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Abstract
When firms decide to change office space use, in many instances this involves relocation.

Relocation involves sizable costs to the firm that can to a large extent be characterized as lump

sum, i.e. independent of the change in demand. In this paper we propose and solve a model of

the demand for office space with lump sum adjustment costs at the firm level. The optimal

policy for a firm is a so-called control band policy, or (s,S)-rule: leave office space use

unchanged until the difference between actual office space use and desired office space use

exceeds a certain threshold. Desired office space use is defined as the office space use that

would result if no frictions were present and conforms to a model were actual office space

depends only on relevant current state variables.

Next we go on to investigate the aggregate implications of this lumpy microeconomic

behaviour using a stochastic aggregation framework of Bertola and Caballero (1994). The lumpy

behaviour at the firm level implies that aggregate demand for office space is a time-varying

weighted average of the current and lagged state of the economy. Only a fraction of aggregate

demand depends on the current state of the economy. Furthermore, the magnitude of this

fraction also depends on the current state of the economy.

We use our model on office space market data for The Netherlands. We find that

desired office space use is more volatile than actual office space use and does not track actual

office space use very well. Aggregate office space implied by our model tracks actual office

space use much closer, indicating that the gap between theoretical desired office space use and

actual office space use can be accounted for by lumpy adjustment at the firm level.

*Tinbergen Institute and dept. of Macroeconomics, Erasmus University Rotterdam, PO. Box
1738, NL-3000 DR Rotterdam, The Netherlands. Phone : +31-10-408 8941, Fax : +31-10-452 7347,
E-mail : ROMIJN@tir.few.eur.nl.
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1. INTRODUCTION

When one sets out to model the market for office space, one of the central
variables that requires modelling is the demand for office space or the
occupied stock of office space. In one of the first attempts Rosen (1984) models
the occupied stock of office space as being a function of the employment level
in the key service producing industries and the real rental rate. When one
projects this aggregate model to the microeconomic level it implies that office
space using firms change their use of office space every time their employment
or the rent changes. However, we see in practice that firms only infrequently
change their use of office space. To remedy this Wheaton (1987) models the
net absorption (i.e. the change in occupied stock) as a partial adjustment
process: current absorption equals a fraction of the difference between desired
office space use and lagged actual office space use. Desired office space use is
again modelled as a function of office employment and the real rental rate.
Additionally, Wheaton adds office employment growth to account for expecta-
tions regarding future office space needs. Hence Wheaton accommodates the
gradual change in occupied office space in two ways, the partial adjustment of
net absorption and the appearance of office employment growth in desired
office space use. However, both mechanisms are incorporated in an ad hoc
fashion at the aggregate level. At the firm level it is not realistic to assume that
firms adjust gradually to some desired level of office space use since this
involves continual adjustment of office space use, something Wheaton claims
hardly occurs. Instead he says

"It is likely that the long-term leasing structure of the office market
reflects a high cost to moving and relocating business." [Wheaton,
(1987, p. 285)]

In a recent paper Romijn, Hakfoort and Lie (1996) (henceforth referred
to as RHL) introduce adjustment costs in a microeconomic model for the use
of office space. They motivate these costs primarily as relocation or moving
cost for which it is reasonable to assume that these costs are to a large extent
unrelated to the amount of office space in use or the change therein. Therefore
they model them as being lump sum. This adjustment cost structure implies
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that the individual firm’s office space use is governed by a (s,S)-rule.1 Hence
office space using firms only infrequently relocate, just as observed in practice.
Their empirical findings are based on a cross section survey of individual
firms and indicate that at the firm level the lump sum nature of relocation
costs matters.

This paper uses the set up of RHL with lump sum adjustment cost at
the firm level but instead of the heuristic solution given in RHL, here we solve
explicitly an intertemporal maximization programme. Additionally, instead of
focusing on the microeconomic implications as did RHL, we investigate the
implications the individual firm’s behaviour has for aggregate office space use.
The data we use concern the Dutch office market for which a consistent
dataset has been compiled in Romijn (1996). As main office space using
industries we identify the government, banking and insurance, and other
commercial services. Output and employment in these sectors are assumed to
be a good indicator for office related output and office employment.

The rest of this paper is set up as follows. In section 2 we formulate and solve
the model for firm behaviour, which is governed by a so-called control band
policy or (s,S)-rule. The mathematical argumentation in this section is heuristic
and not entirely rigorous. For more rigor we refer to the paper by Harrison,
Sellke and Taylor (1983) (henceforth referred to as HST).

Obviously when all firms are exactly identical, aggregate behaviour
would coincide with individual behaviour. However, we assume that individ-
ual firms are faced by stochastic shocks that are only partly shared by other
firms. This implies that at every point in time a certain fraction of all firms
will relocate whereas others will not. To determine what fraction of firms
relocates we have to concern ourselves with distributional issues. In section 3
this problem is addressed using the framework of Bertola and Caballero
(1994). This results in a relation between aggregate desired office space and
aggregate actual office space use with the gap between them depending on the
growth rate of desired office space use.

In section 4 we first calculate aggregate desired office space use which
is subsequently used for calculating the aggregate gap and obtaining an

1For more on (s,S)-rules and lump sum adjustment costs, see for instance Blanchard and
Fischer (1989, ch. 8), or Caballero and Engel (1991).
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estimate for actual office space use. Our estimate for aggregate office space use
tracks actual office space use much better than desired office space implying
that observed aggregate behaviour can indeed be accounted for by our
relocation-cost-cum-stochastic-aggregation model. Finally, section 5 summar-
izes and concludes.

2. OPTIMAL DEMAND FOR OFFICE SPACE WITH
LUMP SUM ADJUSTMENT COSTS

Consider a firm that uses office space in the production process. We want to
focus on the demand for office space exercised by this firm. Assume that there
exists a desired demand for office space that summarizes all relevant informa-
tion about the office space use of the firm. This desired demand evolves
stochastically over time. We interpret desired office space use as the minimum
cost or maximum efficiency office space use for the firm in the sense that
when actual office space use equals the desired office space use, the intensity
of use of the office space is optimal. Actual office space use may deviate from
its desired level. These deviations result in extra costs or loss of efficiency. This
implies that in a frictionless environment a cost minimizing firm would like to
adjust its demand for office space continually in response to the stochastic
fluctuations in desired office space use. However, we assume that in order for
the firm to change its demand it has to move to a new location and that this
move is costly. Specifically, we assume that the cost of moving is lump sum.
This implies that the firm has to balance two types of cost. On the one hand
there is the opportunity cost of not adjusting demand for office space to its
desired value. On the other hand the more frequently the firm moves the
higher will be the moving costs.

The above problem can be reformulated as a special case of a more
general problem studied by HST. They show that the optimal policy is a so
called control band policy (CBP). This policy entails an optimal demand for
office space depending on the state variable (in our case desired office space
use) and intervention bands around this optimal demand. As long as actual
demand remains within the bands the firm does not move and hence does not
adjust demand. When actual demand is on or outside the band it is optimal
for the firm to move and adjust its demand to the optimal demand.
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Denote by z(t) the logarithm of actual office space use and by zd(t) the logar-
ithm of desired office space use. We model zd(t) as a (-µ,σ) Brownian motion,
i.e.

with w(t) a standard Brownian motion. For simplicity we model the above-

(1)dz d(t) µdt σdw(t)

mentioned loss of efficiency due to deviations from actual office space use
from desired office space use to be quadratic in the deviation, i.e. ½[z(t)-zd(t)]².
The firm now faces the problem of deciding whether or not to move and what
demand to exercise if it moves. When the firm moves to a new building it
incurs a lump sum moving cost of magnitude γ. Otherwise it remains in the
old building without changing its demand for office space.

To solve this problem note first that it is not optimal for the firm to
adjust its demand for office space continually as it would then incur the
strictly positive moving cost γ at each moment in time making total moving
cost infinite. Hence, the firm will only move at discrete intervals. Denote the
times at which it moves by Tn, n ∈ {0,1,…}, 0 = T0 < T1 < … → ∞. Furthermore
denote the change in the demand for office space at points in time when the
firm moves by ξn. Because of the assumption of T0 = 0 we have to allow for ξ0

= 0. Hence, we see that a policy consists of sequence of stopping times
{T0,T1,…} and associated stochastic jumps {ξ0,ξ1,…}. Now define the cost
function of moving

Next, define N(t) = sup{n ≥ 0 : Tn ≤ t} and y(t) = ξ0 + … + ξN(t) the

(2)φ (ξ)




0 for ξ 0
γ for ξ ≠ 0

cumulated change in the demand for office space from time zero to time t, x(t)
= -zd(t)+z(0) a (µ,σ) Brownian motion, and u(t) = z(t)-zd(t) the gap between
actual and frictionless demand. The latter variable follows a process that is the
sum of two processes: u(t) = x(t)+y(t). Note that ξn = u(Tn)-u(Tn-). We see that
without any action by the firm the instantaneous rate of cost is given by
½x(t)2. This may however result in large negative rate of profit so occasionally
- at the stopping times - it is profitable for the firm to change its demand by
an amount ξ so as to bound losses.

For any feasible policy {(Tn,ξn)} and initial value x(0) = x define the
value function V(x) to be the current value of all expected future cost dis-
counted to the present at rate r. It is given by
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The firm will be assumed to choose the CBP {(Tn,ξn)} that minimizes this value

(3)V (x) E










⌡
⌠
∞

0

½ u(t)2 e rtdt
∞

n 0

φ (ξ
n
)e rT

n

function.

The Value Function
It can be shown by arguments similar to those in HST that an optimal CBP is
characterized by a set of numbers (s,S,Q), s < Q < S, with Q the optimal
demand for office space, and s and S the lower bound and upper bound of the
CBP, respectively. The CBP parameters are parameters of the value function.
Since the value function does not depend on time, we know that the CBP
parameters cannot be functions of time. Additionally, the CBP parameters are
values of the state variable for which the value function meets certain criteria:
Q is the value of the state variable that maximizes the value function. s and S
are the values of the state variable for which the boundary of the control band
is reached and the boundary conditions for the value function apply. This
implies that the CBP parameters are constants and not function of time or the
state variable.

When u(Tn-) reaches the lower bound s the firm will move into a new
building and change its demand to Q. Hence, for n ≥ 1, the jump in ut will be
given by ξn = Q-s > 0. Analogously, when u(Tn-) reaches the upper bound S
the jump is equal to ξn = Q-S < 0. For time zero we have to allow for the
possibility of a jump of size zero. Hence, we define

To find an explicit solution for the value function, note that between

(4)ξ
0





0 if s < x < S
Q x otherwise

stopping times by definition no jumps occur and u will remain between the
upper and lower intervention band. Hence for values of u between the upper
and lower band (or analogously for points in time between two adjacent
stopping times), the bellman equation that follows from (3) can be obtained by
forgetting about the second term on the RHS of (3) and using Ito’s Lemma (see
for instance Dixit and Pindyck (1994) ch.3). This of course also holds for the
initial value x when s ≤ x ≤ S and we obtain
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Additionally, we have boundary conditions given by

(5)rV(x) ½ x 2 ½σ2 V (x) µV (x) for s ≤ x ≤ S

The solution to differential equation (5) is given by

(6)V(s) V(Q) γ
V(S) V(Q) γ

with

(7)V(x) Ae αx Be βx v
0

v
1
x ½ v

2
x 2 , s ≤ x ≤ S

and

(8)α [(µ2 2ρσ2)½ µ]/σ2 > 0
β [(µ2 2ρσ2)½ µ]/σ2 > 0

The constants A and B can be found by substituting (7)-(9) into the boundary

(9)v
0

½
σ2

r 2

µ2

r 3
, v

1

µ

r 2
, v

2

1
r

conditions (6). Define a(y) = eαy - eαQ and b(y) = e-βy - e-βQ. We obtain

Now we want to extend the value function for values of x outside the

(10)A
[v

1
(Q s) ½ v

2
(Q 2 s 2) γ]b (S ) [v

1
(Q S) ½ v

2
(Q 2 S 2) γ]b (s )

a (s )b (S ) a (S )b (s )

(11)B
[v

1
(Q S) ½ v

2
(Q 2 S 2) γ]a (s ) [v

1
(Q s) ½ v

2
(Q 2 s 2) γ]a (S )

a (s )b (S ) a (S )b (s )

control band. To see how, note that when x lies outside the control band, by
definition the firm will immediately pay the moving cost γ and jump to Q.
Hence,

This completes the characterization of the value function for CBP (s, S, Q), s <

(12)V(x) V(Q ) γ , x ∉ [s,S ]

Q < S, and starting value x.

Optimal Control Band Parameters
Having obtained the value function we can now find the optimal CBP consist-
ing of the set of numbers (s, S, Q), s < Q < S. If the firm starts outside the
interval control band, i.e. x ∉ [s,S], it will immediately jump to Q and follow
the CBP (s, S, Q). The total reward from this will be V(Q) + γ. For Q to be
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optimal we should have

Additionally, by arguments similar to those in section 5 of HST it can be

(13)V (Q ) 0 , V (Q ) > 0

shown that the following conditions hold at the boundaries

These can be interpreted as some sort of smooth pasting conditions for

(14)V (s ) V (Q )
V (S ) V (Q )

problems involving jump processes.
Solving equations (13) and (14) yields the following expressions for

parameters of the optimal CBP. The derivative of the value function is given
by

The roots of (15) yield a system of equations the solutions of which are the

(15)
V (x)







αA(s ,S ,Q )e αx βB(s ,S ,Q )e βx v
1

v
2
x for s ≤ x ≤ S

0 otherwise

optimal control band parameters (s,S,Q). Unfortunately the roots of (15) cannot
be determined analytically and hence we have to resort to numerical solutions
for reasonable values of the model parameters (µ, σ, γ, r).

3. AGGREGATE DEMAND FOR OFFICE SPACE

We now turn to the aggregate implications of our lump sum adjustment cost
micromodel. For aggregation of individual units’ actions we rely heavily on
Bertola and Caballero [1994, pp. 229-234].

First, the markets for real estate are populated by a large number of
units which we approximate by continuum indexed by i ∈ [0,1]. To facilitate
the subsequent discussion we introduce some notation. Let xi(t) denote the
value of a variable x for unit i at time t. Additionally, let ~x(t) denote a random
variable with a probability distribution φ(x,t) identical to that of the cross-
section distribution of the xi(t) (see Caballero and Engel [1991, p.1663] for this
construct). Note that the following holds

(16)Ex̃ ⌡
⌠
1

0

x
i
di
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Finally, let x(t) denote the associated aggregate.

First consider actual office space use. To aggregate we simply sum over all
units, i.e. Z = ∫1

0 Zi di. Hence the process followed by the logarithm of aggregate
actual office space use z(t) is found as

with hi(t) unit’s i share in aggregate office space use with ∫1
0 hi di = 1.

(17)dz(t) ⌡
⌠
1

0

h
i
(t)dz

i
(t)di

Individual frictionless demand zd
i(t) follows a process given by

with wi(t) a standard brownian motion. To aggregate individual desired office

(18)dz d
i
(t) µdt σdw

i
(t)

space use we have to make assumptions about how individual uncertainty
translates into aggregate uncertainty. We assume that the correlation structure
between the individual firms can be described by E[dwi(t)dwj(t)] = ρ², for all i,j
∈ [0,1], i ≠ j. This implies that the covariance between an individual shock
dwi(t) and the aggregate shock dw(t), which is given as

equals ρ. Hence we can decompose the individual brownian motions wi(t) into

(19)ρdw(t) ⌡
⌠
1

0

h
i
(t)dw

i
(t)di

an aggregate and a purely idiosyncratic component wIi(t) according to

By construction the idiosyncratic components are uncorrelated among each

(20)dw
i
(t) ρdw(t) 1 ρ2 dw

Ii
(t)

other and the aggregate shock, and wash out in the aggregate. Using the
expression for aggregate uncertainty in (19) and aggregating (18) we obtain

Now define stochastic variables ~u and ~h with probability density

(21)dz d(t) µdt σρdw(t)

functions identical to the cross sectional distribution of the ui and hi. Since
there is no reason to assume that the ui and hi vary systematically with each
other we assume the opposite, i.e. ~u and ~h are independent. Note that the
following relations hold
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Using these we obtain an expression for the process for actual aggregate office

(22)
⌡
⌠
1

0

h
i
u

i
di E (h̃ũ) E (h̃)E (ũ) E (ũ) ⌡

⌠
1

0

u
i
di ≡ u

space use given as

and we see that the difference between actual and desired aggregate net

(23)dz(t) dz d(t) du(t)

absorption ratios differ by the change in the average difference of logged
actual and desired office space use at the firm level. To obtain the change in
this average we need to track the probability density function φ( ~u,t) through
time.

First consider the case where no aggregate shocks are present and all shocks
are fully idiosyncratic, i.e. ρ = 0, and the cross section density has settled into
its steady state. Due to the independence of the different shocks and the fact
that the number of units is large, this density φ( ~u) is identical to the ergodic
density of a single ui(t). The derivation of this density is derived in Appendix
1. It is given as

with θ = 2µ/σ², A1 = cA2, c = [eθQ-eθS][eθQ-eθs]-1, and A2 = -[ceθs(Q-s)-eθS(Q-S)]-1.

(24)φ ( ũ )







A
1
[e θ ũ e θs ] , s < ũ < Q

A
2
[e θ ũ e θS ] , Q < ũ < S

From this it follows that in steady state with uncorrelated shocks u(t) is given
as

(25)
E(ũ) (A

1
/θ) (Q 1)e θQ (s 1)e θs (A

1
/2)e θs (Q 2 s 2 )

(A
2
/θ) (S 1)e θS (Q 1)e θQ (A

2
/2)e θS (S 2 Q 2 )

Now we want to introduce aggregate shocks. When aggregate shocks are
present the shocks faced by individual firms are correlated and the steady
state cross sectional density can no longer be represented by the ergodic
density of a single random walk in a CBP. Instead the cross sectional density
is changing at every point in time and will not settle down into a steady state
density as long as new aggregate shocks keep arriving. To model aggregate
shocks we use the approach used by Bertola and Caballero (1994). They
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approximate the ongoing aggregate shocks by discrete changes in the drift rate
µ. In other words we assume that the realizations of aggregate uncertainty are
evenly spread within an observation interval. Bertola and Caballero (1994)
motivate this as follows

’accumulation over a finite time period of abnormally positive aggre-
gate shocks has roughly the same effect for the cross-sectional distribu-
tion as a larger mean rate of growth’ [Bertola and Caballero (1994,
p. 232)].2

This approximation neglects within period path-dependency and infinite
variation of Brownian motions. About this Bertola and Caballero (1994) say

’… any empirical importance of these issues is overshadowed by the
substantial simplification of the analytical and estimation problem’
[Bertola and Caballero (1994, p. 242)]

In addition to these simplifications note that data on the Dutch office
markets is available on an annual basis only. Since this constitutes relatively
low frequency data, this motivates another simplification. We assume that the
length of the time interval relative to the time-scale at which the infinitesimal
processes in our micromodel operate is large. Hence we assume that by the
end of a period the effects of the change in the aggregate growth rate at the
beginning of the period have petered out and the cross-section distribution has
settled into its steady state distribution associated with a drift rate of µt.

4. EMPIRICAL IMPLICATIONS AND EVIDENCE

In this section we assess the aggregate empirical implications and importance
of microeconomic lumpy adjustment. In order to do so we first have to find an
estimate for aggregate desired office space use zd. Subsequently we calibrate

2Note that normally the drift rate affects the parameters of the CBP. However, in this case
the changing drift rate is an approximation to an aggregate process. To the individual firms the
growth rate remains constant and hence does not affect the CBP parameters. So we let the drift
rate vary with unchanging CBP parameters.
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the micromodel parameters (µ,σ,γ,r).

Aggregate desired office space use
Consider again the individual firm. The firm takes input prices and the rate of
output as given and minimizes cost conditional on input prices and output.
We assume that the firm has two inputs, labour L and office space Z (capitals
indicate levels whereas lowercase letters indicate logarithms) with wage rate
W and rental rate R. Denote output (= value added) by office using sectors by
Y. Additionally, we use a unit of output as numeraire so both rent and wage
rate are deflated by the output price index for office using sectors.

In a frictionless world cost minimization yields a cost function as a
function of output and input prices alone. Denote this cost function by
C(Y,R,W). Frictionless conditional factor demand is then given by Zd = ∂C/∂R
and L = ∂C/∂W. In the presence of relocation cost total costs consist of friction-
less cost, costs of relocation and costs associated with deviation of actual office
space use from desired office space use. We model the latter as in section 2,
i.e. quadratic in the difference of the logarithm of actual and desired office
space use. Hence, the rate of total costs are given by

The present value of expected future cost is then given as

(26)C(Y,R,W) κ ½ (z z d )2 φ(ξ)

The first term is given to the firm whereas the second term is just κ times the

(27)E










⌡
⌠
∞

0

C(Y,R,W)e rt dt κE










⌡
⌠
∞

0

½ (z z d )2 e rt dt
∞

n 0

φ(ξ
n
)e rT

n

value function of equation (3). Hence, we see that minimizing total cost as
given in (27) is equivalent to the cost minimization problem of section 2.

To find an estimate for zd we now only have to specify a frictionless
cost function C(Y,R,W), take its derivative with respect to R and transform to
logarithms. What should the functional form of C(Y,R,W) be? To get a clue we
graphed the share of office space expenditure in output and the logarithm of
the rental rate over the wage rate in Figure 1 (we standardized both series to
have zero mean and unit variance to fit into one graph). Obviously these two
series have a lot in common which leads us to consider a translog functional
form for the frictionless cost function. Hence
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Note that in the absence of frictions profit maximization yields C = (1/α3)Y.

(28)

logC(Y,R,W) α
0

α
1
logR (1 α

1
) logW

½ α
2
(logR)2 α

2
logR logW ½ α

2
(logW)2

α
3
logY

Usually α3 is restricted to unity so that C = Y, i.e. no profit is made. In our
case this cannot be imposed because in addition to frictionless cost C we also
have costs associated with the friction. Setting α3 to unity would then imply
that the firm would never make a positive profit and make a loss most of the
time. This is clearly inconsistent. Instead we impose that the firm should make
a strictly positive profit when it is at its desired demand, i.e. α3 > 1.

Conditional desired demand for office space can be found by differ-
entiating frictionless cost with respect to the office space rental rate. Using
equation (28) we find

with Sd the desired share of office space expenditure in output, i.e. Sd = RZd/Y.

(29)S d α
3
α

1
α

3
α

2
logR logW

Using equation (23) we see that Sd = S/U with S the actual share. From the
way in which U is constructed we know that it must be stationary. Figure 1
indicates however that the office expenditure share is not stationary over the
sample period. Linearizing the relation between Sd, S and U we see that a co-
integrating relation exists between S and Sd. Hence to obtain an estimate of Sd

we estimate a co-integrating relation between S and r-w. The results are
reported in Table II. The VECM that was ultimately used to calculate the co-
integrating relation is of order 2. The deterministic term has an unrestricted
constant and a trend component that is restricted in the co-integrating relation.
Hence, the estimated co-integrating relation between S and r-w includes a time
trend. At a significance level of 10 per cent we find one co-integrating relation.
This co-integrating relation is then used to calculate desired frictionless share
of office space expenditures Sd. The growth rate of desired frictionless office
space use can then be found as dzd=dsd+dy-dr.

Figure 2 contains the growth rates for actual aggregate office space use
and desired office space use. We see that desired office space use is a lot more
volatile than actual demand. This is also indicated by the summary statistics in
Table I. The growth rate standard deviation of actual office space use is 1.43
per cent per annum, whereas the growth rate standard deviation of desired
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office space use equals 2.28 per cent per annum.
The cross-correlation reported in Table I show that the contempor-

aneous correlation between the growth rates of actual and desired aggregate
office space use is only .435 leaving ample space for improvement. Additional-
ly, from the cross correlation pattern, we see that actual office space use lags
desired office space by approximately one year. This can also be seen in
Figure 2.

Calibration of CBP model parameters
In section 2 we assumed that desired office space use to be a (-µ,σ)-Brownian
Motion. This implies that the increments for desired office space use are
identically independently normally distributed. The Jarque-Bera test for
normality and the AR(1) parameter and its t-value that are also reported in
Table I, do not indicate important deviations from these assumptions. Hence,
using the figures in Table I, we set µ = -.0334 and ρσ = .0228. Note that this
choice of parameters implicitly sets the unit of time to a year.

Next, we need to find a value for the discount rate r. The discount rate
only affects the boundaries of the inaction interval (s,S) and the optimal value
Q. Moreover, these parameters are not very sensitive to the actual choice of r,
so that the precise choice of r is not very critical. We set the discount rate at 5
per cent per annum. This is a reasonable choice that is also frequently
employed in the real business cycle literature.

Finally, we need to find values for the correlation between individual
and aggregate shocks ρ, and for the lump sum moving cost γ. This is however
a bit of a problem since we do not have any information regarding their
magnitude. We estimate γ and ρ so that the growth rates of calculated and
actual demand for office space resemble each other as much as possible. We
do this by minimizing the variance of the difference between calculated and
actual demand using a grid search. This yields ρ = .15 and γ = .025. This
choice implies that individual shocks correlate relatively weakly with aggre-
gate shocks and that a large share of the shocks faced by individual firms is
purely idiosyncratic.

Implied aggregate office space use
Having found values for our micromodel parameters we can now set out to
calculate aggregate office space use as implied by our model. Denote its
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logarithm by ^z and hence its growth rate by ∆^z. The micromodel parameters
are used to calculate values for the CBP bounds (s,S,Q). Next we calculate a
value for ut using equation (25) with θ substituted by θt = 2µt/σ² = -2∆zt

d/σ².
Adding the change in ut to the growth rate of desired aggregate office space
use we obtain the growth rate of fitted aggregate office space use as implied
by our model, i.e.

We plotted the growth rate of fitted aggregate office space use in Figure 2

(30)∆ ẑ
t

∆z d
t

∆u
t

together with actual and desired aggregate office space use. We see clearly
that fitted aggregate office space use tracks actual office space use much better
than desired office space use. This is confirmed by the contemporaneous
correlations which equal .821 for the growth rates of actual and fitted office
space and only .435 between actual and desired office space use. Additionally,
the cross-correlation pattern shows that the time series patterns of the growth
rates of actual and fitted office space use coincide since the contemporaneous
correlation is the largest cross-correlation and the cross-correlations taper of
symmetrically in both directions. Also, just like actual office space use, fitted
office space lags desired office space use by about one year.

Let us take a closer look at the relation between ∆^z and ∆zd. ut is calculated as
a function f of ∆zt

d with f(∆zt
d) given by equation (25) with θ substituted by θt

= -2∆zt
d/σ². Hence we have

Now define

(31)∆ ẑ
t

∆z d
t

∆ f (∆z d
t

)

and we can rewrite (31) as

(32)ω (∆z d
t
,∆z d

t 1
)

∆ f (∆z d
t

)

∆z d
t

∆z d
t 1

We see that the growth rate of fitted aggregate office space use is a weighted

(33)∆ẑ
t

1 ω (∆z d
t
,∆z d

t 1
) ∆z d

t
ω (∆z d

t
,∆z d

t 1
) ∆z d

t 1

average of ∆zt
d and ∆zd

t-1 with time-varying weights that depend on the current
and lagged state of the economy (i.e. aggregate desired office space use): At
any point in time only a fraction of the firms will actually relocate so that only
a fraction of actual office space use is determined by current market condi-
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tions. Also the fraction of firms that relocates in a certain period will depend
on market conditions in that period. If for instance during a time period
market conditions remain relatively stable only few firms will relocate making
the fraction of actual office space use that depends on current market condi-
tions small. Highly volatile market conditions will induce a lot of firms to
relocate implying that a large fraction of actual demand depends on current
market conditions.

But suppose that we can approximate it well by a linear function g(∆zd)
= f(-µ) + f′(-µ)(∆zd+µ). In that case ω(∆zt

d,∆zd
t-1) = -f′(-µ) and equation (33)

reduces to a simple weighted average of the current and lagged state. Figure 3
contains the graph of the function f for our choice of micromodel parameters
(µ = -.0334, ρ = .15, ρσ = .0228, γ = .025). We see that this function is highly
non-linear so that generally a linear approximation will not yield satisfactory
results. However, the figure also contains the actually observed values for ∆zd

and the associated values for u (indicated as ). We see that these observed
value all lie in a relatively narrow margin for which a linear approximation
may well be adequate. From the graph we conclude that the non-linearity of f
only becomes important for values of the growth rate of desired office space
use below -10 per cent and above 15 per cent. Our dataset does not include
values of those magnitudes.

The above merits an investigation whether we cannot simply explain
the growth rate of actual office space use by a fix-weight average of the
current and lagged growth rate of desired office space use. To investigate this
we run three simple regressions of the growth rate of actual office space use
on (1) the growth rate of desired office space use, (2) the growth rate of
desired office space use and lagged growth rate of desired office space use,
and (3) the growth rate of fitted office space use. The results are reported in
Table III.

The results indicate that regression (1) performs poorly compared to
the other two and should be discarded as a model for the use of office space.
The statistics of regressions (2) and (3) however do not differ very much
although regression (3) performs slightly better on all statistics.3 We interpret

3We have to bear in mind however that the application of the stochastic aggregation model
involves the ’estimation’ of two additional parameters, i.e. ρ and γ, the sampling variability of
which have not been taken into account when comparing models (2) and (3).
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the results in Table III as implying that the apparent dependence of the actual
aggregate net absorption rate on the current and lagged state as indicated by
regression (2) can be accounted for by our relocation-cost-cum-stochastic-
aggregation model. Apparently the restrictions that are imposed by our
stochastic aggregation model on the relative importance of the current versus
the lagged state variable constitute an improvement over a simple model with
constant weights, although the degree of improvement is not dramatic. It also
confirms our suspicions that the non-linearity of the function f in Figure 3 is
not very important for the dataset at our disposal.

5. SUMMARY AND CONCLUSION

This paper sets up and solves a model for the demand for office space by
individual firms with lumpy adjustment costs and studies its implications for
aggregate office space use when both idiosyncratic and aggregate uncertainty
are present. Additionally, it provides some empirical evidence for the model
using aggregate time series data for the Dutch office market over the period
1974-1995.

The most distinguishing feature of the micromodel is the lump sum
adjustment cost. These are motivated by noting that firms in order to adjust
their demand for office space in many instances have to relocate and that this
entails moving costs that are - at least to a large extent - independent of the
amount of office space rented or the change therein. The resulting behaviour
by firms is a so-called control band policy or (s,S)-rule in which a firm only
adjusts its demand for office space at discreet points in time when the devi-
ation of actual from desired office space use exceeds a certain threshold. When
the deviation is smaller than this threshold, the deviation is said to fall within
the inaction interval and the firm will not relocate. This obviously describes an
important feature of actual behaviour as firm relocations are generally infre-
quent whereas business condition change frequently and significantly.

We then go on to investigate the aggregate implications of this lumpy
individual behaviour. The rate of relocation is determined by the measure of
firms that are in the immediate neighbourhood of their relocation threshold.
Hence, we have to find the distribution of firms over the inaction interval.
Specifically we need the cross section distribution of the deviation of actual
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from desired office space use at the firm level. When no aggregate uncertainty
is present this distribution will settle into a steady state that equals the ergodic
distribution of the process followed by the deviation for a single firm. How-
ever in the presence of aggregate uncertainty this convenient relation breaks
down since then individual shocks are correlated among each other. Although
theoretically it is possible to track the cross sectional distribution over time, no
closed form solution exists. We prefer to follow the approach of Bertola and
Caballero (1994) who approximate the infinite variation of the aggregate shock
by a discrete variation in the mean growth rate of individual shocks. This
approach lends itself readily to further analytical and empirical work while
preserving the most important features of the model. We find that the logar-
ithm of actual aggregate office space use equals the logarithm of desired
aggregate office space use plus the cross sectional mean of the log-deviations
at the firm level. The latter depends on the growth rate of desired aggregate
office space use, implying that actual office space use is a weighted average of
current and lagged desired office space, with weights that are time-varying
and dependent on current and lagged desired office space.

We apply the above lumpy-adjustment-cum-stochastic-aggregation
model to aggregate time series for the Dutch office market. We find that
aggregate desired office space use is much more volatile than actual aggregate
office space and does not track actual office space use very well. This implies
that for the Dutch office market a simple static model for the demand for
office space, which could be compared to the approach taken by Rosen (1984),
is not adequate. Calculated aggregate office space use as implied by our model
tracks actual office space use much better. This indicates that deviations of
desired office space use and actual office space use can be accounted for by
lumpy adjustment at the individual unit’s level. Remarkably, we find that, for
the Dutch office market data, a fix-weight weighted average of current and
lagged desired office space use constitutes a good approximation of the time-
varying weighted average. This is due to the fact that the variation in the data
is too small to make the weights vary very much over time. Hence, we see
that the office space use in The Netherlands can be described nearly equally
well by some form of the fix-weight partial adjustment approach as taken by
Wheaton (1987). However, the partial adjustment model does not apply at the
individual firm level and hence it is not clear what economic principles lie at
the heart of the partial adjustment model. The model proposed in this paper
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explicitly looks at microeconomic behaviour and in fact rationalizes the ad hoc
partial adjustment assumption at the aggregate level from microeconomic
principles. Additionally, it shows the limitations of the partial adjustment
approach since the fix-weight partial adjustment approach is an adequate
approximation only when the variation in the data is not too large. When the
data are more volatile the fix-weight partial adjustment model no longer
constitutes an adequate approximation to our model and the advantages of
our model should become more apparent.

One way to look into this is to look at a more localized market. The
aggregate shocks in our data cover all of The Netherlands and is likely that
the shocks observed at the national level smooth out the shocks at regional or
local levels. Hence, we expect that at the regional or local level the office
markets exhibit much more volatility so that the time-variation of the weights
as implied by our model become much more pronounced. Hence, it is interest-
ing to take a look at the office market of Amsterdam for which regional
accounts exist and for which the office market is relatively well documented.
This is however a topic for future research.
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TABLES
Table I
Summary statistics.

∆z ∆zd ∆^z

Sample
Number of obs.

75-95
21

75-95
21

76-95
20

Mean
Standard error

.0310

.0143
.0334
.0228

.0339

.0169

Skewness
Kurtosis
Jarque-Bera
Probability

-.591
2.54
1.41
.495

-.691
4.31
3.18

.0204

-.466
2.80
.760
.684

AR(1) parameter
t-value

.397
1.77

.0338
.143

.640
3.46

cross-correlations
k
-3
-2
-1
0
1
2
3

corr(∆zt,∆zd
t+k)

.049

.231

.700

.435

.315
-.118
-.081

corr(∆zt,∆^zt+k)
-.194
.187
.589
.821
.517
.206
-.168

corr(∆^zt,∆zd
t+k)

.097

.237

.833

.590

.285
-.039
-.278
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Table II
Test results for co-integration in office space-rent wage ratio-employment-
system.

This table contains the results of the Johansen’s trace test for co-integration. The associated
vector error correction model (VECM) is of order 2 with unrestricted constant and linear trend
restricted in the co-integration relation, i.e.

∆Xt = µ0 + α(µ1t + β′Xt-1) + Γ1∆Xt-1 + Γ2∆Xt-2 + ut, ut ~ IIN(0,Ω),

with Xt = (S,r-w)t′. For a detailed description of the tests and the issues involved see Johansen
(1995).

Johansen co-integration likelihood ratio test statistics

eigenvalues 0.561 0.357

trace test 24.0* 8.40

One co-integration vector normalized co-integrating relation β (standard error)

S r-w trend (1966=1) constant

1 -.0609
(.00368)

.000551
(6.6E-5)

-.426

* Significant at 10 per cent using critical values reported in Johansen (1995, Ch. 15.3, Table 15.4).
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Table III
Office space use growth rate regressions

Dependent variable: ∆z
Sample: 1976-1995

independent (x) (1) ∆zd (2) ∆zd (3) ∆^z

constant .0220
(4.03)

.00768
(1.66)

.00713
(1.62)

xt .272
(2.03)

.257
(2.90)

.710
(6.09)

xt-1 - .436
(4.92)

-

R² .186 .664 .673

R² .141 .625 .655

AIC -8.50 -9.29 -9.42

SC -8.40 -9.14 -9.32

R² : adjusted R²
AIC : Akaike Information Criterion
SC : Schwartz Criterion
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FIGURES

Figure 1
The share of office space expenditure in output (♦) and the logarithm of the
rental rate over the wage rate (×) (both series have been standardized to fit
into one graph).
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Figure 2
Growth rates of actual occupied stock (+), desired occupied stock (×), and
fitted occupied stock (♦).

25



Figure 3
Functional relation u = f(∆zd) ( ) and observed values ( ) for estimated
micromodel parameters (µ = -.0334, ρ = .15, ρσ = .0228, γ = .025).
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APPENDIX
In this appendix we derive the steady state distribution a (µ,σ) Brownian
motion u in a (s,S,Q) control band. Approximate the continuous time process
for u by a discrete time-discrete state process with time jumps ∆t and state
jumps ∆h. At any point in time this approximating process can jump from u at
time t0 to u+∆h or u-∆h at time t0+∆t with probabilities p and q respectively. To
make sure that this discrete process converges to the actual continuous time
process we impose the following

The density function φu can be found by solving the following differ-

(34)
∆h σ ∆ t

p 1

2
[1

µ
σ

∆ t ] , q 1

2
[1

µ
σ

∆ t ]

ence equation (using steady state occupancy rates)

Expanding this expression around u, dividing by ∆h2 and letting ∆h → 0, we

(35)φ (u ) pφ (u ∆h ) qφ (u ∆h ) , u ≠ Q

obtain (see Dixit and Pindyck [1994, pp.83-84])

Equation (36) is an ordinary differential equation with general solution

(36)φ (u ) θφ (u ) , θ 2µ

σ2
, u ≠ 0

The full solution to (36) can be found by substituting equation (37) into

(37)φ (u )







A
1
e θu B

1
, s < u < Q

A
2
e θu B

2
, Q < u < S

the boundary conditions. The boundary conditions are given by

Note that φ is continuous at Q but not (necessarily) differentiable. The bound-

(38)lim
u↑Q

φ (u ) lim
u↓Q

φ (u ) ≡ φ (Q )

(39)φ (s ) φ (S ) 0

ary conditions in (39) imply B1 = -A1 eθs and B2 = -A2 eθS which yields

Note that, as s < Q < S and a proper density should be nonnegative, it follows

(40)φ (u )







A
1
[e θu e θs ] , s < u < Q

A
2
[e θu e θS ] , Q < u < S

that A1 ≥ 0 and A2 ≤ 0 when θ > 0 and vice versa when θ < 0. Substituting
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equation (24), (40) we obtain

which we rewrite as A1 = cA2 with c defined as the RHS of (41).

(41)
A

1

A
2

e θQ e θS

e θQ e θs
< 0

The final condition we use to determine the constants of the differential
equation is that the integral of any proper density function over its support
should equal unity. This yields

which completes the characterization of the steady state density function of

(42)⌡
⌠
S

s

φ (u )du ⌡
⌠
Q

s

cA
2
(e θu e θs )du ⌡

⌠
S

Q

A
2
(e θu e θS )du 1 ⇒

A
2

ce θs (Q s ) e θS (S Q ) 1

u(t). Finally, figure 1 contains a simulated density function for 100,000
replications, with µ = .1, σ = 1, s = -10, Q = -5, S = 5. We see that the density
consists of two exponential distributions with most probability mass to the
right of Q due to the positive drift term.
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