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Abstract

We apply the stochastic evolutionary approach of equilibrium selection to macroe-

conomic models in which a complementarity at the macro level is present. These

models often exhibit multiple Pareto-ranked Nash equilibria, and the best response-

correspondence of an individual increases with a measure of the aggregate state of

the economy. Our main theoretical result shows how the equilibrium that is singled

out by the evolutionary dynamics is directly related to the underlying externality

that creates the multiplicity problem in the underlying macroeconomic stage game.

We also provide clarifying examples from the macroeconomic literature.
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1. Introduction

The purpose of this paper is to apply the stochastic evolutionary approach of equilib-

rium selection proposed by Blume (1993), Kandori, Mailath, and Rob (1993), and Young

(1993) to macroeconomic models of coordination failure. In macroeconomic models of

coordination failure, individuals’ decisions are interdependent. Without the assumption

of perfect coordination (through the Walrasian auctioneer) formalization of this inter-

dependency has lead to models with multiple Nash equilibria. Often these equilibria

are Pareto-ranked and the models are capable of explaining why the economy might

become stuck in a socially inefficient equilibrium. The main result of this paper is on

evolutionary selection between these Pareto-ranked equilibria.

The game theoretical framework for analysis of the existence of multiple Pareto-

ranked Nash equilibria was given by Cooper and John (1988). They showed that multi-

ple equilibria can arise in a (static) game when strategic complementarities are present,

and spillovers exist between agents at the level of payoffs. Cooper and John (1988) also

divided the literature in three groups depending on whether agents are interconnected

through the production process (e.g. in Bryant (1983)), through an exchange arrange-

ment (e.g. in Diamond (1982)), or whether agents are in multisector models of imperfect

competition where agents are specializing in what they produce and interconnected in

what they consume (e.g. in Hart (1982) and Weitzman (1982)).

While the typical paper in this literature does give conditions for the economy to

exhibit multiple Pareto-ranked equilibria, it contains no analysis of which set of equilibria
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is most likely to be observed.1 This is perhaps surprising since some models are capable of

generating a continuum of equilibria that have markedly different properties.2 Therefore

pinning down which equilibrium is selected is vital if any predictive power is to come

from coordination failure models. In particular, the necessity of equilibrium selection is

important for sensitivity analysis, and for investigating if the presence of coordination

failure implies a call for more active (government) interventions.

In this paper we address these issues by embedding the main features of the differ-

ent macroeconomic models of coordination failure into the class of strict supermodular

games played simultaneously by the entire population. In this class of games, intro-

duced by Topkis (1979), and further explored by Milgrom and Roberts (1990) and Vives

(1990), the best-response correspondences are increasing, so the players’ strategies are

‘strategic complements’. When the best-response of an individual player increases with

some measure of the aggregate state of the economy, a macroeconomic complementarity

is present. In the coordination failure literature this measure is often taken to be some

average of the current strategy profile. For example, in models of monopolistic com-

petition (e.g. Blanchard and Kiyotaki (1987)), the marginal payoffs of one’s own price

depend positively on the (geometric) average of the other agents’ prices, and in produc-

tion externality models (e.g. Cooper and Haltiwanger (1996)) the marginal payoff of an

individual’s effort (or production) depends positively on the average level of effort ex-

erted in the economy. In this article we present such examples. Thus we think of agents’

1One exception is Cooper (1994) who proposes a history-dependent selection criterium.
2Bryant (1983) models an input game that generates a continuum of equilibria. Cooper and John

(1988) give examples which show that both the search externality model (Diamond (1982)) and the
multisector model of imperfect competition (Hart (1982)) are capable of generating a continuum of
equilibria.
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strategic variables as being e.g. prices, quantities or effort levels. One contribution of

this paper is to show how evolutionary selection (learning) and mutations (mistakes and

experimentation) interact to pin down which equilibrium is selected in these macroeco-

nomic models of coordination failure if the players repeatedly play a strict supermodular

stage game with a summary statistic of the population state. More specifically, we show

how the equilibrium that is most likely to be observed (in the long run) directly relates

to the underlying externality that creates the multiplicity problem in the first place.

To establish this result, we expand the evolutionary literature on equilibrium selec-

tion in strict supermodular games outlined in Kandori and Rob (1995) (hereafter KR)

in two directions. First we follow a recent paper by Kaarbøe (1999) and analyze equi-

librium selection in the class of strict supermodular games when the interaction takes

place on the population-wide level. In the model, an agent plays against a summary

statistic of the population state, as e.g. the average price in a setting where we have

price competition. Thus we abandon the context of random pairing commonly used in

evolutionary literature, and focus on an interaction structure that fits the framework

of macroeconomics.3,4 Secondly, we follow the traditional macroeconomic approach and

let (almost-)rational players exist in the population. These players form almost-rational

expectations about next period’s state, and play a best-response to these expectations.

We define almost-rational expectations as expectations which are correct in the absence

3Schelling (1973) introduced simultaneous play in economics. In biology this type of interaction is
called “playing the field” (Maynard Smith (1982)). Robles (1997) and Hansen and Kaarbøe (1997)
study coordination games with a simultaneous play interaction structure. Crawford (1991, 1997) also
argues for introducing genuine simultaneous interaction into the evolutionary literature.

4KR give one example of simultaneous play under the assumption that individual payoffs are linear
in the opponents’ strategies. Hence, many economic models do not fit into their framework.
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of mutations, i.e. when no mutations occur between the choosing of actions and the

realization of payoffs. We call these players dynamic optimizers. In addition, boundedly

rational players coexist with the dynamic optimizers. These players are called myopic

optimizers since they play a best-reply to the population state they observe, i.e. they

form adaptive expectations. By using this framework we provide an evolutionary analy-

sis in which selection among the equilibria is independent of the presence of boundedly

rational players, while the time spent outside the set of equilibria is dependent of my-

opic optimizers being present. The insight stemming from the interaction between the

almost-rational and the boundedly rational type is that in equilibrium, boundedly ratio-

nal agents do better than almost-rational agents if almost-rational agents have to pay a

positive per period cost for performing the (complicated) calculations or for gathering

the relevant information associated with the forming of almost-rational expectations.

Thus, in equilibrium, selection works against this more sophisticated type, see also e.g.

Conlisk (1980), Droste and Tuinstra (1998) and Droste, Hommes, and Tuinstra (1999).

The structure of this paper is as follows. Section 2 provides the general model. In

section 3 we present the theoretical analysis, while section 4 provides three macroeco-

nomic examples that fit the proposed structure, namely a production externality model,

Bertrand competition with demand externalities, and a model of search and matching.

Section 5 states some concluding remarks.
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2. The Model

We consider a finite populationN := {1, 2, ...,N} consisting of N players. In each period

t = 1, 2, . . . all players interact in a market structure, i.e. they all ‘play the field’. Each

player’s payoff is determined by his own action and by the value of a summary statistic

σ (·) of the actions chosen by all players in the population.

2.1. The Stage Game

The stage game we posit is a symmetric strict supermodular game, in which the role of

the column player is played by the summary statistic σ (·). The individual player thus

chooses a row. The setM (γ) of pure actions in a strict supermodular stage game is by

definition partially ordered. Here we follow KR and assume thatM (γ) contains a finite

number of γ + 1 actions, and is completely ordered from low (action 0) to high (action

M), i.e. M (γ) := {0, M
γ
, 2M

γ
, ...,M} for an arbitrary γ ∈ IN+. The only condition

required is that all the Nash equilibria in the game played on the continuous action

space [0,∞) belong to this grid. This indicates that we see the action spaceM (γ) as a

discrete approximation of the continuous action space [0,∞).

We assume monotonicity of the summary statistic, i.e. when there are two states5 s

and s0 with s Â s0, where Â refers to first order stochastic dominance6, σ (s) > σ (s0) .

Furthermore, we assume that the summary statistic σ (·) only takes values on the action

5The exact definition of a state follows in section 2.2.
6A (frequency or probability) distribution or density f (·) on M (γ) with cumulative distribution

F (a) =
P

k≤a f (k) first order stochastically dominates a distribution g (·) on M (γ) with cumulative
distribution G (a) =

P
k≤a g (k) when for all a ∈ M (γ) , it holds that F (a) ≤ G (a) , with strict

inequality for at least one a.
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grid, i.e. σ (s) ∈ M (γ), ∀s, and that the summary statistic takes the value m when

the state is such that all players play action m ∈ M (γ) . Examples of a summary

statistic meeting these conditions are the arithmetic, harmonic and geometric average

of the actions in the population. This implies that we model the summary statistic as a

piecewise constant function from the state space to the action space. 7

We also follow KR’s assumption on ‘continuity’ of the best-responses on the grid, i.e.

we assume that if br (σ (s)) = m and br(σ (s00)) = m00 andm < m0 < m00, then there exists

an α ∈ (0, 1) such that br (ασ (s) + (1− α)σ (s00)) = m0, where br (σ (s)) denotes the set

of best-responses to the summary static σ (s) of state s. Since we have continuity of the

summary statistic, we can then also find a β ∈ (0, 1) such that br (σ (βs+ (1− β) s00)) =

m0.

We denote a player’s payoff when she plays action m ∈M (γ) against the summary

statistic σ (·) by u (m, σ (·)). We can now define supermodularity for a stage game in

which an agent plays against a summary statistic.

Definition 1. The stage game is a strict supermodular game if for any pair of strategies

0 ≤ m < m0 ≤ M the payoff differences u(m0,σ (·)) − u(m,σ (·)) are strictly increasing

in σ (·).

In this setup, we define the equilibrium concept as follows

7In Kaarbøe (1999) it is shown that modelling ‘playing the field’ when the grid of the action space is
arbitrarily fine (i.e. when γ →∞), the difficulties which arise from piecewise constant best responses in
coordination games (see Robles (1997) and Hansen and Kaarbøe (1997)) do not arise in a supermodular
stage game.
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Definition 2. A state s is an equilibrium state if under s each player n, n = 1, . . . , N,

plays an action in br (σ (s)).

The ordering of the actions and the supermodularity of the stage game ensures that,

in case the stage game exhibits multiple stable equilibria, these equilibria are rankable

in the Pareto sense (see also section 3).

2.2. The Players’ Types and the State Space

At every time t = 1, 2, . . . each player in the population uses a particular update rule,

which we refer to as a player’s type. An update rule specifies how a player updates the

action she plays in the stage game. We consider the update rules ‘myopic optimization’

(µ) and ‘dynamic optimization’ (δ) and thus we accommodate two types of players.

Players that update according to µ are called myopic optimizers, while players that

update according to δ are called dynamic optimizers.

In every period t each player is characterized by a pair (m, i) identifying the action

m she currently plays and her type i. For every period t, the state

s(t) = (sµ0(t), sδ0(t), ..., sµM(t), sδM(t)) is a vector whose m-th element, sim(t) i = µ, δ,

represents the number of type i-players using action m ∈ M (γ) at time t. Thus, the

state space is given by S = {1, 2, . . . , N}2(γ+1) , where for every s ∈ S, we have thatP
m∈M(γ)

¡
sµm + sδm

¢
= N.We take account of the state s(t) at the start of period t. The

total number of players playing action m at time t is sm(t) = sµm(t) + sδm(t), the number

of myopic optimizers in the population at time t is Nµ
t =

P
m∈M(γ) s

µ
m(t) and the number

of dynamic optimizers in the population at time t is N δ
t =

P
m∈M(γ) s

δ
m(t) = N − Nµ

t .
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Note that s(t) is a frequency distribution and thus the concept of first order stochastic

dominance between states is well defined.

As mentioned before, at each time t, all players play the stage game simultaneously

and ‘against’ the same summary statistic of the entire population state. Therefore, the

average payoff of an action m ∈ M at time t, um(t), is equal to the realized payoff of

action m, u (m, σ (s (t))) , where s (t) is the state at the time the stage game is played

(see also Figure 2.1, p. 13).

For completeness we label the action that player n ∈ N is playing as an ∈ M (γ)

and we define the indicator functions I tn for t = 0, 1, . . . , and n ∈ N as

I tn =


1, if player n is of type δ at the beginning of period t,

0, otherwise.

.

A player that is of type i, i = µ, δ, makes a positive cost at each period respectively to

calculate a best-response, or to infer next-period behavior of the other players, and then

calculate a best-response to that. We assume that the dynamic optimizers have at least as

high per-period costs that the myopic optimizers, both because of the more complicated

calculation dynamic optimizers have to make, and because they need to gather more

information to perform those calculations. We normalize the costs of myopic optimizers

to zero and pose a non-negative per-period cost c ≥ 0 for dynamic optimizers.
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2.3. The Mutation-Free Dynamics

The mutation-free dynamics operates on two levels. At the first level, at each time t, all

players get the possibility to revise their action. They do so according to a particular

update rule. At the second level, at each time t, some (possibly all or none) players get

the possibility to switch update rules, i.e. to update their types. We now specify both

processes in detail.

2.3.1. Updating Actions

At every t = 1, 2, ... and before play is conducted each player gets the opportunity to

update his action. The player chooses the new action as dictated by her type.

Assumption A (on myopic optimizers). Myopic optimizers observe the structure of

the stage game and, at each time t, the summary statistic σ (s (t)). Subsequently they

play a myopic pure best-response to σ (s (t)) in the stage game at time t+ 1. In case of

ties, there is a positive probability of choosing each of the best actions.

Assumption B (on dynamic optimizers). Dynamic optimizers observe the stage game

and, at each time t, the state s (t) , the number of players that switch type due to

type adjustment, and the birth & death process. Based on this information they form

expectations which are correct when no mutations occur, i.e. they correctly predict the

state es (t) after all players have chosen an action, but before mutations occur. They

consequently choose a pure best-reply to these expectations. In case of ties, there is a

positive probability of choosing each of the best actions.

Dynamic optimizers form almost-rational expectations, in the sense that their beliefs
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incorporate all relevant information in the model, except the information regarding mu-

tations.8 Thus, at time t, dynamic optimizers correctly predict the actions all players

want to play at time t+ 1, but do not take into account that mutations might alter the

actual actions (and thus the payoffs) played in the stage game (see also Figure 2.1, p.

13).

Now we are able to define the update rules in terms of the state space. At time t,

a myopic optimizer switches to action m∗ ∈ arg maxm∈M(γ) u (m, σ (s (t))) , while a dy-

namic optimizer switches to actionm∗ ∈ arg maxm∈M(γ) u (m, σ (es (t,m))), where es (t,m)

denotes the state in which all myopic optimizers play a best reply to σ (s (t)) and the

dynamic optimizers play action m.9 This implies that dynamic optimizers explicitly take

account of the number of myopic and dynamic optimizers playing each action in the

population and that they infer which action these other players will play in the stage

game. Thus, dynamic optimizers’ action m∗ follows from calculating a fixed point of the

correspondence that takes the behavior of the myopic optimizers as given, and reflects

the optimal reaction to the current state by all dynamic optimizers. For both types of

players it holds that when m∗ is not unique, they pick an arbitrary action from their set

of argmax-es.

Neither type of player will ever play a strictly dominated action. In the symmetric

stage game, it holds that if action m ∈M (γ) is strictly dominated for the row player,

column m of the payoff matrix of the stage game is also strictly dominated. Because

8This is done because we believe that from the point of the players a key feature of mutations is
their unpredictability, in the sense that not even the probability distribution of the mutations is known
to the players.

9In case the arg max is not unique, the state es (t, ·) should be denoted as a function of the vector
containing the action of each dynamic optimizer in the population.
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of these two observations, we can restrict attention to symmetric strict supermodular

stage games from which all strictly dominated strategies have been iteratively removed.

A well-know result on supermodular games (see e.g. KR, Proposition 6) then yields that

Proposition 1. After all strictly dominated strategies have been iteratively removed

from the game, the smallest and largest of the remaining strategies are pure strategy

Nash Equilibria (NE for short).

In section 3 we will establish the link between these Nash equilibria of the stage game

and the equilibrium concept as given in Definition 2 for games in which all players play

the field.

2.3.2. Updating Types

After the stage game has been played, average realized payoffs among dynamic optimizers

and myopic optimizers become common knowledge. Explicit account is taken of the costs

c ≥ 0 that dynamic optimizers make. We label the realized average payoffs uδt and u
µ
t

respectively. Hence,

uµt =
1

Nµ
t

X
n∈N

u (an, σ (s (t)))
¡
1− I tn

¢
,

uδt =
1

N δ
t

X
n∈N

[u (an,σ (s (t)))− c] I tn,

We posit that with probability θ ∈ [0, 1] each player receives the opportunity of revising

her type. Thus, at each time t, each player takes an independent draw from a Bernoulli

trial. With probability θ ∈ [0, 1] this draw produces the outcome ‘learn’, and the player
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chooses a new type, in the way described below. With the complementary probability

1 − θ, the draw produces the outcome ‘do not learn’ and the player stays with her

current type. The possibility to update types is called a learning draw. In the case

a player receives the opportunity of revising her type, she changes type if and only if

average payoff to the other type in the last period is strictly higher than the average

payoff her own type received in the same period, i.e. a player of type i, i = µ, δ, switches

type iff uit < u
j
t , j = µ, δ, j 6= i. When a player changes type we assume that she starts

to play the action prescribed by her new type.

Note that we explicitly admit for θ = 0, i.e. no player ever updates his type, and

θ = 1, i.e. updating types is always prompt and no inertia is displayed. Furthermore,

note that although we let players switch type based on the perception of average payoffs

per type, this is not an essential feature of our model. Other type switching rules, like

e.g. switching to the other type if the average payoff of that type is higher than the

realized payoff of the player, do not alter the basic results. In fact, such a rule comes

down to the same behavior when best-responses are unique and thus all players of the

same type play the same action.

2.4. Mutation Dynamics

At both levels we allow the above described mutation-free dynamics to be slightly per-

turbed by deviations. We refer to these deviations as a birth & death process on the type

level and as mutations on the action level. Before we specify both processes in details,

we present a graphic overview of the sequence of events during a time period t in figure

12



2.1.

Figure 2.1: The sequence of events during a time period.

2.4.1. Birth & Death at the Type Level

The birth & death process lets to it that some randomly chosen players ‘die’ and replaces

them by newborn players. This event takes place after the stochastic type adjustment

according to the mutation-free dynamics has taken place. We assume that at each time

t there is a positive probability 2κ ≥ 0 that a player dies. Setting κ = 0 means that no

birth & death takes place. When κ > 0 and a player dies, she is replaced by a newborn

player, who is of either type with equal probability 1
2
. This formulation boils down to

each player having a probability κ ≥ 0 of being replaced by a new player of the other

type.

Formally, let the random variables Vt
³ bNµ

t ,κ
´
and Wt

³ bN δ
t ,κ
´
denote the number of

myopic optimizers and dynamic optimizers respectively that switch type at time t, where

bN i
t , is the number of type i players in the population at time t after players were able to

revise their type according to the mutation-free type adjustment dynamics. Note that

Vt

³ bNµ
t ,κ

´
andWt

³ bN δ
t ,κ
´
both have a binomial distribution Bin (n, p) with parameters

13



n = bNµ
t and n = bN δ

t respectively and p = κ. Now, we have that

Nµ
t+1 = bNµ

t − Vt
³ bNµ

t ,κ
´

+Wt

³ bN δ
t ,κ
´
,

and

N δ
t+1 = bN δ

t −Wt

³ bN δ
t ,κ
´

+ Vt
³ bNµ

t ,κ
´
.

2.4.2. Mutations at the Action Level

At each time t, each player is subject to some common and independent (across players

and time) probability of implementing an action other than the one described by her

type. We label such a deviation from the prescribed action a ‘mutation’. Mutations

can be thought of as representing the making of a mistake in the implementation or

calculation phase, as suggested by Kandori, Mailath, and Rob (1993) and Young (1993)

and implemented in e.g. Van Damme and Weibull (1998), where more costly mistakes

are assumed to occur less frequently.10

When a mutation occurs, the player chooses any action in a purely arbitrarily manner.

The mutations happen after all players have calculated which action they want to play

but prior to play being conducted.

10Alternatively, a mutation can be thought of as a boundedly rational player experimenting, because
she thinks her action will not be a best-response to the state she plays against (which is correct when
the system is out of equilibrium). However, such a boundedly rational player is unable to calculate
this best-response, since she cannot form correct expectations on next period’s state. Therefore, some
experimentation can be of use. In this context it seems natural to assume that myopic optimizers
experiment, while dynamic optimizers do not, since they already make on average correct predictions
about the state they will be playing against and experimentation thus is of no use to them. This would
result in a higher combined rate of experimentation for myopic optimizers than for dynamic optimizers,
like in e.g. Kaarbøe and Tieman (1999). However, in the current setting such a generalization does not
alter the basic results of the model and we will therefore not implement it in the model.
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Assumption C (on mutations). At every time t, each player makes a mistake or

experiments in the implementation of her action with some common and independent

probability ε > 0. In that case she plays an action m ∈M (γ) with positive probability

on each m ∈ M (γ), i.e. the probability distribution of mutations has full support.

Furthermore, this distribution is fixed over time and independent of ε.

The composition of the adjustment processes generates a discrete-timeMarkov-process

over the finite state space S, whose transition matrix is denoted by P (ε,κ) = (pss0(ε,κ)).

An element pss0(ε,κ) represents the transition probability of moving to state s0 at time

t+ 1 conditional on being in state s at time t. The dynamics without mutations at the

action level and without birth & death corresponds to P (0, 0).

The occurrence of mutations and birth & death implies that every transition has

positive probability. It is a standard result that such Markov chains have a unique

stationary (invariant) probability distribution. Let φκ(ε) denote the unique invariant

distribution of P (ε,κ) for each ε > 0 and fixed κ > 0. Our aim is to characterize

the unique invariant distribution φ∗κ := limε→0 φκ(ε). Using arguments in Freidlin and

Wentzell (1984), Young (1993) has shown that this limit exists. The states that have

strict positive measure under φ∗κ are called long run equilibria.

3. Theoretical Results

In this section we first state some useful results on the best-response structure and the

equilibria in supermodular games in which all players play the field. Then, in Proposition

6, we characterize the limit sets of the Markov process, when no mutations are present
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and there is no birth & death and no type switching. That is, we look at what happens

when we have a population consisting of a fixed number of myopic optimizers and a

fixed number of dynamic optimizers. The proposition says that the limit sets correspond

one-to-one with the set of pure strategy Nash equilibria of the stage game. It also

argues that the presence of myopic optimizers makes it possible that time is spent out-

of-equilibrium. Second, we admit for stochastic type switching and birth & death, but

still set the probability of mutation to ε = 0. This leads to the result in Proposition 7 that

still the limit sets correspond one-to-one with the set of pure strategy Nash equilibria of

the stage game. Furthermore, we establish that, in the presence of positive costs c > 0

for dynamic optimizers, once in equilibrium, the fraction of dynamic optimizers will

become small. Third, we present the main result of this section in Proposition 8. Here,

we have both mutations and stochastic type switching and birth & death present in the

model. This main result is on selection among the multiple Pareto rankable equilibria

and states that the equilibrium with the deepest basin of attraction will be selected. The

proposition is followed by Corollary 1, which establishes the same result for the special

case in which only dynamic optimizers are present in the model.

We first state a proposition on monotonicity of best responses over the set of states.

A similar proposition was proven for random matching among agents in Kandori and

Rob (1995) and for the case of playing the field in Kaarbøe (1999). Let br (σ (s)) denote

the set of best responses to σ (s) .

Proposition 2. Let s and s0 be two states such that s Â s0. Then min br (σ (s)) ≥ max

br (σ (s0)) .

16



Proof.

The proof is by contradiction. Take an arbitrary m ∈ br (σ (s)) and m0 ∈ br (σ (s0)) and

suppose m < m0. Then, the strict supermodular structure of the stage game yields

u (m,σ (s0))− u (m0,σ (s0)) > u (m,σ (s))− u (m0, σ (s)) .

The nature of best responses yields u (m,σ (s)) − u (m0, σ (s)) ≥ 0 and u (m, σ (s0)) −

u (m0,σ (s0)) ≤ 0. Thus, we have

u (m, σ (s0))− u (m0, σ (s0)) ≤ 0 ≤ u (m, σ (s))− u (m0,σ (s)) ,

a contradiction with the above.

Since the above holds for any m ∈ br (σ (s)) and m0 ∈ br (σ (s0)) , it also holds that

min br (σ (s)) ≥ max br (σ (s0)) . ¤

Second, we stow that a state to which there is more than one best-response is strongly

unstable in the sense that it is not even a stationary point of the best-response dynamics.

A similar result was proven for the case of random matching by KR (Proposition 8) and

for the case of playing the field by Kaarbøe (1999). By #A we denote the number of

elements in the set A.

Proposition 3. A state s for which #br (σ (s)) > 1 cannot be a stationary point of the

best-response dynamics.
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Proof.

Consider a population with only myopic optimizers and an arbitrary state s for which

#br (σ (s)) > 1. According to assumption A on the updating of myopic optimizers, at

the next stage, all myopic optimizers randomize over all the #br (σ (s)) elements in

br (σ (s)) . Thus, with positive probability, the state s is left. Therefore a state s for

which #br (σ (s)) > 1 is not a stationary point of the best-response dynamic. ¤

Third, we prove that states which mimic mixed actions are also strongly unstable in

the sense that they are not even stationary points of the best-response dynamic.

Proposition 4. A state s in which multiple actions are played (i.e. a polymorphic or

mixed state s) cannot be a stationary point of the best-response dynamics.

Proof.

Consider a population with only myopic optimizers. Furthermore, consider an arbitrary

mixed state s, in which myopic optimizer i plays action ai and myopic optimizer j plays

action aj 6= ai. If not both ai ∈ br (σ (s)) and aj ∈ br (σ (s)) , either i or j (or both) will

change his action, since they both get the possibility to revise their action at each time

t, and the state is thus not stationary under the best-response dynamics. Thus, in order

for the mixed state s to be stationary, all actions played under s must be elements of

the set br (σ (s)) . But then Proposition 3 states that s is not a stationary point of the

best-response dynamic. ¤

Obviously, when a polymorphic state s is unstable under best-response dynamics,

it will surely not be stable in dynamics where some players play best-responses to last
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period’s state and other players are dynamic optimizers or in dynamics where all play-

ers are dynamic optimizers (see also the proof of Proposition 6 below), since dynamic

optimizers play a fixed point of the best-response correspondence. Therefore, the results

in Propositions 3 and 4 should not be interpreted as results on populations consisting

only of myopic optimizers, but have a much broader scope and are applicable to any

population consisting of an arbitrary non-negative number of myopic optimizers and an

arbitrary non-negative number of dynamic optimizers.

From the above propositions it follows directly that an equilibrium state s under

which multiple actions are played is strongly unstable in the sense specified above. For

this reason we only focus on equilibria in which all players play the same action. This

leads to the following proposition.

Proposition 5. No stable asymmetric equilibria in pure actions exist. The set of stable

equilibrium action pairsM∗ (γ) is a subset of the main diagonal of the stage game. The

set S∗ of stable equilibria contains only strict equilibria.

Proof.

Consider a state s. If multiple actions are played under s, it is strongly unstable in the

sense of Proposition 4. Thus it cannot be a stable equilibrium. If s is a stable equilibrium,

all players play the same action, say action m ∈ M (γ). By assumption, this leads to

a summary statistic σ (s) = m. Thus, when stable equilibria exist, they lie on the main

diagonal of the stage game. From Proposition 1 we have that at least one equilibrium

exists.
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The fact that all stable equilibria are strict is a straightforward corollary from Propo-

sition 3, which establishes that the set of best-responses to a stable equilibrium state s

can only be a singleton set. ¤

Thus we have established the link between symmetric Nash equilibria in the stage game

and (stable) symmetric equilibria in the playing the field setting. We now define the set

of stable (symmetric) equilibria as S∗ = {s∗|∃ m∗ ∈M (γ) such that sm∗ = sµm∗ + sδm∗ =

N and m∗ = br (σ (s∗))} and the set of stable equilibrium action pairs as M∗ (γ) :=

{(m∗,σ (s∗)) | s∗ ∈ S∗, m∗,σ (s∗) ∈M (γ) and m∗ = br (σ (s∗))}. In an equilibrium with

(m∗,σ (s∗)) ∈M∗ (γ) , all players get the same payoff from the stage game u (m, σ (s)) .

Therefore, Pareto ranking stable equilibria comes down to comparing scalar payoffs.

We now state the convergence result for the model without any randomness, i.e.

without mutation, stochastic type switching and without birth & death.11

Proposition 6. Consider the model without any randomness and with both a fixed

non-negative number of myopic optimizers, and a fixed non-negative number of dynamic

optimizers present in the population, i.e. the model with ε = 0, θ = 0 and κ = 0. Then,

the limit sets of the model correspond one-to-one with the collection of pure strategy

(strict) NE.

Proof.

A necessary condition for a state to be a limit set, is to be a stationary point of the

best-response correspondence. From Proposition 4 we see that a mixed state cannot be

11Krishna (1991) presents a similar global convergence result in supermodular games with multiple
equilibria, but considers a different adjustment process, namely fictitious play dynamics.
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a stationary point of the best-response correspondence. Thus it cannot be a limit set.

Since a non-NE pure state is not a stationary point of the best-response correspondence

either, it can also not be a limit set.

Every pure strategy NE corresponds to a monomorphic state s which is a best-

reply to itself. In the non-generic case that the NE corresponding to s is not strict,

#br (σ (s)) > 1 and Proposition 3 states that s cannot be a limit set. When all players

play a certain strict NE action m, the myopic optimizers will play m next period also.

Next period, the dynamic optimizers will play an action which is a stationary point of

their best-reply correspondence, given that all myopic optimizers play m. The current

NE actionm is one such fixed point. Consider any other point which involves all dynamic

optimizers playing one NE (say m0) and all myopic optimizers playing m. In that case

it must hold that the payoff from the stage game to the dynamic optimizers (without

accounting for the costs c ≥ 0) is at least as high as the payoff from the stage game to

the myopic optimizers. Thus, the myopic optimizers will change their action next period,

and, as already established above, such a state is therefore not a stationary point of the

best-response correspondence and thus it is not stable and cannot be a limit set.

Since generically all NE are strict, a possible path that leads to an arbitrary strict

NE in finite time follows easily. A strict NE corresponding to state s, has a basin of

attraction of positive size, i.e. there exist states from which playing best-responses will

lead the state to the NE state s. Furthermore, each state in S lies in at least one such

basin of attraction, i.e. there are no states from which no best-response path leads to a

NE state. Given that this is true for best-response dynamics, it is also true for a setting
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in which some players play best-response to last period’s state and others have almost-

rational expectations, as the dynamic optimizers in this model. The presence of dynamic

optimizers only speeds up the time it takes to reach the NE state s, since they play a

best-response to the state in which the myopic optimizers have already taken a best-

response and in which all dynamic optimizers are also taking best responses. The above

also holds for a setting with only dynamic optimizers present. In that case the movement

to the NE state will be prompt and thus no time will be spent out of equilibrium. ¤

Since the proposition looks at the model without type switching, the costs dynamic op-

timizers make every period to form predictions play no role in the above. The result

establishes that without stochasticity, only pure strategy NE are limit sets. Thus, these

states are the only possible candidates for stationary states in the model with stochas-

ticity, and selection of stable states boils down to selection among the pure strategy

NE.

When we admit stochastic type switching and birth & death, but still set the proba-

bility of mutation to ε = 0, we get a result similar to the one above, with the additional

feature that dynamic optimizers are selected against once the system is in a limit set.

Proposition 7. Consider the model without mutations, i.e. ε = 0. Then, the limit

sets of the model correspond one-to-one with the collection of pure strategy NE. For

c > 0 and θ > 0, once a limit set is reached, the fraction of dynamic optimizers in the

population becomes small and will remain small. It may reach zero, but, with probability

1, it will not remain zero forever.
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Proof.

The last claim is established first: The birth & death process sees to it that no type

can become extinct forever, i.e. when a type disappears from the population, it will be

reintroduced in finite time with probability 1. So, most of the time, both the number

of myopic optimizers and the number of dynamic optimizers in the population will be

positive. From Proposition 6 it is then clear that the limit sets of the model correspond

one-to-one with the set of pure strategy NE. Once a limit set is reached, the system

cannot leave it, since the probability of a mutation is zero, and since players that change

type (through the birth & death process or through type switching) will still play the

same action after having changed type. In a limit set, all players play the same (NE)

action m and hence get the same payoff from the stage game. However, when c > 0,

the dynamic optimizers still incur a positive cost c. Thus, at a limit set, uδt < uµt and

consequently all players that get the possibility to revise their type will choose to become

myopic optimizers. This drives the fraction of dynamic optimizers in the population down

when θ > 0. With positive probability, the fraction of dynamic optimizers reaches zero

this way. From the above, it is then clear that with probability 1 dynamic optimizers

will be reintroduced in finite time. Hence, most of the time, the fraction of dynamics

optimizers in the population will be small. ¤

Dynamic optimization is more costly than myopic optimization. Therefore, in a situation

in which both types realize the same payoffs from the stage game, myopic optimizers

have an advantage over the more sophisticated dynamic optimizers. In the presence of a

positive costs for forming correct expectations, it is only out of equilibrium that dynamic
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optimization may yield an advantage over myopic optimization.

From the above, we have seen that without the presence of mutations, the dynamics

take the system to a limit set, where it stays forever after. Which limit sets the system

will be in depends crucially on the initial state s (0) . Thus the system without mutation is

non-ergodic or, in other words, it displays path dependency. Adding a small probability

of mutations transforms the system into an ergodic system, which has a unique invariant

distribution, i.e. which does not display path dependency. Our main theoretical result

characterizes the limit of this unique invariant distribution when the mutation rate is

taken to zero in the limit. This limit invariant distribution puts all probability weight on

a subset of the set of all limit sets. Thus this method selects between limit sets. A crucial

role in the selection between limit sets is played by the depth of the basins of attraction

of the different limit sets. The basin of attraction of a limit set l, denoted by B (l) is

the set of all states that will converge to l under the dynamics without mutations. The

right (left) basin of attraction of a limit set l, denoted by BR (l) (BL (l)) is the set of

all states {s|σ (s) > σ (l)} ({s|σ (s) < σ (l)}) that will converge to l under the dynamics

without mutations. We can now define the depth of the basin of attraction at a state s.

Definition 3. The depth of the basin of attraction at state s is minŝ∈br(σ(s)) |σ (s)− ŝ| ,

i.e. the absolute value of the minimum difference between the summary statistic σ (s)

and the best-reponse correspondence br (σ (s)) at s.

We use this definition to define the depth of the basin of attraction of a limit set l.

Definition 4. The depth D (l) of the basin of attraction of limit set l is

maxs∈B(l) minŝ∈br(σ(s)) |σ (s)− ŝ| , i.e. the maximal depth over all states in the basin
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of attraction of limit set l. The depth DR (l) of the right basin of attraction of limit

set l is max{s∈B(l)|σ(s)>σ(l)} minŝ∈br(σ(s)) |σ (s)− ŝ|. The depth DL (l) of the left basin of

attraction of limit set l is max{s∈B(l)|σ(s)<σ(l)} minŝ∈br(σ(s)) |σ (s)− ŝ|.

For completeness, we define DL(0) = DR(M) = 0.

Note that in a graphical representation of individual best-responses as a function of

the summary statistic (see e.g. Figure 4.1, p. 32), the depth of the basin of attraction is

precisely the distance between the best-response correspondence and the 450 line. The

depth of the right (left) basin of attraction of a limit set l is a measure for the number

of mutations necessary to reach the higher (lower) limit set adjacent to l.

We also define the depth of the (right and left) basin of attraction relative to the

depths of other basins of attraction. Consider a set E of adjacent limit sets. We say that

limit set l̃ ∈ E has the deepest (right or left) basin of attraction relative to (the other

elements of) E when l̃ has the deepest (right or left) basin of attraction in the model

restricted to the actions played under E.

Proposition 8 establishes the set of long run equilibria in the presence of mutations

and states that, generically, in the long run the system spends most of the time in a

unique NE when the probability of mutation is small. This will be the NE selected by an

iterative procedure based on the relative depths of basins of attraction. Before stating

the proposition, we first give a description of this iterative procedure.

We start the procedure by constructing the set of stable limit sets

E0 = {l|l is a stable limit set} . A limit set l is stable when it has multiple elements

in its basin of attraction B (l) . We now look for the (strictly) deepest right and left
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basin of attraction among all elements of E0. Label these limit sets lR and lL. We now

consider four distinct possibilities.

1. When lL ≤ lR, we construct the set E1 =
©
l ∈ E0|lL ≤ l ≤ lRª.

2. When lL > lR andDL
¡
lL
¢
> DR

¡
lR
¢
, we construct the setE1 =

©
l ∈ E0|lL ≤ l ≤Mª.

3. When lL > lR andDL
¡
lL
¢
< DR

¡
lR
¢
, we construct the setE1 =

©
l ∈ E0|0 ≤ l ≤ lRª.

4. Finally, when lL > lR andDL
¡
lL
¢

= DR
¡
lR
¢
, we construct the set E1 = E1,1∪E1,2,

with E1,1 =
©
l ∈ E0|0 ≤ l ≤ lRª and E1,2 =

©
l ∈ E0|lL ≤ l ≤Mª.

Now we apply the same procedure sketched above relative to the set E1. In case E1

consists of only one component we find the left and right basins of attraction with

maximal depth in E1, and select a subset E2 of E1 in the way outlined above. When

E1 = E1,1 ∪E1,2, we apply the procedure to the sets E1,1 and E1,2 separately and define

the union of the resulting sets as E2. We stop the iterative procedure when no further

selection can be accomplished, i.e. when En+1 = En, n ∈ IN, which is when a either the

set En, n ∈ IN, is reduced to a singleton set or when the set consists of multiple limit sets

with DR(el) = DL(l) for el = max
©
l ∈ En|l < lª, for all l ∈ En\min

n∗
l∈ En

o
, n ∈ IN. In

this case the basins of attractions have the same depth. The states which are in the set

at which this iterative procedure terminates are called states with the iterative deepest

right and left basins of attraction. We now state that these are precisely the long run

equilibria of the model.

Proposition 8. The set of long run equilibria consists of the states with the iterative

relative deepest right and left basins of attraction. For a generic supermodular stage
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game, there will be only one long run equilibrium when the action set is going to ap-

proximate a continuous state space, i.e. when γ →∞ and subsequently the population

size increases, i.e. N →∞.

Proof.

Above, we have shown that the best-responses are monotonically increasing (Proposition

2), that polymorphic states cannot be stable (Proposition 4), and that the limit sets of

the model without mutations correspond one-to-one with the set of pure strategy Nash

equilibria. Thus, we have shown that all conditions for Theorems 4, 5, and 6 in KR are

satisfied. Applying KR’s Theorems 4, 5, and 6 leads to the conclusion that the iterative

procedure sketched above yields the long run equilibria of the model, as follows.

Take an arbitrary element e ∈ E1 and an arbitrary limit set l /∈ E1. Then, it takes

more mutations to get from e to l than vice versa. Thus, when ε → 0, the move from

l to e is arbitrarily much more likely to be observed than the move from e to l. This

establishes that when ε → 0, a fraction 1 of the time is spent in (a subset of) E1, i.e.

that the set of long run equilibria is a subset of E1. It is possible that at some elements

of E1, the system only spends a fraction 0 of the time, i.e. that some limit sets e0 ∈ E1

are not long run equilibria. This is the case when a subset eE1 ⊂ E1 is reached from

E1\ eE1 with a number of mutations that is strictly less than the number of mutations it

takes to reach E1\ eE1 from eE1. A criterion for selecting such a subset is thus the depths

of the right and left basin of attraction, which results in the observation that eE1 = E2.

In the iterative procedure the focus is on the set En in which the system will spend

a fraction 1 of the long run time. At each step, the procedure establishes which of
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the states in En will be left more easily than others, thus establishing a strict subset

En+1 ⊂ En on which the system will spend a fraction 1 of the long run time. When the

procedure yields no further selection, i.e. when En+1 = En, the system spends a strictly

positive fraction of long run time in each element of En. In other words, En is the set of

long run equilibria.

The second statement in the proposition is straightforward: Consider a supermodular

stage game with randomly drawn payoffs from IR.When we take γ →∞, the continuity

of best-responses sees to it that the (piecewise constant) best-response correspondence

approximates a smooth curve arbitrarily close. Since the grid of the state space gets

ever finer with increasing N, i.e. ever more mixed strategy sets can be mimicked by

states es ∈ S, the probability that two NE states s and s0 are such that it takes the same
number of mutations to reach s from s0, as it takes to reach s0 from s is decreasing in the

population size, when the best-reply correspondence is (arbitrarily close to) a smooth

curve. ¤

In a model where only two stable equilibria are present, a direct consequence of this

proposition is that the equilibrium with the deepest basin of attraction is selected as

the unique long run equilibrium. A result similar to Proposition 8 holds for a setting in

which all players in the population form (almost-) rational expectations.

Corollary 1. Consider the model with only dynamic optimizers present and no birth &

death. Then the set of long run equilibria consists of the states with the iterative relative

deepest basin of attraction. For a generic supermodular stage game, there will be only

one long run equilibrium when the action set is going to approximate a continuous state
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space, i.e. when γ −→∞ and subsequently the population size increases, i.e. N →∞.

Proof.

The proof of Proposition 8 does not rely on a mixture of types of players in the popu-

lation. Therefore, all statements follow also for a population consisting only of dynamic

optimizers. ¤

4. Examples

In this section we consider three specific examples of games exhibiting macroeconomic

complementarities. For simplicity we present a framework with a continuous action

space, i.e. we have taken the limit γ −→ ∞ in the theoretical model above. Thus the

action space is embedded into a continuous action space fM := [0,M ].

The specific functional form we choose for the complementarities is not important.

The only requirement is that the functional form generates best-responses that are mono-

tonically increasing in the summary statistic of the actions chosen by the individual

players. In all of the examples we pose the following general functional form of the

complementarities

η (σ (s)) =
exp(σ (s))

z + 1
10

exp(σ (s))
.

In the examples, this function yields the best-response structure of a supermodular game

and it is sufficiently simple to illustrate the possible results. The parameter z ∈ [0,∞)

indicates the strength of the complementarity at the macro level. Note that the lower the

value of z is, the stronger is the complementarity. The factor 1
10
is a scaling parameter
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which is of no importance for the results.

4.1. A Model of Effort with Production Externalities

Consider a specific economy where the macroeconomic complementarity is present through

the production process (see e.g. Cooper and Haltiwanger (1996)). Furthermore, assume

that the population sizeN is large, ensuring that an individual’s action does not influence

the summary statistic. Specifically, at each time t = 1, 2, ... each agent n, which might be

either of type µ or δ, has effort ent ∈ fM as input and produces output ynt = ent · ν
¡
Et
¢
,

with Et = 1
N

PN
n=1 e

n
t . Thus, the output one unit of effort creates, depends on the aver-

age production in the economy through a function ν (·) of the average effort. We assume

ν (·) to be increasing. The agents each consume their own production. The technology

is supplemented with the preferences of an agent over consumption and effort given by

Uµ(ynt , e
n
t ) = ynt −

1

2
(ent )

2 = ent · ν
¡
Et
¢− 1

2
(ent )

2 ≡ Uµ(ent , Et)

U δ(ynt , e
n
t ) = ynt −

1

2
(ent )

2 − c = ent · ν
¡
Et
¢− 1

2
(ent )

2 − c ≡ U δ(ent , Et),

where c ≥ 0 is the per-period calculation-cost dynamic optimizers incur. Note that this

game is supermodular since ∂2U
∂en

t ∂Et
= ν0

¡
Et
¢
> 0.

At time tmyopic optimizers have observedEt−1. Their best guess is that the summary

statistic will remain unchanged between time t − 1 and t, .i.e. IEEt = Et−1, where IE

is the expectaion operator. They play a best-reply to these expectations. Maximizing

w.r.t. ent yields e
n
t = ν

¡
IEEt

¢
= ν

¡
Et−1

¢
. Thus, since all myopic optimizers update

their action each period, they all play ent = ν
¡
Et−1

¢
.
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Dynamic optimizers correctly predict what the myopic optimizers will do, as they

form almost-rational expectations, which take this into account. Thus, dynamic opti-

mizers to determine their effort level ent , they solve the following problem

fEt =
1

N

NX
n=1

ent
¡
1− I t+1

n

¢
+

1

N

NX
n=1

ent I
t+1
n =

Nµ
t+1

N
· ν ¡Et−1

¢
+
N −Nµ

t+1

N
· ν
³fEt´ .

w.r.t. fEt. 12 Note that I t+1
n is just the indicator function of player n being of type δ after

type switching and birth & death took place at time t, since the type of a player will not

change between birth & death at time t and the beginning of period t+ 1. This explains

the use of Nµ
t+1 in the equation. With

fEt determined by solving the above equation, the
dynamic optimizers play ν

³fEt´ .
Whenever ν

³fEt´ 6= ν
¡
Et−1

¢
the dynamic optimizers obviously get a payoff from the

stage game that is at least as high as the myopic optimizers’ payoff, since the dynamic

optimizers play a best response to the actual state fEt. It depends on the payoffs and on
the cost c ≥ 0 dynamic optimizers incur, whether they actually have a higher net utility

U δ (ynt , e
n
t ) ( that is utility of consumption and effort minus costs).

To illustrate the results, we assume complementarities in production of the form

ν
¡
Et
¢

=
exp(Et)

z + 1
10

exp(Et)
,

where z ∈ [0,∞) is a parameter that indicates the strength of the externality.

The next figure shows how a typical individual best response function depends on

12Note that φ(Et−1) is known at time t. The problem can be solved numerically.
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the average effort in the economy.

0
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e n,t

2 4 6 8 10E t

Figure 4.1: The best-response function for z = 10.

This economy can exhibit either one or two stable equilibria13, depending on the

strength of the production externalities, i.e. on the parameter z ∈ [0,∞). To analyze

the relationship between z and the intersection point of the curve e = ν
¡
E
¢
and the line

e = E (i.e. the equilibria in the economy) we calculate

exp(E)

z + ( 1
10

) exp(E)
= E.

Solving this equation (numerically) yields that for z ∈ [0, 2.5], the economy exhibits a

unique Nash equilibrium (near) 10; for z > 91 a unique Nash equilibrium (near) 0 is

established. For values of the externality-parameter z between 2.5 and 91 the economy

exhibits multiple stable equilibria, one near 10 and one near 0. The Nash equilibrium

where all agents choose to put 10 units of effort into the production process, is the

Pareto efficient equilibrium. When the economy exhibits multiple equilibria, i.e. when

2.5 < z < 91, we know from Proposition 8 that the equilibrium state with the deepest

13This economy also exhibits one unstable equilibrium. We do not focus on the unstable equilibria,
since, per definition, they can be upset by one mutation.
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basin of attraction will be the long run equilibrium of the model. We now calculate the

depth of the basins of attraction as a function of the externality-parameter z. The depth

of the basin of attraction at point E is defined by the absolute value

gz
¡
E
¢

=

¯̄̄̄
¯E − exp(E)

z + 1
10

exp(E)

¯̄̄̄
¯ .

We solve for the (arg)maxima of this expression. This yields

E1 = ln 10
³

4 +
√

15
´
z = ln 10

³
4 +

√
15
´

+ ln z ≈ 4.366 + ln z,

E2 = ln 10
³

4−
√

15
´
z = ln 10

³
4−

√
15
´

+ ln z ≈ .23915 + ln z.

The corresponding maximal values of gz (.) are

gz
¡
E1

¢
= gz

³
ln 10

³
4 +

√
15
´
z
´
≈ |ln z − 4.507|

gz
¡
E2

¢
= gz

³
ln 10

³
4−

√
15
´
z
´
≈ |ln z − .88787|

Note that for all z ∈ IR+, it is the case that E1 > E2 and thus that gz
¡
E1

¢ ≈
|ln z − 4.507| := h (z) is the depth of the basin of attraction of the equilibrium near

10 and gz
¡
E2

¢ ≈ |ln z − .88787| := k (z) is the depth of the basin of the equilibrium

near 0. To see which equilibria is selected for a given externality-parameter z, we plot

the depth-functions k (z) (thick) and h (z)
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Figure 4.2: The depths of the basins of attraction as functions of z.

We conclude that given a multiplicity problem, for strong externalities (z < 14.84),

the Pareto-efficient equilibrium is the long run equilibrium, and for weak externalities

(z > 14.84), the Pareto-inferior equilibrium is selected in the long run.

We end this example by drawing the best response function for two different values of

the externality parameter z. The first figure shows an economy with a strong externality

(z = 8). Hence the Pareto-efficient equilibrium is the long run equilibrium, while in the

second figure, the externality is weak (z = 30), and the Pareto-inferior equilibrium is

selected.
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The best-response function for z = 8.
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The best-response function for z = 30.
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4.2. Bertrand Competition with Demand Externalities

Consider an economy in which a large number N of producers, labelled n = 1, . . . , N,

compete through Bertrand competition. Each producer n produces a unique good n.

Demand Dn (., .) for good n at producer n is a function of the price pn of good n and an

index of prices P of all goods on the market, i.e.

Dn(pn, P ) = a− bnpn + ν (P ) ,

with a > 0 and bi > 0. From this demand function we see that the goods are substitutes.

The degree of substitutability is determined by the form of the (non-negative, increasing)

demand externality function ν (P ) .

We assume that agents have no fixed costs and that they derive utility from profit

only, thus

Un(pn, P ) = πn(pn, P ) = (pn − kn)Dn(pn, P ),

where kn > 0 is the marginal cost of production for player n. This game is supermodular,

since ∂2Un

∂pn∂P
= ν0 (P ) > 0. Furthermore, competition of the individual agent is against a

summary statistic of the actions of all agents in the population. Thus, the example fits

the framework of our model.

In calculating best-responses, each agent takes P as given. The first order condition

yields

pn =
1

2bn
ν (P ) +

a

2bn
+

1

2
kn.
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Thus,we have best-responses of the form pn (P ) = C1 +C2ν (P ) , with C1 > 0 and C2 > 0

constants. When the demand externalities are of the form

ν (P ) =
exp (P )

z + 1
10

exp (P )
,

with z a parameter indicating the degree of substitutability between the different prod-

ucts, the best-response function pn (P ) is just a linear transformation of the best-response

function en = ν
¡
E
¢
in section 4.1. Since such a transformation does not affect the struc-

ture of the model, the analysis of the former section applies to this example.

4.3. A Model of Search and Matching

Consider a simple search model in the spirit of Diamond (1982) (see also e.g. Fudenberg

and Tirole (1991)) with a large number N of players, labelled n = 1, . . . , N. Denote the

intensity of search of agent n by sn ≥ 0. The utility of an agent is determined by the

probability of finding a trading partner, i.e. being matched to some other agent, by the

gain from trade α > 0 when a partner is found and by the costs k (sn) of searching at

intensity sn. The probability for agent n of finding a trading partner depends on his own

search intensity and an increasing function of the average search intensity in the market

ν(S), with S = 1
N

PN
n=1 sn. Thus, the utility function looks like

Un(sn, S) = αsnν(S)− k (sn) .
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This example exhibits a supermodular game, since ∂Un

∂sn∂S
= αν 0(S) > 0. Furthermore,

each agent competes against a summary statistic of the actions of all agents in the entire

population. Thus, this example fits the framework of our model.

In calculating best-responses, each agent takes S as given. The first order condition

yields αν(S)− k0 (sn) = 0. When we further assume costs to be quadratic, i.e. k (sn) =

βs2
n, with β > 0, we get that sn (S) = α

2β
ν(S). When we take ν (S) = exp(S)

z+ 1
10

exp(S)
,

the best-response function sn (S) is again a linear transformation of the best-response

function in section 4.1. Thus, the previous analysis applies.

5. Concluding Remarks

The main points of this paper have been to show how the stochastic evolutionary ap-

proach of equilibrium selection applies to macroeconomic models of coordination failure,

and how the equilibrium which is singled out by the dynamic is directly related to the un-

derlying externality that creates the multiplicity problem in the underlying stage game.

It is important to note that the unique equilibrium selection result is obtained in the limit

as the probability of mutations goes to zero. We believe however, that this is an analyt-

ical construction which is just a benchmark case for what happens in the real economy,

where the mutation rate will not be zero. Therefore, the uniquely selected equilibrium

is better interpreted as the equilibrium that will be observed the largest fraction of the

time. The economy can also remain at other equilibria for a non-negligible fraction of

time. One might interpret the movement of the system between several equilibria as a

rather crude form of business cycle.
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To obtain these results, we have expanded the evolutionary literature on equilib-

rium selection in two directions. First, we abandon the random pairing assumption and

analyze equilibrium selection in a game where players interact in a market structure.

Secondly, we allow players to posses different degrees of sophistication and provide an

evolutionary framework in which selection among the different types take place in the

class of strict supermodular games. We believe that our result that in equilibrium (selec-

tion works against the more sophisticated agents, when sophistication comes with a cost)

provides a possible rationale for modelling not only rational agents, but also boundedly

rational agents in macroeconomic models.
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