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Abstract

Accurate prediction of the frequency of extreme events is of primary importance in
many financial applications such as Value-at-Risk (VaR) analysis. We propose a semi-
parametric method for VaR evaluation. The largest risks are modelled parametrically,
while smaller risks are captured by the non-parametric empirical distribution function.
The semi–parametric method is compared with historical simulation and the J. P. Mor-
gan RiskMetrics technique on a portfolio of stock returns. For predictions of low prob-
ability worst outcomes, RiskMetrics analysis underpredicts the VaR while historical
simulation overpredicts the VaR. However, the estimates obtained from applying the
semi–parametric method are more accurate in the VaR prediction. In addition, an option
is used in the portfolio to lower downside risk. Finally, it is argued that current regula-
tory environment provides incentives to use the lowest quality VaR method available.
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1. INTRODUCTION

1 Introduction

A major concern for regulators and owners of financial institutions is catastrophic mar-
ket risk and the adequacy of capital to meet such risk. Well publicized losses incurred
by several institutions such as Orange County, Proctor and Gamble, and NatWest,
through inappropriate derivatives pricing and management, as well as fraudulent cases
such as Barings Bank, and Sumitomo, have brought risk management and regulation
of financial institutions to the forefront of policy making and public discussion.

A primary tool for financial risk assessment is the Value-at-Risk (VaR) methodology
where VaR is defined as an amount lost on a portfolio with a given small probability
over a fixed number of days. The major challenge in implementing VaR analysis is the
specification of the probability distribution of extreme returns used in the calculation
of the VaR estimate.

By its very nature, VaR estimation is highly dependent on good predictions of uncom-
mon events, or catastrophic risk, since the VaR is calculated from the lowest portfolio
returns. As a result, any statistical method used for VaR estimation has to have the pre-
diction of tail events as its primary goal. Statistical techniques and rules of thumb that
have been proven useful in analysis and prediction of intra day and day-to-day risk,
are not necessarily appropriate for VaR analysis. This is discussed in a VaR context by
e.g. Duffie and Pan (1997) and Jorion (1997).

The development of techniques to evaluate and forecast the risk of uncommon events
has moved at a rapid rate, and specialized methods for VaR prediction are now avail-
able. These methods fall into two main classes: parametric prediction of conditional
volatilities, of which the J. P. Morgan RiskMetrics method is the best known, and
non-parametric prediction of unconditional volatilities such as techniques based on
historical simulation or stress testing methods.

In this paper we propose a new semi-parametric method for VaR estimation which is a
mixture of these two approaches, where we combine non-parametric historical simu-
lation with parametric estimation of the tails of the return distribution. These methods
build upon recent research in extreme value theory, which enable us to accurately esti-
mate the tails of a distribution. Hols and de Vries (1991) use extreme value analysis to
measure risk in FOREX trading, and Longin (1997) applies extreme value analysis to
risk in the U.S. stock market. The method used there for estimating the extreme value
distribution selects the maxima in a series of non-overlapping sub–periods and there-
fore makes an inefficient use of the available sample information and demands large
datasets. In contrast, Danielsson and de Vries (1997a) and Danielsson and de Vries
(1997b) propose an efficient, semi-parametric method for estimating tails of the under-
lying distribution of financial returns, and this method is expanded here to the efficient
estimation of ‘portfolio tails’.
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1. INTRODUCTION

In finance, it is natural to assume normality of returns in daily and multi-day con-
ditional and unconditional volatility predictions, in applications such as derivatives
pricing. As the volatility smile effect demonstrates, however, for infrequent events the
normal model is less useful. Since returns are known to be fat tailed, the conditional
normality assumption leads to a sizable underprediction of tail events. The popular
RiskMetrics technique, in essence an IGARCH model, is based on conditional normal
analysis with frequent parameter updates. The price one has to pay for the normality
assumption and frequent parameter updating is that such model is not well suited for
analyzing large risks. The normality assumption implies that one underestimates the
chances of heavy losses, and the frequent updating implies a high variability in the
estimates. For this reason, RiskMetrics focuses on the 5% quantile, or the probability
of losses that occur once every 20 days. But these losses are so small that they can be
handled by any financial institution. We argue below that RiskMetrics is ill suited for
lower probability loses.

Furthermore, conditional parametric methods typically depend on conditional normal-
ity for the derivation of multi period VaR estimates. Relaxation of the normality as-
sumption leads to difficulties due to the ‘square-root-of-time’ method, i.e. the practice
of obtaining multi-period volatility predictions by multiplying the one day prediction
by the square root of the length of the time horizon. Moreover, as Christoffersen and
Diebold (1997) argue, conditional volatility predictions are not very useful for multi
day predictions. We argue that the appropriate method for scaling up a single day VaR
to a multi day VaR is a alpha-root rule, where alpha is the number of finite bounded
moments, also known as the tail index. We implement the alpha-root method and com-
pare it with the square-root rule.

By definition, extreme returns occur infrequently, and in addition do not appear to be
related to a particular level of volatility, nor exhibit time dependence. Therefore, an
unconditional approach is better suited for VaR estimation than conditional volatil-
ity forecasts, because it permits one to use all observations over a long span of time.
One can either use the historical returns as a sampling distribution for future returns
as in Historical simulation (HS) and stress testing, or use a form of kernel estimation
to smooth the sampling distribution as in Butler and Schachter (1996). The advan-
tages of historical simulation have been well documented by e.g. Jackson, Maude and
Perraudin (1997), Mahoney (1996), and Hendricks (1996). A disadvantage is that the
low frequency and inaccuracy of tail returns leads to predictions which exhibit a very
high variance, i.e. the variance of the highest order statistics is very high, and is in
some cases even infinite. As a result, the highest realizations lead to poor estimates
of the tails, which may invalidate HS as a method for stress testing. In addition, it is
not possible to do out-of-sample prediction with HS, i.e. predict losses that occur less
frequently than are covered by the HS sample period.
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2. PROPERTIES OF EXTREME RETURNS

A primary use of value-at-risk is the determination of capital requirements for financial
institutions, where capital is a function of the VaR. We argue that the current regulatory
environment provides incentives for the financial institutions to choose the technique
that produces the lowest VaR, typically the worst VaR method.

We evaluate various methods for VaR analysis, and compare the traditional methods
with our tail distribution estimator using a portfolio of stocks. First we construct a num-
ber of random portfolios over several time periods, and compare the results of one step
ahead VaR predictions. Second we investigate multi-day VaR analysis. Third we study
the implications of adding an index option to the portfolio. Forth, the issues relating to
the determination of capital are discussed. Finally, we discuss the practical implemen-
tations of these methods for real portfolio management, with special emphasis on the
ease of implementation and computational issues.

2 Properties of Extreme Returns

Value-at-Risk analysis is highly dependent on extreme returns or spikes. The empirical
properties of the spikes, are not the same as the properties of the entire return process.
A major result from empirical research of returns, is the almost zero autocorrelation
and significant positive serial correlation in the volatility of returns. As a result volatil-
ities can be relatively well predicted with a parametric model such as GARCH. If,
however, one focuses only on spikes, the dependency is reduced.

Table 1 lists the number of trading days between the daily extremes for the SP-500
index along with the rank of the corresponding observation. Figure 1 shows the 1%
highest and lowest returns on the daily SP-500 index in the 1990’s along with the 7
stocks used below in testing the VaR estimation techniques. No clear pattern emerges
for these return series. In some cases we see clustering, but typically the extreme events
are randomly scattered. Furthermore, there does not appear to be strong correlation in
the tail events. There were two days when 5 assets had tail events, no days with 4 tail
events, 5 days with 3 events, 21 days with two events, 185 days with one event, and
1558 days with no tail events. For the SP-500, two of the upper tail observations are
on adjacent days but none of the lower tailed observations, and in most cases there
are a number of days between the extreme observations. One does not observe market
crashes many days in a row. There are indications of some clustering of the tail events
over time. However, the measurement of a spike on a given day, is not indicative of a
high probability of a spike the following few days. The modelling of the dependence
structure of spikes would therefore be different than in e.g. GARCH models. If the
threshold level, indicating the beginning of the tails, rises as the sample size increases,
the spikes eventually behave like a Poisson process. In other words, for certain depen-
dent processes, like ARCH, volatility clustering vanishes at the level of the extreme
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2. PROPERTIES OF EXTREME RETURNS

Figure 1: 1% largest and smallest daily returns on stocks in portfolio.

0%
4%
8%

-4%
-8% 92 9491 93 95 96

(a) J. P. Morgan

5%
0%

-5%

10%

-10% 92 9491 93 95 96

(b) 3M

5%
0%

-5%

10%

-10% 92 9491 93 95 96

(c) McDonalds

7%
0%

-7%

15%

-15% 92 9491 93 95 96

(d) Intel

7%
0%

-7%

15%

-15% 92 9491 93 95 96

(e) IBM

0%
10%
20%

-10%
-20% 92 9491 93 95 96

(f) Xerox

3%
0%

-3%

6%

-6% 92 9491 93 95 96

(g) Exxon

2%
0%

-2%

4%

-4% 92 9491 93 95 96

(h) SP-500

5



2. PROPERTIES OF EXTREME RETURNS

Table 1: Daily SP-500, 1990-96. Time Between Extreme Returns

Upper Tail Lower Tail
date days rank date days rank

90-08-27 74 2 90-01-23 6 6
90-10-01 24 4 90-08-07 136 3
90-10-18 13 8 90-08-17 8 12
90-10-19 1 10 90-08-22 3 15
90-11-09 15 14 90-08-24 2 4
91-01-17 46 1 90-09-25 21 14
91-02-06 14 16 90-10-10 11 5
91-02-11 3 5 91-05-13 148 17
91-03-05 15 13 91-08-20 69 10
91-04-02 19 9 91-11-18 63 1
91-08-21 99 3 93-02-17 315 9
91-12-23 86 6 93-04-05 33 16
91-12-30 4 11 94-02-07 214 11
93-03-08 300 17 96-03-11 527 2
94-04-05 273 12 96-07-08 82 13
96-12-19 686 15 96-07-16 6 7

Note: The first observations, with rank 7 and 8 respectively for the upper and lower

tail, are not shown since we do not have the number of days to a previous observation

realizations. This is demonstrated by de Haan, Resnick, Rootzen, and de Vries (1989).
Therefore, for computing the VaR, which is necessarily concerned with the most ex-
treme returns, the ARCH effect is of little importance. Hence it suffices to assume
that the highest and lowest realizations are i.i.d. This is corroborated by the evidence
from Christoffersen and Diebold (1997) that when the forecast horizon is several days,
conditional prediction performs no better than using the unconditional distribution as
predictive distribution. The reason is that most current history contains little informa-
tion on the likelihood that a spike will occur, especially in the exponential weighting
of recent history by RiskMetrics.

Another important issue is pointed out by Dimson and Marsh (1996) who analyze
spikes in 20 years of the British FTSE-A All Share Index, where they define spikes
as fluctuations of 5% or more. They find 6 daily spikes, however they also search for
non-overlapping multi day spikes, and find 4 2-day spikes, 3 3-day, 3 4-day, 8 weekly,
and up to 7 biweekly. Apparently, the number of spikes is insensitive to the time span
over which the returns are defined. This is an example of the fractal property of the
distribution of returns and the extremes in particular, and is highly relevant for spike
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2. PROPERTIES OF EXTREME RETURNS

forecasting when the time horizon is longer than one day.

2.1 Tail Estimation

Extreme value theory is the study of the tail of distributions. Several researchers have
proposed empirical methods for estimation of tail thickness. The primary difficulty
in estimating the tails is the determination of the start of the tails. Typically, these
estimators use the highest/lowest realizations to estimate the parameter of tail thickness
which is called the tail index. Hill (1975) proposed a moments based estimator for the
tail index. The estimator is conditional on knowing how many extreme order statistics
for a given sample size have to be taken into account. Hall (1990) suggested a bootstrap
procedure for estimation of the start of the tail. His method is too restrictive to be of
use for financial data, e.g., it is not applicable to the Student-t distribution, which has
been used repeatedly to model asset returns. Recently Danielsson and de Vries (1997a)
and Danielsson, de Haan, Peng and de Vries (1997) have proposed general estimation
methods for the number of extreme order statistics that are in the tails. A brief formal
summary of these results is presented in Appendix A.

It is known that only one limit law governs the tail behavior of data drawn from almost
any fat tailed distribution1. The condition on the distributionF (x) for it to be in the
domain of attraction of the limit law is given by (7) in appendix A. Since financial
returns are heavy tailed, this implies that for obtaining the tail behavior we only have
to deal with this limit distribution. By taking an expansion ofF (x) at infinity and im-
posing mild regularity conditions one can show that for most heavy tailed distributions
the second order expansion of the tails is:

F (x) ' 1� ax��
h
1 + bx��

i
; �; � > 0 (1)

for x large, whilea; b; �; and� are parameters. In this expansion the key coefficient is
� which is denoted as the tail index which indicates the thickness of the tails. The pa-
rametera determines the scale; the other two parametersb and� are the second order
equivalents toa and�: For example, for the Student-t or the non-normal stable den-
sities,� equals the degrees of freedom or the characteristic exponent. For the ARCH
process� equals the number of bounded moments of the unconditional distribution of
the ARCH innovations.

Hill (1975) proposed a moments based estimator of the tail index which is estimated
conditional on a threshold indexM where all valuesxi > XM+1 are used in the estima-
tion. TheXi indicate the decreasing order statistics,X1 � X2 � ::: � XM � ::: � Xn;

1. Danielsson and de Vries (1997a) discuss this issue in details.
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2. PROPERTIES OF EXTREME RETURNS

in a sample of returnsx: Danielsson and de Vries (1997a) discuss the following esti-
mator for the tail probabilities, given estimates of� and the threshold:

F̂ (x) = p =
M

n

�
XM+1

x

��̂
; x > XM+1 (2)

wheren is the number of observations, andp is the probability. This applies equally to
the lower tails. By taking the inverse of̂F (x) we obtain an extreme quantile estimator:

x̂p = F̂�1 (x) = XM+1

 
M

np

! 1

�̂

: (3)

Note thatF̂ (x) is always conditional on a given sample. In order to use the distribution
F̂ (x) we need to specify the parameters� and the random variablesM andXM+1,
before we can obtain a quantile estimate for a probability. The empirical and estimated
distribution functions of the SP-500 index are presented in Figure 3. Some practical
issues of the tail estimation are discussed below.

2.2 Multi Period Extreme Analysis

The method for obtaining multi period predictions follows from the work of Feller
(1971, VIII.8). Feller shows that the tail risk for fat tailed distributions is, to a first
approximation, linearly additive. From (1) we know that for a single period return,
Pr [X > x] � ax�� whenx is large. Then for theT -period return we have

Pr [X1 +X2 + ::: +XT > x] � Tax��: (4)

The implication for portfolio analysis of this result has been discussed in the specific
case of non-normal stable distributions by Fama and Miller (1972, p. 270). In that case
� < 2 and the variance is infinite. Muller, Pictet and de Vries (1995) are the first to
discuss the finite variance case when� > 2: It is well known that the self-additivity
of normal distributions implies that theT 1=2 scaling factor for multi period VaR, i.e.
the ‘square-root-of-time rule’ implemented in RiskMetrics. But for heavy-tailed dis-
tributions this factor is different for the largest risks. Heavy tailed distributions are
self-additive in the tails, see e.g. (4). This implies a scaling factorT 1=� for VaR in a
T -period analysis. With finite variance where� > 2 and henceT 1=2 > T 1=�; i.e. the
scaling factor for heavy tailed distributed returns is smaller than for normal distributed
returns. In comparison with the normal model, there are two counterbalancing forces.
If daily returns are fat tailed distributed, then there is a higher probability of extreme
losses and this increases the one day possible loss vis-a-vis the normal model. This
is a level effect. But there is also a slope effect. Due to the above result, the multi-
plication factor (slope) used to obtain the multi-day extreme is smaller for fat tailed
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2. PROPERTIES OF EXTREME RETURNS

distributed returns than for normal returns. For this reason, extreme predictions from
the two models may cross if we consider different time horizons. This is demonstrated
in Table 6.

2.3 Monte Carlo Evidence

In order to evaluate the performance of the estimated tail distribution in (2) Danielsson
and de Vries (1997a) do extensive Monte Carlo experiments to evaluate the properties
of the estimator. In Table 2 a small subset of the results is presented. We generate
repeated samples of size 2000 from a Student-t distribution with 4 degrees of freedom
and compare the average maxima, denoted here as the sample maxima by historical
simulation (HS), from the samples with the average predicted value byF̂ (x) ; denoted
as extreme value (EV). The specific distribution was chosen since its tail behavior is
similar to a typical return series. The Monte Carlo results are reported in Table 2.

Table 2: Predicted and Expected Maxima of Student-t(4)

In Sample Prediction, 2000 observations Theoretical Average Values

Sample Maxima by HS 8:610 10:67 (4:45) [4:90]
Forecast Maximas by EV 8:610 8:90 (1:64) [1:66]

Out of Sample Prediction

Forecast Maximas by EV for Sample of Size 4000 10:306 10:92 (2:43) [2:50]
Forecast Maximas by EV for Sample of Size 6000 11:438 12:32 (3:02) [3:14]
Sample size = 2000, simulations 1000, bootstrap iterations = 2000. Standard errors in parenthesis, RMSE in brackets. HS denotes

estimation by historical simulation and EV estimation by the tail estimator with method proposed by Danielsson and de Vries

(1997b).

Out-of-sample predictions were obtained by using the estimated tail of the distribution
to predict the value of the maxima of a sample of size 4000 and 6000, the true values
are reported as well. We can see that the tail estimator performs quite well in predicting
the maxima while the sample averages yield much lower quality results. Note that the
variance of HS approach is much higher than the variance by EV method. Moreover,
HS is necessarily silent on the out of sample sizes 4000 to 6000, where EV provides
an accurate estimate. Obviously, if one used the normal to predict the maximas, the
result would be grossly inaccurate, and would in fact predict values about one third
of the theoretical values. See also Figures 3 and 4 in Section 4 below for a graphical
illustration of this claim.
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3. VALUE-AT-RISK AND COMMON METHODS

3 Value-at-Risk and Common Methods

The formal definition of Value-at-Risk (VaR) is easily given implicitly:

Pr [�P�t � V aR] = �; (5)

where�P�t is a change in the market value of portfolioP over time horizon�t with
probability�. Equation (5) states that a loss equal to, or larger than the specific VaR
occurs with probability�: Or conversely, (5) for a given probability� losses, equal
to or larger than the VaR, happen. In this latter interpretation the VaR is written as a
function of the probability�: LetF (�P�t) be the probability distribution of�P�t,
then

F�1 (�) = V aR; (6)

whereF�1 (�) denotes the inverse ofF (�) : The major problem in implementing VaR
analysis is the specification of the probability distributionF (�) which is used in the
calculation in (5).

Two methods are commonly used to evaluate VaR:

1. Historical Simulation (Non Parametric, Unconditional Volatility)
2. Parametric Methods (Fully Parametric, Conditional Volatility)

Both these methods are discussed in this section. The semi-parametric extreme value
(EV) method falls in between these two methodologies.

3.1 Historical Simulation

A popular method for VaR assessment is historical simulation (HS). Instead of making
distributional assumptions about returns, past returns are used to predict future returns.

The advantage of historical simulation is that few assumptions are required, and the
method is easy to implement. The primary assumption is that the distribution of the
returns in the portfolio is constant over the sample period. Historical simulation has
been shown to compare well with other methods, see e.g. Mahoney (1996), however
past extreme returns can be a poor predictor of extreme events, and as a result historical
simulation should be used with care. The reason for this is easy to see. By its very
nature HS has nothing to say about the probability outcomes which are worse than the
sample minimum return. But HS also does not give very accurate probability estimates
for the in sample extreme as is demonstrated below. Furthermore, the choice of sample
size can have a large impact on the value predicted by historical simulation. In addition,
the very simplicity of HS makes it difficult to conduct sensitivity experiments, where
a VaR is evaluated under a number of scenarios.

A major problem with HS is the discreteness of extreme returns. In the interior, the
empirical sampling distribution is very dense, with adjacent observations very close
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3. VALUE-AT-RISK AND COMMON METHODS

to each other. As a result the sampling distribution is very smooth in the interior. The
closer one gets to the extremes, the longer the interval between adjacent returns be-
comes. This can be seen in Table 3 where the 7 largest and smallest returns on the
stocks in the sample portfolio and SP-500 Index for 10 years are listed.

Table 3: Extreme daily returns 1987 - 1996

JPM 25% 12% 8:8% 6:7% 6:5% 6:4% 6:3%
�41% �6:7% �6:3% �6:1% �6:0% �5:8% �5:7%

MMM 11% 7:1% 5:9% 5:7% 5:7% 5:0% 4:8%
�30% �10% �10% �9:0% �6:2% �6:1% �5:6%

MCD 10% 7:9% 6:3% 6:2% 5:4% 5:0% 5:0%
�18% �10% �8:7% �8:5% �8:3% �7:3% �6:9%

INTC 24% 11% 9:9% 9:0% 8:9% 8:6% 8:6%
�21% �21% �16% �15% �14% �12% �12%

IBM 12% 11% 11% 10% 9:4% 7:4% 6:5%
�26% �11% �11% �9:3% �7:9% �7:5% �7:1%

XRX 12% 8:0% 7:8% 7:5% 7:1% 6:8% 6:3%
�22% �16% �11% �8:4% �7:5% �6:9% �6:2%

XON 17% 10% 6:0% 5:8% 5:8% 5:6% 5:4%
�27% �8:7% �7:9% �6:6% �6:3% �5:7% �5:4%

SP-500 8:7% 5:1% 4:8% 3:7% 3:5% 3:4% 3:3%
�23% �8:6% �7:0% �6:3% �5:3% �4:5% �4:3%

These extreme observations are typically the most important for VaR analysis, however
since these values are clearly discrete, the VaR will also be discrete, and hence be either
underpredicted or overpredicted. We see that this effect is somewhat more pronounced
for the individual assets, than for the market portfolio SP-500, due to diversification.
Furthermore, the variance of the extreme order statistics is very high, and in some cases
infinite. As a result, VaR estimates that are dependent on the tails, will be measured
discretely, with a high variance, making HS in many cases a poor predictor of the VaR.
Results from a small Monte Carlo (MC) experiment demonstrating this are presented
in Section 2.3.

In Figure (2) we plot the 99th percentile of the S&P for the past 500 and 1000 days,
i.e. the 5th and 10th largest and smallest observations for the past 500 and 1000 days
respectively. It is clear from the figure that the window length in assessing the proba-
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3. VALUE-AT-RISK AND COMMON METHODS

Figure 2: 1% largest and smallest returns on SP-500 over 500 and 1000 Day Windows
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bility of spikes is very important, and this creates a serious problem. Note how rapidly
the percentile changes when new data enter and exit the window. In VaR prediction
with HS, the inclusion or exclusion of one or two days at the beginning of the sample
can cause large swings in the VaR estimate, while no guidelines exist for assessing
which estimate is the better.

Butler and Schachter (1996) propose a variation of HS by use of a kernel smoother
to estimate the distribution of returns, which is in essence an estimation of the dis-
tribution of returns. This type of methodology has both advantages and drawbacks.
The advantage is that a properly constructed kernel distribution provides a smooth
sampling distribution. Hence sensitivity experiments can be readily constructed, and
valuable insight can be gained about the return process. Furthermore such distribution
may not be as sensitive to the sample length as HS is. Note that these advantages are
dependent on a properly constructed kernel distribution. In kernel estimation, the spe-
cific choice of a kernel and window length is extremely important. Almost all kernels
are estimated with the entire data set, with interior observations dominating the kernel
estimation. While even the most careful kernel estimation will provide good estimates
for the interior, there is no reason to believe that the kernel will describe the tails ad-
equately. Tail bumpiness is a common problem in kernel estimation, however, if tail
bumpiness is observed in kernel estimation of returns it is simply an artifact of the
specific methods used. Returns are in general unimodal. Note especially that financial
data are thick tailed with high excess kurtosis. Therefore, a Gaussian kernel, which
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3. VALUE-AT-RISK AND COMMON METHODS

assumes that the estimated distribution has the same shape as the normal, is unsuitable
for financial data.

3.2 Parametric Forecasting

In parametric forecasting, the predicted future volatility of an asset is an explicit func-
tion of past returns, and the estimated model parameters. The most common models are
the unconditional normal with frequently updated variance estimate, or explicit mod-
els for conditional heteroscedasticity like the GARCH model, with normal innovations.
The popular RiskMetrics approach which uses the frequently updated normal model
is asymptotically equivalent to an IGARCH model. This implies a counterfactual hy-
pothesis of an unconditional infinite variance. However since in most cases only short
horizon conditional forecasts are made, this does not affect the results significantly.
GARCH models with normal innovations have proved valuable in forecasting com-
mon volatilities, however they perform poorly in predicting extreme observations, or
spikes, in returns. The normality assumption is primarily a matter of convenience, and
a GARCH model with non-normal innovations can easily be estimated, with the most
common specification being the Student-t. The advantage of Student-t innovations is
that they are thick tailed and hence will in general provide better predictive densities;
note that the Student-t contains Gaussian errors as a special case. The disadvantages
of non-normal innovations are several, e.g. multivariate versions of such models are
typically hard to estimate and recursive forecasts of future volatilities are difficult for
most distributions, since they are typically not self additive.

There are several reasons for the failure of RiskMetrics to adequately capture the tail
probabilities. For example the normal likelihood function weighs values close to zero
higher than large values so the contribution of the large values to the likelihood func-
tion is relatively small. Since most observations are in the interior, they dominate the
estimation, especially since tail events are maybe 1-2% of the observations. While a
GARCH model with normal innovations preforms poorly, it does not imply that para-
metric forecasting will in general provide biased VaR estimates, however such a model
would have to be constructed with the tails as the primary focus. See Jackson, Maude
and Perraudin (1997) for discussion on this issue.

There is yet another problem with the way RiskMetrics implements the GARCH method-
ology. Instead of going by the GARCH scheme for predicting future volatilities, Risk-
Metrics ignores GARCH and simply uses the square-root-of-time method which is
only appropriate under an i.i.d. normal assumption. If the predicted next day volatility
is �̂2t+1; then the predictedT day ahead volatility isT �̂2t+1 in the RiskMetrics analysis.
This implies that for the nextT days, returns are essentially assumed to be normally
distributed with varianceT �̂2t+1. The underlying assumption is that returns are i.i.d.,
in which case there would be no reason to estimate a conditional volatility model.
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4. EXTREME VALUE THEORY AND VAR

Table 4: Observed Extreme Returns of the daily SP-500, 1990-1996, and the Probabil-
ity of that Return as Predicted by the Normal GARCH, Student-t GARCH model, the
Extreme Value Estimation Method, and the Empirical Distribution.

Observed Probabilities

Return Normal Student-t EV Estimator Empirical
�3:72% 0:0000 0:0002 0:0007 0:0006
�3:13% 0:0000 0:0010 0:0015 0:0011
�3:07% 0:0002 0:0021 0:0016 0:0017
�3:04% 0:0032 0:0071 0:0016 0:0023
�2:71% 0:0098 0:0146 0:0026 0:0028
�2:62% 0:0015 0:0073 0:0029 0: 0034
3:66% 0:0000 0:0011 0:0004 0:0006
3:13% 0:0060 0:0096 0:0009 0:0011
2:89% 0:0002 0:0022 0:0013 0:0017
2:86% 0:0069 0:0117 0:0014 0:0023
2:53% 0:0059 0:0109 0:0025 0:0028
2:50% 0:0007 0:0038 0:0026 0:0034

Note that this problem can be bypassed by usingT day data to obtainT day ahead
predictions as suggested in the RiskMetrics manual.

In Table 4 we show the six highest and lowest returns on the daily SP-500 index
from 1990 to 1996, or 1771 observations. We used the normal GARCH and Student-t
GARCH models to predict the conditional volatility, and show in the table the prob-
ability of an outcome equal to or more extreme than the observed return, conditional
on the predicted volatility for each observation. In addition we show the probability
as predicted by the extreme value estimator, and values of the empirical distribution
function. We see from the table that the normal GARCH model performs very poorly
in predicting tail events, while the Student-t GARCH model gives somewhat better
results. Both methods are plagued by high variability and inaccurate probability esti-
mates, while the extreme value estimator provides much better estimates.

4 Extreme Value Theory and VaR

Accurate prediction of extreme realizations is of central importance to VaR analysis.
VaR estimates are calculated from the lower extreme of a portfolio forecast distribu-
tion; therefore, accurate estimation of the lower tail of portfolio returns is of primary

14



4. EXTREME VALUE THEORY AND VAR

importance in any VaR application. Most available tools, such as GARCH, are however
designed to predict common volatilities, and therefore have poor tail properties. Even
historical simulation (HS) has less than desirable sampling properties out in the tails.
Therefore, a hybrid technique that combines sampling from the empirical distribution
for common observations with sampling from a fitted tail distribution has the potential
to perform better than either HS or fully parametric methods by themselves.

Figure 3: Distribution of SP-500 returns 1990-1996 with fitted upper tail.
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In Figure 3 the empirical distribution of the SP-500 index is plotted along with the
fitted tail estimator distributionF (x) and the estimated normal distribution. We see the
problems with HS in the tails from Figure 3, e.g. discreteness of observations and the
inability to provide out-of-sample low probability predictions. The normal distribution
clearly underestimates the probability of the highest returns. On the other hand, the
fitted distribution is a smooth function through the empirical distribution, both in and
out of sample. For comparison, in figure 4 we plot the fitted distribution along with the
normal distribution estimated from the sample mean and variances, and the distribution
obtained from the normal GARCH(1,1) process if one conditions on the maximum
observed past volatility. This means that the normal distribution, with the variance of
the largest of the one day GARCH volatility predictions, is plotted. This gives the
normal GARCH the maximum benefit of the doubt. Since this conditional distribution
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4. EXTREME VALUE THEORY AND VAR

Figure 4: Distribution of SP-500 returns 1990-1996 and Highest GARCH Prediction.
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is still normal, it underestimates the extreme tails. There are several advantages in
using the estimated tail distribution in VaR estimation. For example:

� In HS, the presence of an event like the ’87 crash in the sample, will cause a
large VaR estimate. However, since a ’87 magnitude crash only occurs rarely, say
once every 60 years, the presence of such an event in the sample will produce
downward biased VaR estimates. And hence imposes too conservative capital
provisions. By sampling from the tail distribution, the probability of a ’87 type
event will be much smaller, leading to better VaR estimates.

� The empirical distribution is sampled discretely out in the tails, with the variance
of the extreme order statistics being very high. This implies that a VaR that relies
on tail realizations will exhibit the same properties, with the resulting estimates
being highly variable. A Monte Carlo example of this is given in Table 2.

� By sampling from the tail of the distribution, one can easily obtain the lowest re-
turn that occurs with a given probability, say 0.1%, greatly facilitating sensitivity
experiments. This is typically not possible with HS by itself.

� The probability theory of tail observations, or extreme value theory, is well
known, and the tail estimator therefore rests on firm statistical foundations. In
contrast, most traditional kernel estimators have bad properties in the tails.

4.1 Estimated Tails and Historical Simulation

We propose combining the HS for the interior with the fitted distribution from (1) along
the lines of Danielsson and de Vries (1997a). Recall from above that the fitted distri-
bution,F̂ (x) ; is conditional on one of the highest order statisticsXM+1: Therefore we
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4. EXTREME VALUE THEORY AND VAR

can viewXM+1 as the start of the tail, and usêF (x) as the sampling distribution for
extreme returns. Below this thresholdXM+1 we can see the empirical distribution for
interior returns. This can be implemented in the following algorithm, whereXMupper+1

andXM lower
�1 are the thresholds for the upper and lower tail respectively, andT is the

window size.

Drawxs from fxtg
T
t=1 with replacement

if xs < XM lower�1 then
drawxs from F̂ (x) for the lower tail

else
if xs > XMupper+1 then

drawxs from F̂ (x) for the uper tail
else

keepxs

end if
end if

Note that this guarantees that the combined density integrates out to one. We can then
view x as one draw from the combined empirical and extreme value distributions,
and we denote the method as the combined extreme value estimator and historical
simulation method.

4.2 Tails of Portfolios

In general, multiple assets are used to construct a portfolio. We can implement simula-
tions of portfolio returns with one of two methods, post fitting or pre-sampling. Results
from implementing both methods are presented in Table 5 and discussed below. Note
that while we would not necessarily expect correlation in the tails of stock returns,
tail correlation is often expected in exchange rates, e.g. in the EMS, large movements
happen often at the same time period for several countries.

4.2.1 Post Fitting

In post fitting, one proceeds along the lines of the combined extreme value and his-
torical simulation procedures and applies the current portfolio weights to the histori-
cal prices to obtain a vector of simulated portfolio returns. This is exactly as in his-
torical simulation. Subsequently, the tails of the simulated returns are fitted, and any
probability-VaR combination can be read from the fitted tails. This procedure has sev-
eral advantages. No restrictive assumptions are needed, the method can be applied to
the largest of portfolios, and does not require significant additional computation time
over HS. The primary disadvantage is that it carries with it the assumption of constant
correlation across returns, while in many cases one observes systematic changes in
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5. ESTIMATION

correlation over time. However, in the results below this does not seem to cause any
significant problems.

4.2.2 Presampling

In the presampling method, each asset is sampled independently from the hybrid ex-
treme value estimator and empirical distribution, and subsequently scaled to obtain
properly correlated returns. Then the value of the portfolio is calculated. The scaling
is achieved as follows. Let�t be the covariance matrix of the sample, andLtL

0

t = �t

be the Cholesky transformation. The number of assets in the portfolio isK and the
number of simulations isN . We then draw aKN matrix of simulated returns, denoted
as ~Xn: Let the covariance matrix of~Xn be denoted by
n; with the Cholesky trans-
formationMnM

0

n = 
n: Scale ~Xn to an identity covariance matrix byM�1
n

~Xn, which
can then be scaled to the sample covariance byLt: The matrix of simulated returnsX
is:

Xn = LtM
�1
n

~Xn:

If w = fwig
K
i=1 is the vector of portfolio weights, the simulated return vectorR is:

Rn =
KX
i=1

wiXt;n;i n = 1; N:

By sorting the simulated portfolio returnsR; one can read off the tail probabilities for
the VaR, in the same manner as in HS. By using this method, it is possible to use a
different covariance matrix for sub samples than for the whole sample. This may be
desirable when the covariance matrix of returns changes over time where it may yield
better results to replace the covariance matrix
 with the covariance matrix of the last
part of the sample.

5 Estimation

To test the performance of our VaR procedure, we selected 6 US stocks randomly
as the basis for portfolio analysis in addition to the JP Morgan bank stock price. The
stocks in the tables are referred by their ticker tape symbols. The window length for HS
and the combined extreme value–empirical distribution procedure was set at 6 years
or 1500 trading days. Note this is much larger than the regulatory window length of
one year. The reason for this long period is that for accurate estimation of events that
happen once every 100 days, as in the 1% VaR, one year is not enough for accurate
estimation. In general, one should try to use as a large sample as is possible. Using a
smaller sample than 1500 trading days in the performance testing was not shown to
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5. ESTIMATION

improve the results. Performance testing starts at Jan. 15. 1993, and the beginning of
the sample is 1500 days before that on Feb. 12, 1987. It is a stylized fact in empirical
studies of financial returns, that returns exhibit several common properties, regardless
of the underlying asset. This extends to the tails of returns. In Table 12 we present
summary statistics on a wide range of financial returns for the period 1987-1996, and
is clear that the tails all have similar properties. Summary statistics for each stock
return are listed in Table 8 for the entire sample period, and in Table 9 for the 1990-
1996 testing period. The corresponding correlation matrixes are presented in Tables 10
and 11. The sample correlations drop in the 1990’s. Given this change in correlation,
we tested changing correlations in the pre-fitting method, but it did not have much
impact for our data, and therefore we do not report those results here.

5.1 VaR Prediction

5.1.1 Interpretation of Results

Results are reported in Table 5. The VaR return estimates for each method are com-
pared with the realized returns each day. The number of violations of the VaR es-
timates were counted, and the ratio of violations to the length of the testing period
was compared with the critical value. This is done for several critical values. This is
perhaps the simplest possible testing procedure. Several authors, most recently Dave
and Stahl (1997), propose much more elaborate testing procedures, e.g. the likelihood
based method of Dav´e and Stahl which is used to test a single portfolio. However by
using a large number of random portfolios one obtains accurate measurements of the
performance of the various methods, without resorting to specific distributional as-
sumptions, such as the normality assumption of Dav´e and Stahl. In addition, while the
green, yellow, and red zone classification method proposed by BIS, may seem attrac-
tive for the comparison, it is less informative than the ratio method used here.
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Table 5: Estimation Results: Average Number of Realized Portfolios that were Larger than VaR Predictions

Confidence Level 5% 2:5% 1% 0:5% 0:25% 0:1% 0:05% 0:025% 0:01% 0:005%

Expected Number of
days with Exceedances50 25 10 5 2:5 1 0:5 0:25 0:1 0:05

Expected Frequency
in Days 20 40 100 200

in Years 1:5 3:8 7:7 15 38 77

RiskMetrics 52:45 30:26 16:28 10:65 7:29 4:85 3:55 2:72 2:00 1:58

(7:39) (4:41) (3:13) (2:73) (2:27) (2:06) (1:81) (1:66) (1:45) (1:29)

Historical 43:24 20:50 7:66 3:69 1:90 0:95 0:75 0:75 0:75 0:75

Simulation (10:75) (7:22) (3:90) (2:39) (1:57) (1:03) (0:89) (0:89) (0:89) (0:89)

Extreme Value 44:02 22:35 9:32 4:82 2:54 1:21 0:68 0:37 0:09 0:09

Presampling (11:62) (7:66) (4:26) (2:56) (1:71) (1:27) (0:98) (0:71) (0:31) (0:31)

Extreme Value 43:14 20:84 8:19 4:23 2:35 1:06 0:59 0:33 0:12 0:06

Post Fitting (11:10) (7:35) (3:86) (2:55) (1:72) (1:13) (0:82) (0:62) (0:35) (0:23)

Daily observations in testing = 1000 over period 930115 to 961230. Window size in HS and EV = 1500, initial staring date for window 870210. Random portfolios

= 500. Simulation size in presampling tail estimator = 10000. Standard errors in parenthesis. Probabilities expressed in percentages with sum=100%. EV results in

the table are based on the prodecdure proposed by Danielsson and de Vries (1997b)
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5. ESTIMATION

The test sample length was 1000 trading days, and the window size in HS and EV was
1,500. For the 1% risk level, we expect a single violation of the VaR every 100 days,
or 10 times over the entire testing period. This risk level is given in the fourth column
from the left in Table 5. At this risk level RiskMetrics yields too many violations, i.e.
16.3, on average, while the other methods give too few violations, or from 7.6 for HS
to 9.3 for the presampling EV method, on average. If the number of violations is higher
than the expected value, it indicates that the tails are underpredicted, thinner or lower
than expected, and conversely too few violations indicate that the estimated tail is
thicker than expected. In addition to the tail percentages, we show the implied number
of days, i.e. how frequently one would expect a tail event to occur. If the number of
days is large, we transform the days into years, assuming 260 trading days per year.

5.1.2 Comparison of Methods

For the 5th percentile, RiskMetrics performs best. The reason for this is that at the 5%
level we are sufficiently inside the sample so that the conditional prediction performs
better than unconditional prediction. However, as we move to the tails, RiskMetrics
consistently underpredicts the tail, with ever larger biases as we move farther into the
tails. For example, at the 0.1% level RiskMetrics predicts 5 violations, while the ex-
pected number is one. Therefore RiskMetrics will underpredict the true number of
losses at a given risk level. Historical simulation has in a way the opposite problem,
in that it consistently overpredicts the tails. Note that for HS we can not obtain esti-
mates for lower probabilities than one over the sample size, or in our case probabilities
lower than once every 1500 days. Hence the lowest prediction, 0.75, is repeated in the
last four columns in the table. Obviously for smaller sample sizes HS is not able to
predict the VaR for even relatively high probabilities. Both EV estimators have good
performance, especially out in the tails. The presampling version of the EV estimator
can not provide estimates for the lowest probability. The simulation size was 10,000
and this limits the lowest probability at 1/10,000. The post fitting version has no such
problems. It is interesting to note that the EV estimators do a very good job at tracking
the expected value of exceedances. Even at the lowest probability, the expected value
is 0.05 while the post fitting EV method predicts 0.06.

5.1.3 Implication for Capital Requirements

A major reason for the implementation of VaR methods is the determination of capital
requirements (CR). Financial regulators determine the CR according to the formula

CR = 3*VaR + constant

Individual financial institutions estimate the VaR, from which the CR are calculated. If
the banks underestimate the VaR they get penalized by an increase in the multiplicative
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factor or the additive constant. The multiplicative constant may be increased to 4. If,
however, the financial institution over estimates the VaR, it presumably gets penalized
by shareholders. Hence accurate estimation of the VaR is important. The scaling fac-
tor 3 appears to be somewhat arbitrary, and has come under criticism from financial
institutions for being too high. Stahl (1997) argues that the factor is justified by ap-
plying Chebyshev’s inequality to the ratio of the true and model VaR distributions. In
this worst case scenario, Stahl calculates 2.7 as an appropriate scaling factor at the 5%
level, 4.3 at the 1% level, and increasing with lower probabilities. But according to Ta-
ble 5, this factor is much too high or conservative. By comparing the RiskMetrics and
the EV results at the 5% level, we see that they are very close to the expected number
of violations, and in that case a multiplicative constant close to one would be appro-
priate. At the 0.1% level, RiskMetrics has five times the expected number of violations
and in that case a large multiplicative constant may be appropriate, but the EV method
gives results close to the expected value, suggesting that the constant should be close
to one if EV is used for VaR. While a high scaling factor may be justified in the normal
case, by using the estimate of the tails, as we do with the EV method, the multiplicative
factor can be much lower. Note that HS, implies too high capital requirements in our
case, while RiskMetrics implies too low CR. The extreme value estimator method ap-
pears to provide accurate tail estimates, and hence the most accurate way to set capital
requirements.

Danielsson, Hartmann and de Vries (1997) raise an issue regarding implications for
incentive compatibility. The banks want to keep capital requirements as low as possi-
ble, and are faced with a sliding multiplicative factor in the range from three to four.
Given that using a simple normal model implies considerably smaller capital require-
ments than the more accurate historical simulation or extreme tail methods, or even
RiskMetrics, and that the penalty for under predicting the VaR is relatively small, i.e.
the possible increase from 3 to 4, it is in the banks best interest to use the VaR method
which provides the lowest VaR predictions. This will, in general be close to the worst
VaR method available. This may explain the current prevalence among banks of using
a moving average normal model for VaR prediction. It is like using a protective sun-
block, because one has to, but choosing the one with lowest protection factor because
its cheapest, with the result that one still gets burned.

5.2 Multi Day Prediction

While most financial firms use one day VaR analysis for internal risk assessment, reg-
ulators require VaR estimates for 10 day returns. There are two ways to implement
a multi day VaR. If the time horizon is denoted byT; one can either look at past
non-overlappingT day returns, and use these in the same fashion as the one day VaR
analysis, or extrapolate the one day VaR returns to theT day VaR. The latter method
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Table 6: 10 Day VaR Prediction on December 30, 1996 in Millions of US Dollars for
a $100 Milion Trading Portfolio

Risk Level 5% 1:0% 0:5% 0:10% 0:05% 0:005%

EV
One day $0:9 $1:5 $1:7 $2:5 $3:0 $5:1
10 day $1:6 $2:5 $3:0 $4:3 $5:1 $8:9

RM
one day $1:0 $1:4 $1:6 $1:9 $2:0 $2:3
10 day $3:2 $4:5 $4:9 $5:9 $6:3 $7:5

has the advantage that the sample size remains as it is. Possibly for this reason, Risk-
Metrics implements the latter method by the so called ‘square-root-of-time’ rule which
implies that returns are normal with no serial correlation. However, for fat tailed data,
aT 1=� is appropriate. See section 2.1 for further discussion on this issue.

It is not possible to backtest theT = 10 day VaR estimates because we have to compare
the VaR predictions with non-overlappingT day returns. This implies that the sample
available for testing isT times smaller than the one day sample. Since we are looking
at uncommon events, we need to backtest over a large number of observations. In our
experience, 1000 days is a minimum test length. Therefore, for 10 day VaR we would
need 10,000 days in the test sample.

In order to demonstrate the multi day VaR methods, we use the one day VaR at the
last day of our sample, December 30, 1996 to obtain 10 day VaRs. This is the VaR
prediction on the last day of the results in Table 5, the number of random portfolios was
500. In Table 6 we present the one day and 10 day VaR predictions from RiskMetrics
type and extreme value post fitting methods. The numbers in the table reflect losses in
millions of dollars on a portfolio of 100 million dollars. We see in Table 6 the same
result as in Table 5, i.e. RiskMetrics underpredicts the amount of losses vis-a-vis EV at
the 0.05% and 0.005% probabilities, while for the 10 day predictions RiskMetrics over
predicts the loss, relative to EV, even for very low risk levels. Recall that EV uses the
multiplicative factorT 1=� while RiskMetrics usesT 1=2: The average� was 4.6, with
the average scaling factor of 1.7 which is much smaller thanT 1=2 = 3: 7: As a result,
at the 0.05% level RiskMetrics predicts a 10 day VaR of $6.3m while EV only predicts
$5.1m, on average.
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5.3 Options

The inclusion nonlinear derivatives like options in the portfolio does not cause much
extra difficulty. In general, one might has to price the option, by means of risk neutral
probabilities, in the process of calculating the VaR. However, the risk neutral measure
is not observed, at least not directly. This is a generic problem for any VaR method, and
for this reason RiskMetrics proceeds under the assumption of risk neutrality, and the
assumption followed here as well. The extreme value method can be used to generate
the data for the underlying asset, and these simulated data can be used to price the
option under risk neutrality. A structured Monte Carlo method is easily implemented
by the post fitting method.

For simulation of returns on an European option, the path of returns on the underly-
ing is simulated from the current day until expiration, sampling each day return from
the combined empirical and estimated distributions, as described above, with the mean
subtracted, and summing up the one day returns to obtain a simulated return for the
entire period,yi. If P F is the future spot price of the asset, then a simulated future price
of the underlying isP F exp [yi] ; and the simulated payoff follows directly. By repeat-
ing thisN times we get a vector of simulated options payoffs, which is discounted
back with the rescaled three month t-bill rate, the vector is averaged, and the price of
the option is subtracted. We then update the current futures price by one day through
an element from the historical return distribution of the underlying, and repeat the sim-
ulation. This is done for each realization in the historical sample. Together this gives
us the value of the option, and a vector of option prices quoted tomorrow. Finally we
calculate the one day option returns and can treat these returns as any other asset in the
portfolio

We used the same data as in the VaR exercise above, and added a European put option
on the SP-500 index to the portfolio. The VaR was evaluated with values on September
4, 1997, the future price of the index was 943 and the strike price was 950. We used
random portfolio weights, where the option received a weight of 4.9%, and evaluated
the VaR on the portfolio with and without the VaR.

The results are in Table 7, where we can see that the option results in lower VaR
estimates than if it is left out. Interestingly, the difference in monetary value are the

6 Practical Issues

There are several practical issues in implementing the extreme value method, e.g. the
length of the data set, the estimation of the tail shape, and the calculation of the VaR
for individual portfolios.
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Table 7: Effect of inclusion of Option in Portfolio

Confidence level VaR with option VaR without option Difference

95% $895; 501 $1; 381; 519 $486; 019
99% $1; 474; 056 $2; 453; 564 $979; 508
99.5% $1; 823; 735 $2; 754; 562 $930; 827
99.9% $3; 195; 847 $3; 856; 747 $669; 900
99.99% $7; 130; 721 $6; 277; 714 �$853; 007

For any application where we are concerned with extreme outcomes, or events that
happen perhaps once every 100 days or less, as is typical in VaR analysis, the data
set has to include a sufficient number of extreme events in order to obtain an accurate
prediction of VaR. For example, if we are concerned with a 1% VaR, or the worst
outcome every 100 days, a window length of one year, or 250 days is not very sensible.
In effect the degrees of freedom are around two, and the VaR estimates will be highly
inaccurate. This is recognized by the Basle Committee which emphasizes stress testing
over multiple tumultuous periods such as the 1987 Crash and the 1993 ERM crisis. In
this paper we use a window length of 1,500 days, or about 7 years, and feel that a much
shorter sample is not practical. This is reflected when we apply our extreme value
procedure to a short sample in Monte Carlo experiments. When the sample is small,
say 500 days or two years, the estimate of the tail index is rather inaccurate. There is
no way around this issue, historical simulation and parametric methods will have the
same small sample problems. In general the sample should be as large as possible. The
primary reason to prefer a relatively small sample size is if the correlation structure in
the sample is changing over time. However, in that case one can use the presampling
version of the tail estimator, and use a covariance matrix that is only estimated with the
most recent realizations in the sample. In general one would expect lower correlation
in extremes among stocks than e.g. exchange rates; and we were not able demonstrate
any benefit for our sample by using a frequently updated covariance matrix. However,
we would expect that to happen for a sample that includes exchange rates that belong
to managed exchange rate systems like the EMS.

It is not difficult to implement the tails estimation procedure. Using the historical sam-
ple to construct the simulated portfolio is in general not computer intensive for even
very large portfolios, and in most cases can be done in a spreadsheet like Excel. The
subsequent estimation of the tails may take a few seconds at most using an add-in
module with a dynamic link library (dll) to fit the tails. So the additional computa-
tional complexity compared with historical simulation is a few seconds.
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7 Conclusion

Many financial applications are dependent on accurate estimation of downside risk,
such as optimal hedging, insurance, pricing of far out of the money options, and the
application in this paper, Value-at-Risk (VaR). Several methods have been proposed for
VaR estimation. Some are based on using conditional volatilities, such as the GARCH
based RiskMetrics method. Others rely on the unconditional historical distribution of
returns, such as historical simulation. We propose the use of the extreme value method
as a semi–parametric method for estimation of tail probabilities. We show that condi-
tional parametric methods, such as GARCH with normal innovations, as implemented
in RiskMetrics, underpredict the VaR for a sample of U.S. stock returns at the 1% risk
level, or below. Historical simulation performs better in predicting the VaR, but suffers
from a high variance and discrete sampling far out in the tails. Moreover, HS is unable
to address losses which are outside the sample. The performance of the extreme value
estimator method performs better than both RiskMetrics and historical simulation far
out in the tails.

The reason for the improved performance of the EV method is that it combines some
of the advantages of both the non-parametric HS approach and the fully parametric
RiskMetrics method. By only modelling the tails parametrically, we can also evaluate
the risk on observed losses. In addition, because we know that financial return data
are heavy tailed distributed, one can rely on a limit expansion for the tail behavior that
is shared by all heavy tailed distributions. The importance of the central limit law for
extremes is similar to the importance of the central limit law, i.e. one does not have to
choose a particular parametric distribution. Furthermore, this limit law shares with the
normal distribution the additivity property, albeit only for the tails. This enables us to
develop a straightforward rule for obtaining multi period VaR from the single period
VaR, much like the normal based square root of time rule. At a future date, we plan to
investigate the cross section implication of this rule, which may enable us to deal in
a single manner with very widely diversified trading portfolios. We demonstrated that
adding non-linear derivatives to the portfolio can be implemented quite easily by us-
ing a structured Monte Carlo procedure. We also observed that the present incentives
are detrimental to implementing these improved VaR techniques. The current Basle
directives rather encourage the opposite, and we would hope that, prudence nonwith-
standing, positive incentives will be forthcoming to enhance future improvements in
the VaR methodology and implementation thereof in practice.
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A Extreme Value Theory and Tail Estimators

This appendix gives an overview of the statistical methods that are used in obtaining
the estimated extreme tail distribution. The following is a brief summary of results in
Danielsson and de Vries (1997a) which also provide all the proofs; the method has
been applied by Danielsson and de Vries (1997b) .

Let x be the return on a risky financial asset where the distribution ofx is heavy tailed.
Suppose the distribution functionF (x) varies regularly at infinity with tail index�:

lim
t!1

1� F (tx)

1� F (t)
= x��; � > 0; x > 0: (7)

This implies that the unconditional distribution of the returns is heavy tailed and that
unconditional moments which are larger than� are unbounded. The assumption of
regular variation at infinity as specified in (7) is essentially the only assumption that is
needed for analysis of tail behavior of the returnsx. Regular variation at infinity is a
necessary and sufficient condition for the distribution of the maximum or minimum to
be in the domain of attraction of the limit law (extreme value distribution) for heavy
tailed distributed random variables.

A parametric form for the tail shape ofF (x) can be obtained by taking a second order
expansion ofF (x) asx!1. The only non-trivial possibility under mild assumptions
is

F (x) = 1� ax��
h
1 + bx�� + o

�
x��

�i
; � > 0 asx! 0 (8)

The tail index can be estimated by the Hill estimator (Hill (1975)), whereM is the
random number of exceedances over a high threshold observationXM+1:

1

�
=

1

M

MX
i=1

log
Xi

XM+1
; (9)

The asymptotic normality, variance, and bias, are known for this estimator. It can be
shown that a uniqueAMSE minimizing threshold level exists which is a function of the
parameters and number of observations. This value can be estimated by the bootstrap
estimator of Danielsson and de Vries (1997a). In this paper we employ the simpler
procedure presented in Danielsson and de Vries (1997b).

It is possible to use (8) and (9) to obtain estimators for out of sample quantile and
probability (P;Q) combinations given that the data exhibit fat tailed distributed in-
novations. The properties of the quantile and tail probability estimators below follow
directly from the properties ofd1=�: In addition, the out of sample(P;Q) estimates are
related in the same fashion as the in sample(P;Q) estimates.
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A. EXTREME VALUE THEORY AND TAIL ESTIMATORS

To derive the out of sample(P;Q) estimator consider two excess probabilitiesp and
t with p < 1=n < t; wheren is the sample size. Corresponding top and t are the
large quantiles,xp andxt; where forxi we have1 � F (xi) = i; i = t; p. Using the
expansion ofF (x) in (8) with � > 0 we can show that by ignoring the higher order
terms in the expansion, and replacingt byM=n andxt by the(M + 1)-th descending
order statistic one obtains the estimator

x̂p = X(M+1)

 
m

np

! 1

�̂

: (10)

It can be shown that the quantile estimatorx̂p is asymptotically normally distributed.
A reverse estimator can be developed as well by a similar manipulation of (8).

p̂ =
M

n

 
xt
xp

!�̂
: (11)

The excess probability estimatorp̂ is also asymptotically normal distributed.
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B. FIGURES

B Figures

Table 8: Summary Statistics. Jan. 27 1984 to Dec. 31, 1996.

JPM MMM MCD INTC IBM XRX XON

Mean 0:05 0:04 0:07 0:09 0:01 0:04 0:05
S.D. 1:75 1:41 1:55 2:67 1:62 1:62 1:39
Kurtosis 100:28 68:07 8:36 5:88 25:71 16:44 49:23
Skewness �2:70 �3:17 �0:58 �0:36 �1:08 �1:06 �1:74
Minimum �40:56 �30:10 �18:25 �21:40 �26:09 �22:03 �26:69
Maximum 24:63 10:92 10:05 23:48 12:18 11:67 16:48

JPM = J. P. Morgan; MMM = 3M; MCD = McDonalds; INTC=Intel; IBM=IBM;XRX=Xerox; XON = Exxon. Source

DATASTREAM.

Table 9: Summary Statistics. Jan. 2 1990 to Dec. 31, 1996.

JPM MMM MCD INTC IBM XRX XON

Mean 0:05 0:04 0:05 0:15 0:03 0:06 0:04
S.D. 1:45 1:19 1:48 2:34 1:72 1:60 1:12
Kurtosis 1:83 3:78 1:51 2:86 6:67 9:46 1:10
Skewness 0:28 �0:32 0:05 �0:36 0:25 �0:35 0:11
Minimum �6:03 �9:03 �8:70 �14:60 �11:36 �15:63 �4:32
Maximum 6:70 4:98 6:27 9:01 12:18 11:67 5:62
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B. FIGURES

Table 10: Correlation Matrix. Jan. 27 1984 to Dec. 31, 1996.

JPM MMM MCD INTC IBM XRX XON

JPM 1:00
MMM 0:49 1:00
MCD 0:42 0:44 1:00
INTC 0:30 0:36 0:29 1:00
IBM 0:38 0:42 0:34 0:40 1:00
XRX 0:35 0:39 0:34 0:32 0:35 1:00
XON 0:44 0:48 0:37 0:24 0:35 0:30 1:00

Table 11: Correlation Matrix. Jan. 2 1990 to Dec. 31, 1996.

JPM MMM MCD INTC IBM XRX XON

JPM 1:00
MMM 0:28 1:00
MCD 0:28 0:28 1:00
INTC 0:24 0:21 0:21 1:00
IBM 0:18 0:19 0:19 0:32 1:00
XRX 0:23 0:23 0:22 0:21 0:19 1:00
XON 0:20 0:25 0:21 0:12 0:10 0:12 1:00
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Table 12: 10 Years, 2600 Daily Returns, 1987 - 1996. With Predicted Maximum Daily Drop in one Year (250 days)

upper tail lower tail

mean var kurtosis max min skew� M X(M+1) max � M X(M�1) max
Stock Index

Hang Seng 0:06 2:7 144:5 8:9 �40:5 �6:5 3:5 32 3:5 3:6% 2:2 49 �3:2 �3:3%

Straights Times 0:03 1:5 64:4 11:5 �23:4 �3:7 3:1 36 2:5 2:6% 2:2 59 �2:3 �2:3%

Word 0:03 0:6 25:7 7:9 �10:0 �1:4 3:5 37 1:6 1:7% 3:1 44 �1:6 �1:7%

DAX 0:03 1:4 12:2 7:3 �13:7 �1:1 2:9 52 2:3 2:3% 2:6 43 �2:7 �2:8%

FT All Share 0:03 0:7 25:9 5:7 �12:1 �2:0 2:9 58 1:5 1:5% 3:1 86 �1:3 �1:3%

SP-500 0:04 1:0 115:8 8:7 �22:8 �5:1 3:8 26 2:3 2:4% 2:5 51 �1:9 �1:9%

Miscellaneous Assets

Gold Bulion 0:00 0:5 7:6 3:6 �7:2 �1:0 4:8 16 2:2 2:2% 3:0 33 �1:9 �1:9%

US Bonds 0:00 0:9 73:5 17:8 �10:7 1:7 2:4 86 1:3 1:4% 2:5 79 �1:4 �1:5%

US Stocks

JPM 0:03 3:3 106:9 24:6 �40:6 �3:1 3:5 31 4:2 4:3% 3:1 48 �3:2 �3:3%

MMM 0:04 2:1 72:5 10:9 �30:1 �3:6 4:5 29 3:4 3:5% 2:4 52 �2:8 �2:9%

MCD 0:06 2:5 6:6 10:0 �18:3 �0:7 5:2 22 4:1 4:2% 3:0 45 �3:3 �3:4%

INTC 0:13 6:8 5:1 23:5 �21:4 �0:5 4:7 29 6:3 6:6% 2:8 37 �6:2 �6:4%

IBM 0:01 2:9 23:5 12:2 �26:1 �1:2 3:2 28 4:3 4:5% 2:9 38 �3:8 �3:9%

XRX 0:03 2:6 16:9 11:7 �22:0 �1:2 3:6 29 4:0 4:1% 2:7 50 �3:3 �3:4%

XON 0:04 2:0 56:7 16:5 �26:7 �2:0 3:5 34 3:1 3:2% 2:7 70 �2:3 �2:4%
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