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Abstract

Parameters in AutoRegressive Moving Average (ARMA) models are locally non-

identi�ed, due to the problem of root cancellation. Parameters can be constructed

which represent this identi�cation problem. We argue that ARMA parameters should

be analyzed conditional on these identifying parameters. Priors exploiting this fea-

ture result in regular posteriors, while priors which neglect it result in posteriori

favor of nonidenti�ed parameter values. By considering the implicit AR representa-

tion of an ARMA model a prior with the desired proporties is obtained. The implicit

AR representation also allows to construct easily implemented algorithms to ana-
lyze ARMA parameters. As a byproduct, posteriors odds ratios can be computed

to compare (nonnested) parsimonious ARMA models. The procedures are applied

to two datasets, the (extended) Nelson-Plosser data and monthly observations of US

3-month and 10 year interest rates. For approximately 50% of the series in these two

datasets an ARMA model is favored above an AR model.

1 Introduction

Auto Regressive Moving Average (ARMA) models are a cornerstone of time series analysis,
see a.o. Harvey (1981), and are commonly used in applied work. They do however possess

some well known problems. Maybe the best known problem is the problem of root can-
cellation, i.e. the autoregressive polynomial and the moving average polynomial have one

or more roots in common. If root cancellation occurs, some AR and MA parameters are
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redundant as they do not a�ect the model. These parameters are said to be locally non-

identi�ed. The problem of local nonidenti�cation is common to many models in statistics

and econometrics, see for example the Simultaneous Equation Model which is discussed

in a.o. Phillips (1989). In the ARMA model, the local nonidenti�cation problem implies

certain conditionalization rules on the parameters. More speci�cally, hyper parameters can

be constructed which, when restricted to zero, represent the presence of common factors.

Therefore, ARMA parameters should be analyzed conditional on these hyper parameters.

The focus of the paper is on the conditional identi�cation of ARMA parameters and its

consequences for priors and posteriors in a Bayesian analysis. In this respect our approach

di�ers from earlier Bayesian analysis of ARMA models like in, e.g., Chib and Greenberg

(1994), Monahan (1983) and Zellner (1971). Note that in a classical statistical setting

the conditional identi�cation problem is, although important, less of a problem than in a

Bayesian analysis. This results from the fact that a classical researcher is mainly interested

in a single point of the parameter space (e.g. the maximum likelihood estimate), while

a Bayesian researcher analyzes the complete parameter space and is therefore confronted

with all parameter values for which the identi�cation problem occurs.
The paper is organized as follows. In section 2 the conditional identi�cation of ARMA

parameters is discussed. In section 3 we show that ignoring the identi�cation problem may

result in ill-behaved posterior densities. To overcome this problem priors are suggested
which recognize that the ARMA parameters should be analyzed conditional on being iden-
ti�ed, as represented by certain hyper parameters. A class of priors, which possess this

property, leads to di�use priors for the parameters of the implicit AR(1) representation
of the ARMA model. In order to analyze the ARMA model using these priors both Impor-

tance Sampling as well as Gibbs/Metropolis algorithms are developed in section 4. These
sampling algorithms also yield posteriors of the hyper parameters which represent possible
identi�cation problems. A posterior odds ratio is proposed to compare di�erent (parsimo-

nious) ARMA models which have an equal number of parameters. Note that due to the
identi�cation problem, a general to speci�c modelling approach is not applicable. Section

5 contains an application of the developed procedures to two data sets, i.e. the extended
Nelson-Plosser data and a data set consisting of monthly observations of U.S. 3-month and
10-year interest rates. For almost 50% of the series under consideration an ARMA model

is favored above a pure AR model. In particular for price and interest rate series, there is

strong evidence in favor of the ARMA model. Finally, section 6 summarizes and concludes.

2 Conditional Identi�cation in ARMA Models

The problem of root cancellation (or common factors) is well known in the analysis of

ARMA models, see, e.g., Harvey (1981). Root cancellation leads to simpli�cation of the

ARMA model and to local nonidenti�cation of redundant AR and MA parameters. To

show this phenomenon, consider the \simplest" ARMA model, the ARMA(1; 1) model,

(1� �L)yt = (1� �L)"t; (1)
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where L is the lag-operator, Ljyt = yt�j and "t is independently and identically distributed

according to a Normal distribution with mean zero and variance �2, "t i.i.d. N(0; �2); t =

1; : : : ; T . By considering the implicit AR(1) and MA(1) representations of this model,

AR(1) : yt =
t+1X
i=1

�i�1(�� �)yt�i + "t , (1� �L)(yt � "t) = �yt�1 (2)

MA(1) : yt =
t+1X
i=1

�i�1(�� �)yt�i + "t , (1� �L)(yt � "t) = �"t; (3)

where � = ���, local nonidenti�cation can easily be recognized. In particular, depending

on the speci�cation used, � or � are nonidenti�ed when � = 0, as in this case the model

reduces to yt = "t independently of the value of either � or �. As a result, the likelihood

function is 
at and nonzero in the direction of � or � for zero values of �. Use of a 
at prior

in a Bayesian analysis of the ARMA(1; 1) model, such that the posterior is proportional

to the likelihood, therefore results in a 
at and nonzero conditional posterior of � (or �)
at � = 0. Consequently, the integral over this conditional posterior, and therefore also

the marginal posterior of �, is in�nite at � = 0. So, the use of 
at priors leads to an a

posteriori favor for values of the ARMA parameters at which the local nonidenti�cation
problem occurs, which is neither a result of information from the prior nor from the data,

but is a result of a model inadequacy. Similar arguments are used in Kleibergen and Van
Dijk (1994a) and Kleibergen and Van Dijk (1994b) where similar phenomena are analyzed
for cointegration and Simultaneous Equations Models. In section 4.3, the consequences of

the use of a di�use prior on the posterior of the parameters of an ARMA(1,1) model are
illustrated. These posteriors are also compared with the posteriors using the priors derived

in the following sections.
The parameter � or � is locally nonidenti�ed when � = 0. The parameter � is however

identi�ed for all possible values of either � or �. As a consequence, � or � should be

analyzed conditional on � and not vice versa. We explicitly focus on this point as it is
important in the construction of Markov Chain Monte Carlo (MCMC) procedures in order

to calculate the marginal posteriors. For example, the MCMC approach developed in Chib
and Greenberg (1994) su�ers from the local nonidenti�cation problem. In this algorithm,
the conditional posteriors P (�j�; : : :) and P (�j�; : : :) are used in a Gibbs sampling frame-

work. As noted in the concluding remarks of Chib and Greenberg (1994), convergence of

sample values fails if common factors or nearly common factors are present. As discussed
above, the natural way of conditioning in an ARMA(1; 1) model is to analyze � or � condi-

tional on �. Consequently, the Gibbs sampler using the conditional posteriors P (�j�; : : :)
and P (�j�; : : :) can lead to a reducible Markov Chain as the points of local nonidenti�ca-

tion, � = �, can form an absorbing state in the Markov Chain. Reducibility of the Markov

Chain in Chib and Greenberg (1994) is avoided by the use of independent informative (Nor-
mal) priors for the ARMA parameters. Also a priori restricting the parameter space, for

example to ensure stationarity and invertibility, avoids reducibility of the Markov Chain.

However, in both cases convergence is still a�ected by the local nonidenti�cation problem.
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To show the local identi�cation problem in the general ARMA(p; q) model,

�(L)yt = �(L)"t ,
(1� �1L� : : :� �pL

p)yt = (1� �1 � : : :� �qL
q)"t; (4)

we again consider the AR(1) representation1 of this model

yt =
t+p+qX
i=1

ciyt�i + "t: (5)

The coe�cients of the AR(1) representation are given by the following set of relations

c0 = 1 (6)

c1 = �1 � �1 (7)

ck =
min(k;q)X
i=1

�ick�i + �k; k > 1; (8)

where �k = 0; k > p and �k = 0; k > q, see, e.g., Fuller (1976). If there is no MA
component, �i = 0; 8i, such that ck = �k; k � p and ck = 0; k > p. As a consequence,

we can use the coe�cients ck; k > p in order to perform inference on the MA parameters.
In particular, it follows from (8) that the parameters ck; k > p + q are functions of the
c0ks; k � p + q only, such that inference on the p + q parameters �1; : : : ; �k; �1; : : : ; �q
can be based on c1; : : : ; cp+q solely. The relation between these parameters is given by the
following matrix equation, which follows from the set of equations in (7) and (8),

C# = c; (9)

where # = (�1; : : : ; �p; �1; : : : ; �q)
0; c = (c1; : : : ; cp+q)

0,

C =

 
Ip C12

0q�p C22

!
(10)

with Ip the identity matrix of dimension p,

C12 =

0
BBBBBBB@

1 0 0 : : : 0
c1 1 0 : : : 0

c2 c1 1
...

...
...

...
...

...
...

cp�1 cp�2 cp�3 : : : 1

1
CCCCCCCA
; (11)

and

C22 =

0
BBBB@

cp cp�1 : : : cp�q+1

cp+1 cp : : : cp�q+2

...
...

...
...

cp+q�1 cp+q�2 : : : cp;

1
CCCCA (12)

1Equivalently, the MA(1) representation can be considered
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where c0 = 1 and ck = 0; k < 0. From this relation it follows

0
BBBB@
�1

�2

...

�q

1
CCCCA = C�1

22

0
BBBB@
cp+1

cp+2

...

cp+q

1
CCCCA (13)

and 0
BBBB@
�1
�2
...

�p

1
CCCCA =

0
BBBB@
c1
c2
...

cp

1
CCCCA� C12

0
BBBB@
�1

�2

...

�q

1
CCCCA : (14)

Note that if C22 doesnot have full rank, � and consequently � cannot be determined

uniquely. This is a generalization of the local identi�cation problem in the ARMA(1; 1)

model. In order to test rank reduction of C22, Galbraith and Zinde-Walsh (1995) propose
a Wald test to test the hypothesis H0 : jC22j = 0. In our Bayesian approach, we examine

the rank of C22 using the following LU decomposition [see also Kleibergen and Van Dijk
(1994a) and Kleibergen and Van Dijk (1994b)]

C22 =

0
BBBBBBB@

�11 0 0 : : : 0
�21 �22 0 : : : 0

�31 �32 �33 : : : 0
...

...
...

...
...

�q1 �q2 �q3 : : : �qq

1
CCCCCCCA

0
BBBBBBB@

1  12  13 : : :  1q

0 1  23 : : :  2q

0 0 1 : : :  3q

...
...

...
...

...
0 0 0 : : : 1

1
CCCCCCCA
: (15)

The rank of C22 is now given by the number of nonzero diagonal elements �ii; i = 1; : : : ; q.

Note that the number of zero �iis only gives an indication of the number of common roots,
and not of the required lag length of the individual AR or MA component. For example,

if an ARMA(1; 1) is used to estimate an AR(1) model, �11 = � 6= 0, although the MA
component is redundant.

In a Bayesian analysis of the ARMA(p; q) model, the use of di�use priors again re-

sults in a posteriori favor for parameter values at which the local nonidenti�cation occurs.
Therefore, in the next sections we propose to change the base of the analysis from the

ARMA(p; q) model to the (truncated) AR(1) representation, in which all parameters are

identi�ed. Parameters are simulated from the AR(1) representation and transformed to
ARMA parameters. In this way, we work from the outset with a model with properly iden-

ti�ed parameters such that no a posteriori favor for `nonidenti�ed' parameter combinations
will result.

Finally, note that the autocorrelations of noninvertible MA models, i.e. models with one

or more roots of the MA polynomial which lie within the unit circle, cannot be distinguished
from the autocorrelations of invertible MA models. Consequently, MA parameters have to

be restricted to `invertible' parameter values, to be identi�able from the autocorrelations.

Invertible and noninvertible MA polynomials with identical autocorrelations however lead
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to di�erent values of the conditional likelihood function (given the �rst p+q observations).

As a result, they can be identi�ed from the likelihood. As we de�ne identi�cation from a

likelihood perspective, see also Kadane (1993), we allow for noninvertible MA parameters

such that the MA and AR parameters range from �1 to 1.

3 Priors for ARMA models

In the previous section it has been shown that ARMA parameters are identi�ed conditional

on nonzero values of speci�c (hyper) parameters. This conditionalization rule needs to be

re
ected in the priors. In particular, in the ARMA(p; q) model a prior for � should be

speci�ed conditional on C22 (or, equivalently, on the �ii parameters). This is satis�ed

by considering di�use priors for the parameters of the truncated AR(1) representation.

These di�use priors imply informative priors on the ARMA(p; q) which re
ect the local

nonidenti�cation problem. In the next paragraphs we discuss prior speci�cation in ARMA
models, both without as well as with explanatory variables.

ARMA models without explanatory variables

First, consider the ARMA(p; q) model without explanatory variables. The AR(1) repre-
sentation of this model is given by

yt =
t+p+qX
i=1

ciyt�i + "t; t = 1; : : : ; T; (16)

where cp+q+i; i > 0 is a function of c1; : : : ; cp+q,

cp+q+i = (cp+1; : : : ; cp+q)C
�1
22

0
BBBB@
cp+q+i�1

cp+q+i�2

...

cp+i

1
CCCCA (17)

and C22 has been de�ned in (12). The parameters c1; : : : ; cp+q are always identi�ed in this
model, such that di�use priors for these parameters can be considered

p(c1; : : : ; cp+q; �
2) / ��(p+q+2) (18)

The implicit prior on the AR and MA parameters is now given by

�(�1; : : : ; �p; �1; : : : ; �q; �
2) / ��(p+q+2)

����� @(c1; : : : ; cp+q)

@(�1; : : : ; �p; �1; : : : ; �q)

�����
= ��(p+q+2)jC22j = ��(p+q+2)

qY
i=1

j�iij; (19)
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where �ii; i = 1; : : : ; q is de�ned in (15). This shows that a di�use prior on the implicit

AR(1) parameters results in a prior for the ARMA parameters (�1; : : : ; �p; �1; : : : ; �q)

conditional on the identifying parameters �ii; i = 1; : : : ; q. Note that this prior can also

be derived using likelihood based arguments and therefore belongs to the class of Je�reys'

priors. These class of priors leads to posteriors which are invariant to parameter trans-

formations. Also note that the prior in (19) penalizes parameter values for which the

identi�cation problem occurs. A di�use prior on the ARMA parameters implies a highly

informative prior on the parameters of the (truncated) AR(1) speci�cation, which are

properly identi�ed, and therefore leads to pathological posterior behavior.

Under the assumption of normally distributed disturbances "t, with mean 0 and variance

�2, the posterior, which is proportional to the product of the prior and the likelihood

function, is given by

p(�; �; �2jy) / ��(T+p+q+2) exp

�
�

1

2�2
~y(�; �)0~y(�; �)

� qY
i=1

j�iij; (20)

where � = (�1; : : : ; �p)
0, � = (�1; : : : ; �q)

0, and ~y(�; �) = (~y1; : : : ; ~yT )
0, where ~yt = c(L)yt

and c(L) = �(L)�1�(L). Integrating with respect to �2 this posterior becomes

p(�; �jy) / [~y(�; �)0~y(�; �)]
�
1

2
(T+p+q)

qY
i=1

j�iij: (21)

ARMA models with explanatory variabels

Additional explanatory variables can be incorporated in di�erent ways. In general, the

ARMA(p; q) model with explanatory variables becomes

�(L)yt = �(L)x0t� + �(L)"t; (22)

where �(L) depends on �(L) and �(L) and xt is a k � 1 vector of explanatory variables.

Common choices for �(L) are �(L) := �(L), i.e. linear regression with ARMA(p; q) errors,
and �(L) := �(L), i.e. the explanatory variables are not incorporated in the ARMA

polynomial. If the MA polynomial is invertible, and the explanatory variables satisfy
xt = Axt�1; A : k � k, which holds for deterministic components like constant terms and
trends, the marginal posterior of the ARMA parameters is not a�ected by the choice of

�(L). The location parameter vector � needs to be analyzed conditional on the ARMA
parameters, resulting in the following Je�reys' type prior

p(�j�; �; �2) / ��k
��� ~X(�; �)0 ~X(�; �)

��� 12 ; (23)

where ~X(�; �) is a T �k matrix with tth rows given by ~xt
0 = �(L)�1�(L)x0t. Note that this

prior is di�use if �(L) = �(L). The prior in (23) results in a Normal conditional posterior

of �,

p(�j�; �; �2; y; X) / ��k
��� ~X(�; �)0 ~X(�; �)

���
exp

�
�

1

2�2
(� � �̂)0

�
~X(�; �)0 ~X(�; �)

�
(� � �̂)

�
; (24)
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where

�̂ =
�
~X(�; �)0 ~X(�; �)

�
�1

~X(�; �)0~y(�; �); (25)

where ~y is de�ned below (21). Marginalizing with respect to � is straightforward and

results in

p(�; �; �2jy;X) / ��(T+p+q+2) exp

�
�

1

2�2
~y(�; �)0M ~X(�;�)~y(�; �)

� qY
i=1

j�iij; (26)

where MZ = I �Z(Z 0Z)�1Z 0. Integration over �2 using proporties of the inverted gamma

distribution leads to the marginal posterior of the ARMA parameters

p(�; �jy;X) /
h
~y(�; �)0M ~X(�;�)~y(�; �)

i
�
1

2
(T+p+q)

qY
i=1

j�iij: (27)

The marginal posteriors in (21) and (27) do not belong to a known class of probability

density functions. Therefore, no analytical expressions for the posterior moments exists. In
the next section Monte Carlo simulation procedures are constructed for the calculation of

posterior moments. Also, posterior odds ratios to compare lag lengths of di�erent ARMA
polynomials are constructed.

4 Numerical Analysis of ARMA models

Monte Carlo simulationmethods can be used to compute posterior moments of the marginal
posteriors de�ned in (21) and (27). In Chib and Greenberg (1994) the marginal posteriors
of the ARMA parameters are calculated using Gibbs Sampling. As discussed in section 2,

the use of di�use priors can lead to a reducible Markov Chain in the Gibbs Sampling
algoritm because the local nonidenti�cation problem is ignored. In this paper, we propose

both an Importance Sampling [see, e.g., Kloek and Van Dijk (1978) and Geweke (1989a)]
and a Metropolis-Hastings [see, e.g., Metropolis, Rosenbluth, Rosenbluth, Teller and Teller
(1953) and Hastings (1970)] sampling procedure.

4.1 Importance Sampling

In order to construct an Importance sampling scheme we again exploit the AR(1) repre-

sentation of the ARMA(p; q) model. In particular, the importance function is chosen as

a (p + q) dimensional multivariate t density based on the (least squares) estimate of an
AR(p+ q) model. The sampling scheme is given by

Importance Sampling Scheme for ARMA parameters

1. Choose the degrees of freedom of the Importance function, �, the number of drawings,
N and set i = 1.
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2. Consider two cases, depending on the way the explanatory variables enter the anal-

ysis. First, assume �(L) = �(L). Next, estimate the model

yt = c1yt�1 + : : :+ cp+qyt�p�q + x0t� + ut; (28)

to obtain ĉ and cov(ĉ). Second, assume �(L) = �(L). An estimate of c is now

obtained in two steps. First, we estimate

yt = x0t� + ut; (29)

construct the LS residuals ût, and estimate c from

ût = c1ût�1 + : : :+ cp+qût�p�q + �t: (30)

3. Generate ci; i = 1; : : : ; p+ q, from q(c) = [�+ (c� ĉ)0(cov(ĉ))�1(c� ĉ)]
�
1

2
(�+p+q)

.

4. Solve for � and � using (9).

5. Contruct weight: wi(�; �) =
[~y(�;�)0M ~X(�;�)

~y(�;�)]
�

1

2
(T+p+q)

[�+(c�ĉ)0(cov(ĉ))�1(c�ĉ)]�
1

2
(�+p+q)

.

6. Set i = i + 1, and if i < N go to step 3.

7. Compute E(g(�; �)) =

NP
i=1

wi(�;�)g(�;�)

NP
i=1

wi(�;�)

.

8. To improve numerical accuracy, update ĉ and cov(ĉ) by considering g(�; �) = c, set

i = 1 and go to step 3.

Note that the prior on �; �, given in (19), doesnot explicitly appear in the importance
weight as this prior is implicitly taken into account by the Jacobian of the transformation
from the AR to the ARMA parameters. Alternatively, the importance weight may be

interpreted as the ratio of the posterior of the AR(1) model and the posterior of the

AR(p + q) model. A similar prior has been assumed in both models, i.e. a 
at prior on

the parameters c1; : : : ; cp+q. Note that sampling of � and �2 is straightforward using the

conditional densities in (24) and (26). Given values of � and � we sample �2 and � from
these conditional densities, and attach the same importance weight to these drawings as

to � and �.
In step 4 of the algorithm the matrix C22 is needed. As a byproduct, this enables us

to compute the diagonal elements of the lower diagonal matrix in (15), �ii; i = 1; : : : ; q.

These parameters show the identi�ability of the MA parameters. In particular, if one of the
�iis is close to zero the matrix C22 is nearly singular and the constructed MA parameters,
� = C�1

22 (cp+1; : : : ; cp+q)
0 may be very large. In this case we expect that the posterior

densities of the � parameters are fat-tailed. Note that if the model is overspeci�ed, i.e. p
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and/or q are chosen too large, this is likely to be the case. It is therefore di�cult to perform

a general to speci�c approach in the analysis of ARMA models. In the next paragraph

we propose a posterior odds approach to compare (parsimonious) ARMA models with the

same total number of parameters, i.e. p+ q is constant. Since these models are not nested

in each other, a comparison using classical statistical analysis is di�cult.

Posterior Odds

The �ii parameters combined with the AR and MA parameters, � and �, enable inference on

the order of the AR and MA polynomials. However, it must be noted that an AR(k) model

is able to explain the �rst k autocorrelations of any ARMA(p; q) model with p+q = k. It is

therefore di�cult to distinguish between, for example, an ARMA(2; 1) and an ARMA(1; 2)

model, also because these models are not nested. Below we develop a posterior odds ratio

in order to be able to compare these models. We assume that the exogenous variables enter

both models in the same way. Also, we assume identical priors, prior odds and parameter

regions for the implicit AR parameters, c1; : : : ; cp+q, such that the posterior odds ratio is
not dependent on the choice of the prior. The posterior odds ratio is given by

POR(H1jH2) =

R
p(cjy;H1)dcR
p(cjy;H2)dc

; (31)

where c = c1; : : : ; cp+q and H1 and H2 represent two di�erent ARMA models with the
same number of parameters, i.e. pH1 + qH1 = pH2 + qH2 . By comparing parsimonious
models, for which all parameters are expected to be di�erent from 0, the di�culties of

the general to speci�c modelling approach can be avoided. For example, we compare
ARMA(2; 1), ARMA(1; 2), AR(3) and MA(3) models with each order, as these models

are equally capable in explaining the �rst three autocovariances but di�er for higher order
autocovariances. A general to speci�c approach would start with an ARMA(3; 3) model,
in which it is particularly hard to identify the MA parameters as the AR parameters can

explain part of the (short run) behavior resulting from a MA polynomial.
The posterior odds ratio in (31) can be calculated using Importance Sampling, see

Geweke (1989b). The posterior odds ratio equals the ratio of marginal likelihoods under
both models. In Geweke (1989a) it is shown that

p
N

 
1

N

NX
i=1

wi(�; �)�
R
p(cjy)dcR
q(c)dc

!
) N(0; !); (32)

where p(�) is the (unnormalized) posterior, q(�) is the importance density, ) indicates
weak convergence, and ! = E((w(#) � E(w(#)))2), which can be estimated by ! �
1
N

PN
i=1wi(�; �)

2� ( 1
n

PN
i=1wi(�; �))

2. Equation (32) can be used to estimate the marginal

likelihood Z
p(cjy)dc �

�Z
q(c)dc

�
�
 
1

N

NX
i=1

wi(�; �)

!
(33)
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Note that sofar we represented the posterior by its kernel, without the normalizing con-

stants. In the construction of the posterior odds ratio however we need to include these

normalizing constants. Doing this, the posterior odds ratio is approximated by

POR(H1jH2) �
1
N1

N1P
i=1

wi(�; �;H1)�(
1
2
(�2 + p + q))�(1

2
�1)�

1

2
�2

2

1
N2

N2P
i=1

wi(�; �;H1)�(
1
2
(�1 + p + q))�(1

2
�2)�

1

2
�1

1

 
jcov(ĉ1)j
jcov(ĉ2)j

!1

2

(34)

where wi(�; �;Hj) are the weights for model j, Nj is the number of Importance Sampling

drawings from model j, �j is the degrees of freedom of the Importance function used for

model j and cov(ĉj) is the covariance matrix of the Importance functions used for model

j. If �1 = �2 the weight ratio approximating the posterior odds ratio simpli�es to,

POR(H1jH2) �
1
N1

N1P
i=1

wi(�; �;H1)

1
N2

N2P
i=1

wi(�; �;H2)

 
jcov(ĉ1)j
jcov(ĉ2)j

! 1

2

(35)

Further simpli�cations are possible if one of the models is an AR model, in which case the
corresponding integral can be evaluated analytically. In section 5 we apply the posterior

odds ratio approach to compare di�erent ARMA models for the extended Nelson-Plosser
data, see Schotman and Van Dijk (1993), and for monthly observations of 3-month and 10
year US interest rates.

4.2 Metropolis-Hastings Sampling

Instead of Importance Sampling, we could also use the Gibbs sampler in combination

with the Metropolis-Hastings (MH) algorithm, see, e.g. Chib and Greenberg (1995). We
consider the general model

�(L)yt = �(L)x0t� + �(L)"t (36)

and de�ne ~y(�; �) = �(L)�1�(L)y and ~X(�; �) = �(L)�1�(L). The Gibbs/Metropolis
sampling algorithm can now be set up as follows

Gibbs/Metropolis Sampling Scheme for ARMA parameters

1. Choose starting values �0; �0; �0; �0, the number of iteration, N , and set i = 1. Note

that also c0 := c01; : : : ; c
0
p+q is implicitly chosen.

2. Given � and �, the model is linear in �,

~y(�; �) = ~X(�; �)� + "; (37)

where " = ("1; : : : ; "T )
0, "t i.i.d. N(0; �2), such that �i can be generated from a

Normal distribution with mean �̂ and variance matrix cov(�̂), which are computed

by Least Squares regression of (37).
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3. Again, consider two cases, depending on the way the explanatory variables enter the

analysis. First, assume �(L) = �(L). Next, estimate the model

yt � x0t�
i = c1yt�1 + : : :+ cp+qyt�p�q + ut; (38)

to obtain ĉ and cov(ĉ). Second, assume �(L) = �(L). Construct ut = yt � x0t� and

estimate c and cov(ĉ) from

ut = c1ut�1 + : : :+ cp+qut�p�q + �t: (39)

4. The probing density in the MH step is given by N(ĉ; cov(ĉ)). Generate a candi-

date cnew from this density, transform cnew to �new and �new, and apply the following

acceptance probability

 =
w(�new; �new; cnew)

w(�i�1; �i�1; ci�1)
(40)

where

w(�; �; c) =
L(�; �jy; �; �2)
N(cjĉ; V̂ĉ)

(41)

where L(�) is the likelihood of the ARMA model,2

L(�; �jy; �; �2) /
TY
t=1

exp

 
�
"2t
2�2

!
; (42)

with "t := �(L)�1(�(L)yt � �(L)x0t�). Note that the MH acceptance probability can
be interpreted as the ratio of the importance weight in the model with given � and

�. Next, with probability  we set (�i; �i; ci) = (�new; �new; cnew) and with probability
(1�  ) (�i; �i; ci) = (�i�1; �i�1; ci�1).

5. Conditional on �; � and �, �2 has an inverted Gamma distribution. Generate �2

from this distribution.

6. If i < N set i = i+ 1 and go to step 2.

Note again that the identifying parameters �ii are obtained as a byproduct in step 3, such
that also the posterior for these parameters can be obtained from the Gibbs sampler.

4.3 An Example

To illustrate the consequences of speci�c priors on either the ARMA parameters or the im-

plied AR parameters, we compare the posteriors of the ARMA parameters for an arti�cial
time series. This series is generated from an ARMA(1; 1) model, see (1), with parameters

� = 0:6; � = 0:4; �2 = 0:005; T = 200. Note that the identifying parameter � = � � �

2Note that again the prior is implicitly taken acount of by the Jacobian of the transformation.
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prior n parameter � � �

di�use on (�; �) 0:32
0:49

0:19
0:49

0:12
0:068

di�use on (c1; c2) 0:38
0:37

0:22
0:36

0:16
0:062

Table 1: Posterior moments ARMA(1; 1) parameters arti�cial time series

equals 0:2. We calculated the posteriors of the parameters of an ARMA(1,1) model both

using a di�use prior on (�; �) and a di�use prior on (c1; c2). For the di�use prior on

(�; �) (p(�; �) / ��4), the posteriors are calculated using the analytical expression of the

bivariate posterior of (�; �), which is proportional to the conditional likelihood. For the

di�use prior on (c1; c2) (p(c1; c2) / ��4 ) p(�; �) / ��4j���j), the Importance Sampling
Algorithm from section 4.1 is used.

Figures 1 to 7 contain the marginal posteriors of the parameters of an ARMA(1,1)
model for the arti�cially generated time series. Table 1 contains the posterior means and
standard deviations of the di�erent parameters. The bivariate posterior of � and � and its

contourlines are shown in �gures 1 and 2 (di�use prior on (�; �)) and 3 and 4 (di�use prior
on (c1; c2)). The bivariate posterior and its contourlines show that the bivariate posterior

using the di�use prior on (�; �) is constant in the direction of � around � = 0. The
posterior using the di�use prior has much more probability mass at � = 0 compared to the
posterior using a di�use prior on (c1; c2). The marginal posteriors of � shown in �gure 5

con�rm this as the marginal posterior using the di�use prior on (�; �) has a secondary
mode at � = 0 such that this posterior has more probability mass at � = 0. Theoretically

the value at � = 0 of this posterior is in�nite as we have integrated over a parameter, �,
which does not in
uence the nonzero joint posterior of (�; �) at � = 0. We have chosen
a �nite parameter region of �; (�1:3; 1:3), however, such that the posterior in �gure 5 is

�nite at � = 0 as the integral of a constant function over a �nite region is �nite. Note the
direct linkage between the size of the parameter region and the posterior value at � = 0.
As a consequence, the use of a di�use prior on (�; �) results in an implicit favor for � = 0.

The larger probability mass at � = 0 is also re
ected in the marginal posterior of � and
�, shown in �gures 6 and 7. For both �gures, it holds that the marginal posterior using

the di�use prior on (�; �) has much fatter tails and also shows some irregularities at the

boundary of the stationary (invertible) parameter region, see also DeJong and Whiteman
(1993) and Sargan and Bhargava (1983). The posteriors using the di�use prior on (c1; c2)

have a more regular behavior.

5 Empirical Application

To show the applicability of the derived theory and simulation procedures, we applied
them to two data sets. First, we consider the extended Nelson-Plosser data. This data set

consists of yearly observations of 14 macroeconomic variables. The original sample period
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Figure 1: Bivariate posterior (�; �), arti�cial time series, di�use prior on (�; �). sample

Figure 2: Contourlines bivariate posterior (�; �), arti�cial time series, di�use prior on
(�; �). sample
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Figure 3: Bivariate posterior (�; �), arti�cial time series, di�use prior on (c1; c2). sample

Figure 4: Contourlines bivariate posterior (�; �), arti�cial time series, di�use prior on

(c1; c2). sample
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Figure 5: Marginal posterior of �, arti�cial time series, p(�; �) / 1: - -, p(c1; c2) / 1: |.

sample

Figure 6: Marginal posterior of �, arti�cial time series, p(�; �) / 1: - -, p(c1; c2) / 1: |.

sample
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Figure 7: Marginal posterior of �, arti�cial time series, p(�; �) / 1: - -, p(c1; c2) / 1: |.
sample

ended in 1970 (see Nelson and Plosser (1982)), but the sample period has been extended

to 1988 (see Schotman and Van Dijk (1993)). The second data set consists of monthly
observations from January 1957 to April 1989 of the U.S. three month treasury bill rate

and of interest rates having a maturity of ten years. We start by analysing the �rst data
set.

We model the (extended) Nelson-Plosser series using ARMA models with three ARMA

parameters (p + q = 3). Following previous analysis of these series a constant term and a
trend variable are included in the model,

�(L)(yt � �� 
t) = �(L)"t; (43)

where �(L) = 1 � �1L � : : : � �pL
p, �(L) = 1 � �1L � : : : � �qL

q, "t � N(0; �2). Note
that the marginal posteriors of the ARMA parameters are not a�ected by the speci�cation

of the dynamic structure for the exogenous variables, as discussed in section 3. By con-
sidering a di�use prior on the �rst three parameters on the AR(1) representation of the

model, we constructed the posterior odds ratios using the average weights resulting from

the Importance Sampling Algorithm, as discussed in the previous section. The Impor-
tance Sampling Algorithm converges very fast and because of the good approximation of

the posterior by the Importance function, the Importance function could even be used for
direct acceptance-rejection sampling from the posterior. We performed this exercise for all

ARMA models containing three ARMA parameters. Posterior odds ratios are calculated

for ARMA(3,0) [=AR(3)], ARMA(2,1), ARMA(1,2) and ARMA(0,3) [=MA(3)] models.
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Series n ARMA order 3,0/2,1 3,0/1,2 0,3/3,0 2,1/1,2 0,3/2,1 0,3/1,2

Real GNP 0.969 1.082 0.003 1.117 0.003 0.003

Nominal GNP 1.019 1.422 0.000 1.395 0.000 0.000

GNP Capita 0.975 1.091 0.005 1.119 0.005 0.005

Indus. Prod. 0.638 0.842 0.000 1.320 0.000 0.000

Employment 0.549 0.844 0.000 1.537 0.000 0.000

Unemploy. 0.069 0.166 0.420 2.418 0.029 0.070

GNP Def. 1.682 6.821 0.000 4.055 0.000 0.000

Cons. Price Ind. 0.219 0.638 0.000 2.915 0.000 0.000

Wages 0.852 1.338 0.000 1.570 0.000 0.000
Real Wages 0.795 0.951 0.000 1.197 0.000 0.000

Money 0.923 14.73 0.000 15.96 0.000 0.000

Velocity 1.020 1.005 0.000 0.985 0.000 0.000

Interest 0.301 0.340 0.000 1.127 0.000 0.000

S&P 500 0.694 0.846 0.000 1.220 0.000 0.000

Table 2: Posterior Odds Ratios Extended Nelson-Plosser series

The resulting posterior odds ratios are listed in table 2. We also approximated the poste-
rior odds ratios using the Schwarz (Bayesian) Information Criterium (BIC), see Schwarz

(1978), POR(H1; H2) � exp[1
2
(BIC(H2) � BIC(H1))]; of which we obtained estimates

from MICROTSP. For the series for which MICROTSP was capable to give reasonably

precise parameter estimates, the posterior odds ratios from both procedures are close to
one another. For the nonprecise estimates, the posterior odds ratios were rather di�erent
as the posterior odds ratios resulting from the BIC's are inprecise. The numerical errors

for the posterior odds ratios resulting from the Importance Sampling are also in these
cases very small such that we prefer this latter procedure for calculating the posterior odds
ratios.

The Posterior Odds Ratios from table 2 are quite surprising as for most of the series,
an ARMA(2,1) model is preferred above an AR(3) model. A possible explanation for this

phenomenon could be that many series consist of time averages which introduces MA errors
in the series. For some series, the ARMA(2,1) model is clearly preferred above an AR(3)

model given the value of the posterior odds ratios. This holds for example for Industrial

Production, Employment, Unemployment, Consumer Price Index, Interest and the Stan-

dard and Poor 500. For other series the posterior odds ratios indicate that both models

are more or less equally likely. The ARMA(2,1) model can also be approximated by a

high order AR model but an important di�erence between AR and MA components lies in

their consequences for the long run behavior of the series. In particular, MA components

have autocorrelations which abruptly die out while the autocorrelations of AR components

decrease exponentially. So, it is interesting to investigate the in
uence of the MA parame-
ters on the parameters re
ecting the long run behavior of the analyzed series, like the unit

root parameter,
Pp

i=1 �i. We perform such an analysis and the results are listed in table

3, which contains the posterior means and standard deviations (given below the means) of
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series n ARMA par. �1 �2 �3 �1 �11 � =
Pp

i=1 �i
Real GNP 1:18

0:23
�0:37
0:21

�0:07
0:22

0:46
0:15

0:81
0:062

Nominal GNP 1:45
0:12

�0:57
0:20

0:063
0:12

0:94
0:032

GNP Capita 1:17
0:24

�0:37
0:21

�0:062
0:23

0:45
0:14

0:80
0:06

Ind. Prod. 0:69
0:32

0:075
0:27

�0:29
0:30

0:21
0:10

0:77
0:08

Employment 0:97
0:22

�0:14
0:21

�0:33
0:21

0:57
0:16

0:82
0:061

Unemploy. 0:41
0:18

0:15
0:16

�0:66
0:16

0:55
0:14

0:56
0:10

GNP Def. 1:43
0:11

�0:38
0:18

�0:09
0:11

0:97
0:02

Cons. Price Ind. 1:36
0:12

�0:38
0:12

�0:47
0:12

1:24
0:18

0:99
0:015

Wages 1:27
0:20

�0:35
0:19

�0:23
0:19

0:70
0:18

0:93
0:035

Real Wages 0:93
0:34

�0:018
0:33

�0:30
0:30

0:38
0:14

0:91
0:056

Money 1:50
0:14

�0:56
0:14

�0:19
0:16

0:89
0:20

0:93
0:027

Velocity 1:09
0:094

�0:15
0:14

0:026
0:093

0:97
0:025

Interest 0:72
0:22

0:20
0:21

�0:54
0:19

0:47
0:16

0:92
0:052

S&P 500 0:80
0:22

0:094
0:21

�0:42
0:20

0:42
0:13

0:89
0:05

Table 3: Posterior Moments ARMA parameters Nelson-Plosser series

the ARMA model that is preferred by the posterior odds ratios from table 2. Note that a
MA(3) model is implausible for all series since this model leads to a very restricted type

of long run behavior of the analyzed series.
For all series, except the Consumer Price Index (CPI), the MA parameter, �1, has a

positive correlation with the unit root parameter. The posterior mean of the unit root
parameter of the ARMA(2,1) is, therefore, for all series, except CPI, smaller than the
posterior mean of the unit root parameter of the AR(3) model. Depending on the size of

the MA parameter, this decrease of the MA parameter can be quite large and it is most
pronounced for the unemployment series. For this series, the unit root parameter decreases

from 0.74 to 0.56. For the other series, which contain signi�cant MA components, the

decrease is also relatively large: Industrial Production (0.06), Employment (0.05), Interest
(0.03), S&P 500 (0.04). Also, for all series the posterior standard deviations increase

slightly from AR(3) to ARMA(2,1). It is typical that the series which vary a lot, like CPI
and Interest, contain large MA components. When combined with an AR component,

these MA components can explain the long run memory in the �rst di�erences of these

series, like in
ation.
The parameter �11; see equation (15) for an interpretation of this parameter, shows

that for the series for which an ARMA(2,1) model is preferred, the MA parameter, �1,
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is identi�ed as the posterior mean of �11 does not lie relatively close to 0. Exceptions

are the series of Industrial Production and Velocity. For the velocity series, an AR(3)

model is preferred. For Industrial Production, there is some posterior probability for zero

values of �11 leading to fat tailed behavior of the posteriors. This behavior disappears

when we consider an ARMA(1; 1) model, which is sensible since the posterior mean of �2
lies close to 0. In the resulting ARMA(1,1), �1 is properly identi�ed, see table 5. If the

posteriors of an ARMA(2; 1) model for velocity are calculated, the posterior of �11 has a

considerable amount of probability mass close to zero leading to fat tailed posteriors for

the other parameters. This also indicates that an ARMA(2,1) is not the appropriate model

for velocity, which can also be concluded from the posterior odds ratios from table 2.

Since for many series contained in table 2, the posterior means indicate that either �2
or/and �1 lies close to zero, we calculated the posterior odds ratios of an AR(2) model

compared to an ARMA(1; 1) model for these series. The resulting posterior odds ratios

are listed in table 4.

series n odds 2,0/1,1

Real GNP 5.212

Nominal GNP 3.105

Indus. Prod. 0.770
Employ. 0.741

Wages 3.819
Real Wages 0.942

Money 671.3
S&P 500 0.306

Table 4: Posterior Odds for AR(2) vs. ARMA(1,1) Nelson-Plosser series

Table 4 shows that Industrial Production, Employment, Real Wages and S&P 500 are
better characterized by an ARMA(1,1) than a AR(2) model according to the Posterior

Odds Ratios. The opposite holds for Real GNP, Nominal GNP, Wages and Money. This
accords with the results in tables 2 and 3 which show that these series are either preferred

to be AR(3) or the MA parameter �1 lies relatively closer to 0 than the AR parameter

�2. Table 5 shows the posterior moments of the parameters of the resulting ARMA(1,1)
models.

Table 5 shows that the summed posterior mean changes of �1 and �1 of the ARMA(1,1)

model compared to ARMA(2,1) model approximately equal the posterior mean of �2 in

the ARMA(2,1) model. Since the identifying parameter �11 di�ers much more from 0 than

in the ARMA(2,1) model, the posterior standard deviations of the parameters are much
smaller than in the ARMA(2,1) model. It is typical that the posterior standard deviation of

the unit root parameter is however similar in both models, indicating that the information

regarding the long run behavior is not by a�ected by deleting �2.
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series n parameter �1 �1 �11
Ind. Prod. 0:79

0:06
�0:18
0:11

�0:97
0:09

Employ. 0:82
0:06

�0:43
0:09

�1:25
0:09

Real Wages 0:92
0:05

�0:28
0:12

�1:18
0:11

S&P 500 0:89
0:05

�0:31
0:14

�1:21
0:10

Table 5: Posterior moments of ARMA(1,1) model for Nelson-Plosser series

We also calculated the posteriors of the parameters of ARMA models for U.S. short

and long term interest rates. Again the orders of the ARMA models, p + q; are supposed

to equal 3. In contrast to the Nelson-Plosser data we only consider a constant term in the

regression equation. To determine the favoured univariate ARMA model for both interest
rates we calculated the posterior odds ratios for all models with ARMA order, p+ q; equal

to 3. These posterior odds ratios are listed in table 6.

series n ARMA order 3,0/2,1 3,0/1,2 0,3/3,0 2,1/1,2 0,3/1,2 0,3/2,1

short (3 month) 5.1023 0.9976 0.0000 0.1943 0.0000 0.0000

long (10 year) 0.6637 0.3606 0.0000 0.5434 0.0000 0.0000

Table 6: Posterior Odds Ratios Interest Rate Series

The posterior odds ratios show that an ARMA(1,2) model is equally likely for the
short term interest rates as an AR(3) model. This is rather typical as the ARMA(2,1)
model is less likely than these other two models. For the long term interest rate an

ARMA(1,2) model is favored. Table 7 lists the posterior means and standard deviations
of the parameters of the models which are preferred by the posterior odds ratios.

series n ARMA par. �1 �2 �3 �1 �2 �11 �22 � =
pP

i=1
�i

short (3 month) 0:99
0:051

�0:16
0:072

0:13
0:051

0:976
0:012

short (3 month) 0:978
0:011

�0:032
0:052

0:13
0:052

�0:85
0:051

�1:01
0:051

0:978
0:011

long (10 year) 0:99
0:006

�0:41
0:05

0:14
0:05

�0:89
0:04

�1:4
0:05

0:99
0:006

Table 7: Posterior Moments ARMA models interest rates

The posterior moments in table 7 show that the ARMA(1,2) model for long term

interest rate has properly identi�ed MA parameters as both identifying parameters �11 and
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�22 have almost no probability mass at 0 as indicated by the posterior means and standard

deviations of these parameters. As the MA parameters of the ARMA model for the long

term interest rates are not close to 0, the long run behavior of the long term interest rate

will signi�cantly di�er from an standard random walk model. Furthermore since the AR

parameter of the long term interest rate, �1; lies close to 1, the long term interest rate can

be characterized by an IMA(2) model (i.e. random walk plus noise model).

6 Conclusions

It has been shown that parameters in ARMA models are identi�ed conditional on the

value of other (hyper) parameters. This implies that parameters have to be analyzed con-

ditional on these identifying parameters. Priors have to incorporate this feature in order

to lead to regular posteriors of the parameters. A class of priors, which accomplishes this,

implies di�use (or natural conjugate) priors for the �rst p + q parameters of the implicit
AR(1) representation of the ARMA(p; q) model. As an approximation of the AR(1)

model we consider an AR(p+ q) model. The posterior of the parameters in the AR(p+ q)
model is used as an importance function in an Importance Sampling framework. Also, a

Metropolis-Hastings sampling algorithm is constructed. For the conducted applications,
the Importance Sampling Algorithm converged rapidly. Quite surprisingly, in the appli-
cations we found that many series, which are traditionally modelled using AR models,

contain strong MA components. These MA components can in
uence the long run param-
eters such that the use of MA components can be important for forecasting purposes, see

also Franses and Kleibergen (1995).
In future work, we extend the analysis to ARMA models containing seasonal lags and

Vector ARMA models. Also, by considering the Metropolis-Hastings algorithm, extensions

of the model by, e.g., structural changes, can be analyzed in a Gibbs Sampling framework.
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