entries in rows EMP are the probabilities from the empirical distribution,
the numbers in rows NOR(I) are the probabilities from the normal model (15),
and the numbers in row 15T(I) are the probabilities from the fat tail model (14).
The numbers in rows 1ST(1I) are the probabilities calculated from (16), allowing
for the differences in scale. The numbers in rows 1ST(III) are the probabilities
calculated directly from the parameters of averaged series itself. Similarly, the
normal based approximation using the averaged series is in rows NOR(II). The
k denotes the number of individual stocks included in the averaged series, and
s is the loss quantile.

16



