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1 Introduction

In recent years Markov chain Monte Carlo (MCMC) methods, in particular the Metropolis-

Hastings (MH) and Gibbs samplers, have been applied extensively within Bayesian analyses

of statistical and econometric models. The theory of Markov chain samplers dates back

to Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953) and Hastings (1970). A

key technical reference on MCMC methods is Tierney (1994). Surveys oriented towards

econometrics are provided by Chib and Greenberg (1996) and Geweke (1999). Applications

are numerous, see e.g. Gelfand, Hills, Racine-Poon and Smith (1990), Albert and Chib (1993),

Geweke (1993), Diebolt and Robert (1994), Bauwens and Lubrano (1998), Kim, Shephard

and Chib (1998), Paap and van Dijk (1999), and Koop and van Dijk (1999).

Although MCMC methods revolutionized the applicability of Bayesian inference, there is,

in practice, a substantial variation in their convergence behaviour. The sampling method or

the structure of the model may be the culprit of such behaviour. Hobert and Casella (1996)

show for instance that the Gibbs sampler does not converge when the posterior is improper.

Justel and Pe~na (1996) emphasize the convergence problems of the Gibbs sampler when there

are outliers. Kleibergen and van Dijk (1994,1998) indicate the near reducibility of MCMC

methods when there exists near non-identi�ability and non-stationarity in econometric models

with at priors. A common di�culty encountered using the MH sampler is the choice of a

candidate density when little is known about the shape of the target density. In such a

case, updating the candidate density sequentially is a partial solution.1 The performance of

the Gibbs sampler is seriously hampered by strong correlation in the target distribution. A

multimodal target density may pose problems to both methods. If the MH candidate density

is unimodal, with low probability of drawing candidate values in one of the two modes, this

mode may be missed completely, even when the sample size is large. More generally stated,

the acceptance probability may be very low, as many candidate values lying between the

modes have to be rejected. With the Gibbs sampler, reducibility of the chain may occur in

this case.

In this paper we introduce the method of adaptive polar sampling (APS) as an MCMC

1This corresponds to the experimental results obtained by local adaptive importance sampling when the

posterior is ill behaved, see e.g. van Dijk and Kloek (1980), Oh and Berger (1992), and Givens and Raftery

(1996).
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algorithm to sample from a target (posterior) distribution which is possibly ill behaved. The

algorithm features two transformations to induce a more regular shape of the target function

in the transformed space than the one in the original space. The key transformation is

one where the n-dimensional space is transformed into polar coordinates which consist of a

distance measure and a (n�1)-dimensional vector of a direction (or angle). A MH algorithm is

applied to sample the directions. Next, the distance is sampled conditionally on the direction

by the inverse transformation method. A location-scale transformation is used prior to the

transformation to polar coordinates and is sequentially updated, using the posterior �rst

and second order moments obtained in successive rounds of the algorithm. The sequential

procedure is intended to improve the acceptance rate of the MH step.

The advantages of the APS algorithm are twofold. Firstly, the algorithm is parsimonious

in its use of information on the shape of the target density. Its location and scale need not be

known precisely beforehand. Secondly, the algorithm is robust: It can handle a large variety of

features of target distributions, in particular bimodality, strong correlation, extreme skewness,

and heavy tails.

The outline of the paper is as follows. In Section 2 the algorithm is introduced. In Section

3 four canonical models are described. These models are used for experimenting with APS

and for comparing its performance with that of the standard Metropolis-Hastings algorithm.

The models include a normal distribution, for testing the behaviour of the algorithm on a well-

behaved target, an ARMA-GARCH model with strong correlation between the parameters,

a bivariate mixture with bimodality, and an ARCH-variance mixture where the parameters

may be badly identi�ed.

We also apply APS to an empirical example. In Section 4 we investigate the daily returns

on the US stock market. The data is modelled using a GARCH-mixture model. The object

of the analysis is to investigate the e�ect on the Value-at-Risk of the mixture component in

the model for the returns on the stock index. Conclusions are presented in Section 5.

2 Adaptive polar sampling

MCMC methods usually generate random drawings in the original parameter space. If the

target density is not well behaved, the chosen algorithm may converge very slowly, or not at

all. The method presented here transforms the parameter space into a (n � 1)-dimensional
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space in which the density is reasonably well behaved, and a unidimensional complementary

space in which most of the ill behaviour is concentrated.

The method is �rst explained using an example. In panel A of Figure 1 a bivariate

mixture density of a parameter vector � = (�1 �2) is shown, which incorporates the problems

of strong correlation between �1 and �2 (the correlation is -0.84) and displays the bimodality.

A location-scale transformation changes the density such that the resulting density in the

(y1 y2) space has its location at the origin and a unit covariance matrix (see panel B). This

transformation spreads the mass of the density around the origin as much as possible.

The second transformation changes the (y1 y2) coordinates to polar coordinates with di-

rection (or angle) � and distance � from the origin.2 Panel C depicts the (u-shaped) marginal

density p(�) of the direction, with the dotted line showing the (uniform) density of � in the

case the original density would have been a bivariate normal. We sample � by comparing its

marginal density to the one resulting from a normal density after the same transformation,

using a Metropolis-Hastings step. Most of the ill behaviour of the density in the original

parameter space is concentrated in the conditional density of � given a value of �. Panels D

and E illustrate the di�erence between the density of �j� resulting from the normal density

(the dotted line) and from the mixture density in Panel A (continuous line). In Panel D the

conditional density for � = 0 is drawn; in Panel E an angle of � = 1
4� is chosen. In both cases

it is found that the density resulting from the normal density is not a good approximation

for the target densities.

De�ning the transformations

The transformation is indicated by

(�; �) = T (� j�;�) = Ty!�;�(y) � T�!y(� j�;�); (1)

where � is the original parameter, y is the standardized parameter, and (�; �) are the polar

coordinates. One starts by standardizing to a variable y, conditional on estimates of location

� and scale �,

y = �
1
2 (� � �); (2)

2The distance measure we use is a signed measure, which explains why � can take negative values in Panels

D and E of Figure 1. See below for details.
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Figure 1: Transforming a bivariate mixture density.
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with �
1
2 the Cholesky decomposition of �. Next, de�ne d as the length of the vector y,

d =
p
y0y: (3)

The signed distance measure � is based on d, but also indicates the sign of the �rst element

of y:

� = sgn(y1) d: (4)

The directions �j are de�ned recursively by

�j = arcsin
yn�j+1

�
Qj�1

i=1 cos �i
2 (�

1

2
�;

1

2
�] for j = 1; ::; n� 1; (5)

where by convention
Q0

i=1 cos �i = 1, so that �1 = arcsin yn=�. The inverse transformation

T�1y!�;�(�; �) from polar coordinates to y, is

yj = T�1y;j (�; �) =

8<
: � sin �n�j+1

Qn�j
i=1 cos �i if j = 2; ::; n

�
Qn�1

i=1 cos �i if j = 1.
(6)

The Jacobian of the transformation T�;�(�) from � to (�; �) is

J(�; �) = det(�)
1
2 � j�jn�1 �

�����
n�2Y
i=1

cosn�i�1 �i

�����
= det(�)

1
2 � jJ(�)j � jJ(�)j: (7)

The di�erence between the transformation in (4)-(5) and the usual transformation to polar

coordinates|see e.g. Kendall and Stuart (1973), p. 247|stems from the inclusion of the sign

function in the distance measure.3 This inclusion leads to di�erent domains for the angles

and for the distance. In the usual case, the domain of � is 
� = [0; 2�) � (�1
2�;

1
2�]

n�2,

whereas in our case 
� = (�1
2�;

1
2�]

n�1.4 The advantage of our transformation stems from

the way the sampler is set up (see below for details): in the space of � it is important to have

a smooth, well-behaved density, whereas it does not hamper the algorithm if ill behaviour is

3In the sequel, we refer to � as a distance even though it can be negative.
4In the bivariate case, with the usual transformation, a point in R2 is described by an angle between 0 and

2� (a full circle)|which de�nes a direction (a straight line through the origin)|and the Euclidean distance

from the point to the origin. In our version, the same point is described by an angle between ��=2 and �=2

(a half circle) and the signed Euclidean distance. The sign of the distance identi�es on which side of the y2

axis the point is located.
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concentrated in the density of �. A smaller range of � may help in this respect. Note that

the density of � in our transformation corresponds to a weighted average of the density at

locations � and � + � in the usual transformation.

Remark: The transformation used here is similar to the transformation used in the mixed

integration algorithm of van Dijk, Kloek and Boender (1985). The mixed integration method

combines importance sampling on the directions with numerical integration on the distance.

It is an algorithm for computing posterior moments of functions of parameters. As such, it

does not deliver draws of the posterior density, contrary to APS.

Sampling directions and distances

Our proposal for sampling the directions is to use a standard MH algorithm. Consider the

case where APS reaches a point �(i) = T�1(�(i); �(i)), where the subscript i denotes the i�th

drawing. Note that we suppress the dependence of the transformation in Equation (1) on

� and � for notational convenience. A candidate �� is drawn from a normal distribution

with expectation � and covariance matrix �. The new direction ��, calculated using the

transformation5 (��; �) = T (��) does not depend on the previous �(i) or �(i). That is, we use

the independent MH sampler. The acceptance probability of a move from �(i) to �� is given

by

�(�(i); ��) = min

"
p(��)q(�(i))

p(�(i))q(��)
; 1

#
; (8)

where p(:) and q(:) denote the marginal target and candidate densities of �. If the drawing is

accepted, then �(i+1) = ��, else the algorithm continues with �(i+1) = �(i).

Using a normal candidate � � N(�;�) implies that q(�) / jJ(�)j as de�ned by (7) (see

the Appendix). The marginal target density is de�ned by transforming the target density

p�(�) through polar coordinates and marginalizing with respect to �:

p(�) =

Z 1

�1

p�(T
�1(�; �)) jJ(�)j jJ(�)jjJ(�)j d�: (9)

Hence, the ratio of densities in (8) (where for notational convenience the superscript (i) is

5In the bivariate case, it is easy to draw a candidate �� directly from its uniform distribution. However, in

the multivariate case (n > 2), the distribution of � is not standard, therefore we draw from the normal density

and apply the transformation.
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deleted) can be simpli�ed as follows:

p(��)q(�)

p(�)q(��)
=
jJ(��)j jJ(�)j

R
p�
�
T�1(��; �)

�
jJ(�)j@�

jJ(�)j jJ(�)j
R
p� (T�1(�; �)) jJ(�)j@�

jJ(�)j

jJ(��)j

=

R
p�
�
T�1(��; �)

�
jJ(�)j@�R

p� (T�1(�; �)) jJ(�)j@�
: (10)

We note that such a simpli�cation is available for all densities which can be written as

q(�) = f
�
(� � �)0��1(� � �)

�
.

The marginal target density of � de�ned by Equation (9) can be calculated e�ciently

using a unidimensional numerical integration method.

The sampling is completed by drawing �(i+1) � p(� j �(i+1)). The information accumulated

during the numerical integration for calculating p(��) can be used in a straightforward way

for the construction of a numerical approximation to the conditional density of �. Based on

the distribution function the inverted CDF method provides a drawing �(i+1)j�(i+1). Next,

�(i+1) = T�1(�(i+1); �(i+1)) is computed, and a new draw of � can be generated.

Note that in the bivariate case APS is similar to the Box-Muller method for generating

draws of the standard normal density. The Box-Muller method relies on the usual polar

coordinates. In practice, it is implemented by drawing independently two uniform variates in

(0,1) and transforming these. See Rubinstein (1981), p. 86. This method can be interpreted

as sampling an � from a uniform density on [0; 2�) and using the inverse transformation

method for generating a �2 � exp(1). By transforming the polar coordinates to standard

coordinates, two independent drawings from a standard normal density result. In APS the

uniform density of � is used as an approximation to the target density of �, and the target

density of � is inverted numerically since it is not available analytically.

Updating location and scale

The transformation to polar coordinates depends on an estimate of � and � of the N(�;�)

candidate. If these estimates correspond reasonably to the posterior �rst and second order

moments then the distribution of the directions implied by the normal candidate density

should mimic that of the directions of the posterior distribution. This results in reasonable

acceptance rates in the MH step of APS. If the estimates of the mean and covariance matrix

of the target density are not accurate, sequential updating of � and � may be applied. The
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updating may continue until the acceptance rate is high enough (or no longer increases). In

the �nal round, a large sample of � may be generated.

A summary of the steps of one iteration of the algorithm is presented in Table 1.

Table 1: APS algorithm (summary)

1. Generate � from N(�;�)

2. Transform � to y = �
1
2 (� � �)

3. Transform y to � by (4)-(5)
4. Apply MH step on �
5. Generate �j� by inverting numerically its CDF
6. Transform (�; �) to y by (6)

7. Transform y to � = � +��
1
2 y

Convergence

APS is a combination of a Metropolis-Hastings sampler on the directions � and an inverted

CDF method for generating the distance �. The MH step on the directions introduces de-

pendence on past drawings. Hence, the transition kernel of APS is just the transition kernel

of the MH step. It can be written as

K(�(i); �(i+1)) =

8<
: q(�(i+1))�(�(i); �(i+1)) if �(i+1) 6= �(i)

1�
R
�2
�

q(�)�(�(i); �)d� if �(i+1) = �(i);
(11)

see e.g. Geweke (1999). The following theorem, adapted from Chib and Greenberg (1995),

provides su�cient conditions for convergence of the adaptive polar sampler.

Theorem 2.1 If for every � 2 
�, the density p(�) is non-null, and if for all combinations

(�(i); �(i+1)) 2 
��
�, the densities p(�
(i)) and q(�(i+1)) are positive and continuous, then the

APS kernel de�ned by (11) is ergodic, and the sampled chain of random drawings converges

in distribution to the target distribution.

The �rst condition implies that some probability mass lies in all directions � 2 
� =

(��=2; �=2]n�1. This condition is ful�lled when � lies in the interior of the original param-

eter space. The second condition holds for q(�) since q(�) / jJ(�)j, which is positive and

continuous. The target density p(�) is usually positive for all � as discussed above. Its conti-

nuity depends on the target function in the original space. If the original target density is not
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continuous, consisting for example in blocks of mass separated by regions where p�(�) = 0,

the shape of the density p(�) should be inspected carefully.

The APS algorithm can be expected to behave at least as good as the MH sampler. This

can be understood by noticing that APS approximates the posterior density exactly for one

parameter (�) and uses a MH step for the remaining parameters (in the vector �). Given

that � is a subvector of a one-to-one transformation of y (see Equations (4)-(6)), the ratio

of densities of �, see (8), is the same whether one works in the space of � or in the space of

y. The ratio of densities in the y-space for the case of the APS algorithm is, however, part

of the ratio of densities in the standard MH algorithm. It can be shown that the building

blocks of the acceptance probability for the n-dimensional MH algorithm factorise into a

part common with the APS algorithm, and a part speci�c to the comparison of densities of

distances � in the previous and candidate (new) direction. This latter part does not occur

in the acceptance probability of the APS sampler. The exact gain in acceptance probability

depends on the shape of the posterior. A set of experiments is reported in the next section

in order to illustrate the improvement in four practical cases.

3 Comparison of methods

The APS algorithm is proposed as a parsimonious and robust sampling scheme. In this

section, we test APS experimentally on four canonical models and compare its performance

with a standard MH algorithm.

Models

The set of target distributions to be sampled from is as follows:

A: A six-dimensional normal density, with mean � = (1; 2; ; 4; 5; 6)0 and covariance matrix

� = diag(6; 5; 4; 3; 2; 1).

B: The likelihood of an ARMA-GARCH model with near-cancellation of the parameters

9



of the ARMA part. A dataset of 200 datapoints is generated from the model

yt = �yt�1 + �t + ��t�1

�t � N (0; ht)

ht � �ht�1 = ! + ��2t�1

with parameters chosen as � = 0:5; � = �0:3; � = 0:6; ! = 0:1 and � = 0:1. The target

density is the likelihood function of the parameters. The expected large correlation

between � and � would slow convergence of a Gibbs algorithm.

C: A bivariate mixture of normals. The target distribution is

�(�) = (1� p)N (d�;�1) + pN (�d�;�2)

The parameters are �xed at p = 0:5; � = (�1; 1)0; d = 8;�1 = I2 and �2 = 2�1.

This is a case for which the Gibbs sampler leads to a (nearly) reducible chain, as the

probability of switching from one mode to the other is very low. Also, the MH algorithm

should be tuned carefully to ensure that this sampler does not miss one of the modes

completely. Problems with convergence can be expected to increase with the value of d.

D: The posterior distribution of the parameters in an ARCH-mixture model. The model

used for generating a dataset is

yt =
p
htut

ht = ! + �y2t�1

ut � (1� p)N (0; 1)+ pN (0; (1+ c)2)

The target distribution is the posterior of the parameters � = (!; �; p; c), where the

prior is

�(!; �; p; c) =
1� �

!
� I0��<1 � I!>0 �

1

(1� p) + p(1 + c)2
� Ic>0 � I0:05<p<0:95

This prior is based on the idea of the non-informative prior for the variance components

in the ARCH and mixture parts; see Section 4 for details.

For generating the data the parameters where �xed at ! = 1; � = 0:6; p = 0:2 and c = 1,

so that the ut error process has a fourfold larger variance in 20% of the cases. Again,

200 datapoints were generated from the model.
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Implementation issues

For implementing the experiments some choices have to be made concerning initial values,

number of drawings per round, number of rounds, and diagnostics for assessing convergence.

For APS, four rounds of updating are allowed for improving the location and scale of the

candidate density, in order to increase the acceptance rate. The number of di�erent directions

� that is drawn, di�ers over the rounds. After drawing only 100 directions in the �rst two

rounds, 500 directions are generated in the third round and 1000 in the last. In each round

a sample of 10000 � is drawn in newly accepted directions, thus the number of � in a single

direction goes down from 100 in the �rst round to 10 in the last round. In the �rst round,

the MH step is skipped, to get a quick improvement over the initial estimate for the location

and scale. In the last round, the initial 1000 � are disregarded, to allow for a burn-in period.

For comparability with APS, the standard Metropolis-Hastings sampler uses an indepen-

dent normal density for generating candidate draws. Initially, the scale is chosen such that

the candidate density is very much spread out, which lowers the acceptance rates in the �rst

rounds, but improves the probability of not missing a mode (as in the example of the bivariate

mixture distribution). We run the algorithm over four rounds, with the last one containing

10000 accepted � to be comparable to the sample of APS. Previous rounds contain less �. We

take successively 1000, 1000, 5000 and 10000 accepted �.

Each sampler used the same dataset for the same model. The initial condition that was

used in all samplers was �xed at a point far away from the mode(s) of the target. The scale

matrix was �xed at 10 times the identity matrix, to search for the density function initially

over a large region.

For the numerical integration in the APS algorithm, we used a 12 point adaptive Gauss-

Legendre technique. Moreover, the parameter space was bounded in such a way that prac-

tically all probability mass lies within bounds. Note that theoretically there is no need to

bound the parameter space, only for matters of computational e�ciency it is convenient to

limit the range where the probability mass is searched for.

Sampling results

Several diagnostics have been proposed to assess the convergence of Markov chains and the

precision with which certain aspects of the distribution can be estimated. Some important
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Table 2: Results for the Adaptive Polar Sampling algorithm

Arma- Normal Arch

Normal GARCH mixture mixture

Acc. rate 2 0:06 0:10 0:37 0:23
Acc. rate 3 0:83 0:58 0:70 0:71
Acc. rate 4 0:89 0:72 0:71 0:73

Mahalanobis 2 5:42 9:52 0:05 4:00
Mahalanobis 3 0:17 0:20 0:00 0:44
Mahalanobis 4 0:00 0:01 0:00 0:08

Autocorrelation ��1 �0:06 0:51 0:09 0:39

Fn. ev. (last round, �1000) 110 101 175 103
Fn. ev. (total, �1000) 337 252 293 149

references on the subject are Geweke (1992), Roberts and Smith (1994), and Chib and Green-

berg (1996). In this paper, we make use of the acceptance rate, the Mahalanobis distance,6

and the largest (over parameters) �rst order autocorrelation coe�cient between drawings.

Tables 2 and 3 present the results for the APS algorithm and for the standard MH algo-

rithm, respectively. The �rst block in each table provides the acceptance rates of each round,

after a preliminary start-up round. For APS, the acceptance rate refers to the directions,

and for the standard MH method, it refers to the � drawings. In case of the normal and

the ARMA-GARCH models, the acceptance rate of APS in the second round is quite low,

indicating that the improvement over the initial location and scale parameters (which were

�xed at some extreme, incorrect values for all models) is not on target yet. After the third

round, however, for all models acceptance rates of at least 70% are found. This is a good

score, especially in comparison with the acceptance rates obtained with the standard MH

algorithm. Only for the normal model (where the candidate density used equals the target

density, when the location and scale are estimated perfectly), the acceptance rate of the stan-

dard MH algorithm is better, for the other models rates between 25 and 54 percentage points

lower. Notice that in the case of the ARMA-GARCH model, convergence of the standard MH

method seems to be slow, judging from the acceptance rates that do not rise quickly over the

di�erent rounds. The acceptance rate for the bivariate mixture model using the MH sampler

depends strongly on the distance between the modes. The results in Tables 2 and 3 are gen-

6De�ned as (�[j] � �[j�1])0(�[j])�1(�[j] � �[j�1]) where the superscript j indicates the j-th round of the

algorithm.

12



Table 3: Results for the Metropolis-Hastings algorithm

Arma- Normal Arch

Normal GARCH mixture mixture

Acc. rate 2 0:31 0:03 0:05 0:36
Acc. rate 3 0:86 0:08 0:14 0:52
Acc. rate 4 0:96 0:45 0:17 0:49

Mahalanobis 2 1:24 0:65 1:69 0:07
Mahalanobis 3 0:02 0:61 0:44 0:05
Mahalanobis 4 0:00 0:08 0:00 0:05

Autocorrelation ��1 0:08 0:81 0:83 0:63

Fn. ev. (last round, �1000) 11 24 66 12
Fn. ev. (total, �1000) 53 161 158 28

Table 4: Results for the normal mixture model, varying distances

d 0 2 4 6 8 10

APS 0:99 0:82 0:72 0:71 0:71 0:71
MH 0:95 0:57 0:31 0:21 0:17 0:98

The MH Sampler did not converge to the correct location/scale estimates when
the mixture with d = 10 was sampled.

erated using a distance parameter d = 8 in model C. Table 4 reports the acceptance rates

of both algorithms for a series of values of the distance parameter. The acceptance rate of

the APS algorithm hardly changes between the di�erent settings, whereas the �nal behaviour

of the MH algorithm depends strongly on the gap between the modes. When sampling the

bivariate mixture with modes lying far apart, the risk is high that the MH sampler does not

sample from both modes. Indeed, the entry in the last cell of Table 4 indicates that the mean

and location got to be adapted to just one, normal, mode, from which sampling could be

done e�ciently. The high acceptance rate for the MH sampler is in this case an indication of

non-convergence, not of e�cient sampling.

In APS, after two rounds, the algorithm has adapted the location parameter to a large

extent, see the second block of Table 2. As the number of draws of � is set up to be compa-

rable between the APS algorithm and the MH algorithm, we expect similar behaviour of the

Mahalanobis distance upon convergence.

The autocorrelation coe�cient for the MH algorithm is higher for all models. This could

be expected, as the Markov chain for the MH algorithm relates to the � directly, whereas in

13



the case of APS the relation is through the directions �. Therefore, dependence in the APS-

Markov chain of �'s is essentially of a nonlinear nature, leading to less (linear) correlation

between sampled parameter vectors.

The bottom block of the tables reports the number of function evaluations, both in the

last round and in total. Note that in the last round of APS more directions are evaluated

(numerically), leading to a relatively high number of function evaluations. The MH algorithm

uses less function evaluations per drawing of �, as no numerical unidimensional distributions

have to be calculated. However, this comes at the cost of a slower convergence, depending on

the shape of the target distribution.

Summarizing, it is found that the APS algorithm is exible and robust, in the sense that

it can be used on a range of di�erent target distributions, and it is parsimonious in its use of

prior information on the shape of the target. Its e�ciency depends on the model used. The

number of function evaluations is larger than in the case where the standard MH sampler is

used. This is the price to pay for the extra robustness. However, the �nal sample of APS is of

better quality than that of the standard MH algorithm, as APS exhibits less autocorrelation

in the chain, and the acceptance rate is usually higher than in the case of standard MH

sampling.

4 Value-at-Risk analysis of the returns on the Dow Jones

Stock Index

Data description

Daily returns on the stock market indices are series which typically exhibit low or nonexistent

autocorrelation. The volatility however is known to cluster. A basic approach to modelling

returns on stock markets is to use GARCH models; see e.g. the papers collected in Engle

(1995).7

In our application we use daily data on the Dow Jones stock index from January 1,

1992 until November 17, 1998. The index is transformed into daily returns by taking the

�rst di�erences of logarithms and multiplying by 100. This resulted in a dataset of 1794

observations that are displayed in Figure 2.

7Another approach is to use a stochastic volatility model, see e.g. Jacquier, Polson and Rossi (1994).
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Figure 2: Returns on Dow Jones index

Table 5: Descriptive Statistics on Returns of Dow Jones index

Part of data 100% 99% 95%

Sample size 1794 1776 1704
Mean 0:0581 0:0616 0:0681
St. deviation 0:8296 0:7265 0:6152
Skewness �0:6935 �0:2458 �0:0855
Kurtosis 11:6847 4:0939 2:8646
Autocorrelation 0:0095 0:0298 0:0168
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Table 5 reports a set of descriptive statistics from the complete sample and from trimmed

samples after deleting 1% and 5% of the extreme (both high and low) observations. For the

full sample it is seen that the average daily return in this period was around 0.06 percent,

with a relatively large standard deviation. The �rst-order autocorrelation is so small that it

may be neglected in the modelling of this dataset. Looking at the graph of the returns, the

alternation between tranquil and more volatile periods is apparent. Also, one can spot several

outliers in the data, with more large negative outliers occurring than positive ones. The data

exhibit thick tails, judging from the high kurtosis that is found. The statistics for the trimmed

samples indicate that a small proportion of outlying observations are very inuential on these

statistics (except the mean): Skewness is largely removed by deleting a few outliers, just like

the excess kurtosis, which goes down from 11.7 to around 4, after deleting only 1% of the

data.

The heteroskedasticity of the returns can be modelled by a GARCH process. Since skew-

ness is related to a few outlying observations, it may be su�cient to allow for a small per-

centage of aberrant data points. A variance mixture is useful in this respect. By allowing

a (small) fraction of the disturbances to come from a higher-variance distribution, extreme

observations are allowed for.

Model speci�cation

The GARCH-mixture model is the GARCH version of model D in Section 3, and is written

as

yt � y = �t

�t =
p
htut

ht = ! + ��2t�1 + �ht�1

ut � (1� p)N (0; 1)+ pN (0; (1+ c)2)

� > 0; ! � 0; � > 0; c � 0; 0 < p < 1

with yt � y the return in deviation from its mean. A fraction 1 � p of the disturbances ut

follows the standard normal distribution; a small fraction p has a standard deviation which

is increased to 1 + c. The restrictions on the parameters are the usual ones for identi�ability

and positivity. This GARCH-mixture model simpli�es to the simple GARCH model if c or p

16



are �xed at zero.

Prior densities

In GARCH models, it is hard to devise reasonable informative priors directly on the parame-

ters. Instead, we devise a prior which describes information in the space of the unconditional

variance of the simple GARCH process; see Nelson (1990) and Kleibergen and van Dijk (1993)

for a discussion of stationarity in GARCH models. This variance is

�2GARCH =
!

1� � � �
: (12)

We choose the prior on the GARCH parameters to be non-informative on this unconditional

variance, which gives

�(�; !; �) /
1� � � �

!
� I�+�<1 � I!>0: (13)

The restriction on the sum of � and � is su�cient for the simple GARCH process to be

covariance stationary.8

If the fraction of disturbances ut stemming from the distribution with the high variance is

too close to one of the bounds, identi�ability of the parameters can be problematic. Therefore,

we limit a priori p to lie within the range (0:01; 0:3). Within this range, we assume a uniform

prior on p.

The parameters c and p determine the variance of the disturbance process ut, which is

�2u = (1� p) + p(1 + c)2: (14)

The combined prior of p and c is non-informative on this variance, i.e.

�(p; c)/
1

(1� p) + p(1 + c)2
� I0:01<p<0:3: (15)

The joint prior on all the parameters is the product of the priors in (13) and (15).

8We could also de�ne the prior to be proportional to the inverse of the unconditional variance of the

GARCH-mixture model. The di�erence would be that in the right hand side of (13), � would be multiplied

by var(ut) as given by (14). We refrain from using this prior in order to impose prior independence between

the GARCH parameters and the mixture parameters.
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Posterior results

The �rst �ve panels in Figure 3 depict the marginal posterior densities of the parameters

�; !; �; p, and c. The corresponding posterior means and standard deviations are reported in

the �rst block of Table 6.

The mode of the posterior density of the GARCH parameter � lies around 0.93, which

indicates that on a day to day basis the variance of the returns is strongly persistent. The

posterior density of � is concentrated on small values, but with all posterior mass bounded

away from zero. This indicates that the variance of the returns is not constant over time. The

parameters p and c are intricately connected: A low probability of a high variance disturbance

should be linked to a higher variance for this (rare) occurrence. The last panel shows the

posterior contours for these two parameters; the negative correlation between p and c is

apparent. Note that the lower limit on the range of p is not binding, but that some positive

probability is found for values of p near the upper bound of 0.3.

To compare the GARCH-mixture model to the basic GARCH model, in Figure 4 the

square roots of the unconditional standard deviation components of the models are plotted.

The �rst three panels are for the mixture model. The �rst panel displays the (prior and

posterior) distributions of �GARCH for the mixture model, see (12); the second contains the

distributions of �u, see (14); and the third shows the distributions of the implied unconditional

standard deviation of the mixture model, i.e. the square root of E(�2� ) = !=(1�����2u). This

compares to the last panel with the unconditional standard deviation of the simple GARCH

model.

From these graphs we see that both models tend to be stationary with unconditional

standard deviations around 0.85, in close correspondence with the data standard deviation

(0.83). Note that though non-stationarity was ruled out by the prior we applied, large values

for the unconditional standard deviation may still occur. Indeed, about 1% of the calculated

standard deviations in the mixture model was larger than 1.5; these have not been taken up

into the third panel of Figure 4. The unconditional standard deviation is on average smaller

in the mixture model, though its distribution is more spread out. The data seem to be quite

informative about the parameters of the mixture distributions, indicating that this element of

the model helps to explain the variance in the data series. The mixture parameters, estimated

at the posterior mean, indicate that on average 15% of the disturbances exhibit a fourfold
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Table 6: Results for the APS algorithm on the Dow Jones data

GARCH mixture GARCH

� 0:92 (0:020) 0:89 (0:019)
! 0:08 (0:003) 0:02 (0:005)
� 0:04 (0:010) 0:09 (0:014)
p 0:15 (0:055)
c 1:14 (0:189)

Acc. rate 2 0:70 0:96
Acc. rate 3 0:68 0:97
Acc. rate 4 0:73 0:97

Mahalanobis 2 0:13 0:03
Mahalanobis 3 0:05 0:00
Mahalanobis 4 0:04 0:00

Autocorrelation ��1 0:37 0:07

Fn. ev. (last round, �1000) 47 31
Fn. ev. (total, �1000) 59 39

In the �rst block, entries are posterior expectations and standard deviations (between paren-
theses). The remaining blocks contain the same information as in Table 2.

larger variance. Likewise, the variance of the disturbance term (at the posterior mean) is

equal to 1.54, see Equation (14).

In Table 6, the diagnostics explained in Section 3 on the convergence of APS are reported

for both models. Not surprisingly, convergence is faster for the simple model. The APS algo-

rithm was started using ML estimates of the parameters. This explains the high acceptance

rates in the MH step in the second round.

Predictive analysis and Value-at-Risk

In �nancial practice the Value-at-Risk (VaR) of a portfolio is often calculated as a measure

of risk. The VaR is the maximum loss which can be expected at a �xed con�dence level for

a �xed horizon, see e.g. Jorion (1997), p 87-88. More precisely, the VaR at horizon � , with

con�dence 1� �, of a $W initial investment is de�ned as

VaR(�; �) = W [E(st+�)� s�]

where st+� is the return at time t + � on an investment of $1 made at time t, and s� is the

�%-quantile of the distribution of st+� , i.e. the solution ofZ 1

s�

f(st+�)dst+� = �
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with f(st+� ) the density of the corresponding return.

With a given model, say the GARCH model, the VaR is a function of the model parameters

and of future returns. Bayesian inference on the VaR implies that one integrates over the

parameters and over the future returns, i.e. to compute VaR from the predictive distribution

of the future return st+� . It is convenient to make use of sampling methods in this case; see

Geweke (1989) for a predictive analysis with an ARCH-model using importance sampling.

This is implemented as follows: we generate (by APS) a parameter value � = (�; !; �; p; c)

from the posterior distribution, and we generate from the conditional (on �) predictive density

a random sample of returns for 1; 2; ::; � periods ahead. Repeated N times, this procedure

provides for each horizon a random sample of N returns generated from the predictive distri-

bution. For a $1 investment, the VaR at horizon � with con�dence 1�� is then approximated

by the average of the generated sample of st+� less the �%-quantile of the same sample.

The simulation which is needed for evaluating the Value-at-Risk is computer-intensive.

Therefore it is advisable to start with a sample of posterior parameters � which is of good

quality, showing little serial correlation, such that only a `small' sample su�ces for the cal-

culation of the VaR. APS in such a case is a good choice, as it tends to result in posterior

samples with less correlation than its direct competitors.
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Figure 5: Quantiles of return-on-investment for the GARCH-mixture model over di�erent

horizons (left panel) and VaR evaluated for both the GARCH and the GARCH-mixture

models (right panel)

This sampling method was executed on both the GARCH and GARCH-mixture models

for the returns on the Dow Jones index. Outcomes are shown in Figure 5. The left panel
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depicts the evolution of the 1, 5, 50, 95 and 99% quantiles of the return-on-investment in

the index over 30 time periods into the future assuming the GARCH-mixture model holds.

The right panel shows V aR(�; �), calculated as indicated above for the GARCH and the

GARCH-mixture models, for � = 1 and 5% and over the 30 trading days horizon.

It is seen on Figure 5 (right panel) that the GARCH model underestimates the volatility

in the returns on larger horizons, resulting in an estimated 1% VaR at a 30 day horizon given

as 0.117 instead of 0.132. The fact that the GARCH-mixture model assigns a 15% probability

of �nding a disturbance on the return on investment from a larger variance distribution leads

to more conservative risk estimates, which indeed is an important piece of information for an

investor.

Another way of investigating the di�erence in implied VaR for the twomodels is to compare

the con�dence levels linked to certain values for the VaR, at �xed horizon. Note that the VaR

is a function of the con�dence level and the horizon, VaR = v(�; � jM). It then follows that

�(VaR; � jM) = v�1(VaR; � jM)

In Figure 6 we depict the relation between the con�dence levels for the GARCH and GARCH-

mixture models,

r(VaR; �) =
�(VaR; � jGARCH)

�(VaR; � jGARCH-mixture)
:

It is seen that the GARCH model assigns a lower probability to a relatively large possible loss,

especially at larger horizons. E.g. for an investment at the largest horizon, the probability

of encountering a negative return-on-investment of at least 10% is estimated 25 times higher

for the GARCH-mixture than for the GARCH model.

5 Conclusions

In this paper a new MCMC algorithm was introduced: adaptive polar sampling, where sam-

pling does not take place in the n-dimensional parameter space directly, but in an (n � 1)-

dimensional subspace in which the target density is usually better behaved.

In a variety of models which feature ill-behaved posterior distributions, the APS algorithm

was found to perform much better, in terms of acceptance rate and autocorrelation structure

of the generated samples, than the standard MH algorithm in the n-dimensional space. These
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advantages of robustness and exibility of APS come at the cost of a higher computational

burden.

The algorithm was applied to sample from the posterior distribution of the parameters

of both a simple GARCH model and a more elaborate GARCH-mixture model, on a dataset

concerning the daily returns on the Dow Jones stock index. The application was aimed at

evaluating the Value-at-Risk implied by the models. It was found that the GARCH-mixture

model is favoured by the data compared to a standard GARCH model. For the Value-at-Risk,

it was found that the di�erence between the elaborate and parsimonious model is less than

1% at a time horizon of 30 trading days, when the 5% VaR is concerned. The 1% VaR was

calculated with a larger gap than 1% of the invested sum. This di�erence indeed is important

information for an investor.

We end the paper with a remark. The combined use of the polar transformation and

the deterministic integration on the distances enables one to construct four Monte Carlo in-

tegration algorithms. First, we introduced APS where MH is applied on the directions and

distances are generated randomly from its, numerically determined, distribution function.

Second, there exists MIXIN (van Dijk et al. 1985) where importance sampling is applied to

the direction and Gaussian quadrature to the distances. Third, one may combine importance

sampling on the directions with randomly generated distances as in APS. Fourth, a combina-

tion of an MH step on directions with deterministic integration on � would lead to a viable

alternative algorithm. It is a matter of further research to compare these four Monte Carlo
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integration schemes.

Further research is also needed to compare APS to some recent sampling algorithms, like

the simulated tempering of Marinari and Parisi (1992) and the simulated sintering of Liu and

Sabatti (1998), and to experiment with APS in other classes of models, such as reduced rank

models, see e.g. Kleibergen and van Dijk (1998).

Appendix

In Section 2 the marginal density of � resulting from a normal density in the original parameter

space is used. Here, we present the derivation of the transformed candidate and target

densities. Denote the normal density in the original space by

q(�) / det(�)�
1
2 exp

�
�
1

2
(� � �)0��

1
2 (� � �)

�
;

and denote by q(�; �); q(�) and q(�) the joint and marginal densities of � and � after the polar

transformation de�ned by (4)-(5). The following results hold:

q(�; �) = jJ(�; �;�)j q(T�1(�; �))

/ det(�)
1
2 j�jn�1 j

n�2Y
i=1

cosn�i�1 �ij det(�)
� 1
2 exp

�
�
1

2
(� � �)0��

1
2 (� � �)

�

= j
n�2Y
i=1

cosn�i�1 �ij � j�jn�1 � exp

�
�
1

2
�2
�

= jJ(�)j � jJ(�)j � exp

�
�
1

2
�2
�

(16)

q(�) / jJ(�)j (17)

q(�) / jJ(�)j exp

�
�
1

2
�2
�
; (18)

see also Equation 7. For the target density, the independence between � and � does not hold

in general. The marginal density of � for the target density p�(�) is

p(�) =

Z
p�
�
T�1(�; �)

�
jJ(�; �;�)jd� = jJ(�)j jJ(�)j

Z
p�
�
T�1(�; �)

�
jJ(�)jd�: (19)
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