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Abstract

In this paper, we present a new time series model, which describes self-exciting threshold

autoregressive (SETAR) nonlinearity and seasonality simultaneously. The model is termed

multiplicative seasonal SETAR (SEASETAR). It can be viewed as a special case of a gen-

eral non-multiplicative SETAR model by imposing certain restrictions on the parameters of

the latter model. Related to these restrictions, we introduce two C(®)-type test statistics,

one deals with gaps, and the other tests for multiplicative constraints in non-multiplicative

SETAR models. These statistics form the basis of a new seasonality-test. We also present a

model selection strategy. The usefulness of both non-multiplicative SETAR model and mul-

tiplicative SEASETAR models is examined by applying these models to ¯ve monthly series

of in°ation rates. It turns out that the test statistics mentioned above play an important

role in ¯nding the best model for the series. Also, the estimated models can be sensibly

interpreted from an economic standpoint. Finally, to get a better understanding of the basic

features underlying the ¯tted SEASETAR models a dynamic analysis is carried out. The

results of this analysis can be used to generate more realistic future scenarios of outcomes

in order to settle solvency margins in the insurance business.

Key Words: Gaps, in°ation, multiplicative models, testing, seasonality, threshold autore-

gressions, Wilkie's model.

JEL: C22, C51, C52, C53, G14.
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A complex problem for ¯nancial institutions is the management of their assets in such a way that

their liabilities can be covered and their goals achieved. It is well-known that this problem can

be solved by so-called asset liability management (ALM). An important aspect of ALM systems

concerns the identi¯cation and modelling of certain key economic time series in order to generate

scenarios that are logically consistent and based on sound economic principles; see, e.g., Ziemba

and Mulvey (1998) for a survey on ALM. Scenario selection di®ers considerably from short-term

forecasting. If the set of scenarios is rich enough one of these events will actually occur, but at

the start of the investigation, there is uncertainty as which one it will be. Parameters of the

scenario generator must ¯t past data and trends.

Broadly speaking, over the past decade, three techniques to generate long-term scenario

simulations have become popular in ¯nancial practice. The ¯rst one is based on historical

distributions and on bootstrapping. They both focus on modelling the historical behavior of

a time series. The former technique assumes a known distribution function whereas the latter

consists of extracting the distribution from the real data. The second technique of simulating

long-term scenarios is by using vector autoregressive (VAR) models. One of the main advantage

of these models is that they can be quickly adjusted to changing economic conditions. Also

VAR models can be easily generalized to include some economic equilibrium conditions; see,

e.g., Boender, van Aalst, and Heemskerk (1998), and Kim, Malz, and Mina (1999). Finally,

the third technique is based on a cascade structure. Every level of the system includes a set

of variables that a®ects lower ones. In this way there are some key variables which drive the

°uctuations in other, less important, variables. This approach has been adopted by Wilkie

(1995), Mulvey and Thorlacius (1998), Ranne (1998), and many others. As such it is commonly

used in actuarial practice. It will also be the corner-stone for the analysis carried out in this

paper.

In°ation is one of the most relevant variables in insurance and ¯nancial risk management.

This is not only because in°ation is considered theoretically and empirically as a driving-force

of many other variables like interest rates and wages indices, but also because it is itself a risk

factor for ¯xed returns assets and for in°ation-linked liabilities. An extensive explanation of

the importance of in°ation in the insurance business can be found in Daykin, PentikÄainen, and

Pesonen (1994).

One of the ¯rsts attempts to model in°ation rates is by Wilkie (1986). He ¯tted a linear
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autoregressive (AR) of order 1 to a series of yearly in°ation rates for the UK. Wilkie (1995)

extends his model by adding an autoregressive conditional heteroskedastic (ARCH) term to the

error process in order to capture patterns of heteroskedasticity in the residuals. Both Wilkie

(1995) and Whitten and Thomas (1999) comment that the AR-ARCH way of modelling in°ation

rates can generate unrealistic values in practice. As an alternative these latter authors advocate

the use of the so-called self-exciting threshold autoregressive models (SETAR) models. Basically,

a SETAR model is a piecewise linear AR model with non-smooth, possibly severe switches (or

changes in levels) in linear relationships. This type of behaviour seems more realistic in practice.

Indeed, Clarkson (1991) as well as Whitten and Thomas (1999) note the existence of di®erent

levels of in°ation, one corresponding to a \normal level" or \quiescent phase" and the other to

a \high level" or \excited phase" in the UK in°ation rates. For risk management it is important

to include these changes of levels in a time series model. If not, a high level of in°ation might

damage the solvency of a risk portfolio due to a dramatic increase of the liabilities of a company

and, at the same time, a decrease of the premiums value and assets.

Although a model speci¯ed on the basis of yearly data is often su±cient for practical purposes

there is also a need for a model with data measured at more frequent time intervals. One

important motivation is to be closer to the real cash-°ow generating process. Moreover, the

modelling of in°ation might be integrated in a cascade structure with other economic variables

such as interest rates. This latter series has been modelled in the ¯nance literature with data

measured at more frequent time intervals than just one year; see, e.g., Chan, Karolyi, Longsta®,

and Sanders (1992). Thus, in summary, there is a strong need for introducing a SETAR time

series model which can adequately capture nonlinear features and seasonality in in°ation rates

simultaneously. This, indeed, is the main theme of the paper.

The rest of the paper is organized as follows. First, in Section 2, we introduce as a special

case of a non-multiplicative SETAR model, the so-called multiplicative seasonal SETAR model.

This will be done by imposing certain restrictions on the parameters of the non-multiplicative

SETAR model. Related to these restrictions, we introduce two test statistics. The ¯rst tests

for gaps in the non-multiplicative SETAR model (Subsection 2.2). The second statistic tests

for multiplicative constraints in non-multiplicative SETAR models (Subsection 2.3). Both tests

form the basis of a seasonality test presented in Subsection 2.4. Next, in Section 3, we discuss

a selection procedure for ¯tting the \best" (SEA)SETAR model to an observed time series. In

Section 4, we analyze ¯ve series of monthly in°ation rates. Both non-multiplicative linear AR,

multiplicative linear AR, non-multiplicative SETAR and multiplicative SEASETAR models will
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be ¯tted to the data and various restrictions on the model parameters will be tested. In Section

5 we investigate the dynamic characteristics underlying the ¯tted SEASETAR models through

a simulation study. The ¯nal section contains some concluding remarks.
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For simplicity of presentation, but without loss of generality, the details of the test statistics are

derived in this section for a two-regime SETAR model only. Speci¯cally, a time series fYtg is

said to follow an unrestricted discrete-time stationary two-regime SETAR(2; p1+ sP1; p2+ sP2)

process if it satis¯es the relation

Yt =

8<
:

®
(1)
0 +

Pp1+sP1
i=1 ®

(1)
i Yt¡i + "

(1)
t ; if Yt¡d 6 r;

®
(2)
0 +

P
p2+sP2

i=1 ®
(2)
i

Yt¡i + "
(2)
t

; if Yt¡d > r:

(1)

Here f"
(j)
t

g (j = 1; 2) is a sequence of independent and identically distributed (i:i:d:) random

variables with mean zero and variance ¾
2
j
such that "

(1)
t

and "
(2)
t

are independent; d is a known

positive integer called the delay parameter (or threshold lag); and r is the threshold. The non-

negative integers pj, Pj (j = 1; 2), d, and s are assumed known and are such that 0 6 p2 6 p1,

0 6 P2 6 P1, 1 6 d 6 max(p1 + sP1; p2 + sP2), s > max(p1; p2). Note that in each regime (1)

has a linear AR structure. For linear time series this latter process can be represented by the

relation

Yt = ®0 +

p+sPX

i=1

®iYt¡i + "t (2)

where "t are i.i.d. N(0; 1) random variables.

Necessary and su±cient conditions for the stationarity of SETAR models are available in

the literature for only a few special cases. However, a practical and general way for checking

stationarity follows from a direct analogue of a method for checking invertibility of nonlinear

time series models proposed by De Gooijer and BrÄannÄas (1995). Brie°y stated, it consists of

feeding i.i.d. innovations into the nonlinear model and then observing whether the model blows

up or not. This approach will be applied in the empirical part of this paper.

Note that by imposing two di®erent restrictions on the parameters of (1) the model becomes

of special interest for analyzing seasonal time series with a period of seasonality s. Let B denote

the lag operator such that BkYt = Yt¡k. The ¯rst restriction is to set Pj(s¡ pj ¡ 1) coe±cients
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in the polynomial ®
(j)
p1+sP1

(B) =
Ppj+sPj

i=1 ®
(j)
i Bi (j = 1; 2) equal to zero. These are the exclusion

restrictions (\gaps") in regime j of the model (1), and a test for detecting such gaps may be

regarded as test of the null hypothesis

H01 : ®
(j)
is+`

= 0 (0 6 i 6 Pj ¡ 1; pj < ` < s; j = 1; 2): (3)

We shall refer to (1) together with the restriction (3) as the non-multiplicative SETAR model.

Not much research has been reported in the literature on testing hypothesis of the form (3)

for linear time series models. Godolphin (1978) tested for gaps in purely linear moving average

(MA) models. In fact, the test based on the null hypothesis H¤

0 : ½is+` = 0 (0 6 i < Q; q < ` < s),

where ½i is the theoretical autocorrelation at lag i, and q and Q are the respectively the orders of

the non-seasonal and seasonal MA polynomials. Harvey and Tomenson (1981) pointed out that a

test for gaps places certain restrictions on the non-zero autocorrelations which are not re°ected

by the hypothesis H¤

0 , resulting in a loss of information in Godolphin's test. These authors

also compared the asymptotic relative e±ciency (ARE) of a standard Lagrange multiplier (LM)

test (see below) with the asymptotic ARE of Godolphin's test for a number of seasonal MA

models. It appears that from their computed ARE values that the LM test is far more powerful

than Godolphin's test. Unfortunately, Harvey en Tomenson's ARE results are wrong. Formula

(3.1) in their paper is not correct because it should used second derivatives of the noncentrality

parameter under H¤

0 .

Thus for linear time series modelling, the problem of testing for gaps is still not solved in a

satisfactory way. The problem is equally important when ¯tting SETARmodels to time series. In

fact, several empirical studies have appeared in the literature with non-seasonal SETAR models

¯tted to seasonal time series, having parameter values not statistically di®erent from zero at

intermediate, often non-seasonal, lags; see, e.g., Ray (1988, Table 8). Of course, related to the

\gaps problem" is the important question whether a time series is seasonal or not. If seasonality

is considered within the framework of SETAR modeling then it is reasonable to introduce a

separate model speci¯cation with explicit seasonal components. Such a model follows directly

as a generalization of the multiplicative seasonal AR model for linear time series processes. It

will be termed multiplicative SEASETAR model and is given by

Yt =

8<
:

®
(1)
0 +

P
p1

i=1

P
P1

j=1 Á
(1)
i
©
(1)
j
Yt¡i¡js + "

(1)
t
; if Yt¡d 6 r;

®
(2)
0 +

P
p2

i=1

P
P2

j=1 Á
(2)
i
©
(2)
j
Yt¡i¡js + "

(2)
t
; if Yt¡d > r:

(4)

Note that the SEASETAR model (4) can be considered as a special case of the unrestricted

model (1). In particular, (4) follows from (1) by imposing the pjPj multiplicative constraints
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®
(j)
is+` = Á

(j)
` ©

(j)
i (1 6 i 6 Pj ; 1 6 ` 6 pj; j = 1; 2). A test for checking this second restriction on

the parameters of (1) may regarded as a test of the null hypothesis

H02 : ®
(j)
is+`

= Á
(j)
`
©
(j)
i (1 6 i 6 Pj; 1 6 ` 6 pj ; j = 1; 2): (5)

Now, given the hypotheses H01 and H02 above, the seasonality hypothesis is given by

H0 = H01 \H02:

Thus if one ¯rst tests for H01 and rejects it there is obviously no point in testing for H02. Note

that the above hypotheses can be straightforwardly modi¯ed to get a framework for testing gaps

and seasonality in linear AR processes.

In the next three subsections we present three test statistics for each of the hypotheses H01,

H02, and H0, separately. Since, in all cases the tests are applied to two linear AR processes with

the \switching" dynamics driven by the time series at time t¡d, we drop for ease of notation the

superscript (j) in the parameters ®
(j)
i , Á

(j)
i , and ©

(j)
i . Also we drop the subscript j in the model

orders pj and Pj . For ease of deriving the tests it is further assumed that f²
(1)
t g = f²

(2)
t g = f²tg

with f"tg a sequence of i.i.d. N(0; ¾2) random variables.

��� �������  �� �!������� ������������ "�
��#

In this subsection we consider testing the hypothesis (3). To this end, we ¯rst de¯ne the

parameter vector ¿ = (¿ 0
1
; ¿

0

2
)0 where ¿1 contains the p + P (p + 1) free coe±cients in the jth

(j = 1; 2) regime of the SETAR model (3) while ¿2 contains the coe±cients restricted to zero by

H01. The dimension of ¿2 is P (s¡ p¡ 1). Let k(¿) and I(¿) stand for respectively the p+ sP

score vector and the (p+ sP )£ (p+ sP ) information matrix of ¿ . Then, similar to the partition

in the vector ¿ , we have

k(¿) =

0
@ k1(¿)

k2(¿)

1
A and I(¿) =

0
@ I11(¿) I12(¿)

I21(¿) I22(¿)

1
A :

Let ~¿ = (~¿ 0
1
; ~¿ 0

2
)0 be a locally root n consistent estimator (lrnc) of ¿ . A computationally attractive

special case of ~¿ is obtained by choosing ~¿2 = 0. Using the method of scoring gives for ¿ the

estimator

0
@ ¿̂1

¿̂2

1
A =

0
@ ~¿1

~¿2

1
A¡

0
@ I11(~¿) I12(~¿ )

I21(~¿) I22(~¿ )

1
A

¡10
@ k1(~¿)

k2(~¿)

1
A : (6)
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Since the null hypothesis H01 is equivalent to ¿2 = 0, we are interested in ¯nding an explicit

expression for ¿̂2. Using the well-known formula for the inverse of a partitioned matrix, (6)

yields

¿̂2 = ~¿2 ¡ I
¡1

22¢1
(~¿)fI21(~¿)I

¡1

11
(~¿)k1(~¿)¡ k2(~¿)g

where I22¢1(~¿) = I22(~¿)¡ I21(~¿)I
¡1

11
(~¿)I12(~¿). Under H01 equation (6) de¯nes an asymptotically

e±cient estimator of ¿ . Thus, if H01 is true then the statistic n
1=2

¿̂2 is asymptotically normal

with mean vector zero and covariance matrix I
¡1

22¢1
(¿). This yield the test statistic

C1 = n¿̂
0

2I22¢1(~¿)¿̂2 (7)

which under H01 is asymptotically distributed as Â2 with degrees of freedom equal to the dimen-

sion of ¿2, i.e. P (s¡ p¡ 1). Statistic (7) is locally asymptotically optimal in a class of so-called

C(®) tests introduced by Neyman (1959). By optimal we mean that it has the same asymptotic

distribution as the corresponding likelihood ratio, LM and Wald statistics both under the hy-

pothesis H01. From a sequential testing standpoint, the C(®) tests are particularly convenient

since the computation of (7) does not require estimates which converge to a ¯nal value. The

test statistic C1 has good size and power properties as can be seen from the simulation results

presented in the Appendix.

In the special case where ~¿2 = 0 and ~¿1 is the restricted maximum likelihood estimator,

statistic C1 becomes

C
¤

1 = nk
0

2(~¿)I
¡1
22¢1

(~¿)k2(~¿)

since k1(~¿) = 0. This is the LM statistic for the hypothesis H01. A statistic asymptotically

equivalent to C1 is obtained by replacing I22:1(~¿) in (7) by I22:1(¿̂) (¿̂ = (¿̂ 01; ¿̂
0

2)
0). If the scheme

(6) is iterated until convergence and if ¿̂ denotes the ¯nal estimate then this form of the statistic

C1 is the Wald statistic for the hypothesis H01.

Lrnc estimates of ¿ can be obtained in a number of di®erent ways. Here we shall adopt the

arranged autoregression approach proposed by Tsay (1989) which makes use of least squares

estimates of the model parameters. The estimation of the parameters d and r will be discussed

in more detail in Section 3.
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Now consider testing for H02 when H01 is assumed to be valid. We are thus concerned with the

p+ P (p+ 1)-dimensional parameter vector ¿1 given by

¿1 = (®1; : : : ; ®p; ®s; ®s+1; : : : ; ®s+p; : : : ; ®sP ; ®sP+1; : : : ; ®sP+p)
0

:

De¯ne the function

hi`(¿1) = ®is+` ¡ ®is®`; (` = 1; : : : ; p; i = 1; : : : ; P ):

Furthermore, set

hi¢(¿1) = (hi1(¿1); : : : ; hip(¿1))
0 and h(¿1) = (h1¢(¿

0

1); : : : ; hP ¢
(¿ 01))

0

:

Now the null hypothesis (6) may be written as

H02 : h(¿1) = 0:

The function h(¿) has continuous partial derivatives of all order. From the de¯nition of

hi`(¿1) we obtain

@hi`(¿1)

@®r

=

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

¡®is±ri r = 1; : : : ; p;

¡®`±i1 r = s;

±i1±(r¡s);` r = s+ 1; : : : ; s+ p;
...

...

¡®`±iP r = sP;

±iP ±(r¡sP );` r = sP + 1; : : : ; sP + p;

where ±r` is Kronecker's delta. From this we can form the matrix Hi¢(¿1) = @hi¢(¿1)=@¿
0

1 (i =

1; : : : ; P ) and

H 0(¿1) = (H 0

1¢(¿1); : : : ;H
0

P ¢

(¿1)):

The elements of these matrices can be easily computed. Consider, for instance, the (p+ P (p+

1))£ p matrix H 0

1¢(¿1) given by

H 0

1¢(¿1) =

0
BBBBBB@

¡®1Ip

¡®1 ¡ ®2 ¢ ¢ ¢ ¡ ®p

Ip

O(P¡1)(p+1)£p

1
CCCCCCA

:
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The matrix H
0

i¢
(¿1) (2 6 i 6 P ¡1) can be obtained from H

0

1¢(¿1) by interchanging the positions

of the rows p + 1; : : : ; 2p + 1 and p + 1 + (i ¡ 1)(p + 1); : : : ; p + i(p + 1), respectively, and by

replacing ®1s by ®is. Note that the matrix H
0(¿1) is of order (p + P (p + 1)) £ pP . Since this

matrix is of full rank, the general results about hypothesis testing and constrained estimation

can be applied here.

As before, let ~¿1 be a lrnc consistent estimator of ¿1 and consider the equation

0
@ ¿̂

¤

1

^̧

1
A =

0
@ ~¿1

0

1
A¡

0
@ I11(~¿1) H

0(~¿1)

H(~¿1) 0

1
A

¡10
@ k1(~¿1)

h(~¿1)

1
A ; (8)

where ^̧ is the vector of Lagrange multipliers. As we have noticed earlier ¿̂¤
1
is an asymptotically

e±cient estimator of ¿1 under the constraints h(¿1) = 0 whose validity may optimally be tested

by testing the signi¯cance of the statistic ^̧. To derive the test statistic denote

R(¿1) = ¡(H(¿1)I11(¿1)H
0(¿)1)

¡1 and Q(¿1) = ¡I11(¿1)H
0(¿1)R(¿1):

Then,

^̧ = ¡Q0(~¿1)k1(~¿1)¡R(~¿1)h(~¿1)

and under H02 the statistic n
1=2 ^̧ is asymptotically normal with mean vector zero and covariance

matrix ¡R(¿1). This yields the test statistic

C2 = ¡^̧
0
R(~¿1)

¡1 ^̧

which is asymptotically distributed as Â
2 with pP degrees of freedom under H02; see, e.g.,

Saikkonen (1986). Since we know how to compute I11(~¿1) and H(~¿1), all statistics involved in

C2 can be computed.

��& �������  �� ��
���
����

In the previous two subsections we derived the statistic C1 for the null hypothesis H01 and the

statistic C2 for the hypothesis H02 conditional that H01 is true. A test statistic for H0 is given

by

C = C1 +C2

which under H0 is asymptotically distributed as Â2 with degrees of freedom equal to the sum

of the degrees of freedom of C1 and C2, i.e. P (s ¡ p ¡ 1) + pP . This result may be obtained

8



by noting that under H0 the statistics C1 and C2 are asymptotically independent which follows

from the general result of testing nested hypotheses; see, e.g., Graybill (1976, p. 308) where an

analogue situation in the linear regression model is considered. Statistics C1 and C2 above are

general C(®) type test statistics of Neyman (1959). As before LM and W type special cases

may be obtained by choosing the initial estimator ~¿1 appropriately. In the Appendix the power

properties of C1 and C are studied in a small-scale simulation study.

$ 	�������� '��������

A critical step in (SEA)SETAR modelling is choosing an appropriate model from a large set of

candidate models in a systematic and reproducible way. Automatic model selection criteria, such

as Akaike's information criterion (AIC) can then be used ¯nd a balance between model lack-of-¯t

and model complexity. For linear time series model selection, McQuarrie, Shumway, and Tsai

(1997) obtained an \unbiased" version of AIC, AICu. For SETAR(2; p1; p2) model selection this

latter criterion can be de¯ned as follows. Let nj denote the number of observations belonging

to the jth regime and let ¾̂2
"j

be the corresponding residual variance (j = 1; 2). Then

AICu = AIC +

2X

j=1

n
nj lnfnj=(nj ¡ pj ¡ 2)g+ 2(pj + 2)(pj + 3)=(nj ¡ pj ¡ 3)

o
; (9)

where

AIC =

2X
j=1

n
nj ln ¾̂

2

"j
+ 2(pj + 2)

o
:

Thus AICu penalizes models which are over-parametrized more strongly than AIC, especially as

n increases, and so gives some value to model parsimony. This observation has been veri¯ed by

De Gooijer (2001) in a simulation experiment with various SETAR models. Hence, we decided

to adopt AICu as a model selection criterion.

Now, using (9), we propose the following procedure for selecting (SEA)SETAR models.

1. Fix the maximum number of regimes using prior information about the time series under

study. As mentioned in Section 1, there is quite some empirical evidence that there are

two levels of in°ation, i.e. a normal in°ation level as opposed to a high in°ation level. As

a consequence, we ¯xed the number of levels at two.

2. Fix the maximum delay, say d
¤. Since the data under study are monthly observations,

and our interest is in modelling seasonality in the series, it is reasonable to ¯x d
¤ at 12.

Thus, a set D = fd : d = 1; : : : ; 12g of possible delays will be entertained.
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3. Fix the maximum AR seasonal orders, say P ¤

j , (j = 1; 2) in each regime. In many ap-

plications, linear seasonal AR models were ¯tted with either P = 1 or P = 2. To allows

for some °exibility in the speci¯cation of the models we decided to ¯x P ¤ at two. The

maximum order of the nonseasonal AR part, say p¤j (j = 1; 2), is ¯xed at s ¡ 1. In this

study s = 12.

4. Select an interval [rL; rU ] in which the threshold values are searched. In this study rL

and rU are the 10th percentile and the 90th percentile of the empirical distribution of the

series fYtg, respectively.

5. To guarantee that there are enough observations in each regime, search thresholds at the

¯xed interval width (rU ¡ rL)=[0:8n], with [:] denoting the integer part, such that within

each jth regime there are at least 20 observations. This approach results in a set of, say

Rj¡1 candidate threshold values.

6. Select a set of candidate models, based on the p¤j + sP ¤

j (j = 1; 2) non-multiplicative

seasonal SETAR models. De¯ne a sequence in which parameters are included in the

model from (p; P ) = (0; 0) up to (p¤j ; P
¤

j ). For example, for Pj = 1, the sequence begins

with pj = 0, and the model under study has the form

(1¡ ®12B
12)Yt = ®0 + "t:

Next, attention will be focussed on a model with orders (pj ; Pj) = (1; 1). In the third step,

the model with order (pj; Pj) = (2; 1) will be ¯tted to the data, etc. This process continues

till the maximum orders (p¤j ; P
¤

j ) are reached. Given two regimes, ¯xed delay parameter,

P ¤

1
= P ¤

2
= P , and ¯xed threshold values there are S = s2 £ (P ¤ + 1)2 candidate models

to represent the series at this step.

7. Calculate the minimum value of (9) over all R £ S candidate models. At this point the

best orders, say (p0; P0), and the best threshold value, say r̂, are obtained given a ¯xed

value of d.

8. Repeat steps 5{7 for each d 2 D up to d¤.

9. Finally, select that (SEA)SETAR model which has a minimum AICu value among the set

of d¤ best-¯tted models.

Note that in the above procedure, with two regimes, the total number of models under investi-

gation is equal to d¤ £R£ S, with S = s2 £ (P ¤ + 1)2. In the study reported below S = 1296.

10
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The in°ation rates analyzed in this article are four monthly OCDE data series covering the

period January 1960 { July 1998 (475 observations) for the countries France, Spain, UK, and

USA. Also included is the in°ation rate for the Netherlands for the period April 1960 { July

1998 (472 observations). So in total a set of ¯ve series will be subject to investigation. We

analyze the ¯rst di®erences, (1 ¡ B), of the natural logarithms of the original series. To check

the series are indeed integrated of order 1, we computed two unit-root tests, i.e. the augmented

Dickey-Fuller and the Phillips-Perron test. Both tests do not reject the null of no unit-root at

the 5% level. A LR test was applied for discriminating SETAR models from linear AR models;

see, e.g., Tong (1990). The test rejects linearity for all series, apart from the in°ation rates of

the UK, at the 5% signi¯cance level.
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� ���)��
���
� 
�� ��
���
� �� ������

Table 1 displays the linear AR models ¯tted to each of the ¯ve in°ation rate series. Parameter

values signi¯cant at the 5% level are denoted by an asterisk. The last three lines contain

respectively values of AICu, p-values of the gaps test statistic C1, and p-values of the Lin-

Mudholkar test statistic for normality against asymmetric alternatives; see Lin and Mudholkar

(1980). The latter statistic is asymptotically Gaussian distributed with mean zero and unit

variance, under the null hypothesis of Gaussian distributed residuals.

Note that the orders of the best-¯tted linear models, using AICu as an order selection

criterion, are quite di®erent for the series. If we denote these orders by respectively (p̂; P̂ ) for

the non-seasonal and seasonal AR part, they are respectively given by (1,6) for France, (7,2)

for the Netherlands, (1,2) for Spain, (2,2) for the UK, and (9,1) for the USA. Furthermore, it is

interesting to note that for the in°ation rate series for the UK and Spain the gaps hypothesis

is rejected at the 5% signi¯cance level. Clearly, the p-values of the test for detecting gaps for

the remaining three series indicate strong evidence in favour of the hypothesis (3). Finally, the

results of the Lin-Mudholkar test seem to suggest that all ¯tted linear AR models are far from

optimal.

We have also ¯tted multiplicative seasonal AR models to the data. To save space, we

summarize the main results. For all series the value of AICu is higher than the value of AICu is

higher than the non-multiplicative one, however none of the p-values of the C statistics indicate

11



the acceptannce of the seasonality hypothesis. Note that the linear ¯tted AR models given in

Table 1 are not directly comparable with those obtained by Wilkie (1995) since the time period

under study and the periodicity of the data are di®erent. Nevertheless, it is interesting to see

that for three countries, including the UK, the optimal seasonal orders are higher than one.

&�$ ��)���������
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Table 2 provides information on the best-¯tted non-multiplicative SETAR models. We see that,

in terms of AICu values, there is a considerable improvement in model ¯t for all series over

their corresponding linear AR models given in Table 1. Denoting the optimal model orders by

(p̂1; P̂1; p̂2; P̂2), we obtain the following results for the ¯ve series: (0,2,6,1) for France, (0,2,1,2)

for the Netherlands, (0,2,1,0) for Spain, (1,2,1,1) for the UK, and (3,1,3,0) for the USA. The cor-

responding optimal values for the delay d and the threshold r, denoted by (d̂; r̂), are respectively

given by: (11, 0.00264) for France, (6, 0.00002) for the Netherlands, (8, 0.01018) for Spain, (6,

0.00751) for the UK, and (6, 0.00194) for the USA. Further note that in the ¯rst regime the

gaps hypothesis (3) is not rejected at the 5% level for the UK, and the USA. In contrast, the

models ¯tted to the series of France, the Netherlands, and the UK in the second regime do not

seem to provide su±cient evidence against H01. Thus, in all these cases, the series are likely to

follow a seasonal multiplicative model and testing for gaps and multiplicative constraints jointly

(H01 \H02) using the test statistic C may well reveal this behaviour. Apart from the residuals

of the estimated model for the USA, the p-values of the Lin-Mudholkar still indicate some model

inadequacies.

Unfortunately, when thresholds models are used in practice there is often not much guidance

for the choice of the delay d. For this reason, the estimation of the \best" value of d is a part

of the selection procedure discussed in Section 3. It is well-known that seasonality induces large

sample autocorrelations not only at the seasonal lags, but also at the half-seasonal and at the

quarter-seasonal lags. It is interesting to note that, apart from Spain, the values for d are in

two cases equal to six and in one case close to 12 (France).

On examining the threshold values r̂, there appears to be a di®erence between the ¯ve

¯tted models. On the one hand, the values of r̂ obtained for France and the Netherlands

represent a lower-regime with in°ation rates close to zero or negative. The ¯tted models only

have parameters at the seasonal lags 12 and 24. This regime applies to about one-third of

the available data. In the upper-regime, the ¯tted models have signi¯cant parameters at both

seasonal and non-seasonal lags for about two-third of the observations. Thus, this latter regime

12



seems to re°ect the normal phase for both series. On the other hand, the models ¯tted to

the series of Spain, the UK, and the USA have about one-fourth of the observations in the

upper-regime. Clearly, this regime seems to correspond with the excited phase discussed above.

This result is further supported by the estimated standard deviations ¾̂j (j = 1; 2). As is known

SETARmodels can also capture conditional variances when ¯tted models have di®erent standard

deviations. In all cases we found signi¯cant di®erences between the ¾̂j associated with regime

j. For France, and the Netherlands, the lower-regime has the highest standard deviation. Thus

there is an inverse relationship between the level of in°ation and its volatility. For the other

countries, this is just the reverse.

Finally, it is interesting to compare the threshold value for the UK with the one obtained by

Whitten and Thomas (1999), using yearly data for a di®erent time period. These authors suggest

a threshold value of 10% to partition the annual rates which implies an upper-regime with only

8 observations. If we recompute our result on an annual basis, the optimal threshold value

corresponds to an annual rate slightly higher than 9% and the number of yearly observations is

almost equal to ten. Thus, both approaches give almost similar results for the threshold value.

&�& ���������
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Table 3 provides summary information on the best-¯tted multiplicative SEASETAR estimated

for four in°ation rates. The series for Spain is not included here, since the results of the test

statistic C2 indicated that this series cannot be represented by a multiplicative SEASETAR

model. We used the same model orders (p̂1; P̂1; p̂2; P̂2) as for the non-multiplicative SETAR

models. Also we adopted the values for (d̂; r̂) given in the previous subsection. Note that, in

terms of AICu, there is a considerable improvement in model ¯t for all series as opposed to the

corresponding non-multiplicative SETAR models given in Table 2. Again, apart for the residuals

of the estimated model for the USA, the residuals show some problems although there has been

some improvements.

In scenario simulation it is often useful to have mean values of the series in each regime.

For economic interpretation we report annualized values and between brackets the ¯tted ones:

2:69%, 5:37%, (0:22%; 0:45%) for France, 0:94%, 5:41%, (0:08%; 0:45%) for the Netherlands,

6:21%, 13:36%, (0:52%; 1:11%) for Spain, 4:29%, 12:02%, (0:36%; 1:00%) for the UK, 1:02%,

1:83% and (0:08%; 0:15%)

Table 4 shows the dominant roots for both the non-multiplicative SETAR and the multi-

plicative SEASETAR models presented in respectively Tables 2 and 3. In all cases the roots

13



of the characteristic polynomials indicate that the local dynamics in the regimes is stationary.

For France the upper-regime of the multiplicative SEASETAR model has a root with modulus

101.89, indicating a cycle of about 8 years. Note, that for the models ¯tted to the series of

France, the Netherlands, the UK, and the USA the dominant roots for the non-multiplicative

and the corresponding multiplicative models are very close to each other. Thus the basic dy-

namics of these models will approximately be the same. For the Netherlands and the UK we

see roots corresponding to a period length of three, six, and twelve in the upper-regime of the

¯tted multiplicative models. Interestingly, this observation is supported by the p values of the

seasonality test C given in Table 3. There we see that for these two countries the seasonality

hypothesis cannot be rejected in the second regime.

* ���
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To understand the basic dynamics of the best-¯tted multiplicative SEASETAR models, we

simulated each model 10 times. Figure 1 shows plots of the series. In each case 120 observations

are generated. This set of data corresponds closely to long-term goals one often has in mind in

¯nancial risk management, assuming that there is a monthly periodicity in the data. The series

generated for Spain is based on the non-multiplicative SETAR model given in Table 2. Clearly,

the simulated series exhibit the seasonal periodicity in the models. Note, that the range of the

°uctuations in the USA-series (Fig. 1.a) is about four to ten times smaller than the range of

°uctuations in the other four series. Traditionally European countries have not succeeded in

in°ation control as this has been the case in the USA.

Figure 2 shows plots of the systematic part (skeleton) part of the best-¯tted multiplicative

SEASETAR model. The seasonal periodicity is clearly visible for the Netherlands and the UK.

This may also be noted from Figure 3, which shows scatter plots of (Yt; Yt¡1) for these two

series.

+ ,��������� ���
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In this paper we introduced a new SETAR-type nonlinear model which can be used to char-

acterize seasonalities in time series. We also proposed three tests: one for detecting gaps, one

for detecting multiplicative constraints, and one for testing seasonality in (non)linear (SET)AR

models. All tests have good power and size properties. Further, a selection procedure for

(SEA)SETAR modelling has been presented. When we applied these tools to ¯ve series of
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monthly in°ation rates, we noted that (SEA)SETAR models have a good in-sample ¯t as com-

pared to linear seasonal and non-seasonal AR models.

The ¯tted (SEA)SETAR models have been used to generate more realistic future scenarios

(out-of-sample) for the monthly in°ation rates. These scenarios can be used for projection and

dynamic solvency-testing purposes. They represent the real-world distribution for this concrete

risk factor. Thus the scenarios are not \arbitrage-free" probabilities by construction and cannot

be used for valuation of asset and liability cash-°ows. However, they can be made \arbitrage-

free" by adjusting them. This requires estimating a market price of risk for the in°ation rate.

Indeed, in°ation rate can be regarded as the driving-force of many other variables. Hence, we

aim to extend the methodology presented here to a multivariate setting.
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Two small-scale simulation experiments will be conducted in this Appendix. First, we examine

the ¯nite-sample performance of the gaps test C1 and compare it with results obtained for the

LM test C¤

1
. Second, we are concerned with the performance of the seasonality test C. Recall

that this latter test is composed of the gaps test C1 and the test for multiplicative constraints

C2. In both experiments, the results presented here will be for linear AR models. They are

fairly representative for other models, including SETAR.

For the ¯rst simulation experiment we considered the following model

(1¡ 0:5B ¡ ®2B
2
¡ ®3B

3
¡ 0:5B4 + 0:25B5)Yt = "t (10)

with "t » i :i :d :N(0; 1). Four sets of parameter values (®1; ®2) are de¯ned: i) (0.15, -0.25); ii)

(0.25, -0.25); iii) (-0.25, 0); and iv) (0, -0.25). The corresponding AR models will be denoted by

respectively M1, M2, M3, and M4. Under the null hypothesis ®2 = ®3 = 0, (10) may be written

as

(1¡ 0:5B)(1¡ 0:5B4)Yt = "t: (11)

We shall refer to this model as M0. The ¯rst simulation experiment is performed with 10,000

replications.

Figure 4 shows size-power trade-o® curves of the test statistics C1 and C¤

1
for a sample size

n = 100. The curves are generated by varying the critical value for the tests. The upper right-

hand corner of the graph corresponds to a critical value of zero. Both size and power are 1 at
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this point. The lower left-hand corner corresponds to a very large critical value, so large that

the test statistics will never exceed it. Both size and power are 0 at this point. It is clear from

Figure 4 that, for any given model, the power of the test C1 exceeds that of C
¤

1
. Table 5 contains

results on the size of the tests for sample sizes 100, 200, and 300. Note, that the empirical size

of the test C1 is close to the nominal ones for sample size 300, whereas this is not the case for

C¤

1
.

Using 1,000 replications, Table 6 contains results of the second simulation experiment for

four di®erent multiplicative seasonal AR models and sample sizes 100 and 200. Note that Model

I) coincides with (11). Also, note that similar to the experiment above, each multiplicative

seasonal AR model has a corresponding non-multiplicative AR model. For these latter models

column 3, denoted by CO, gives the number of times the correct order was identi¯ed by AICu.

Column 4, denoted by NRG, gives the number of times the gaps hypothesis is not rejected by

C1 for those models identi¯ed as having the correct order. Hence, this parts concerns testing

for H01. As such the simulation results are completely in line with those presented in Table 5.

Now, in the second step, consider the seasonality hypothesis H0. To this end, the speci¯cation

strategy continues with only those series not rejecting the gaps hypothesis (column 4). Of these

series we summarized in column 5 (NRM) the number of times the multiplicative constraints are

not rejected by C2. Finally, column 6, contains the number of times the seasonality hypothesis

is not rejected. Obviously, the test statistic C2 for multiplicative constraints seems to be too

strong in rejecting the null hypothesis H2 as compared to the statistic C for testing seasonality.
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Table 1: Estimation results for linear AR models; * denotes signi¯cant at the 5% level.

AR parameter ®i

i France Netherlands Spain UK USA

0 0.0001 0.0007¤ 0.0007 0.0006 0.0001¤

1 0.2658¤ 0.0638 0.2222¤ 0.3686¤ 0.2379¤

2 0.0639 -0.0561 0.1348¤ 0.2218¤

3 0.1720¤ 0.1020¤ -0.0115

4 -0.0206 0.0581 0.0416

5 0.0422 -0.0402 0.0569

6 0.1109¤ 0.0571 0.0388

7 0.0661 0.1005¤

8 0.0431

9 0.1513¤

12 0.2252¤ 0.3313¤ 0.1571¤ 0.4234¤ 0.1945¤

13 -0.0544 -0.0346 -0.0062 -0.1391¤ -0.0430

14 -0.0299 0.0340 -0.0905 -0.1270¤

15 -0.0027 -0.1181¤ 0.0783

16 -0.0016 -0.0115 0.0344

17 -0.0370 0.0630 -0.0806

18 0.1173¤ 0.0995¤ -0.0566

19 0.1663¤ -0.0747

20 0.0982¤

21 -0.0582

24 0.2595¤ 0.1869¤ 0.2481¤

25 0.0509 -0.0089 -0.1284¤

26 -0.0372 -0.0438

27 -0.0506

28 -0.0245

29 -0.0088

30 -0.1220¤

31 -0.0955¤

AICu -5389 -4769 -4590 -4774 -6565

p-value of C1 0.1348 0.5250 0.0000 0.0064 0.4718

p-value of

Lin-Mudholkar test 0.0089 0.0270 0.0003 0.0000 0.0009
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Table 2: Estimation results for non-multiplicative SETAR models; * denotes signi¯cant at the

5% level.

Regime SETAR parameter Á
(j)

i

(j) i France Netherlands Spain UK USA

Lower (1) 0 -0.0002 0.0011¤ 0.0009¤ 0.0004 0.0000

1 0.3603¤ 0.3043¤

2 0.1277¤

3 -0.1136¤

12 0.2216¤ 0.0074 0.2582¤ 0.4499¤ 0.2344¤

13 -0.1294¤ -0.0796

14 -0.0856¤

15 0.1710¤

24 0.2623¤ 0.3719¤ 0.2211¤ 0.1945¤

25 -0.1079¤

p-value of C1 0.0000 0.0000 0.0000 0.1424 0.0817

Upper (2) 0 0.0003 0.0005¤ 0.0067¤ 0.0022¤ 0.0004

1 0.4340¤ 0.0252 0.4016¤ 0.3510¤ 0.0789

2 0.0681 0.4134¤

3 0.1624¤ 0.2400¤

4 -0.1108

5 0.0260

6 0.1920¤

12 0.2761¤ 0.5090¤ 0.5006¤

13 -0.1551¤ -0.0450 -0.2770¤

14 -0.0147

15 0.0120

16 -0.0049

17 -0.0348

18 0.1096¤

24 0.1405¤

25 0.0637¤

p-value of C1 0.2930 0.9601 0.0578

AICu -5384 -4832 -4601 -4849 -6682

p-value of

Lin-Mudholkar test 0.0199 0.0246 0.0004 0.0000 0.2765
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Table 3: Estimation results for multiplicative SEASETAR models; seasonal AR parameters are

denoted by S1 and S2; * denotes signi¯cant at the 5% level.

Regime AR and seasonal AR parameters

(j) i France Netherlands Spain UK USA

Lower (1) 0 0.0011¤ 0.0003 0.0019¤ 0.0007¤ 0.0002¤

1 0.3987¤ 0.3309¤

2 0.2320¤

3 0.0678

12 0.2047¤ 0.1943¤ 0.3281¤

24 0.3180¤ 0.4342¤ 0.3010¤

S1 0.4987¤ 0.3932¤

S2 0.1945¤

p-value of C2 0.1204 0.0000

p-value of C 0.0964 0.0000

Upper (2) 0 0.0002 0.0012¤ 0.0067¤ 0.0033¤ 0.0004

1 0.4728¤ 0.1741¤ 0.4016¤ 0.3813¤ 0.0846

2 0.0434 0.4057¤

3 0.2418¤ 0.2467¤

4 -0.1751¤

5 -0.0324

6 0.2990¤

S1 0.4013¤ 0.5035¤ 0.4674¤

S2 0.1767¤

p-value of C2 0.0000 0.0010 0.1855

p-value of C 0.0000 0.3400 0.0513

AICu -5452 -4903 -4622 -4928 -6751

p-value of

Lin-Mudholkar test 0.0002 0.0364 0.0062 0.1668
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Table 4: Dominant roots and periods for the best-¯tted (non-)multiplicative (SEA)SETAR

models given in Tables 2 and 3.

Country Regime Dominant Root Modulus Period

Non-multiplicative

France Lower ¡0:48142¡ 0:83384i 0:96284 3:0

¡0:96284 0:96284

Upper 0:99114 0:99114

Netherlands Lower ¡0:48005¡ 0:83148i 0:96011 3:0

¡0:96011 0:96011

Upper 0:97684 0:97684

Spain Lower ¡0:48026¡ 0:83184i 0:96052 3:0

¡0:96052 0:96052

Upper 0:4016 0:40160

UK Lower ¡0:97417 0:97417

Upper ¡0:95536 0:95536

USA Lower 0:92585 0:92585

Upper ¡0:80500 0:80500

Multiplicative

France Lower ¡0:48392¡ 0:83817i 0:96784 3:0

Upper 0:96276¡ 0:05944 0:96459 101:89

Netherlands Lower ¡0:48887¡ 0:84674i 0:97773 3:0

¡0:97773 0:97773

Upper ¡0:84473¡ 0:4877i 0:97541 2:4

¡0:4877¡ 0:84473i 0:97541 3:0

8:3236£ 10¡7 ¡ 0:97541i 0:97541 4:0

0:48771¡ 0:84473i 0:97541 6:0

0:84473¡ 0:4877i 0:97541 12:0

0:97541 0:97541

¡0:97541 0:97541

UK Lower ¡0:84607¡ 0:48848i 0:97696 2:4

¡0:48848¡ 0:84607i 0:97696 3:0

¡2:6943£ 10¡6 ¡ 0:97696i 0:97696 4:0

0:48848¡ 0:84607i 0:97696 6:0

¡0:84607¡ 0:48848i 0:97696 12:0

¡0:97696 0:97696

Upper ¡0:81284¡ 0:46929i 0:93859 2:4

¡0:46929¡ 0:81284i 0:93859 3:0

0:4693¡ 0:81284i 0:93859 6:0

0:81284¡ 0:46929i 0:93859 12:0

0:93859 0:93859

USA Lower 0:92524 0:92524

Upper -
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Table 5: Size of C1 and C¤

1
for model M0.

0.10% 2.50% 5.00% 95.00% 97.50% 99.00%

n C1 C
¤

1 C1 C
¤

1 C1 C
¤

1 C1 C
¤

1 C1 C
¤

1 C1 C
¤

1

100 2.36 5.14 4.16 8.94 6.69 14.33 94.25 99.39 97.22 99.87 99.02 99.99

200 1.78 4.40 3.34 7.67 5.58 12.70 94.70 99.01 97.41 99.80 99.02 99.97

300 1.55 4.11 3.00 7.77 5.02 12.46 94.21 98.78 97.17 99.58 98.86 99.91

Table 6: Number of times the test statistics C1, C2, and C do not reject their corresponding

null hypotheses.

Model n CO NRG NRM NRS

I) (1¡ 0:5B)(1¡ 0:5B4)Yt = "t 100 926 888 613 783
200 992 939 694 850

II) (1¡ 0:6B)(1¡ 0:4B12)Yt = "t 100 841 551 355 467
200 942 607 409 535

III) (1¡ 0:6B ¡ 0:3B2)(1¡ 0:5B6)Yt = "t 100 406 376 132 193
200 759 680 392 399

IV) (1¡ 0:8B)(1¡ 0:5B7)Yt = "t 100 941 684 354 505
200 988 693 385 538
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a) France

Time
1 10 19 28 37 46 55 64 73 82 91 100 109 118

-0.008
-0.004
0.000
0.004
0.008
0.012

e) USA

Time

1 10 19 28 37 46 55 64 73 82 91 100 109 118
-0.002
-0.001
0.000
0.001
0.002
0.003
0.004
0.005

b) Netherlands

Time
1 10 19 28 37 46 55 64 73 82 91 100 109 118

-0.030

-0.015

0.000

0.015

0.030

c) Spain

Time
1 10 19 28 37 46 55 64 73 82 91 100 109 118

-0.02
-0.01
0.00
0.01
0.02
0.03

d) UK

Time
1 10 19 28 37 46 55 64 73 82 91 100 109 118

-0.03
-0.02
-0.01
0.00
0.01
0.02
0.03
0.04

Figure 1: Ten realisations of the ¯tted multiplicative SEASETAR models given in Table 3. For

Spain the results are based on the non-multiplicative SETAR model in Table 2; solid black lines

show one realisation of the ¯tted models.
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a) France

Time

1 12 23 34 45 56 67 78 89 100

-0.0008
0.0000
0.0008
0.0016
0.0024
0.0032

b) Netherlands

Time

1 12 23 34 45 56 67 78 89 100
-0.004
-0.002
0.000
0.002
0.004
0.006
0.008

c) UK

Time

1 12 23 34 45 56 67 78 89 100
-0.004
-0.002
0.000
0.002
0.004
0.006
0.008

d) USA

Time

1 12 23 34 45 56 67 78 89 100

0.0006
0.0012
0.0018
0.0024
0.0030
0.0036

Figure 2: Plots of the systematic parts of the ¯tted multiplicative SEASETAR models given in

Table 3.
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b) UK

Yt

-0.004 -0.002 0.000 0.002 0.004 0.006 0.008

Yt-1

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

a) Netherlands

Yt

-0.004 -0.002 0.000 0.002 0.004 0.006 0.008

Yt-1

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

Figure 3: Scatter plots for the systematic parts of the multiplicative SEASETAR models ¯tted

to the series of the Netherlands and the UK.
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Size-power plot, n=100

Size

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
ow

er

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Gaps: M0 vs M1
LM: M0 vs M1
Gaps: M0 vs M2
LM: M0 vs M2

Size-power plot, n=100

Size

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
ow

er

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Gaps: M0 vs M3
LM: Mo vs M3
Gaps: M0 vs M4
LM: M0 vs M4

Figure 4: Size-power trade-o® curves for test statistics C1 (gaps) and C¤

1
(LM) for models M0

vs M1, M2, M3, and M4.
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