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ABSTRACT

The objects for sale in most auctions display both private and common value characteristics.
This salient feature of many real-world auctions has not yet been incorporated into a strategic
analysis of equilibrium bidding behavior. This paper reports such an analysis in the context of
a stylized model in which bidders receive a private value signal and an independent common
value signal. We show that more uncertainty about the common value results in lower efficiency
and higher profits for the winning bidder. Information provided by the auctioneer decreases
uncertainty, which improves efficiency and increases the seller’s revenue. These positive effects
of public information disclosure are stronger the more precise the information. Efficiency and
revenues are also higher when more bidders enter the auction. Since our model nests both the
private and common value case it may lead to an improved specification of empirical models of
auctions.
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1. Introduction

Auctions have traditionally been divided into two categories. Inprivate value auctions,

bidders know their own value for the commodity with certainty but are unsure about others’

valuations. Vickrey (1961) provides an early strategic analysis of private value auctions for the

case when values are independent across bidders. The standard textbook example associated with

his model is the selling of a painting; buyers’ valuations for the painting may differ but are

assumed to be independent. In contrast,common value auctionspertain to situations in which

the object for sale is worth the same to everyone, but bidders have different private information

about its true value. A well known example where the common value setup applies is the

auctioning of oil drilling rights, which, to a first approximation, are worth the same to all

competing bidders. Common value models were introduced by Wilson (1969, 1977) who also

provided the first equilibrium analysis of the winner’s curse. See Klemperer (1999) for a

comprehensive survey of this early literature and more recent advances in auction theory.

Most auctions, however, are not exclusively common value or private value. In his

extensive survey of empirical studies on auctions, Laffont (1997) concludes: "In general,

economic theory is not able to tell us in which particular model we are. Most empirical studies

clearly involve some private value element as well as some common value element ..." For

instance, when a painting is auctioned to a private collector, it may be resold in the future and

the resale price will be the same for all bidders. This adds a common value component to the

auction. And in the oil drilling example, private value differences may arise when a superior

technology enables some firms to exploit the rights better than others.

This paper develops a model in which bidders’ information consists of both private and

common value components. Our stylized two-signal model nests the two paradigms of auction

theory in the simplest possible way. The main focus of this paper is on a strategic analysis (à

la Vickrey and Wilson): we derive the equilibrium bidding functions for our model and make

explicit how they vary with the private and common value signals. Our analysis generates

insights about efficiency, winner’s profit, and revenues in auctions with private and common

value elements, insights that could not have been obtained from a private or common value

model alone.

For example, in the absence of reserve prices and entry fees, efficiency is not an issue in

(symmetric) private or common value auctions. In the independent private values context, for
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instance, Vickrey (1961) has shown that optimal bids are increasing in bidders’ values, and

hence, the object is awarded to the bidder that values it the most. And in common value

auctions, all bidders value the object the same, so any allocation rule is (trivially) efficient.

However, when bidders possess both private and common value information, inefficiencies should

be expected. The intuition for this result is straightforward: a bidder with a moderate private

value and an overly optimistic estimate of the common value may outbid a rival with a superior

private value but more realistic conjectures about the common value.

Maskin (1992) first pointed out that auctions may result in inefficient allocations when

signals are multi-dimensional, a result that has been generalized by Jehiel and Moldovanu (1999)

by allowing for allocative externalities. Dasgupta and Maskin (1999) also extend Maskin’s

earlier work and show that a generalized Vickrey auction provides a "second best" mechanism

in the sense that it is "constrained efficient." An interesting related paper is that of Pesendorfer

and Swinkels (1999). In the context of a two-signal, uniform price auction, they derive

conditions under which efficiency is restored when the number of bidders becomes large. None

of these papers, however, contains a strategic analysis. Dasgupta and Maskin and Jehiel and

Moldovanu prove their results using mechanism design arguments without characterizing the

optimal bidding functions. Such a characterization is also lacking in Pesendorfer and Swinkels

(1999), who remark that "As a consequence of the two-dimensional type space we have not been

able to prove existence of equilibrium. Our results instead hinge on a partial characterization of

what equilibria must look like in the limit, if they exist." Existence in their setup is not

guaranteed, however, as Jackson’s (1999) counterexample shows.

In contrast, we explicitly derive the equilibrium for our model, which makes it possible

to determine the extent of inefficiency that can result from the use of auctions. We show that

more uncertainty about the common value implies a higher level of expected inefficiency. In the

limit when the uncertainty about the common value is so large as to override the private value

information, auctions are no more efficient than a random allocation rule. In the other extreme

when there is no uncertainty about the common value at all, the auction reduces to an efficient

private value auction. Interestingly, the profit of the winning bidder is higher with more

uncertainty. The intuition is that, with more uncertainty, bidding has to be more cautious to

avoid the winner’s curse, which leads to higher profits for the winning bidder.
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The observation that more uncertainty about the object’s value results in more inefficiency

has implications for the auctioning of (government) licenses to operate in a market. The cost

structure of bidding firms constitutes a private value element in such cases, while the uncertain

demand for the consumer products introduces a common value aspect. The efficiency losses that

can be expected in these situations may be lessened when firms repeatedly participate in similar

auctions, since this provides them with the opportunity to learn about consumer demand. For

instance, vendor locations at fairs are often auctioned on an annual basis which enables bidders

to accumulate information about demand over time. Consequently, the common value of the

location can be determined more precisely, thereby reducing possible efficiency losses. In

contrast, the infrequent auctioning of landing slots at airports involves more uncertainty about

the common value, since bidders face the difficult task of predicting consumer demand for a

longer period. The FCC auctions used to allocate the spectrum provide another example where

the uncertainty about the common value aspect is likely to be large. First, these auctions are held

infrequently. Second, estimating demand is even more complicated when the frequencies are

used in emerging markets like the market for mobile phones. As a result, efficiency losses may

be more pronounced.

Another benefit of our strategic analysis is that it is possible to evaluate policies to

enhance efficiency and revenues. One such measure is the disclosure of the auctioneer’s

information about the common value. When this information is made public, uncertainty about

the common value decreases, which raises efficiency. On average, the auctioneer’s revenue is

also higher when information is revealed, which makes it likely that such disclosure will indeed

occur. The intuition is that with less uncertainty, bidding will be more aggressive. The positive

effects of publicly announcing the auctioneer’s information are stronger the more precise the

information. Another factor improving efficiency is an increase in competition: expected

efficiency and expected revenue increase with each extra bidder. In the limit when the number

of bidders goes to infinity, an efficient allocation again materializes. Interestingly, the effect of

more competition on efficiency and revenues is stronger than the effect of information provided

by the auctioneer. When the seller has the choice between finding more interested bidders or
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providing information about the value of the commodity, she should choose the former.1

This paper is organized as follows. Section 2 introduces the model. In section 3 we

derive the summary statistic and discuss when a reduction to a one-dimensional signal is possible.

Section 4 characterizes the equilibrium for all standard auctions (first price, second price, and

English) and provides general formulas for the auctioneer’s revenue, the winner’s profit, and total

surplus. In section 5 we show that more uncertainty about the common value results in a higher

level of inefficiency. Section 6 discusses the effect of an auctioneer’s report on revenue and

efficiency, and section 7 considers the effects of increased competition. The results are illustrated

with an example in section 8, and section 9 concludes.

2. The Model

Consider an auction in whichn bidders compete for a single object such as a government

contract, drilling rights for an offshore tract, the right to use a certain radio frequency, etc.

Suppose bidderi = 1,...,n, has an unbiased estimate, or common value signal,vi, of the object’s

true value,V, which is the same for all bidders. Two ways to model the common value have

been proposed. In the "traditional" formulation (Rothkopf, 1969; Wilson, 1969, 1977) the

common value has some known prior distribution and bidders’ signals are draws conditional on

the particular realization ofV. This realization, unknown at the time of bidding, is revealed when

the object is obtained.2 Alternatively, the common value can be modeled as the average of

bidders’ signals:3

1 This result is reminiscent of Bulow and Klemperer’s (1996) finding that an optimally structured bargaining process
following an auction withn bidders generates less revenue than an auction withn+1 bidders.

2 The traditional formulation can be illustrated with the auctioning of oil drilling rights. A (common) prior is
formed as bidders repeatedly compete for different tracts. For each new tract to be auctioned, bidders receive an estimate
of the true amount of oil.

3 Previous papers that have used the average formulation include: Bikhchandani and Riley (1991), Albers and
Harstad (1991), Krishna and Morgan (1997), Klemperer (1998), Bulow and Klemperer (1998), and Bulow, Huang, and
Klemperer (1999). One possible motivation for this formulation is the auctioning of the rights to operate in emerging
markets. In such cases, no prior information exists about the distribution of the common value and residual uncertainty
about the object’s true value is likely to remain after the auction is closed. The best approximation for the value of the
commodity is then its market resale price. For instance, consider a bidder who enters a spectrum auction with the intent
to resell the rights to use the frequency. Prospective buyers will infer others’ value signals from their bids and use this
information to reevaluate the license’s value. Assuming that the ‘quality’ or precision of signals is uniform across bidders,
the best estimate of the resale price of the license is the average of all signals.
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It is important to point out that the two formulations have the same qualitative features. First,

(1)

the commodity for sale is worth the same to all bidders. Second, in both formulations bidders

should realize that winning means that their signal is likely to be too optimistic. In order not to

fall prey to a "winner’s curse," bidders should shade their bids accordingly. By the law of large

numbers the difference between the two formulations disappears completely with an increasing

number of bidders. Throughout the paper we shall use the average formulation for the common

value for which it is possible to derive the equilibrium bidding functions.

Few people would dispute that most auctions have both private and common value

features. For instance, when licenses to operate in a market are auctioned, a common value

aspect results from the uncertain demand for the product to be provided, while the different cost

structures of the bidding firms adds a private value part. This example motivates the information

structure of our model:4

Assumption 1. There are n≥ 2 risk neutral bidders. Bidder i = 1,...,n receives a private cost

signal, ci , and an independent common value signal, vi . Cost and value signals are assumed to

be independently and identically distributed across bidders.5

The density of cost signals is denoted byfc(c) with support [cL, cH] wherecL ≥ 0. Similarly, fv(v)

is the density of value signals, with support [vL, vH]. We consider the case wherevL ≥ cH, so that

bidders will always wish to participate. The assumption of risk neutrality implies that when

bidder i receives the object and pays an amountb, her net utility isV - ci - b.

4 Obviously, alternative motivations are possible. For instance, the common value signal could pertain to the resale
price of a painting, while the private value signal could represent a bidder’s own taste for the painting. (We will return
to this example in section 8.) Alternatively, in "take-over" battles, the estimated "market value" of the firm could be
represented by the common value signal while the private value indicates the expected "value added" of the bidder.

5 The i.i.d. assumption may seem restrictive but is in no way crucial for the analysis of this paper. In the
conclusion we discuss the case when values and/or costs are affiliated and argue that, with the exception of revenue
equivalence, our results generalize.
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3. From Two to One Dimensions: A Problem?

Before we give a formal derivation of the equilibrium strategies, it is useful to provide

some intuition. When bidders receive multiple signals they must somehow combine the different

pieces of information into a summary statistic since their bid is just a single number. Milgrom

and Weber (1982, p. 1097) point out that "... the derivation of a summary statistic from several

pieces of information is in general a difficult task ..." For our model, however, the summary

statistic follows from the following observation. A bidder’s expected payoff in an auction is:

πe = (expected gain - expected payment) × probability of winning. The expected payment and

the probability of winning are independent of a bidder’s private and common value signals (but

will depend on her bid and others’ bidding strategies). Moreover, for the average formulation

of the common value, bidderi’s expected gain equals her "surplus,"si = vi/n - ci, plus terms that

are independent of her signals.6 The first-order conditions for profit maximization therefore

determine optimal bids in terms of a her surplus,si.

From a bidder’s point of view, the information contained in the cost and value signals is

thus adequately summarized by a one-dimensional surplus signal. Before applying the standard

apparatus developed for univariate signals, however, we have to deal with the following caveat:

in general, a higher surplus does not imply a higher value signal, and hence, optimal bids may

not be increasing in surplus. This problem is illustrated by the following two-bidder example.

Example 1. Let costs be uniformly distributed on the intervals [0, .5] and [100, 100.5], and let

values be uniformly distributed on [201, 202] and [399, 400]. With two bidders, surplus is given

by s=v/2 -c, which is (non-uniformly) distributed on [0, 1], [99, 100], [100, 101] and [199, 200].

Note that 99 <s< 100 implies 399 <v< 400, while 100 <s< 101 implies 201 <v< 202, so E(v|s)

is not monotonically increasing ins. Now, suppose, in contradiction, that optimal bids are

increasing in surplus and bidder 1, say, has the higher surplus. The expected value of the object

to bidder 1 is given by ½v1 + ½ E(v|s≤ s1) -c1 = s1 + ½ E(v|s≤ s1). It is straightforward to show that

E(v|s≤ 100) = 300.5 and E(v|s≤ 101) = 266.5, so the expected value is 250¼ fors1 = 100 and 234¼

6 The use of the word surplus forsi = vi/n - ci is somewhat misleading since a bidder’s true surplus from the auction

(in case she wins) isV - ci. A bidder’s "type" would be a more correct, though less informative, name forsi.
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for s1 = 101. Hence, optimal bids cannot be increasing in surplus.

The underlying problem is that there is no natural way to order signals in two-dimensions.

As a result, a one-dimensional statistic may not adequately rank bidders from low to high

valuations. This problem would not occur if a higher surplus signaled "good news" about the

value, i.e. when a higher surplus implies, on average, a higher value. Example 1 shows that this

property cannot be expected when the densities of cost and value signals are not unimodal. To

avoid problems of non-monotonicity and non-existence we shall restrict ourselves to the

following class of unimodal densities.

Assumption 2. The densities fv(v) and fc(c) are logconcave.

Logconcavity means that the (natural) log of the density is concave. This mild restriction is met

by many commonly used densities such as the uniform, normal, chi-square, exponential densities,

etc.7 The next lemma shows that the assumption of logconcavity ensures that surplus and values

are positively correlated (see the Appendix for a proof).

Lemma 1. Under Assumption 2, the conditional expectations E(v|s = x) and E(v|s≤ x) are non-

decreasing in x. Furthermore, E(c|s = x) and E(c|s≤ x) are non-increasing in x.

We are now ready to derive the equilibrium bidding functions for our model, which is the topic

of the next section. We shall follow Milgrom and Weber (1982) who characterize the

equilibrium for standard auctions when bids are based on a single summary statistic. Since we

already determined how this summary statistic is constructed from the private and common value

signals, the derivation of the equilibrium bidding functions is fairly straightforward. Our main

interest, however, concerns the study of interesting economic phenomena such as the effects of

uncertainty, public release of information, and competition on efficiency and revenues.

7 See, for instance, Caplin and Nalebuff (1991) for a more extensive list and for applications of the logconcavity

assumption in models of oligopolistic competition.
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4. Equilibrium Strategies, Revenues, Winner’s Profit, and Total Surplus

We start with the first-price auction, then we consider the second-price auction and finally

the English auction.8 Due to symmetry we can, without loss of generality, focus on bidder 1

whose surplus is given bys1 = v1/n - c1. Lower case letters are used to denote the highest surplus

of the (n-1) other bidders, e.g.y1 = maxj=2,...,n(vj/n - cj), and capital letters indicate order statistics

when they pertain to alln bidders, e.g.Y1 is the maximum ofn surplus draws. To keep the

notation simple we only use one expectation symbol, e.g. the expected cost of the winner

E(cwinner) = EY1(E(c|s= Y1)) is simply written as E(c|s= Y1). The proofs of the propositions in this

section can be found in the Appendix.

Proposition 1. The n-tuple of strategies (B( ),...,B( )), where

is an equilibrium of the first-price auction.

(2)

Note that the optimal bids are functions of surplus, the summary statistic in our model. The

intuition behind (2) is as follows: the first term on the right side represents what the commodity

is worth (on average) to a bidder assuming that her surplus,x, is the highest and the second term

shows how much she "shades" her bid.

Next we turn to a second-price auction in which the highest bidder wins at the second

highest price. The optimal bid function for this case is the same as for the first-price auction

except that a bidder now assumes that she has the highest surplus and one other bidder has that

same surplus. The shade term on the right side of (2) therefore disappears.

Proposition 2. The n-tuple of strategies (B( ),...,B( )), where

is an equilibrium of the second-price auction.

(3)

8 We will not discuss the Dutch auction separately, since it is strategically equivalent to the first-price auction.
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Note the resemblance between (3) and Vickrey’s dominant strategy solution for the private value

second-price auction, i.e. bidding one’s value. When the expected value of the commodity

depends on others’ information, a dominant strategy no longer exists. Instead, a bidder’s optimal

strategy is to bid theexpectedvalue assuming she has the highest surplus and this surplus is

equal to the second highest surplus. To see this, note that if she bids less than (3) while others

bid according to (3), she could lose from bidders with a slightly lower surplus than hers and

forego some profit. Alternatively, if she bids higher than (3), she could win from bidders with

a slightly higher surplus than hers and pay too much, resulting in a negative profit.

Since our model contains the standard private value auction and common value auction

as special cases, it is interesting to see how bidding behavior in these familiar settings compares

with the results of Propositions 1 and 2. For instance, in the independent private values model,

increased competition leads to more aggressive bidding because an increase in the number of

bidders reduces the chance of winning. The opposite effect of the number of bidders on optimal

bids is predicted for the common value model, at least for some examples. The intuition is that

with more bidders, winning is more informative, i.e. an even stronger indication that the winner’s

signal was "too optimistic." Sometimes these contradicting comparative statics results are used

in empirical work to determine which model applies: private or common value (Paarsch, 1992).

In our model, in which bidders possess both private value and common value information, there

is no clearcut effect of increasing the number of bidders: optimal bids may increase, decrease,

or may be non-monotonic in the number of bidders. The procedure to classify the auction on the

basis of this numbers effect may therefore be less useful.

To get some insight into this result, consider a bidder with a low value and low cost

signal. With only one competitor, winning signals bad information about the other’s value and,

hence, about the value of the object for sale. In order not to fall prey to a winner’s curse, the

optimal bid has to take this adverse selection effect into account. In contrast, with an infinite

number of bidders, a bidder’s value signal becomes irrelevant and optimal bids are based on costs

only. In this case, the expected value of the object is simply its unconditional expected value.

So, with a low cost and value signal, the optimal bid is higher with an infinite number of bidders

than with two bidders. However, an analogous argument shows that bidders with high cost and

high value signals bidlesswith more rivals.
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Figure 1 illustrates the dependence of optimal bids on the number of bidders in a second-

price auction when values are uniformly distributed on [2, 3] and costs are uniformly distributed

on [0, 1]. The optimal bid decreases withn when (v, c) = (3, .1), is non-monotonic when (v, c)

= (2.4, .05), and increases withn when (v, c) = (2.3, .01). Notice that the ranking of bidders may

change with the number of bidders, e.g. the bidder with (v, c) = (3, .1) outbids the other two

whenn ≤ 8 but has the lowest bid whenn ≥ 12. Hence, the introduction of new bidders may

change the winner of the auction and make it more efficient (see section 7),even when these

bidders themselves have no chance of winning. The intuition behind this result is that when more

bidders enter the auction, the common value signal becomes less important, which exemplifies

the cost differences between firms and makes an efficient outcome more likely.

Our derivation of the optimal bidding functions for the English auction follows Milgrom

Figure 1. Optimal bids in a second-price auction.

and Weber (1982). In the variant we consider, the auctioneer continuously raises the price and

bidders publicly reveal when they withdraw from the auction. Bidders who have dropped out
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are not allowed to reenter. With only two bidders, a bidder’s strategy is described by a single

number that indicates how high the bidder is willing to go before conceding: the English auction

with two bidders is equivalent to a second-price auction. However, with more than two bidders

the prices at which some bidders drop out convey information to those who remain active.

Supposek bidders have dropped out at bid levelsb1 ≤ ... ≤ bk. Bidder 1’s strategy can be

described by functionsBk(s1;b1,...,bk) which specify how high bidder 1 is willing to bid given that

k bidders dropped out at levelsb1,...,bk (and given her surpluss1). The equilibrium strategy

B( ) = (B0( ),...,Bn-2( )) is then defined recursively.

Proposition 3. The n-tuple of strategies (B( ),...,B( )), with B( ) defined in (4), constitutes an

equilibrium of the English auction.

The intuition for (4) is straightforward: given her surplus and the information conveyed in others’

(4)

drop-out levels, the highest a bidder is willing to go is given by the expected value of the

commodity assuming that all other active bidders have the same surplus. For instance, consider

the bid functionB0(s1) which pertains to the case when no bidder has dropped out yet. If all

other bidders were to drop out at levelB0(s0), then bidder 1’s expected payoff is:s1 + (n-1)/n

E(v|s=s0) - B0(s0) =s1 + (n-1)/nE(v|s=s0) - E(v-c|s=s0) = s1 - s0. Using the bidding strategyB0, bidder

1 remains active until she is indifferent between winning or quitting. Similar interpretations can

be given for theBk with k ≥ 1; the only difference is that these functions take into account the

information conveyed in others’ drop-out levels.

We end this section with a "revenue and efficiency equivalence" result. Our model

predicts that the seller’s profit is the same for all standard auctions thereby providing a more

general setting for which Vickrey’s celebrated revenue equivalence result holds. Interestingly,
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our model also predicts that efficiency is the same for all standard auctions.9 One might have

expected that an English auction would be more efficient than a sealed-bid auction. In an

English auction, part of the uncertainty about the common value is resolved as the remaining

bidders observe the price levels at which low-surplus bidders drop out. These price levels reveal

their surpluses and thus provide information about their value signals. In the final stage of the

English auction with only two active bidders left, all but one of the surpluses have been revealed,

allowing for more precise beliefs about the common value. However, for the remaining uncertain

part it is still the case that the bidder with the higher surplus makes the higher bid. Thus, the

first-price, second-price, and English auctions are efficiency equivalent because in all three

auctions the bidder with the highest surplus wins.

Proposition 4. In all three auctions, the total expected surplus generated is W = E(V) - E(cwinner),

the winner’s expected profit isπwinner = E(Y1) - E(Y2), and the auctioneer’s expected revenue is

R = W - (E(Y1) - E(Y2)).

In words, the expected total surplus generated by the auction is equal to the expected value of

the common value minus the winner’s expected cost and the winner’s expected profit is the

expected difference between the highest and second-highest surplus draw. The expected revenue

for the auctioneer is simply the difference between expected total surplus and the winner’s profit.

In the rest of the paper, we focus on policies aimed at increasing the efficiency and

revenue of auctions. In sections 6 and 7 we consider the effects of public information disclosure

and increased competition. First, we determine how the degree of uncertainty about the common

value affects efficiency.

9 We do not want to stress these equivalence results since they are sensitive to the specific assumptions underlying
our model. For instance, it is well known that affiliation and risk aversion destroy revenue equivalence (see Milgrom and
Weber, 1982, for revenue comparisons with affiliated signals, and, e.g. Holt, 1980, for the implications of risk aversion
for revenues). Efficiency equivalence will most likely not hold for the "traditional" formulation of the common value.
(We conjecture that in this case the English auction will be more efficient. This is hard to verify because, so far, it has
been impossible to derive the optimal bidding functions for the traditional formulation when bidders receive more than
one signal.) In contrast, our results pertaining to the effects of uncertainty, the release of information, and increased
competition on efficiency and revenues are all robust.
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5. The Effects of Uncertainty

In the previous section we have shown that in all three auctions the bidder with the

highest surplus wins. Since this bidder is not necessarily the one with the lowest cost, this

creates the possibility of inefficiencies. In this section we determine the magnitude of the

possible loss in efficiency and demonstrate that more uncertainty about the common value leads

to a greater loss. Furthermore, we show that more uncertainty results in higher profits for the

winning bidder.

A natural efficiency measure is the total expected surplus of the auctionW = E(V) -

E(c|s=Y1), the pie to be divided by the winning bidder and the auctioneer. A convenient way

to parameterize the uncertainty about the common value is to define the surplus variables(α) =

αv/n - c which results by scaling the value signal byα > 0. Since the analysis presented below

only involves surplusdifferences, additive constants cancel out. The effect of scaling the values

by α is therefore the same as a "mean-preserving" transformation of the values.10

First, we determine the probability that the low-cost bidder wins the auction as a function

of α. Intuitively, when surplus contains no information about costs this probability is 1/n while

it should be 1 when surplus and costs are perfectly correlated.

Proposition 5. The probability P(α) that the low-cost bidder wins the auction is decreasing in

α with P(0) = 1 and limα → ∞ P(α) = 1/n.

Proof. P(α) is given byProb[s1(α) = maxj=1,..,nsj(α) | c1 = minj=1,..,ncj], or

The top expression makes it clear thatP(0) = 1 and the bottom expression shows thatP(α) is

decreasing inα with limα → ∞ P(α) = 1/n. Q.E.D.

10 The correct mean-preserving transformation takes the formv → α v + (1-α) E(v).
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Depending on the relative variance of the value and cost signals, the allocation that results from

the auction thus ranges from "fully efficient" to "no more efficient than a random allocation."

The probability of winning, however, is not necessarily a good measure of inefficiency: even

when the lowest-cost bidder does not receive the commodity, the expected cost of the winner

could still be very low so that the loss in efficiency is small. The next proposition shows that

the winner’s expected cost rises with the uncertainty about the common value.

Proposition 6. The expected cost of the winner, E(cwinner) = E(c|s(α) = Y1(α)), is increasing inα.

Proof. Let α1 > α2 > 0. Suppose, without loss of generality, thats1(α1) = maxj=1,..,nsj(α1) and

sk(α2) = maxj=1,..,nsj(α2). There are two cases to be considered. Ifk = 1, the costs are the same

for both α’s. If k ≠ 1, we have:α1v1/n - c1 > α1vk/n - ck andα2vk/n - ck > α2v1/n - c1 (ties occur

with probability zero). Dividing the first inequality byα1 and the second byα2 and adding the

result yields:c1/α1 + ck/α2 < c1/α2 + ck/α1, or, equivalently,ck (1/α2 - 1/α1) < c1 (1/α2 - 1/α1).

Hencec1 > ck whenk ≠ 1. In other words, for some realizations of the value and cost signals,

the winner’s cost is less forα = α2 than forα = α1, while it is the same for other realizations.

A fortiori, the expectedwinner’s cost (i.e. the winner’s cost averaged over all possible

realizations of the value and cost signals) is less forα = α2. Q.E.D.

Finally, we show that the winner’s profit is non-decreasing in the uncertainty about the

common value.11 The basic intuition is that with less uncertainty the winner’s curse problem

is softened, which leads to more aggressive bidding and hence to lower profits (the proof can be

found in the Appendix).

Proposition 7. The winner’s expected profit,πwinner= E(Y1(α)) - E(Y2(α)), is non-decreasing inα.

11 It is important to point out that this result is caused by an increase in thevarianceof the value signals, not by
an increase in the level. Proposition 7 also holds for the mean-preserving transformationv→ α v+ (1-α) E(v), since adding
a constant to all values does not affect profits. Given that total expected surplus decreases under such a mean-preserving
transformation of the values (Proposition 6), and the winner’s profit is at worst the same, the auctioneer’s revenue has
to fall with more uncertainty.
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One nice interpretation of our model is that it provides a continuous parameterization from a

private values model at one extreme (α = 0) to a pure common value model at the other extreme

(α = ∞). Recall from the previous section that withn bidders, surpluses are defined ass=v/n - c,

so that an increase in the number of players has the same effect as reducingα. In other words,

the auction becomes more and more like a private value auction when competition increases.

We will return to this point in section 7. Propositions 5 and 6 show that for the realistic case

of α > 0, full efficiency can no longer be expected. In fact, it is straightforward to verify that

the drop in expected total surplus, or equivalently, the increase in the winner’s expected cost is

E(c1 ) - E(c1 |c1=minj=1,..,ncj ) whenα increases from 0 to∞. Especially when there are relatively

more high-cost bidders (i.e. with a skewed cost distribution) the efficiency loss can be substantial.

In the next two sections we discuss factors that have a positive effect on efficiency and revenue.

6. The Effects of Information Disclosure

In this section we investigate the effects of public information release on bidding

behavior, revenues, and efficiency. Positive effects of the disclosure of this information for both

revenue and efficiency can be expected since it reduces uncertainty about the common value,

which diminishes the winner’s curse, and hence leads to more aggressive bidding. Consequently,

the expected profit of the winning bidder stays at best the same. Furthermore, a reduction in the

uncertainty about the common value results in a higher expected total surplus and since the

winner’s profit does not increase, the auctioneer’s expected revenue goes up. We show that these

positive effects are stronger when the auctioneer’s information becomes more precise.

In particular, we consider the case in which the auctioneer publicly announces her own

private signalv0 about the common valueV. Under the assumption that the precision of this

signal is the same as those of the bidders, the common value changes as follows:

The effect of this extra piece of information on bidders’ strategies is most easily determined by

(6)

defining a new surplus variables′ = v/(n+1) - c. With this new definition the results of section
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4 can be applied without difficulty.12 In other words, the expressions for profits, total surplus,

and revenues are the same as before, with the surplus signals and the order statistics appropriately

redefined. The effects of this redefinition are easily established using Propositions 6 and 7.

Proposition 8. Public disclosure of the auctioneer’s information increases total expected

surplus, increases expected revenue, and does not raise the winner’s expected profit.

Proof. Let α1 = 1/n andα2 = 1/(n+1). The difference between total expected surplus with and

without the auctioneer’s signal is given by: [E(V) - E(c|s(α2)=Y1(α2))] - [E(V) - E(c|s(α1)=Y1(α1))],

and the surplus result thus follows easily from Proposition 6. Since total expected surplus

increases and the winner’s profit does not increase by Proposition 7, the auctioneer’s expected

revenue increases. Q.E.D.

The intuition behind this proposition is that the information given by the auctioneer

reduces the uncertainty about the common value. The reduced uncertainty makes the private

value component (i.e. the cost signal) more important, which raises the chance that a low-cost

bidder wins. At the same time, the reduced uncertainty will lead to more aggressive bidding and

thus to higher revenues for the auctioneer.13

So far, we have only considered the case in which the auctioneer’s signal,v0, is of the

same quality or precision as the signals of any of the bidders. In many situations, however, the

12 For example, in the first-price auction the optimal bidding function reads:B(x) = v0 /(n+1) +n/(n+1) E(V |Y1′ = x) -
E(c|s′ = x) -E(Y1′-y1′ |Y1′ = x), and similar changes occur for the second-price and English auction. The total surplus
conditional on the signalv0 equals the expected value of the commodity to the winner. As before, this is given by the
first two terms ofB(x) evaluated atx = Y1′ :

Since E(v0) = E(V), the unconditional total expected surplus isW = E(V) - E(c|s′=Y1′ ). Similarly, the winner’s profit
becomesπwinner = E(Y1′ ) - E(Y2′ ) and the auctioneer’s revenue isR = W - πwinner.

13 One may wonder whether a truthful report is in the auctioneer’s best interest. Milgrom and Weber (1982) present
theoretical arguments why no reporting policy leads to a higher expected revenue than the policy of always reporting
honestly. Ashenfelter (1989) provides empirical evidence that auctioneers’ price estimates of impressionist paintings are
"very highly correlated with the actual prices fetched" and that the estimates are "very close to unbiased."
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auctioneer may be better informed about the commodity’s true value. A natural way to model

this is to weigh the auctioneer’s signal by a factorλ > 1. The expression for the common value

then becomesV = (λ v0 + Σn
i=1 vi)/(n+λ).14

Proposition 9. An increase in the quality of the auctioneer’s information leads to higher

expected total surplus, higher expected revenue, and does not raise the winner’s expected profit.

Proof. Defineα1 = 1/(n+λ1) andα2 = 1/(n+λ2) with λ2 > λ1. The proof is analogous to that of

Proposition 8. Q.E.D.

7. The Effects of More Competition

In this section we investigate what happens when more bidders enter the auction. The

effect of increased competition can be treated along the same lines as the release of public

information in the previous section. Withn + 1 bidders, the common value is given by (1) with

1/n replaced by 1/(n+1) and with one signal added. Defining the surplus variables′ = v/(n+1) -c,

the results of section 4 translate as follows: total expected surplus isW = E(V) - E(c|s′=Y1′ ), the

winner’s profit isπwinner = E(Y1′ ) - E(Y2′ ), and the auctioneer’s revenue isR = W - πwinner, where

the order statistics are now based onn + 1 draws. The effect of one more bidder on total surplus

is therefore twofold: the surplus variable is redefined (which has a positive effect on efficiency,

see section 6) and the number of draws is increased. To isolate the latter effect, we shall

consider the case ofn+ 1 bidders whose surpluses are the same as when there aren bidders. Let

s′(α) = αv/(n+1) -c in which the values are scaled by a factorα, thens′(α0) = s for α0 = (n+1)/n.

The proof of the next lemma can be found in the Appendix.

Lemma 2. En+1(c|s′(α0)=Y1′(α0)) ≤ En(c|s=Y1).

14 This formulation can be motivated as follows: consider the case in which the variance of the bidders’ signals
is σ2

b (the same for all bidders) and the variance of the auctioneer’s signal isσ2
s. The "best" (i.e. unbiased and smallest

variance) estimator of the commodity’s value is then given byV = (λ v0 + Σn
i=1 vi)/(n+λ) whereλ = σ2

b/σ2
s is a measure

of the (relative) quality of the auctioneer’s information.
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Lemma 2 shows that with one more bidder the expected cost of the winner falls even when the

uncertainty about the common value is increased by scaling the value signals byα0 = (n+1)/n.

The next result should therefore come as no surprise.

Proposition 10. Total expected surplus increases with the number of bidders and attains its

maximum value, E(V) - cL , in the limit as the number of bidders goes to infinity.

Proof. From Proposition 6 and Lemma 2: En+1(c|s′=Y1′) < En+1(c|s′(α0)=Y1′(α0)) ≤ En(c|s=Y1).

SinceW= E(V) - E(c|s=Y1), the first part of the proposition follows. Whenn→ ∞, surplus reduces

to -ci, so limn → ∞ En(c1|v1/n - c1= maxi=1,..,n (vi/n - ci)) = limn → ∞ En(c1|c1 = mini=1,..,nci) = cL. Hence,

the limit value of the total expected surplus isW= E(V) - cL. Q.E.D.

The effect of one more bidder on the winner’s profit and the auctioneer’s expected

revenue can be dealt with similarly. We scale the values byα0 = (n+1)/n to isolate the effect of

one more draw and then we take into account the effect of the surplus redefinition. The winner’s

profit can be written in terms of the (inverse of the) hazard rateh(x) = (1-Fs(x))/fs(x) (see, for

instance, McAfee and McMillan, 1987):

First, consider the transition fromn to n + 1 bidders while scaling the value signals byα0 so that

(7)

the definition of a bidder’s surplus remains the same. The winner’s expected profits are then

given by (7) withF n replaced byF n+1. Since logconcavity ensures that the inverse hazard rate,

1/h(x), is everywhere non-decreasing (see Lemma A2 in the Appendix) andF n+1 first-order

stochastically dominatesF n, the resulting profit is no higher than (7). Combining this result with

Proposition 7, shows that the winner’s profit does not rise with the number of bidders. With

higher total surplus and winner’s profits that are at most the same we conclude:

Proposition 11. Increased competition raises the auctioneer’s expected revenue and does not

raise the winner’s expected profit.
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Interestingly, the effect of one more bidder on efficiency and revenues is greater than the effect

of information disclosure by the auctioneer, at least when the auctioneer’s signal is not more

precise than a bidder’s signal. Both lead to the same redefinition of the surplus (s = v/n - c is

replaced bys′ = v/(n+1) - c) which has positive effects on revenues and efficiency since it

reduces the uncertainty of the common value. However, in the case of one more bidder there

is also one more value and cost draw, which further lowers the winner’s expected cost. When

faced with the choice to gather more information or to attract more bidders, a seller may want

to choose for the latter.

8. An Example

In this section we illustrate the effects of uncertainty, information disclosure, and

competition on efficiency with a specific example. In previous sections the private signal

represented a bidder’s cost but alternative interpretations are possible. For instance, the private

value could represent a bidder’s idiosyncratic taste for a painting while estimates of the resale

price add a common value part. Suppose each bidder receives signals (ti, vi) whereti ≥ 0 is the

private value signal andvi ≥ 0 is the common value signal. It is straightforward to adapt the

optimal bidding functions of section 4 for this case. Here we are mainly interested in the level

of achieved efficiency and we shall only need the fact that optimal bids are increasing functions

of v/n+ t. Since the common value part is the same for all bidders, efficiency only depends on

the private value differences. For illustrative purposes we consider the following efficiency

measure that takes values between 0 and 100 percent:

wheretmax, tmin, andtwinner are the maximum taste draw, the minimum taste draw, and the winner’s

taste respectively.15 The expected value ofΩ is in general hard to compute since it is a ratio

15 Most efficiency results of this paper also hold for this measure: less uncertainty about the common value raises
Ω, the disclosure of the auctioneer’s information raisesΩ, andΩ attains its maximum value of 100 percent when the
number of bidders goes to infinity.
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of stochastic variables, butΩ can be simulated easily. Consider the example when private values

are uniformly distributed on [7, 8] and the common values are uniform on [5, 10]. Figure 2

shows the attained efficiency level as a function of the number of bidders (bottom line), both

with the public announcement of the auctioneer’s signal (middle line), and one extra bidder (top

line).16 The efficiency loss is substantial with only a few bidders and disappears as more

bidders enter the auction. As argued in section 7, the effect of increased competition is greater

than the public disclosure of the auctioneer’s information.

The effect of uncertainty about the common value is illustrated in Figure 3, where the

Figure 2. Efficiency as a function of the number of bidders.

expected efficiency level is plotted as a function of the number of bidders. The private value

signals are again uniformly distributed on [7, 8] and the common value signals are uniformly

16 Since the private value signals are symmetrically distributed the lowest possible level of efficiency is 50 percent.
When the auction is no more efficient than a random allocation, symmetry implies that the winner’s cost will, on average,
lie halfway between the minimum and maximum taste draw.
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distributed on [7, 8] (top line), [6, 9] (middle line), and [5, 10] (bottom line). Note that

Figure 3. Efficiency for various levels of uncertainty about the common value.

efficiency decreases when the uncertainty increases, even though the mean of the common value

distribution remains unchanged.

9. Conclusion

Currently many governments use auctions to allocate licenses for industries with

technically limited entry. The results reported in this paper temper an overly enthusiastic attitude

towards auctions: when the object for sale has both private and common value elements,

inefficiencies should be expected (see also Dasgupta and Maskin, 1999; Jehiel and Moldovanu,

1999). In all standard auction formats, bidders with a superior private value but a pessimistic

signal about the common value can lose against bidders with an inferior private value but an

optimistic common value signal. The magnitude of the efficiency losses depends on the degree

of uncertainty about the common value: more uncertainty implies a higher level of expected
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inefficiency. It is thus easy to construct (theoretical) examples that generate large inefficiencies.

We do not suggest, however, to abandon the use of auctions when allocating scarce rights

of entry. Only in the extreme case when the common value information completely overrides

the private value information, do auctions approach the more or less random allocation of

traditional methods like administrative procedures, lotteries, and "first come first serve." In this

sense, our analysis still supports McMillan’s (1995) argument that auctioning licenses to operate

in a market should be favored over such traditional methods. However, the auctioneer can and

should actively try to reduce expected inefficiencies. Our analysis provides two tools that raise

efficiency. First, the auctioneer can obtain an own estimate of the common value and the public

disclosure of this information increases expected efficiency. The higher the quality of the

auctioneer’s report, the higher the expected efficiency generated by the auction. Second, the

auction should be designed such that all potentially interested bidders indeed participate, since

more competition results in a more efficient allocation. These results are illustrated in Figures

2 and 3: efficiency losses can be substantial with only two or three bidders, but are negligible

with seven bidders or more.

Our results suggest a number of directions for future research. One (technical) extension

of our approach is to assume that value signals and/or cost signals are affiliated (Milgrom and

Weber, 1982). Affiliation can be seen as a (strong) form of positive correlation. The logic

spelled out in the first paragraph of section 3 also applies to the affiliated case: a bidder’s

expected payment and the probability of winning do not depend on a bidder’s cost or value signal

but only on her bid and the others’ bidding strategies. For the average formulation of the

common value, the way in which a bidder’s value and cost enter the expected payoff is in the

form of the surpluss = v/n - c. Hence, also in the affiliated case, optimal bids are functions of

a bidder’s surplus; the bidder with the highest surplus wins, and since this is not necessarily the

bidder with the lowest cost, inefficiencies can occur. In addition, Propositions 5 and 6 that

concern the degree of expected inefficiency do not hinge upon the independence assumption and

thus carry over to the affiliated case. This means that the effect of information disclosure by the

auctioneer and the effect of increased competition generalize. The revenue (equivalence) results,

however, are specific to the independence assumption.

In most of the auction literature, including this paper, the information available to



23

individual bidders is exogenously determined. Persico (1999) considers a model with costly

information acquisition and shows that the auction institution itself may affect the level of

information accumulation. Persico’s work pertains only to the univariate (affiliated) signal case,

but the implications of his work for our model are intriguing. Indeed, if it is the case, as in

Persico (1999), that first-price auctions result in more information accumulation than second-price

auctions, they may well achieve a higher level of efficiency. This conjecture may be hard to

prove since auctions in which bidders possess different amounts of information are notoriously

hard to analyze, but initial results from simple two-bidder auctions are encouraging.

In situations where the same set of bidders interacts repeatedly, it is possible that social

ties develop between bidders which might lead them to work together. Our static model does

not address the possibility of collusion among the bidders.17 It would be interesting, however,

to determine the effects of collusion in our model: suppose bidders can find a mechanism to

truthfully communicate their information (private and common value) to the other members of

their bidding ring. Paradoxically, this mayimprove efficiency for two reasons. First, each

bidding ring selects among its members the bidder with the best private value, thus lowering the

chance that a bidder with an inferior value wins the auction. Second, when members of a

bidding ring pool their information about the common value, the uncertainty about the common

value diminishes, which further mitigates the possibility of inefficiencies. On the other hand,

collusion also implies that there are fewer bidders, which has a negative effect on efficiency.

Our results have implications for structural econometric models of auctions (e.g. Laffont,

Ossard, and Vuong, 1995). Such models start with the equilibrium bidding functions for either

the private or common value case and use data on winning bids to determine the distribution of

bidders’ values. This information can be used by the seller to determine the optimal reservation

price. Our approach may prove useful in finding the right specification, i.e. correct bidding

functions, for auctions with multi-dimensional signals.

17 See, for instance, Graham and Marshall (1987) for an analysis of collusion in second-price and English auctions
with private values. McAfee and McMillan (1992) consider collusion in first-price auctions and McAfee et al. (1989)
discuss collusion in a common value setting. Robinson (1985) investigates the stability of bidding rings for various
auction forms. Krishna and Morgan (1997) study the effects of joint bidding in a common value auction using the average
formulation for the common value employed in this paper.
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Finally, the techniques developed in this paper can be applied in the analysis of other

situations of economic interest. For instance, Feddersen and Pesendorfer (1997) argue that both

private and common value aspects play a role in elections: voters’ preferences over candidates’

positions constitute a private value component, while the "quality" of the candidate can be

interpreted as a common value element. Likewise, when money is being spent on a public good

such as national defense, the private tastes of those living close to a base may differ from the

common preference for protection and stability. In Cournot market games, firms’ costs are

private while the level of demand forms a common value element. In this case, a firm that is

overly optimistic about demand may produce more than a more efficient rival. In any of these

examples, the approach of this paper facilitates the analysis of equilibrium behavior in the

presence of private and common values.



25

Appendix: Proofs

Below we shall need the following properties implied by logconcavity.

Lemma A1. If f(x, y) is logconcave then so are its marginals f(x) and f(y).

Proof. See An (1998).

Corollary A1 . The density fs(s) is logconcave in s.

Proof. The joint density ofv ands is given byf(v, s) = fv(v) fc(v/n-s). It is straightforward to

verify that under Assumption 2 the Hessian of log(f(v, s)) is negative semi-definite, i.e.f(v, s) is

logconcave. Lemma A1 thus implies thatfs(s) is logconcave. Q.E.D.

Lemma A2. The hazard rate, h(x) = f(x)/(1-F(x)), of a logconcave density, f(x), is everywhere

non-decreasing.

Proof. Let f(x) be logconcave then

where the first inequality follows since logconcavity off implies thatf´(x)/f(x) is non-increasing

in x, so f´(x)/f(x) ≥ f´(t)/f(t) for all t ≥ x. It is straightforward to rewrite the above equation as:

(f(x)/(1-F(x)))´ ≥ 0. Q.E.D.

Lemma A3. Let X and Y be random variables. The conditional expectation E(Y | X≤ x) satisfies

Proof. Write the conditional expectation E(Y | X ≤ x) as

Differentiating the right side with respect tox yields the desired result. Q.E.D.
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Proof of Lemma 1. Sincef(v|s) = fv(v) fc(v/n-s)/fs(s), logconcavity offc( ) is equivalent to

This means that∂s log(f(v|s)) = ∂s f(v|s)/f(v|s) is increasing inv, or, ∂s f(v1|s)/f(v1|s) ≥ ∂s f(v2|s)/f(v2|s)

for all v1 ≥ v2. This inequality can be rewritten as∂s (f(v1|s)/f(v2|s)) ≥ 0. Hence, for alls1 ≥ s2

we havef(v1|s1)/f(v2|s1) ≥ f(v1|s2)/f(v2|s2).
18 Since this is true for allv1 ≥ v2, it remains true if we

integratev1 from v to vH and integratev2 from vL to v, which yields (1 -F(v|s1))/F(v|s1) ≥
(1 - F(v|s2))/F(v|s2), or, F(v|s1) ≤ F(v|s2). In other words,F(v|s1) first-order stochastically

dominatesF(v|s2), which impliesE(v|s1) ≥ E(v|s2) for all s1 ≥ s2. SoE(v|s= x) is non-decreasing

in x. Lemma A3 applied toX = s, Y = v yields: ∂x E(v|s≤ x) = (E(v|s= x) - E(v|s≤ x)) fs(x)/Fs(x),

which is non-negative sinceE(v|s= x) is non-decreasing inx. The proofs for the conditional

expectations of the cost are similar. Q.E.D.

Below we use the following notation. The conditional density ofy1 given y1 ≤ s is: fy1(x|y1 ≤ s)

= fy1(x)/Fy1(s) = (n-1) fs(x) Fs(x)n-2 /Fs(s)
n-1 for x ≤ s, and the corresponding distribution function

is Fy1(x|y1 ≤ s) = Fs(x)n-1 /Fs(s)
n-1.

Proof of Proposition 1. An equivalent way to write (2) is:B(x) = (n-1)/n E(v|s≤x) + E(y1|y1≤x)

and its derivative is easily derived from Lemma A3:B′(x) = (n-1)/n (E(v|s=x) -E(v|s≤x)) fs(x)/Fs(x)

+ (x - E(y1|y1≤x)) fy1(x)/Fy1(x). The last term is positive (the eventy1 = x occurs with probability

zero) and the first term is non-negative by Lemma 1. Hence,B( ) is increasing. Suppose that

bidders 2,...,n bid according to (2). Bidder 1’s expected profit is:

From Lemma A3, the derivative of the expected profit with respect tob evaluated atb = B(x) is:

Using the expression forB′ derived above it is straightforward to verify that the term in the

brackets equalss1 - x. Together with monotonicity ofB( ) this shows thatB(s1) is bidder 1’s

unique optimal bid. Q.E.D.

18 In other words,f(v|s) satisfies the monotone likelihood property, see Milgrom (1981).
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Proof of Proposition 2. Note that (3) is equivalent to:B(x) = x+ 1/nE(v|s=x) + (n-2)/nE(v|s≤x).

The last two terms are non-decreasing inx (Lemma 1), soB( ) is increasing. Assume that

bidders 2,...,n bid according to (3). Bidder 1’s expected payoff is:

The second term in the brackets on the right side represents the sum of the values of bidders 2

to n given that their surpluses are less thanB-1(b). An equivalent way of writing this term is by

choosing one of them to have the highest surplus,y1 ≤ B-1(b), while the n - 2 others have

surpluses less than or equal toy1. The expected profit then becomes

Together with monotonicity ofB-1( ) this proves that the unique optimal bid isB(s1). Q.E.D.

Proof of Proposition 3. Note that eachBk is strictly increasing inx. Suppose bidders 2,...,n bid

according to (4). When bidder 1 wins the auction her expected profit is:s1 + 1/n ∑n-1
j=1 E(v|s=sj+1)

- Bn-2(s2), where thesj are the realizations of the others’ surpluses arranged in increasing order,

i.e. s2 ≥ ... ≥ sn. Using the definition ofBn-2 the expected payoff can be written as:s1 + 1/n

E(v|s=s2) - 2/n E(v|s=s2) + E(c|s=s2) = s1 - s2. So bidder 1’s expected profit is positive only when

she has the highest surplus, and usingB( ) she wins iff s1 = Y1. Hence,B( ) is the optimal

bidding strategy for player 1. Q.E.D.

Proof of Proposition 4. Expected total surplus equals the winner’s valuation of the commodity:

so W = E(s|s=Y1) + (n-1)/n E(v|s≤Y1) = 1/n E(v|s=Y1) + (n-1)/n E(v|s≤Y1) - E(c|s=Y1). The first

two terms represent the expected value of the commodity given that one bidder has the highest

surplus and the others have lower surpluses: this is just E(V). HenceW = E(V) - E(c|s=Y1).

The Envelope Theorem implies that the derivative of the equilibrium profitπ*(s) =

πe(B(s)) with respect to a bidder’s surpluss equals the equilibrium probability of winning. When

surpluses are i.i.d. across bidders the equilibrium probability of winning is simplyFs(s)
n-1 and the

equilibrium profit is thereforeπ*(s) = ∫s
sL Fs(x)n-1dx. This is the expected equilibrium profit of a
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bidder with surpluss in any of the three auctions discussed above. The ex ante expected

equilibrium payoffs accrue to the winning bidder, so

where the last expression is obtained by changing the order of integration. Partially integrating

this expression yields:πwinner = E(Y1) - E(Y2). Finally, revenue is the difference between total

surplus and the winner’s profit:R = W - πwinner = W- E(Y1) - E(Y2). Q.E.D.

Proof of Proposition 6. The distribution function,Fs(α)(x), of s(α) = αv/n - c is given by

from which it follows that dFs(α)(x)/dα = - 1/n E(v|s(α)=x) fs(α)(x) ≤ 0, i.e. the distribution

Fs(α)( ) is stochastically increasing inα. The difference between the first and second order

statistic is:

Differentiating this expression with respect toα yields

Lemma 1 together withY1(α) ≥ Y2(α) ensures that the right side is non-negative. Q.E.D.

Proof of Lemma 2.

and

The result follows sinceF n+1( ) first-order dominatesF n( ) and E(c|s=x) is non-increasing inx.
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