
Improved dynamic programs for some batching

problems involving the maximum lateness criterion

A P M Wagelmans

Econometric Institute

Erasmus University Rotterdam

PO Box 1738, 3000 DR Rotterdam

The Netherlands

A E Gerodimos

Centre for Quantitative Finance

Imperial College

Exhibition Road

London, SW7 2BX

United Kingdom

April 27, 1999

Abstract

We study four scheduling problems involving the maximum late-
ness criterion and an element of batching. For all the problems that
we examine, algorithms appear in the literature that consist of a sort-
ing step to determine an optimal job sequence, followed by a dynamic
programming step that determines the optimal batches. In each case,
the dynamic program is based on a backward recursion of which a
straightforward implementation requires O(n2) time, where n is the
number of jobs. We present improved implementations of these dy-
namic programs that are based on monotonicity properties of the ob-
jective expressed as a function of the total processing time of the �rst
batch. These properties and the use of e�cient data structures en-
able optimal solutions to be found for each of the four problems in
O(n logn) time; in two cases, the batching step is actually performed
in linear time and the overall complexity is determined by the sorting
step.

1

1 Introduction

The early 1990's saw the emergence of powerful techniques that reduced the
time requirement of dynamic programming algorithms for the classic eco-
nomic lot sizing (ELS) problem [8, 14, 1]. It was subsequently realized that
certain scheduling problems involving the sum of completion times objective
and an element of batching exhibited structural properties that made them
amenable to more e�cient dynamic programming solutions. In some cases
[7, 3], the improved schemes were problem-speci�c; in other cases [6, 10],
the dynamic programming recursion could be written in a form that al-
lowed the application of the geometric techniques of Van Hoesel et al. [13],
which are a generalization of the technique used in [14]. The typical com-
plexity improvement was from O(n2) to O(n log n), where n is the number of
jobs. A question that arises naturally is whether similar improvements can
be achieved in solving the maximum lateness counterparts of these batch-
ing problems since, in a standard implementation, the respective dynamic
programs have also quadratic time requirements. This paper provides an
a�rmative answer to this question. We study four such batching problems
and provide implementations of dynamic programming with a time require-
ment that is either linear or O(n log n). Since the batching problems are
solved after an initial sorting step, our results imply O(n log n) algorithms
for the four maximum lateness problems.

The remainder of this paper is organized as follows. In Section 2 we
sketch our approach with particular focus on a subproblem that we encounter
frequently when solving the four batching problems. Subsequently, we list
the problems in order of relative complexity, both in terms of the improved
running time and the di�culty of obtaining this improvement. Speci�cally,
Section 3 deals with the problem of batching jobs of a single type under batch
availability. A problem in which jobs are processed by a batching machine
is the subject of Section 4. In Section 5 we give an improved algorithm for
batching customized two-operation jobs on a single machine under batch
availability and we indicate how a similar approach can be adopted in the
case of item availability. Finally, some concluding remarks are given in
Section 6.

2 Preliminaries

In general, solving scheduling problems with a batching element involves
taking the appropriate batching and sequencing decisions. For the problems

2

that we examine in this paper, these two aspects can be decoupled. In
fact, for three of our problems there is an optimal schedule in which jobs
complete according to the earliest due date (EDD) rule, whereas for the
problem studied in Section 4 the shortest processing time (SPT) rule is
optimal. In any case, the sorting step imposes a lower bound of O(n logn) on
the overall complexity of any algorithm. For two of the problems examined
here, improving the e�ciency of the dynamic programming step results in
the sorting step being the overall bottleneck.

Although it is di�cult to provide a description of a procedure that would
be general enough to be applied to all the problems tackled in this paper,
we now sketch some common elements of our approach; the implementa-
tion details and some special data structures deployed are covered in the
subsequent sections.

Our starting point is always a backward recursion dynamic program with
batch insertion [11]: the optimal schedule is built by inserting entire batches
of jobs (or operations) at the start of previously obtained schedules. The
recursions are thus of the general form:

Gk = min
k<l�n+1

fmaxfPk;l +Gl; Lk;lgg; (1)

where Gk is the minimum lateness of schedules including jobs k; k+1; : : : ; n,
whereas Pk;l and Lk;l denote the total processing time and overall lateness
of the inserted batch, which consists of the jobs k; k + 1; : : : ; l� 1. In other
words, l is the index of the �rst job in the second batch.

Our �rst step is to observe that the index set fk + 1; : : : ; n + 1g can
be divided into two mutually exclusive index sets I1k and I2k so that the
maximum in (1) is given by either the �rst or the second term, respectively.
In view of that, (1) can be re-written as

Gk = min fmin
l2I1

k

fPk;l +Glg;min
l2I2

k

Lk;lgg; (2)

For reasons that will become clearer in the subsequent sections, the solution
to the second minimization problem in (2) is obtained by retrieving the
minimal index l� from I2k . This leaves us with the following tasks:

a) maintain/update the index sets I1k and I2k e�ciently,

b) solve the �rst minimization problem and, where applicable, a second
optimization problem that arises when calculating Lk;l�.

With respect to the �rst task, observe that I1k and I2k are not necessarily
contiguous. In fact, as we show in the subsequent sections, the satisfaction

3

of this additional condition by some problems leads to linear-time imple-
mentations; where this is not the case, updating these index sets is `costly'
and the complexity of the dynamic program becomes O(n logn).

As for the second task, both the �rst minimization problem and the
non-trivial variants of the second optimization problem possess a key prop-
erty that enables a solution to be found in time which is overall linear.
Speci�cally, the idea is to transform all such problems into a problem of the
following type:

Problem (P) Determine the minima mk, k = 1; 2; : : : ; n, de�ned as

mk = min
k<l�uk

fl

where uk 2 fk; k + 2; : : : ; ng for all k = 1; 2; : : : ; n (mk =1 if uk = k) and

the following conditions hold:

a. uk � uk+1 for all k = 1; 2; : : : ; n� 1

b. un = n

c. uk is known once mk+1 is known, k = 1; 2; : : : ; n� 1

d. fk is known once mk is known, k = 1; 2; : : : ; n

Conditions (c) and (d) suggest that the values mk can only be calculated
in order of decreasing index k. A straightforward way to solve problem (P)
requires O(n2) time. We show, however, that a linear time bound is possible.

Consider, for an arbitrary k 2 f1; 2 : : : ; ng with uk > k, the values
fl; l = k+1; k+2; : : : ; uk. Let t(1); t(2); : : : ; t(r) be the unique subsequence
of k + 1; k + 2; : : : ; uk which has the following properties:

1. t(1) = k + 1,

2. t(i + 1) is the smallest index in ft(i) + 1; t(i) + 2; : : : ; ukg such that
ft(i+1) < ft(i), i = 1; : : : ; r � 1.

Clearly, this subsequence has the properties t(1) < t(2) < : : : < t(r) and
ft(1) > ft(2) > : : : > ft(r). Moreover, ft(r) = mk. Hence, given the subse-
quence, the desired minimum is immediately available.

We keep track of the subsequence by storing its elements in decreasing
order in a list (i.e, fk+1 is the element at the top). This particular data
structure has the property that elements at the bottom can only be deleted,
while elements at the top can be both deleted and added. Hence, it could

4

be viewed as a combination of a stack and a queue, and it can easily be
implemented so that each deletion and each addition requires constant time
(see [2]).

To see why this data structure is convenient, �rst observe the following:
if for a given k � 2, a value l 2 fk + 1; k + 2; : : : ; ukg is not selected in
the subsequence, then l will not be selected for k � 1. This follows from
the fact that there exists some value in the subsequence, say t(i), such that
k + 1 � t(i) < l and ft(i) < fl. Now if l 2 fk; k + 1; : : : ; uk�1g, then also
t(i) 2 fk; k + 1; : : : ; uk�1g and this implies that l should still be excluded
from the subsequence. Repetition of this argument leads to an element never
being considered for inclusion in the subsequence once it has been excluded.
This means that when for a certain k � 2 the elements t(1); t(2); : : : ; t(r) of
the subsequence are given, then | once uk�1 is known | the corresponding
subsequence for k� 1 can be constructed as follows. Because uk�1 � uk, we
�rst delete from the bottom of the list any element larger than uk�1. Now,
suppose uk�1 > k � 1. Then, because k will be added at the top of the
list, we delete from the top all remaining elements t(i) for which fk � ft(i).
Finally, we add k at the top of the list. In case uk�1 = k � 1 the list is
empty after the deletion operations and no element is added.

The above updating process is carried out n � 1 times in total. Each
time at most one element is added, which requires constant time per ad-
dition. Furthermore, several elements may be deleted. Note that, because
the list elements are already ordered, each deletion requires indeed constant
time. The number of deleted elements can not be bounded nicely for each
individual time the updating process is carried out. However, the overall
number of deletions is not larger than n. The reason for this is simple: in
the updating process, each of the elements 1; 2; : : : ; n is added at most once
to the list and therefore it can be deleted at most once.

To summarize the above discussion: we have shown that problem (P)
can be solved in O(n) time.

3 Scheduling jobs of a single type under batch

availability

The problem we are addressing in this section may be stated formally as
follows. There are n jobs to be scheduled on a single machine. Each job
j (j = 1; : : : ; n) has a processing time pj and a due date dj by which it
should ideally complete. Jobs can be processed consecutively in batches.
At the start of the schedule and prior to each batch, a set-up time s is

5

incurred, which motivates the formation of longer batches so as to reduce
the completion time of later jobs. However, batch availability applies, which
means that all the jobs that belong to the same batch complete only when
the last job in the batch completes. As a consequence, extending a batch by
including additional jobs increases the completion time of the jobs previously
in the batch.

The above problem setting is introduced in [12]. For the sum of comple-
tion times objective, an e�cient algorithm is given by Co�man et al. [7]:
the batching step is performed in linear time to give an overall time re-
quirement of O(n log n). An extension of this algorithm for a slightly more
general cost function is proposed by Albers and Brucker [3] (see also [5]).
It is worth pointing out that the approach in [7, 3], like ours, relies on the
notion of a queue. However, in the problem examined here, the presence
of a maximum operation within the dynamic programming recursion is an
additional complication that does not arise in the sum of completion times
variant. (This is also true for the problems addressed in later sections.)

It is shown in [15] that there is an optimal schedule in which jobs com-
plete according to the earliest due date (EDD) rule. Thus, the jobs can
be re-indexed according to this rule in O(n log n) time and the problem
reduces to one of batching that can be solved using a backward dynamic
program with batch insertion. Let Gk denote the minimum overall lateness
of a schedule containing jobs k; k + 1; : : : ; n when starting at time 0. The
initialization is Gn+1 = �1 and the recursion for k = n; n� 1; : : : ; 1 is

Gk = min
k<l�n+1

fmaxf(s+ ak � al) +Gl; (s+ ak � al)� dkgg; (3)

where ak =
Pn

h=k ph for k = 1; : : : ; n. Here l denotes the �rst job in the
second batch of the schedule. Since this batch starts at time s+ak�al, the
minimum overall lateness from this batch onward is given by the �rst term
between brackets, while the lateness of the �rst batch is given by the other
term (since job k has the smallest due date).

As pointed out in [15], a straightforward implementation of the above
algorithm requires O(n2) time. However, we now show that the dynamic
programming part can be implemented in linear time.

From (3), or common sense reasoning, it follows that Gl+1 � Gl for
every l � n � 1. Hence, if Gl+1 � �dk for some k 2 f1; : : : ; ng, then also
Gl � �dk. We now de�ne qk as the largest job index l in fk + 1; : : : ; ng
such that Gl � �dk; if no such index exists, we de�ne qk = k. (Note that,
because of the EDD order, qk+1 � qk holds for every k � n� 1.)

From the above observations, it follows that for all indices l 2 I1k =

6

fk + 1; : : : ; qkg the maximum in (3) is given by the �rst term, whereas for
l 2 I2k = fqk+1; : : : ; n+1g, the maximum is given by the second term. Now
(3) can be rewritten as

Gk = minf min
k<l�qk

fs+ ak � al +Glg; min
qk<l�n+1

fs+ ak � al � dkgg:

Note that, for this problem, each of I1k and I2k is contiguous. Further, the
second minimum is always attained for l = qk +1: owing to the batch avail-
ability assumption and the EDD indexing of the jobs, the overall lateness
of a batch is always determined by the �rst job in the batch. Consequently,
the remaining task is to compute

s+ ak + min
k<l�qk

f�al +Glg (4)

e�ciently. However, since this has to be done for every value of k, we actually
need to solve an instance of problem (P) with uk = qk and fl = �al + Gl.
Hence, it takes overall O(n) time to calculate the minima given by (4).

Since the parameters al, l = 1; 2; : : : ; ; n, and, because of monotonicity,
the values qk; k = 1; 2; : : : ; n, can be computed in O(n) time, we have now
shown that the time requirement of our algorithm to solve the batching
problem is linear. Hence, because of the sorting step, the overall time re-
quirement is O(n logn). This constitutes an improvement over the algorithm
in [15].

4 Scheduling jobs on a batching machine

The problem we are addressing in this section may be stated formally as
follows. There are n jobs to be processed on a single batching machine.
This machine is capable of processing up to b jobs simultaneously in batches.
Each job j (j = 1; : : : ; n) has a processing time pj and a due date dj by which
it should ideally complete. Whenever a batch is formed, its completion time
is equal to the largest processing time of any job in the batch.

The model is analyzed extensively in a recent paper by Brucker et al. [6].
They distinguish between the unbounded case where b � n and the bounded
case whereby b < n. For the unbounded problem of minimizing the maxi-
mum lateness, it is shown in [6] that there is an SPT-batch optimal schedule.
Thus, the jobs can be re-indexed according to this rule in O(n logn) time
and the problem reduces to one of batching that can be solved using the
following backward dynamic program with batch insertion of Brucker et al.
[6]. Let Gk denote the minimum overall lateness of a schedule containing

7

jobs k; k+1; : : : ; n when starting at time 0. The initialization is Gn+1 = �1
and the recursion for k = n; n� 1; : : : ; 1 is

Gk = min
k<l�n+1

fmaxfpl�1 +Gl; pl�1 + max
k�j�l�1

f�djggg; (5)

where l should again be interpreted as the �rst job of the second batch,
which starts when the �rst batch completes. By de�nition, this happens
when the longest job (l � 1) of the �rst batch completes.

A standard implementation of the above algorithm, as proposed in [6],
requires O(n2) time. We now show that the dynamic programming part can
be implemented in linear time, thus yielding an overall time requirement of
O(n log n).

Our approach is somewhat similar to the one in the previous section.
Again it can easily be veri�ed that Gl+1 � Gl for every l � n� 1. Hence, if
Gl+1 > maxk<j�lf�djg for some k 2 f1; : : : ; ng, then

Gl � Gl+1 > max
k<j�l

f�djg � max
k<j�l�1

f�djg:

It follows that, if I1k and I2k are de�ned as in Section 2 (that is: I1k = fl 2
fk + 1; : : : ; ngjGl � maxk<j�l�1f�djgg and I2k = I1k \ fk + 1; : : : ; n + 1g),
then, I1k = fk + 1; : : : ; qkg and I2k = fqk + 1; : : : ; n + 1g, where qk is the
largest index with the required property. For convenience we de�ne qk = k

if the inequality is not satis�ed by any job in fk+1; k+2; : : : ; ng. Note that
qk is non-decreasing in k. Recursion formula (5) can now be rewritten as

Gk = minf min
k<l�qk

fpl�1 +Glg; min
qk<l�n+1

fpl�1 + max
k�j�l�1

f�djggg:

The �rst minimization problem between brackets can again be viewed as
an instance of problem (P) with uk = qk and fl = pl�1 +Gl. With respect
to the second minimization problem, we observe that, for a �xed arbitrary
k, the minimum is attained for l as small as possible, i.e. l = qk + 1, since
this minimizes both the term pl�1, because of the SPT order, as well as
the range over which the maximum is computed. Hence, we are left with
calculating

pqk + max
k�j�qk

f�djg = pqk +maxf�dk; max
k<j�qk

f�djgg:

This boils down to solving the problem

min
k<j�qk

fdjg;

8

which is an instance of (P) with uk = qk and fj = dj. From these ob-
servations and the fact that, because of monotonicity, the values qk; k =
1; 2; : : : ; n, can be computed in O(n) time, it follows that the time require-
ment of our algorithm to solve the batching problem is linear. Hence, tak-
ing into account the SPT-sorting step, the overall time requirement is again
O(n log n). This constitutes an improvement over the algorithm in [6].

Finally, we note that Brucker et al. [6] use their algorithm for minimizing
the maximum lateness as a subroutine in a polynomial procedure for min-
imizing the maximum cost. Therefore, the O(log n) improvement obtained
here applies to that procedure too.

5 Scheduling customized two-operation jobs

The problem we are addressing in this section may be stated formally as
follows. There are n jobs which have to be scheduled on a single machine.
Each job j (j = 1; 2; : : : ; n) has two operations, namely a standard opera-
tion followed { not necessarily immediately { by a speci�c operation. These

operations have processing times p
(1)
j and p

(2)
j , respectively. A set-up time is

required before the �rst standard operation and whenever there is a switch
in production from speci�c to standard operations; two standard operations
may be processed consecutively to form a batch without a set-up in between.
With respect to the way in which standard operations are released (become
available) after processing, two schemes are possible: batch availability, de-
�ned in Section 3, and the alternative item availability whereby an operation
becomes available immediately after it has been processed. We only analyze
the batch availability variant explicitly and give comments as to how the
result can be extended to the item availability case.

The model is introduced in [4] (for batch availability) and then analyzed
for due-date related criteria in [10]. We note that the problem discussed in
[4] for the sum of completion times objective was shown to be equivalent to
the, seemingly simpler, problem studied in [7]. In particular, it was shown
that the speci�c (unique) operations can essentially be removed from the
problem. If this were also the case for the maximum lateness variants of
these problems, then the results of Section 3 could be used directly to solve
the problem discussed in this section. Before we proceed with our analysis,
it is worthwhile to show that this is not the case. Consider the instance of
the two-operation variant in which the set up time is c (c > 0) and there
are three jobs with due dates and operation processing times as shown in
Table 1.

9

Table 1: Job data 1

Job i 1 2 3

p
(1)
i 1 1 1

p
(2)
i 1 1 c+ 2

dj c+ 1 2c+ 3 2c+ 3

It can be easily veri�ed that the problem of Section 3 obtained by omit-
ting the speci�c operations, has as the unique optimal solution job 1 in
the �rst batch and jobs 2 and 3 in the second batch. The value of this
solution is Lmax = 0. However, inserting the speci�c operations into this
schedule (immediately after the corresponding batch) yields a schedule for
the two-component problem with lateness equal to c + 4. It is easy to see
that scheduling all the standard operations in one batch, followed by all the
speci�c operations in EDD order, yields a schedule with lateness of 4. Thus,
our example suggests that there is no obvious way to translate optimal so-
lutions to the problem in Section 3 into optimal solutions for the problem
in this section. This observation and the analysis below seem to lead to the
conclusion that the problem in this section is genuinely more complex.

Returning to the two-operation problem, it is shown in [10] that there
is an optimal schedule in which jobs complete according to the EDD rule.
Thus, the jobs can be re-indexed according to this rule in O(n logn) time
and the problem reduces to one of batching that can be solved using a
backward dynamic program with batch insertion [10]. Let Gk denote the
minimum overall lateness of a schedule containing jobs k; k + 1; : : : ; n. The
initialization is Gn+1 = �1 and the recursion for k = n; n� 1; : : : ; 1 is

Gk = min
k<l�n+1

fmax

8><
>:

s+
Pl�1

h=k p
(1)
h +

Pl�1
h=k p

(2)
h +Gl;

s+
Pl�1

h=k p
(1)
h +maxk�j�l�1f

Pj
h=k p

(2)
h � djg

9>=
>;
g:

(6)
Again, Gk+1 � Gk for k = 1; 2; : : : ; n� 1 holds. A standard implementation
of the above algorithm requires O(n2) time, if some preprocessing is used.
We now show that the dynamic programming part can be implemented in
O(n log n) time thus yielding an overall time requirement of O(n log n).

For the maximum in (6) to be given by the �rst term, the following needs

10

to hold

Gl � max
k<j�l�1

f�
l�1X

h=j+1

p
(2)
h � djg;

or equivalently

Gl �
nX

h=l

p
(2)
h � max

k�j�l�1
f�

nX
h=j+1

p
(2)
h � djg: (7)

Consider an arbitrary index k 2 f2; 3; : : : ; ng. Let the subset Ik1 �
fk+1; k+2; : : : ; ng contain the indices for which (7) holds. We �rst explain
how we determine Ik�11 . Since the left-hand-side value of (7) does not depend
on k and

max
k�j�l�1

f�
nX

h=j+1

p
(2)
h � djg � max

k�1�j�l�1
f�

nX
h=j+1

p
(2)
h � djg

it holds that (Ik�11 \ fk + 1; k + 2; : : : ; ng) � Ik1 . Moreover, the elements of
Ik1 which are not in Ik�11 are exactly those l 2 Ik1 for which

Gl �
nX

h=l

p
(2)
h < �

nX
h=k

p
(2)
h � dk�1: (8)

Note that the right-hand-side of (8) is a constant for �xed k. Hence, if
the inequality is satis�ed for one or more indices in Ik1 , then these correspond

to the smallest elements of the set fGl �
Pn

h=l p
(2)
h j l 2 Ik1 g. This fact can

be used to e�ciently determine Ik�11 . In our implementation, we make use
of a heap, which we denote by H1 Recall that this data structure has the
following properties [2]:

(i) the minimum of all values stored in the heap can be retrieved in con-
stant time,

(ii) adding a value to the heap takes O(logm) time, wherem is the number
of stored values,

(iii) deleting a value from the heap takes O(logm) time.

Suppose that heap H1 contains the values Gl �
Pn

h=l p
(2)
h for all l 2 Ik1 .

After Gk has been calculated (how this is done e�ciently will be shown

below), we would likeH1 to contain the valuesGl�
Pn

h=l p
(2)
h for all l 2 Ik�11 g.

To achieve this, we �rst check whether the minimum value is less than the

11

right-hand-side of (8). If this is the case, then we delete the minimum from
H1 and we repeat the comparison with the new minimum value. We keep
deleting the current minimum value from H1 until this value becomes at
least the as large as the right-hand-side of (8) or until H1 is empty. Then we

check whether Gk �
Pn

h=k p
(2)
h is at least as large as the right-hand-side of

(8). Only if this is the case, do we add Gk�
Pn

h=k p
(2)
h to H1. At this point,

H1 contains the values Gl�
Pn

h=l p
(2)
h for all l 2 Ik�11 . In parallel to updating

H1, we can keep track of the indices that correspond to its elements.
Let us now turn to the issue of the e�cient calculation of Gk. From the

de�nition of Ik1 it follows that we would like to calculate

s+min
l2Ik

1

f
l�1X
h=k

p
(1)
h +

l�1X
h=k

p
(2)
h +Glg (9)

and

s+min
l2Ik

2

max
k�j�l�1

f
l�1X
h=k

p
(1)
h +

jX
h=k

p
(2)
h � djg; (10)

where Ik2 = fk + 1; k + 2; : : : ; n+ 1gnIk1 .
First consider (10). Suppose l; i 2 Ik2 and l < i, then

max
k�j�l�1

f
l�1X
h=k

p
(1)
h +

jX
h=k

p
(2)
h � djg �

max
k�j�l�1

f
i�1X
h=k

p
(1)
h +

jX
h=k

p
(2)
h � djg �

max
k�j�i�1

f
i�1X
h=k

p
(1)
h +

jX
h=k

p
(2)
h � djg:

It follows that the minimum in (10) is attained for the smallest element
of Ik2 , which we denote by qk; we de�ne qk = k if I2 = ;. Hence, (10) is
equivalent to

s+ max
k�j�qk�1

f
qk�1X
h=k

p
(1)
h +

jX
h=k

p
(2)
h � djg

or

s�
qk�1X
h=k

p
(1)
h �

k�1X
h=1

p
(2)
h +maxf

kX
h=1

p
(2)
h + dk; � min

k<j�qk�1
f�

jX
h=1

p
(2)
h + djgg:

12

From the discussion about the updating process of heap H1, it follows
that the values qk are non-decreasing in k. (Also note that keeping track
of the values qk, k = 1; 2; : : : ; n, requires overall O(n) time.) Hence, the

minimization is an instance of (P) with uk = qk�1 and fj = �
Pj

h=1 p
(2)
h +dj .

It follows that (10) can be calculated for all values of k = 1; 2; : : : ; n together
in linear time.

For the e�cient calculation of (9), we use a heap H2 which contains the

values
Pl�1

h=1 p
(1)
h +

Pl�1
h=1 p

(2)
h +Gl for all l 2 Ik1 and possibly for some l 2 Ik2 .

Note that these values are independent of k. To calculate (9), we simply
retrieve the minimum from the heap. If the minimum corresponds to an
element of Ik2 , we delete this value from H2 and retrieve the new minimum.
This is repeated until the minimum corresponds to an element of Ik1 or until
H2 is empty. In the latter case the value of (9) is1, while in the former case

we get the value of (9) by adding s and subtracting
Pk�1

h=1 p
(1)
h +

Pk�1
h=1 p

(2)
h .

The time complexity of the above algorithm depends on the number of
additions to and deletions from the heaps. For every l = 1; 2; : : : ; n, the

value Gl�
Pn

h=l p
(2)
h is added at most once to H1 and the value

Pl�1
h=1 p

(1)
h +Pl�1

h=1 p
(2)
h + Gl is added at most once to H2. (These additions actually

occur at the same point in time.) Furthermore, deletion from H1 and H2

also occurs at most once for every index. Since the heaps never contain more
than n elements, it follows that the total computational e�ort involving heap
operations is O(n log n).

Finally, we note that partial sums such as
Pl�1

h=k p
(1)
h can be replaced byPn

h=k p
(1)
h �

Pn
h=l p

(1)
h . Partial sums of the latter type can be calculated in

linear time in a preprocessing step.
We have now arrived at the required result: our algorithm solves the

batching problem in O(n log n) time thus yielding an overall time require-
ment of O(n logn) time. This constitutes an improvement over the algorithm
in [10].

With respect to the item availability case, we note that the problem can
be solved using a double recursion dynamic program with block insertion;
such a scheme is proposed in [9] and enables us to deploy the approach
developed in this section `twice' (in parallel, even) to reduce the overall
complexity to O(n logn).

13

6 Concluding Remarks

We have presented improved dynamic programming algorithms for a class
of scheduling problems involving the maximum lateness criterion and an ele-
ment of batching. A question that arises is whether insights gained from this
study can help to reduce the time requirement of algorithms for other, more
complicated, models involving the batching of jobs that belong to di�erent
families. Since, in that context, the tasks of sequencing and batching can
only be separated within each family but not at the overall level, it is not
obvious whether or how our approach could be applied to those problems.

An interesting research direction is that of ascertaining whether there
exist maximization problems outside the domain of production scheduling
that are amenable to our approach.

Acknowledgements

The authors wish to thank Chris Potts who suggested this research topic.
Financial support by the Tinbergen Institute is gratefully acknowledged.

References

[1] A Aggarwal and J K Park. Improved algorithms for economic lot size
problems. Operations Research, 41(3):549{571, 1993.

[2] A V Aho, J E Hopcroft, and J D Ullman. Data Structures and Algo-

rithms. Addison-Wesley, Reading, MA, 1987.

[3] S Albers and P Brucker. The complexity of one-machine batching prob-
lems. Discrete Applied Mathematics, 47:87{107, 1993.

[4] K R Baker. Scheduling the production of components at a common
facility. IIE Transactions, 20(1):32{35, 1988.

[5] P Brucker. Scheduling Algorithms. Springer Verlag, Berlin, 1995.

[6] P Brucker, A Gladky, H Hoogeveen, M Y Kovalyov, C N Potts, T Taut-
enhahn, and S van de Velde. Scheduling a batching machine. Journal

of Scheduling, 1:31{54, 1998.

[7] E G Co�man, M Yannakakis, M J Magazine, and C Santos. Batch
sizing and job sequencing on a single machine. Annals of Operations

Research, 26:135{147, 1990.

14

[8] A Federgruen and M Tzur. A simple forward algorithm to solve general
dynamic lot sizing models with n periods in O(n log n) or O(n) time.
Management Science, 37:909{925, 1991.

[9] A E Gerodimos, C A Glass, and C N Potts. Scheduling customised
jobs on a single machine under item availability. submitted to IIE

Transactions in Operations Research, 1998.

[10] A E Gerodimos, C A Glass, and C N Potts. Scheduling the production
of two-operation jobs on a single machine. to appear in a Feature
Issue of European Journal of Operational Research dedicated to the
15th EURO Summer Institute, ESI XV, on Production Scheduling, St
Vincent, Aosta Valley, Italy, September 12-26, 1997, 1998.

[11] M Y Kovalyov and C N Potts. Scheduling with batching: A review. to
appear in a Feature Issue of European Journal of Operational Research

dedicated to the 15th EURO Summer Institute, ESI XV, on Production
Scheduling, St Vincent, Aosta Valley, Italy, September 12-26, 1997,
1998.

[12] C A Santos and M J Magazine. Batching in single operation manufac-
turing systems. Operations Research Letters, 4(3):99{103, 1985.

[13] S van Hoesel, A Wagelmans, and B Moerman. Using geometric tech-
niques to improve dynamic programming algorithms for the economic
lot-sizing problem and extensions. European Journal of Operational

Research, 75:312{331, 1994.

[14] A Wagelmans, S van Hoesel, and A Kolen. Economic lot sizing: An
O(n log n) algorithm that runs in linear time in the Wagner-Whitin
case. Operations Research, 40(Supp. 1):145{156, 1992.

[15] S Webster and K R Baker. Scheduling groups of jobs on a single ma-
chine. Operations Research, 43:692{703, 1995.

15

