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Abstract

We use a subsample bootstrap method to get a consistent esti-

mate of the asymptotically optimal choice of the sample fraction, in

the sense of minimal mean squared error, which is needed for tail in-

dex estimation. Unlike previous methods our procedure is fully self

contained. In particular, the method is not conditional on an initial

consistent estimate of the tail index; and the ratio of the �rst and

second order tail indices is left unrestricted, but we require the ratio

to be strictly positive. Hence the current method yields a complete

solution to tail index estimation as it is not predicated on a more or

less arbitrary choice of the number of highest order statistics.

Key Words and Phrases: Tail index, Bootstrap, Bias, Mean squared

error.

1 Introduction

Let X1; X2; � � � be independent random variables with common distribution
function F with a regularly varying tail

1� F (x) = x�1=
L(x) x!1; 
 > 0
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where L is a slowly varying function and 1=
 is the index of regular varia-

tion. Various estimators for estimating 
 have been proposed (see Hill (1975),

Pickands III (1975), de Haan and Resnick (1980), Hall (1982), Mason(1982),

Davis and Resnick (1984), Cs�org}o, Deheuvels and Mason (1985), Hall and

Welsh (1985)). These estimators are functions of the upper k order statistics

of a sample size n and share a common problem. When k is small the variance

of the estimator of 
 is large and the use of large k introduces (asymptotic)

bias in the estimation. Balancing the variance and bias components is im-

portant in the applications of extreme value theory, because this minimizes

the asymptotic mean squared error (AMSE).

If the underlying probability distribution is known, the asymptotically

optimal value of k can be determined in minimal mean squared error sense,

assuming that the second order condition (see Dekkers and de Haan (1993)

and de Haan and Peng (1994)) holds:

lim
t!1

U(tx)

U(t)
� x


A(t)
= x


x� � 1

�
(1.1)

for all x > 0, where U is the right continuous inverse function of the function

1=(1 � F )(notation: U = ( 1

1�F
)�), and where � < 0 is the second order

parameter. We note that the limit function in (1.1) is necessarily of the
stated form in (1.1), where jA(t)j is a regularly varying function with index

� (see Geluk and de Haan (1987)). We write jAj 2 RV�:

The asymptotically optimal value of k depends on the unknown parameter


 and the unknown second order scale function A. So if the only source of
information is the sample, this optimal value is not available. Hall (1990)
obtained the asymptically optimal value of k adaptively by using a bootstrap

method. In Hall's method the initial value of k has to be speci�ed, in the
sense that it would yield a consistent estimate of 
. Moreover, a very strict
second order condition, A(t) = ct�1 is required. The problem of choosing

the right k-value is therefore not really solved. But Hall's idea of using a

subsample bootstrap procedure is applicable when it is applied to a statistic

for which the asymptotic mean has a known value independent of the values
of 
 and �. This statistic can then be used to estimate the AMSE without

having �rst to estimate its mean as in Hall(1990). For such a statistic one

can take just the di�erence between two alternative estimators for 
. Hence

the asymptotic mean of this statistic is trivially equal to zero, but the AMSE

as a function of k still converges at the same rate.

2



In summary, this paper proposes a bootstrap method to obtain the asymp-

totically optimal value of k adaptively under a more general second order

condition A(t) � ct�, t ! 1 ( � < 0 ), and such that the initial value of

k does not have to be speci�ed. An altogether di�erent approach to the

problem is taken in a recent manuscript by Drees and Kaufmann (1996).

2 Main Results

Let Xn;1 � � � � � Xn;n be the order statistics of X1; � � � ; Xn. Hill's estimator

is de�ned by


n(k) :=
1

k

kX
i=1

logXn;n�i+1 � logXn;n�k:

Various authors have considered the asymptotic normality of 
n (see Haeusler
and Teugels (1985), Cs�org}o and Mason (1985) ). We can minimize the mean

squared error of 
n to get the asymptotically optimal choice of k, but it
depends on the unknown parameter 
 and function A(t) (see Dekkers and
de Haan (1993)). Here we turn to the powerful bootstrap tool.

The mean squared error of 
n is de�ned as

MSE(n; k) := E(
n(k)� 
)2:

The idea is to estimate this MSE via the bootstrap and to extract out the
MSE minimizing k value. But as is shown in Hall(1990), one can not use

the usual approach to bootstrap MSE(n; k) because it seriously underes-
timates bias. Therefore one draws resamples X �

n1
= fX�

1 ; � � � ; X�
n1
g from

Xn = fX1; � � � ; Xng with replacement. Let n1 < n and X�
n1;1

� � � � � X�
n1;n1

denote the order statistics of X �
n1

and de�ne


�n1(k1) :=
1

k1

k1X
i=1

logX�
n1;n1�i+1 � logX�

n1;n1�k1
:

Hall (1990) uses the bootstrap estimate

^MSE(n1; k1) = E((
�n1(k1)� 
n(k))
2jXn):

In this setup k has to be chosen such that 
n(k) is consistent. This then

permits an estimate of k1 for sample size n1. The problem is, however, that
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k itself is unknown. So we want to replace 
n(k) in the above expression by

a more suitable statistic.

De�ne

Mn(k) =
1

k

kX
i=1

(logXn;n�i+1 � logXn;n�k)
2:

Note that Mn(k)=(2
n(k)) is a consistent estimator of 
. We propose to use

the following bootstrap estimate

Q(n1; k1) := E((M�
n1
(k1)� 2(
�n1(k1))

2)2jXn)

where M�
n1
(k1) =

1

k1

Pk1
i=1

(logX�
n1;n1�i+1 � logX�

n1;n1�k1
)2:

It can be shown that the statistic Mn(k)=(2
n(k)) � 
n(k) is asymptot-

ically normal with asymptotic mean equal to 0. But as is shown in the
following two theorems, the k-value that minimizes MSE(n; k) and the k-
value that minimizes E(Mn(k) � 2(
n(k))

2)2 are of the same general order

(with respect to n), under some conditions.

Theorem 1. Suppose (1.1) holds and k ! 1, k=n ! 0. Determine k0(n)
such that MSE(n; k) is minimal. Then

k0(n) =
n

s�(

2(1��)2

n
)
(1 + o(1)) 2 RV�2�=(1�2�); as n!1

where s� is the inverse function of s, with s given by

A2(t) =

Z 1

t

s(u) du(1 + o(1)) as t!1:

For the existence of such a monotone function see Lemma 2.9 of Dekkers and
de Haan (1993).

Theorem 2. Suppose (1.1) holds and k ! 1, k=n ! 0. Determine �k0(n)
such that E(Mn(k)� 2(
n(k))

2)2 is minimal. Then

�k0(n) =
n

s�(

2(1��)4

n�2
)
(1 + o(1)); as n!1:

Corollary 1.

�k0(n)

k0(n)
! (1� 1

�
)

2
1�2� (n!1):
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The next theorem shows that the optimal k1 for a subsample of size n1 can

be estimated consistently. The idea behind the proof is as follows. Note that

in the subsample procedure the bootstrapped values X�
n1;i

are still drawn

from the full sample. Averaging over the subsample bootstrapped version

of Q then amounts to calculating this statistic on the full sample with too

many(i.e. too low) order statistics so that the bias dominates the variance.

The next theorem shows that the argmin Q(n1; k1) as a function of k1 is

asymptotic to a deterministic sequence. In contrast argmin Q(n; k) as a

function of k is only asymptotic to a random sequence. So, the motive for

using the subsample bootstrap procedure is therefore di�erent from that of

Hall(1990).

Theorem 3. Suppose (1.1) holds and k1 ! 1, k1=n1 ! 0, n1 = O(n1��)

for some 0 < � < 1. Determine k�1;0(n1) such that

E((M�
n1
(k1)� 2(
�n1(k1))

2)2jXn)

is minimal. Then

k�1;0(n1)s
�(


2(1��)4

n1�2
)

n1

p�!1; as n!1:

While Theorem 3 gives the optimal k1 for sample size n1, we would like

to use the full sample. This can be achieved modulo a conversion factor.

Corollary 2. Suppose (1.1) holds for A(t) � ct�, t ! 1 and k1 ! 1,
k1=n1 ! 0, n1 = O(n1��) for some 0 < � < 1. Then

k�1;0(n1)

�k0(n)
=(
n1

n
)

2�
2��1

p�!1; as n!1:

The conversion factor can be calculated consistently as follows.

Theorem 4. Let n1 = O(n1��) for some 0 < � < 1=2 and n2 = (n1)
2=n.

Suppose (1.1) holds for A(t) � ct�, t!1 and ki !1, ki=ni ! 0 (i = 1; 2).

Determine k�i;0 such that

E((M�
ni
(ki)� 2(
�ni(ki))

2)2jXn)

is minimal (i = 1; 2). Then

(k�1;0(n1))
2

k�2;0(n2)
(

(log k�1;0(n1))
2

(2 logn1 � log k�1;0(n1))
2
)
log n1�log k�1;0(n1)

log n1 =k0(n)
p�!1 (2.1)

as n!1:
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Remark 1. From Theorem 4 we can achieve the optimal choice of k asym-

totically, therefore we can get the asymptotically optimal Hill's estimator

which is calculated using the asymptotically optimal choice of k.

Corollary 3. Suppose the conditions of Theorem 4 hold. De�ne

k̂0(n) :=
(k�1;0(n1))

2

k�2;0(n2)
(

(log k�1;0(n1))
2

(2 logn1 � log k�1;0(n1))
2
)
log n1�log k�1;0(n1)

log n1 :

Then 
n(k̂0) has the same asymptotic e�ciency as 
n(k0).

3 Proofs

Let Y1; � � � ; Yn be independent random variables with common distribution
function G(x) = 1�x�1; (x � 1). Let Yn;1 � � � � � Yn;n be the order statistics

of Y1; � � � ; Yn. Note that fXn;n�igni=1

d
= fU(Yn;n�i)gni=1 with the function U

de�ned in the Introduction.

Lemma 1. Let 0 < k < n and k !1. We have
(1) for n!1, Yn;n�k=(

n
k
)! 1 in probability.

(2) for n!1, (Pn; Qn) is asymptotically normal with means zero, vari-
ance 1 and 20 respectively and covariance 4, where

Pn :=
p
kf1
k

kX
i=1

logYn;n�i+1 � logYn;n�k � 1g

and

Qn :=
p
kf1
k

kX
i=1

(logYn;n�i+1 � logYn;n�k)
2 � 2g:

Proof. Similar to the proof of Lemma 3.1 of Dekkers and de Haan (1993).

Proof of Theorem 1. We are going to use the method of Dekkers and de Haan

(1993), which we shall outline, since a similar reasoning is used in the proofs

of Theorem 2 and Theorem 3.

Relation (1.1) is equivalent to the regular variation of the function j logU(t)�

 log t�c0j with index � for some constant c0 (see Geluk and de Haan (1987),
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II.1). Then (1.1) holds with A(t) = �(logU(t) � 
 log t � c0). Applying ex-

tended Potter's inequalities to the function A we get that for each 0 < � < 1

there exists t0 > such that for t � t0 and tx � t0

(1� �)x�e��j log xj � 1 � logU(tx)� logU(t)� 
 log t

A(t)=�
� (1 + �)x�e�j log xj � 1:

(3.1)

Applying this relation with t replaced by Yn;n�k and x replaced by Yn;n�i=Yn;n�k,

adding the inequalities for i = 1; 2; � � � ; k and dividing by k we get


n � 
 + 
Pn=
p
k + ��1A(Yn;n�k)(1� �)f1

k

kX
i=1

(
Yn;n�i+1

Yn;n�k
)��� � 1g:

Now

fYn;n�i+1

Yn;n�k
gki=1

d
= fYigki=1

with Y1; � � � ; Yk i.i.d. with common distribution function 1� 1=x. Hence by
the weak law of large numbers


n � 
 + 
Pn=
p
k + ��1(1� �)(

1

1� �� �
� 1)A(Yn;n�k);

i.e.


n = 
 + 
Pn=
p
k + (1� �)�1A(

n

k
) + op(A(

n

k
))

(note that in the latter term we have replaced Yn;n�k by n=k which can be

done since jAj is regularly varying). Hence

E(
n � 
)2 � 
2=k + A2(
n

k
)=(1� �)2:

We can assume (see Lemma 2.9 of Dekkers and de Haan(1993)) that A2 has
a monotone derivative s which is then regularly varying with index 2� � 1.

Consequently s�(1=t) (s� denoting the inverse of s) is regularly varying with
index 1=(1� 2�). The result is then obtained by minimizing the right hand

side of the equation above.
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Proof of Theorem 2. From the proof of Theorem 1 we get


n
d
= 
 + 
Pn=

p
k + d1A(Yn;n�k) + op(A(n=k)) (3.2)

with d1 =
1

1��
and hence


2n
d
= 
2 + 2
2Pn=

p
k + 2
d1A(Yn;n�k) + op(A(n=k)): (3.3)

Similarly

Mn
d
= 2
2 + 
2Qn=

p
k + d2A(Yn;n�k) + op(A(n=k)) (3.4)

where d2 =
2
(2��)
(1��)2

: The rest of the proof is similar to that of Theorem 1.

Proof of Theorem 3. Let Gn denote the empirical distribution function of n
independent, uniformly distributed random variables. As n is large enough

and n1 = O(n1��), we have

1=2 � sup
0<t�n1(log n1)2

jtG�n (
1

t
)j � 2 a.s. (3.5)

and

sup
t�2

j
p
t(Gn(

1

t
)� 1

t
)j � lognp

n
a.s.

(see equation (10) and (17) of Chapter 10.5 of Shorack and Wellner (1986)).

Hence

sup
4�t�n1(log n1)2

j
s

1

G�n (
1

t
)
[Gn(G

�
n (

1

t
))�G�n (

1

t
)]j � lognp

n
a.s.

Therefore for all 4 � t � n1(logn1)
2

jtG�n (
1

t
)� 1j � 2

p
t lognp
n

a.s. (3.6)

Let Fn denote the empirical distribution function of Xn , Un = ( 1

1�Fn
)�.

Now we use (3.1), (3.5), (3.6),�
j log yj � 2jy � 1j for all 1=2 � y � 2

jy�� � 1j � (��)(2���1 _ 21+�)jy � 1j for all 1=2 � y � 2
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and

logUn(t) = logF�n (1� 1

t
)

d
= logF�(G�n (1� 1

t
))

= logU( 1

1�G�n (1� 1
t
)
)

d
= logU( t

tG�n ( 1
t
)
):

From this we conclude that for any 0 < � < 1 there exists t0 > 4 such that

for t0 < t < n1(logn1)
2 and t0 < tx < n1(logn1)

2

logUn(tx)�logUn(t)�
 log x
A(t)=�

d
=

logU( tx

txG
�

n ( 1
tx )

)�logU(tx)�
 log 1

txG
�

n ( 1
tx )

A(t)=�

�
logU( t

tG
�

n ( 1t )
)�logU(t)�
 log 1

tG
�

n ( 1t )

A(t)=�

+ logU(tx)�logU(t)�
 log x
A(t)=�

+

 log 1

txG
�

n ( 1
tx )

A(t)=�
+


 log 1

tG
�

n ( 1t )

A(t)=�

� (1 + �)(txG�n (
1

tx
))��e�j log(txG

�

n ( 1
tx
))j � 1 + �

�(1� �)(tG�n (
1

t
))��e��j log(tG

�

n ( 1
t
))j + 1 + �

+(1 + �)x�e�j log xj � 1 + �

+j 
�
A(t)

j2(jtxG�n ( 1

tx
)� 1j+ jtG�n (1t )� 1j) a.s.

� (1 + �)[(txG�n (
1

tx
))�� � 1]e� log 2

+(1 + �)e� log 2 � 1 + �

�(1� �)[(tG�n (
1

t
))�� � 1]e�� log 2

�(1� �)e�� log 2 + 1 + �

+(1 + �)x�e�j log xj � 1 + �

+j 
�
A(t)

j4
p
t lognp
n

(
p
x + 1) a.s.

� (1 + �)(��)(2���1 _ 21+�)jtxG�n ( 1

tx
)� 1je� log 2

+(1 + �)e� log 2 � 1 + �

+(1� �)(��)(2���1 _ 21+�)jtG�n (1t )� 1je�� log 2
�(1� �)e�� log 2 + 1 + �

+(1 + �)x�e�j log xj � 1 + �

+j 
�
A(t)

j4
p
t lognp
n

(
p
x + 1) a.s.

� [(��)(2��+1 _ 23+�) + 2j 
�
A(t)

j]2
p
t log np
n

(
p
x + 1)

+(1 + �)e� log 2 � (1� �)e�� log 2

+(1 + �)x�e�j log xj � 1 + 3� a.s.

(3.7)
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Similarly

logUn(tx)�logUn(t)�
 log x
A(t)=�

� �[(��)(2��+1 _ 23+�) + 2j 
�
A(t)

j]2
p
t lognp
n

(
p
x + 1)

�(1 + �)e� log 2 + (1� �)e�� log 2

+(1� �)x�e��j log xj � 1� 3� a.s.

(3.8)

Inequalities (3.7) and (3.8) are valid in probability with t replaced by Yn1;n1�k1
and tx replaced by Yn1;n1�i(i = 0; � � � ; k1 � 1) since

4 � Yn1;n1�i � Yn1;n1(i = 1; � � � ; k1) in probability

and

Yn1;n1=(n1(logn1)
2)! 0 in probability

for n1 !1 and k1=n1 ! 0.
We now minimize

E((M�
n1
(k1)� 2(
�n1(k1))

2)2jXn):

Note that conditionally, given Xn, Pn1 is once again a normalized sum of
i.i.d. random variables from an exponential distribution. Hence, when n1
increases, the distribution of Pn1 approaches a normal one. Similarly for
Qn1 .

We proceed as in the proof of Theorem 2 and use


�n1(k1)
d
= 
 + 
Pn1=

p
k1 + d1A(Yn1;n1�k1) + op(A(n1=k1)) +O(

logn
p
n1=k1p
n

);

(
�n1(k1))
2 d
= 
2 +

2
2Pn1p
k1

+ 2
d1A(Yn1;n1�k1) + op(A(
n1

k1
)) +O(

logn
p
n1=k1p
n

)

and

M�
n1
(k1)

d
= 2
2 +


2Qn1p
k1

+ d2A(Yn1;n1�k1) + op(A(
n1

k1
)) +O(

logn
p
n1=k1p
n

):

Note that the term
log n

p
n1=k1

p
n

= o(1=
p
k1), so that it can be neglected in the

minimization process. The statement of Theorem 3 follows.
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Proof of Corollary 2. Follows easily from Theorem 2 and Theorem 3 and the

fact that

t
1

2��1 s�(1=t)! (�2�c2) 1
1�2� :

Proof of Theorem 4. Since k�1;0 2 RV �2�
1�2�

in probability, we have

log k�1;0
logn1

p�! �2�
1� 2�

(see Proposition 1.7.1 of Geluk and de Haan (1987)), i.e.,

log k�1;0

�2 logn1 + 2 log k�1;0

p�!�: (3.9)

Write the result of Corollary 2 for k�1;0 and k�2;0:(
k�1;0
�k0
=(n1

n
)

2�
2��1

p�!1
k�2;0
�k0
=(n2

n
)

2�
2��1

p�!1:

Hence

�k0k
�
2;0=(k

�
1;0)

2 p�!1; (3.10)

and by Corollary 1

(k�1;0(n1))
2

k�2;0(n2)k0(n)

p�!(1� 1

�
)

2
1�2� :

An application of the estimate of � from (3.9) gives the result.

Proof of Corollary 3. We now have a random sequence k̂0(n) with the prop-

erty

lim
n!1

k̂0(n)

k0(n)
= 1 in probability:

Theorem 4.1 of Hall and Welsh (1985) now guarantees that 
n(k̂0(n)) achieves

the optimal rate.
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4 Simulation Experiment

In order to study the performance of our method we set up a monte carlo

experiment for some fat tail distributions. Results are reported for the com-

pletely skewed stable distribution with characteristic exponent 1=2, the sym-

metric Cauchy, the Student-t distribution with respectively 4 and 11 degrees

of freedom, and the type II extreme value distribution with exponent 1, 5

and 11 respectively. Note that the Student distribution does not satisfy Hall's

second order condition, but it can be handled with our method. The sample

size was in each case n = 20000, and we experimented with three di�erent

subsample sizes n1. Theorem 3 only gives a range within which n1 has to be

chosen. The number of simulations is 250. Per simulation 250 bootstrapped

subsamples and 250 subsubsample bootstraps were created. The table gives

the theoretical value of the inverse tail index 
 and the optimal k(n): The

table reports the mean and empirical RMSE(root of mean squared error) of

n and the mean of k̂(n). The average run time per distribution was 15 min-
utes, and the total run time for the entire simulation study was 109 minutes

on a Pentium Pro 200. Hence, for a single data set the procedure is quite
fast.

Judging from the table this fully automatic procedure seems to perform

reasonably well. The RMSE values are about the same for all distributions
except for the type II extreme value distribution, which are lower. On the

basis of the RMSE criterion it appears to be best (in �nite samples) to choose
n1 on the low side. This corresponds with opting for a smaller bias component
in the RMSE.
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n1 n2 mean 
n rmse 
n mean k̂0
Distribution: stable (0.5) 
 = 2:00 k0(n) = 4204

2000 200 2.028 0.048 5568.133

4000 800 2.040 0.064 6583.690

6666 2221 2.049 0.071 7050.276

Distribution: t(1) 
 = 1:00 k0(n) = 1527

2000 200 1.012 0.037 1501.939

4000 800 1.018 0.040 1789.549

6666 2221 1.018 0.047 2057.432

Distribution: t(4) 
 = 0:25 k0(n) = 110

2000 200 0.270 0.045 125.946

4000 800 0.278 0.055 165.617

6666 2221 0.283 0.053 207.490

Distribution: t(11) 
 = 0:0909 k0(n) = 24

2000 200 0.135 0.058 36.171
4000 800 0.144 0.066 53.312
6666 2221 0.149 0.069 65.907

Distribution: extreme(1) 
 = 1:00 k0(n) = 1474

2000 200 1.032 0.045 2403.471
4000 800 1.031 0.053 2806.829

6666 2221 1.035 0.053 3112.811

Distribution: extreme(5) 
 = 0:20 k0(n) = 1474

2000 200 0.206 0.009 2403.471
4000 800 0.206 0.011 2806.829

6666 2221 0.207 0.011 3112.811

Distribution: extreme(11) 
 = 0:0909 k0(n) = 1474

2000 200 0.094 0.004 2403.471

4000 800 0.094 0.005 2806.829
6666 2221 0.094 0.005 3112.811
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