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Abstract

The paper characterizes �rst and second order tail behavior of

convolutions of i.i.d. heavy tailed random variables with support on

the real line. The result is applied to the problem of risk diversi�cation

in portfolio analysis and to the estimation of the parameter in a MA(1)
model.
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1 Introduction

Assume X1; X2 are independent random variables whose distribution func-
tion tail sums

F i(t) := P (jXij � t); i = 1; 2

are regularly varying with index �� < 0, i.e.,

lim
t!1

F i(tx)

F i(t)
= x�� for all x > 0: (1.1)

For a general overview of regular variation theory the reader is referred
to Bingham et al.(1987). The asymptotic behavior of the tail sum of the
convolution of X1 and X2 is studied in Feller (1971). More recently Datta
and McCormick (1998) gave the behavior of the tail sum for linear processesP1

i=1 ciXt�i under suitable conditions on the coeÆcients ci.
In this paper we investigate the behavior of convolutions in case a re-

�nement of (1.1), called second order regular variation, on the tails of the
distribution functions of the random variables holds. Speci�cally, we assume
that the tail sums satisfy

lim
t!1

F i(tx)

F i(t)
� x��

ai(t)
= x��

x� � 1

�
(1.2)

for x > 0; i = 1; 2, where ai is a function satisfying ai(t) ! 0 (t ! 1): It
follows that the functions jaij are regularly varying with index � � 0. In case
� = 0 read x��1

�
= log x:

For positive random variables satisfying (1.2) the tail behavior under
convolution was studied in Geluk, de Haan, Resnick and Starica (1997) and
Geluk and Peng (1999). In this paper we do not make the assumption of
positive random variables and provide more precise estimates for a number
of cases. We replace the positivity condition with the following tail balance
condition

lim
t!1

1�Fi(t)
F i(t)

� pi

ai(t)
= ri 2 (�1;1); (1.3)
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where pi 2 [0; 1], i = 1; 2:
Under the assumptions (1.2) and (1.3) we give an asymptotic expansion

for P (X1 +X2 > t). It turns out that the number of terms in the expansion
depends on the value of the parameter � whereas the type of the terms in the
expansion depends on �; p1; p2; � and the convergence of the ��th moment.

The �rst application of the main result is on portfolio management. The
performance of a portfolio is measured in terms of the returns on investment,
i.e. the percentage gain or loss on initial capital. The structure of the
portfolio inuences the portfolio performance. Some assets have low expected
returns and others have high expected returns, but at the cost of higher risk.
Perhaps the most important rule of thumb in �nance prescribes how one
should not structure one's portfolio: 'Don't put all your eggs in one basket'.
The idea behind this rule of thumb is that through diversi�cation one can
reduce the portfolio risk, measured as the variance of the portfolio return,
by virtue of the law of large numbers, since returns on individual assets are
imperfectly correlated with each other. The e�ects of diversi�cation on the
mean and variance of a portfolio is well understood and can be found in all
elementary textbooks on �nance. In this section we elaborate on the virtues
of diversi�cation regarding tail risk, about which much less is known.

The tail risk is the probability that there is a very 'large' loss on a port-
folio. It depends on the economic context what constitutes a 'large' loss. For
a pension fund this constitutes a loss so large that it is unable to pay out the
pensions, and for a commercial bank a loss is large if it is unable to meet the
cash demand by deposit holders, which may trigger a bank run. It suÆces for
our purposes to identify the meaning of large by a typical quantile in the left
tail of the return distribution. Financial institutions measure the downside
risk or tail risk of their proprietary trading portfolio on a daily basis, both
for the purpose of internal risk management, and because this is a regula-
tory requirement (external risk management imposed by public agencies to
ensure prudence in the �nancial sector). This downside risk measurement
operation is now commonly known as the Value-at-Risk (VaR) exercise, see
e.g. Jorion (1997), Dowd (1998), Danielsson and De Vries (1997, 1998) and
Longin (1997). Hence it is important to study how the downside risk or VaR
is a�ected by diversi�cation. In section 3 we �rst give a brief review of �rst
order tail e�ects and then provide a number of new results on second order
re�nements based on the result in section 2.
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Our second application is in time series analysis. Suppose we have obser-
vations Y1; � � � ; Yn from the MA(1) model, i.e.,

Yi = �i � ��i�1; (1.4)

where f�ig is a sequence of independent and identically distributed random
variables with mean zero and �nite variance. In case j�j < 1, the maximum
likelihood estimator �̂MLE for � has the following asymptotic limit:

p
n(�̂MLE � �)

d! N(0; 1� �2) (1.5)

(see Brockwell and Davis (1991)). However, in case j�j = 1, the standard
asymptotic normal distribution theory does not apply (see Brockwell and
Davis (1991)). On the other hand, the normal limit in (1.5) provides a
particularly inaccurate approximation for values of j�j close to one. For the
applications in which inference about j�j at or close to one, we refer to Davis,
Chen and Dunsmuir (1995) and Davis and Dunsmuir (1996). Moreover,
Davis and Dunsmuir (1996) proposed the local maximum estimator �̂LM ,
de�ned as the largest of the local maximizers of the likelihood, and derived
the asymptotic limit of �̂LM too.

Recently, Davis and Mikosch (1998) obtained the limit behaviour of the
local maximizer closest to 1 of the Gaussian likelihood and the corresponding
likelihood ratio statistic, used in Davis and Dunsmuir (1996), when f�ig is
an i.i.d. sequence with symmetric stable law with index � 2 (0; 2). However
the limit in Davis and Mikosch (1998) is complicated. For the estimation of
� 2 (�1; 1) we refer to Lii and Rosenblatt (1982,1992).

In this paper we give a semi-parametric estimator for � 2 [�1; 1] under
the assumption that �i satis�es�

P (�i > t) = cpt��(1 + o(1))
P (�i < �t) = c(1� p)t��(1 + o(1));

(1.6)

as t ! 1, where � > 0, c > 0 and p 2 [0; 1]. Thus, �i is in the domain of
attraction of a stable law with index � in case � < 2, and �i is in the domain
of attraction of a normal distribution if � � 2.

First we give the intuitive derivation of our new estimator. For simplicity
we assume to have n + 1 observations and de�ne Zi = jYi+1 + Yij and Wi =
jYi+1 � Yij (i = 1; � � � ; n). Let Zn;1 � � � � � Zn;n and Wn;1 � � � � � Wn;n

denote the order statistics of Z1; � � � ; Zn and W1; � � � ;Wn, respectively.
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It follows from (1.1), (1.3) and Feller (1971) that as t!1
P (Zi > t)

= P (Yi+1 + Yi > t) + P (Yi+1 + Yi < �t)
= fP (�i+1 > t) + P ((1� �)�i > t) + P (���i�1 > t)g(1 + o(1))

+fP (�i+1 < �t) + P ((1� �)�i < �t) + P (���i�1 < �t)g(1 + o(1))
= cf1 + (1� �)� + j�j�gt��(1 + o(1)):

Similarly,

P (Wi > t) = cf1 + (1 + �)� + j�j�gt��(1 + o(1)):

Hence we can estimate cf1 + (1 � �)� + j�j�g and cf1 + (1 + �)� + j�j�g
by k

n
Z
�̂Z(k)
n;n�k and m

n
W

�̂W (m)
n;n�m , respectively, where k = k(n) ! 1, k=n ! 0,

m = m(n)!1, m=n! 0 and�
�̂Z(k) := f 1

k

Pk
i=1 logZn;n�i+1 � logZn;n�kg�1

�̂W (m) := f 1
m

Pm
i=1 logWn;n�i+1 � logWn;n�mg�1:

Note that �̂Z(k) and �̂W (m) are Hill estimators of the tail index � (see Hill
(1975)). Since �̂Z(k) and �̂W (m) are consistent estimators of � (see e.g.

Mason (1982)), it follows that k
m
Z
�̂Z(k)
n;n�kW

��̂W (m)
n;n�m is a consistent estimator of

f(�) :=
1 + j�j� + (1� �)�

1 + j�j� + (1 + �)�
:

De�ne

fn(�) :=
1 + j�j�̂W (m) + (1� �)�̂W (m)

1 + j�j�̂W (m) + (1 + �)�̂W (m)
:

It is easy to check that fn(�) is a decreasing function of � on the interval
[�1; 1]. Let f�n (�) denote the inverse function of fn(�). It follows that

�̂n := f�n (
k

m
Z
�̂Z(k)
n;n�kW

��̂W (m)
n;n�m ) (1.7)

is a consistent estimator of �.
In order to prove asymptotic normality of �̂n, we need second order regular

variation conditions for both P (Zi > t) and P (Wi > t). In section 4 these
conditions are obtained from assumptions on the innovations using theorem
2.1.
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2 Second order behaviour of convolutions

Theorem 2.1. Let Xi; i = 1; 2 be independent random variables with dis-
tribution functions Fi satisfying (1.2) and (1.3). De�ne for j � 0 integer
and � > 0,

c�;j =
�(�+ j)

j!�(�)
: (2.1)

Consider the following cases

A. If 0 < � < 1 then as t!1

P (X1+X2 > t) =
2X
i=1

(ri + o(1))F i(t)ai(t)

+
2X
i=1

piF i(t) + (d+ o(1))F 1(t)F 2(t); (2.2)

where

d = p1p2

n
� �(1� �)2

�(1� 2�)
+

2�(1� �)�(2�)

�(�)

o
� (p1 + p2)

�(1� �)�(2�)

�(�)
:

B. If � � 1 and EjXij� <1 (i = 1; 2); then as t!1

P (X1+X2 > t) =
2X
i=1

(ri + o(1))F i(t)ai(t)

+
2X
i=1

piF i(t)
n [�]�1X

j=0

c�;j
EXj

3�i
tj

+ (c�;[�] + o(1))
EX

[�]
3�i

t[�]

o
;

where [�] is the greatest integer less than or equal �.

C. If EjXij� =1 (i = 1; 2) and one of the following holds:

1. � � 1 is even
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2. � � 1 is odd and pi 6= 1
2
(i = 1; 2)

3. � � 1 is odd, pi =
1
2
; � = 0 and ri 6= 0 (i = 1; 2)

4. � � 1 is odd, � < 0 and ri 6= 0 (i = 1; 2);

then as t!1

P (X1 +X2 > t) =

=
2X
i=1

(ri + o(1))F i(t)ai(t) +
2X
i=1

piF i(t)
n ��1X

j=0

c�;j
EXj

3�i
tj

+

+ (�c�;� + o(1))
1

t�

Z t

0

(1� F3�i(y) + (�1)�F3�i(�y))y��1dy
o
:

D. If EjXij� =1 (i = 1; 2) and � > 1 is non-integer, then as t!1

P (X1 + X2 > t) =
2X
i=1

(ri + o(1))F i(t)ai(t) +

+
2X
i=1

piF i(t)

[�]�1X
j=0

c�;j
EXj

3�i
tj

+ (h� + o(1))F 1(t)F 2(t);

where [�] is the greatest integer less than or equal � and h� is a con-
stant.

The following result (see de Haan and Pereira (1999)) is needed for the
proof of the theorem.

Lemma 2.1. Let f be a measurable function and for some function a1(t) > 0
we have

lim
t!1

f(tx)� f(t)

a1(t)
=

x � 1



for all x > 0 where  is a real parameter. Then there exists a positive function
a with a(t) � a1(t) (t ! 1) with the property that for every "; "0 > 0 there
exists a t0 > 0 such that for t � t0; tx � t0

x�e�"
0j log xj

����f(tx)� f(t)

a(t)
� x � 1



���� < ":
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Proof of Theorem 2.1. Note that

P (X1 +X2 > t)� P (X1 >
t

2
)P (X2 >

t

2
) =

=
2X
i=1

Z t=2

�1
P (Xi > t� y)dF3�i(y)

=
2X
i=1

F i(t)ai(t)

Z t=2

�1

P (Xi>t�y)
F i(t)

� pi(1� y
t
)��

ai(t)
dF3�i(y)

+
2X
i=1

piF i(t)

Z t=2

�1
(1� y

t
)��dF3�i(y): (2.3)

Denote the integrals on the right hand side with Ii and Ji respectively.
Substituting the balance condition P (Xi > t � y) = piF i(t � y) +(ri +

o(1))F i(t�y)ai(t�y) as t!1 (valid uniformly for y 2 (�1; t=2)) we have

Ii = pi

Z t=2

�1

F i(t�y)
F i(t)

� (1� y
t
)��

ai(t)
dF3�i(y) +

+ (ri + o(1))

Z t=2

�1

F i(t� y)

F i(t)

ai(t� y)

ai(t)
dF3�i(y) =: Ii1 + Ii2: (2.4)

Now Ii1 ! 0 as t ! 1 follows using dominated convergence. The dom-
inating function is provided with the above Lemma. Similarly Potter's in-
equality (see e.g. Bingham et al.(1987)) gives the dominating function which
is necessary to apply dominated convergence in Ii2. This gives Ii2 ! ri as
t!1:

The method of estimation of the integral Ji depends on the value of �.

A. Suppose � < 1: Integration by parts gives

R t=2
0

n
(1� y

t
)�� � 1

o
dFi(y) =

= �(2� � 1)P (Xi >
t

2
) + �

Z 1=2

0

P (Xi > ty)(1� y)���1dy:

Using P (Xi >
t
2
) � piF i(

t
2
) � pi2

�F i(t) and regular variation of F i we
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�nd R t=2
0

n
(1� y

t
)�� � 1

o
dFi(y)

� pi

n
� (2� � 1)2� + �

Z 1

2

0

y��(1� y)���1dy
o
F i(t):

Another integration by parts givesR 0

�1

n
(1� y

t
)�� � 1

o
dFi(y)

= ��
Z 1

0

Fi(�ty)(1 + y)���1dy;

hence

R 0

�1

n
(1� y

t
)�� � 1

o
dFi(y)

� ��(1� pi)F i(t)

Z 1

0

y��(1 + y)���1dy;

Combination of the estimates now gives

Ji = F3�i(
t

2
) +

n
� (2� � 1)2�p3�i + �p3�i

Z 1

2

0

y��(1� y)���1dy

��(1� p3�i)
Z 1

0

y��(1 + y)���1dy + o(1)
o
F 3�i(t)

= 1 +
n
� p3�i22� + �p3�i

Z 1

2

0

y��(1� y)���1dy

��(1� p3�i)
Z 1

0

y��(1 + y)���1dy + o(1)
o
F 3�i(t): (2.5)

Note that
2Y
i=1

P (Xi >
t

2
) �

2Y
i=1

pi2
�F i(t): (2.6)

Substitution of (2.4), (2.5) and (2.6) in (2.3) gives (2.2), where

d = p1p2

n
� 22� + 2�

Z 1

2

0

y��(1� y)���1dy + 2�

Z 1

0

y��(1 + y)���1dy
o

��(p1 + p2)

Z 1

0

y��(1 + y)���1dy:
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The stated representation now follows since

2�

Z 1

2

0

y��(1� y)���1dy = 22� � �(1� �)2

�(1� 2�)

and Z 1

0

y��(1 + y)���1dy =
�(1� �)�(2�)

�(1 + �)
:

B. Suppose � � 1 and EjXij� <1 (i = 1; 2): Since

(1 + x)�� �P[�]�1
j=0

���
j

�
xj

x[�]
! (��)(��� 1) : : : (��� [�] + 1)

[�]!
; (x! 0)

the above ratio is bounded for x 2 (�1; 1
2
): ([�] is the greatest integer less

than or equal to �.) Hence we may use dominated convergence in order to
�nd Z t=2

�1
y[�]

(1� y
t
)�� �P[�]�1

j=0

���
j

�
(�y

t
)j

(�y
t
)[�]

dF3�i(y)!

! (��)(��� 1) : : : (�� � [�] + 1)

[�]!

Z 1

�1
y[�]dF3�i(y) (2.7)

as t!1:
Since Fi is regularly varying, we have for j = 0; : : : ; [�]� 1R1
t=2

yjdFi(y) = O(tjFi(t)) by Karamata's theorem (see e.g. Bingham et

al.(1987)). Combination of this observation with (2.7) shows that for the
case under consideration we have as t!1

Ji =

[�]�1X
j=0

c�;j
EXj

3�i
tj

+ (c�;[�] + o(1))
EX

[�]
3�i

t[�]
+O(F 3�i(t)); (2.8)

where c�;j is as in (2.1).
Substituting (2.7) and (2.8) in (2.3) gives

P (X1 +X2 > t) = P (X1 >
t

2
)P (X2 >

t

2
) +

2X
i=1

(ri + o(1))F i(t)ai(t) +

+
2X
i=1

piF i(t)
n [�]�1X

j=0

c�;j
EXj

3�i
tj

+ (c�;[�] + o(1))
EX

[�]
3�i

t[�]
+O(F 3�i(t))

o
:

(2.9)
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The result follows since EjXij[�] <1 implies

t[�]F i(t)! 0 as t!1;

hence
Q2

i=1 P (Xi >
t
2
) = O(

Q2
i=1 F i(t)) = o(t�[�] ^2

i=1 F i(t)):

C1,C2 Suppose EjXij� =1 (i = 1; 2); � is integer and one of the
following holds: 1. � � 1 is even 2. � � 1 is odd and pi 6= 1

2
.

Write Ji =
R t=2
�1(1� y

t
)��dF3�i(y) =: J1i+J2i; where J1i and J2i are the in-

tegrals over (�1;� t
2
) and (� t

2
; t
2
) respectively. Then jJ1ij � 2�F3�i(� t

2
) �

2�F 3�i( t2) = O(F 3�i(t)); using regular variation of F 3�i. In order to estimate
jJ2ij note that for jyj � t=2

(1� y

t
)�� = 1 +

�X
j=1

c�;j(
y

t
)j + c�;�+1(

�y

t
)�+1; (2.10)

where j�j = j�(y; t)j � 1:
For j = 0; : : : ; �� 1 Karamata's theorem shows that as t!1

1

tj
R t=2
�t=2 y

jdF3�i(y) =
EXj

3�i
tj

+O(F 3�i(t)): (2.11)

Integration by parts gives

1

t�
R t=2
�t=2 y

�dF3�i(y) = � 1

2�
(1� F3�i(

t

2
) + (�1)�F3�i(� t

2
))

+
�

t�

Z t=2

0

(1� F3�i(y) + (�1)�F3�i(�y))y��1dy

� �

t�

Z t

0

(1� F3�i(y) + (�1)�F3�i(�y))y��1dy =: Ki(t); (2.12)

where the asymptotic equality follows by Karamata's theorem.
In case j = �+ 1 we have similarly

1

t�+1

Z t=2

�t=2
y�+1dF3�i(y) = O(F 3�i(t)): (2.13)

Collecting the above estimates it follows that
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Ji = F3�i(
t

2
)� F3�i(� t

2
) +O(F 3�i(t)) +

��1X
j=1

c�;j
EXj

3�i
tj

+(c�;� + o(1))
�

t�

Z t

0

(1� F3�i(y) + (�1)�F3�i(�y))y��1dy

=1 +
��1X
j=1

c�;j
EXj

3�i
tj

+

+(c�;� + o(1))
�

t�

Z t

0

(1� F3�i(y) + (�1)�F3�i(�y))y��1dy:

Note that since F 3�i is regularly varying with index��, we have F 3�i(t) =
o(Ki(t)); hence as t!1 Q2

i=1 P (Xi > t=2) = o(
P2

i=1Ki(t)F i(t)):
The result now follows if we combine the estimates for Ii and Ji.

C3, C4 Suppose � odd, pi =
1
2
; ri 6= 0 for i = 1; 2. Using (1.3) it

follows that 1 � Fi(t) + (�1)�Fi(�t) � 2riai(t)Fi(t); hence this function is
(in absolute value) regularly varying with index � � �: It follows that, if
� = 0; (2.12) holds again and we have the same estimate as in C1 and C2.

The case C4 is similar.

D Suppose EjXij� =1 (i = 1; 2) and � > 1 non-integer
In this case we need a more precise estimate for Ji. An integration by

parts shows that

J1i =

Z �t=2

�1
(1� y

t
)��dF3�i(y)

= (
3

2
)��F3�i(� t

2
)� �

Z �1=2

�1
F3�i(ty)(1� y)���1dy

� (1� p)
h
(
3

2
)��F 3�i(

t

2
)� �

Z �1=2

�1
F 3�i(�ty)(1� y)���1dy

i

� (1� p)F 3�i(t)
h
(
4

3
)� � �

Z �1=2

�1
(�y)��(1� y)���1dy

i
:

Now (2.11) is replaced with the estimate (valid for j = 0; : : : ; [�])

1

tj
R t=2
�t=2 y

jdF3�i(y) =
EXj

3�i
tj

+
�

�� j
F 3�i(t) + o(F 3�i(t)):
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In case j = [�] + 1 we have as !1
1

t[�]+1

R t=2
�t=2 y

[�]+1dF3�i(y) � �

[�] + 1� �
2��[�]�1F 3�i(t):

The rest of the proof follows as before.

3 Portfolio diversi�cation e�ects

3.1 First order e�ects

It is a stylized fact that �nancial asset returns are heavy tailed distributed as
in (1.1). Then Feller's (1971, VIII.8) classical result can be used to investigate
the bene�ts from cross-sectional portfolio diversi�cation.

To this end we �rst briey have to review the standard �nance model for
(relative) risk pricing. In the so called Capital Asset Pricing Model (CAPM),
see e.g. Fama and Miller (1972) and Copeland and Weston (1983, ch.7), the
return Ri on an individual asset i is related to the return rf on the riskfree
asset (government bond) and the return R on the market portfolio (measured
as the return on an index like the S&P500). Suppose that

Ri � rf = �i(R� rf) +Qi;

where Qi is the idiosyncratic or unsystematic risk factor of the return Ri

on asset i, and �i is the correlation coeÆcient in a regression of Ri � rf on
R � rf . The typical assumption is that Qi; Qj and R are cross-sectionally
independently distributed. Thus �i reects how Ri covaries with the market.
The CAPM holds that market forces determine what happens in expectation

E[Ri � rf ] = �iE[R� rf ]:

Since for what follows the risk free rate rf plays no role, we economize on
notation and set rf = 0.

Consider a portfolio of m assets with weights wi, wi > 0,
Pm

1 wi = 1. We
focus on equally weighted portfolioswi = 1=m. Let � = 1

m

Pm
1 �i. Dacorogna

et al. (1998) report the following diversi�cation result:

Lemma 3.1 (diversi�cation bene�ts). Suppose the Qi are cross section-
ally i.i.d. distributed and satisfy (1.1). For large loss levels the conditional
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tail diversi�cation bene�ts from the equally weighted portfolio are larger if the
returns have �nite variance but are heavy tailed, than if they are normally
distributed. Speci�cally we �nd as x! �1 that

Pf 1
m

mX
1

Ri < xjR = rg � Pf 1

m1�1=�
Qi + �R < xjR = rg: (3.1)

Diversi�cation against tail risk is more e�ective if returns are heavy tailed
distributed with � > 2 than if the underlying distribution is normal. Recall
that under normality risk is reduced by the square root of m. It has been
noted in the economics literature that the e�ect of diversi�cation is less
pronounced if � < 2 in comparison with the normal distribution. Fama and
Miller (1972, p. 270) discuss the case of sum stable distributions. They note
that for � < 1 diversi�cation actually increases the dispersion, and hence
putting all eggs in the same basket is advisable in such cases. But �nancial
data do not display such heavy tails, rather � > 2. We are not aware of a
discussion of downside risk diversi�cation in case � > 2.

Note that the above result is conditional. The motivation for stating it
this way is that through diversi�cation one can reduce the contribution of
the unsystematic risk factors Qi to the total risk, but one cannot get rid of
the contribution of the systematic risk factor R. Nevertheless the following
is straightforward.

Lemma 3.2. Suppose the R and the Qi are i.i.d. distributed and satisfy
(1.1) with the same scale coeÆcient and tail index. Then

Pf 1
m

mX
1

Ri < xg � Pf(m1�� + (�)�)1=�Qi < xg as x! �1:

3.2 Second order diversi�cation bene�ts

Since the asset returns can be positive or negative, we need a result on
convolutions with heavy tails on both sides. Under continuous compounding
the whole real line is the support of the return distribution for assets like
equity and foreign exchange. Assume furthermore that the tail index � >
2 for both tails. Financial data usually indicate that the mean and the
variance are �nite. We specialize the general result of the paper to two special
cases which are of interest from an economic point of view. To restrict the
number of di�erent combinations that will arise, we assume that the tails are

14



symmetric. This is a reasonable assumption for e.g. foreign currency return
data when the exchange rate is left freely oating. Other possibilities are left
to the reader.

Corollary 1 (Similar tail behavior). Suppose that as x!1,

PfX > xg = ax��(1 + bx� + o(x�)) (a > 0; b 6= 0);

PfX � �xg = ax��(1 + bx� + o(x�)) (a > 0; b 6= 0): (3.2)

Moreover, assume that � > 2; � < 0, so that E[X] and E[X2] are �nite.
Suppose X1 and X2 are i.i.d. and satisfy (3.2). Then application of theorem
2.1 gives

P f X1 +X2 > xg = PfX1 +X2 � �xg (3.3)

= 2ax��
�
1 + bx� + �E[X]x�1 +

�(�+ 1)

2
E[X2]x�2)

�
+ (3.4)

+o(x���2) + o(x��+�) (3.5)

as x!1.

We �nd that because the distribution of asset returns is two-sided, vis a
vis the case of positive random variables considered in Geluk et al. (1997), a
new factor depending on E[X2] enters as the second order term if E[X] = 0
and � � �2. Again, for the case of freely oating exchange rates one typically
�nds that the mean is zero. But for other assets like equity a positive mean is
more reasonable case since the mean equity returns reect the positive long
run growth rate of the economy. For the purpose of diversi�cation we iterate
further and �nd:

Corollary 2. Under the conditions of Corollary 1 if � < �1 and E[X] > 0
we have as x!1

Pf 1
m

mX
1

Xi � �xg = m1��as��
�
1 +

m� 1

m
�E[X]x�1 + o(x�1)

�
; (3.6)

while if E[X] = 0 and � < �2

Pf 1
m

mX
1

Xi � �xg = m1��as��
�
1 +

m� 1

m2

� (�+ 1)

2
E[X2]x�2 + o(x�2)

�
:

(3.7)
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We return to the question of diversi�cation. A more precise evaluation
of the diversi�cation bene�ts for equally weighted portfolios is given in the
next result.

Proposition 1. Under the conditions of Lemma 3.1 and Corollary 2, for
the case of equation (3.6) and when m > 1

Pf 1
m

mX
1

Ri � �xjR = rg (3.8)

= m1��ax��
�
1 + fm� 1

m
�E[Qi] + ��rgx�1 + o(x�1)

�
;

while if equation (3.7) applies we get for m > 1

Pf 1
m

mX
1

Ri � �xjR = rg (3.9)

= m1��ax��
�
1 + ��rx�1 +

� (� + 1)

2
fm� 1

m2
E[Q2

i ] + (�r)2gx�2 + o(x�2)

�
:

Proof. Combine Lemma 3.1 and Corollary 2 repeatedly. Finally calculate
the shift due to the translation of 1

m

Pm
1 Qi by �r:

Remark 1. If R also satis�es (3.2) but with a �rst order tail index �R >
�Q + 2, or if the cdf of R has light tails, then we can replace r in the Propo-
sition (1) by the expectation E[R].

Remark 2. If � = �1 then (3.8) becomes

Pf 1
m

mX
1

Ri � �xjR = rg =

m1��ax��
�
1 + (

m� 1

m
�E[Qi] + ��r +

b

m
)x�1 + o(x�1)

�
;

while if � = �2 then (3.9) becomes

Pf 1
m

mX
1

Ri � �xjR = rg

= m1��ax��
�
1 + ��rx�1 + f� (� + 1)

2
(
m� 1

m2
E[Q2

i ] + (�r)2) +
b

m2
gx�2 + o(x�2)

�
:
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Example 1 (Student). An example may help to clarify what the proposi-
tions actually imply. Suppose we can take an open position in one or two
currencies and suppose that the interest rates across the three countries are
equal. In that case investing abroad is just a fair gamble. Furthermore as-
sume that the two exchange rates are i.i.d. Empirically the Student-t with say
3 degrees of freedom is known to give a decent �t to foreign currency return
data. The density reads

f(x) = 2��13�1=2
�
1 + x2=3

��2
: (3.10)

It follows that (3.2) holds with � = 3; � = �2; a = 2
p
3=�; b = �18=5: From

(3.10) we compute the e�ect of diversi�cation. Putting all money in a single
currency gives downside risk equal to

PfX � �xg = 2
p
3

�
x�3(1� 18

5
x�2 + o(x�2)):

Application of theorem 2.1 shows that since E[X] = 0 and � = �2, the
second order term consists of two parts�

b +
�(�+ 1)

2
E[X2]

�
x�2 =

�
b+

1

2

�2(� + 1)

�� 2

�
x�2 =

�
�18

5
+

36

2

�
x�2:

Hence diversi�cation by buying equal shares into the two currencies gives
downside risk equal to

PfX1 +X2

2
� �xg

= 21�3 2
p
3

�
x�3

�
1� 18

5
2�2x�2 +

3(3 + 1)

2
E[X2]2�2x�2 + o(x�2)

�

=
1

4

2
p
3

�
x�3

�
1 +

18

5
x�2 + o(x�2)

�
:

Since the �rst order scale coeÆcient of the diversi�ed portfolio is only
one-fourth of the �rst order scale coeÆcient of the undiversi�ed portfolio,
diversi�cation is an important help for reducing the tail risk. Nevertheless,
due to the switch in sign of the second order scale coeÆcient, diversi�cation
does not always reduce the tail risk. Let Y = 71=3X2. Hence

PfY � �xg = 7
2
p
3

�
x�3(1� 72=3

18

5
x�2 + o(x�2)):
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For the diversi�ed portfolio consisting of X1 and Y , the tail risk is

PfX1 + Y

2
� �xg = 2

p
3

�
x�3

�
1 +

153� 9:72=3

40
x�2 + o(x�2)

�
: (3.11)

It follows that for large threshold levels x one is better o� by putting all
money in X1; rather than to diversify and put halve of the investment into
Y . The reason is that while the portfolio X1+Y

2
and X1 have identical �rst

order coeÆcients 2
p
3

�
x�3, the second order scale coeÆcient of the portfolio

X1+Y
2

is positive and adds to the tail risk, and the opposite holds for the
second order scale coeÆcient of X1. The example thus shows the relevance
of the second order terms for portfolio selection problems.

4 Asymptotic normality of ^�n

In order to obtain the limiting behavior of �̂n, we need a stricter condition
than (1.1). Assume as t!1�

P (�i > t) = cpt��f1 + bt�� + o(t��)g
P (�i < �t) = c(1� p)t��f1 + dt�� + o(t��)g; (4.1)

where c > 0; � > 0; p 2 [0; 1], b 6= 0; d 6= 0 and � > 0.
From Theorem 2.1 we have as t!1�

P (Zi > t) = cf1 + (1� �)� + j�j�gt��f1 + k1A(t) + o(A(t))g
P (Wi > t) = cf1 + (1 + �)� + j�j�gt��f1 + k2A(t) + o(A(t))g; (4.2)

where ki = ki(�; �; �; c; b; d; p) (i = 1; 2) and

A(t) =

8>><
>>:

t�� _ t�� if � < 1
log t
t
_ t�� if � = 1

t�� _ t�� if 1 < � < 2
t�1 _ t�� if � � 2:

(4.3)

Note that it is possible, but tedious to give explicit expressions for k1 and
k2. We omit the details.

Hence, similar to the prooof of Proposition 2.1 of Resnick and Starica
(1997), we have( p

k(�̂Z(k)� �)
d! N1(�1; �

2(1 + 21^(1��)�+j�j�+(1��)�^j�j�
1+(1��)�+j�j� ))

p
m(�̂W (m)� �)

d! N2(�2; �
2(1 + 21^(1+�)�+j�j�+(1+�)�^j�j�

1+(1+�)�+j�j� ))
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provided that as n!18>>>><
>>>>:

k !1; k=n! 0
m!1; m=n! 0p
kA1(n=k)! �1 2 R;

p
mA2(n=m)! �2 2 R

either lim supn!1 n=k3=2 <1 or lim infn!1 n=k3=2 > 0
either lim supn!1 n=m3=2 <1 or lim infn!1 n=m3=2 > 0:

(4.4)

Let U(t) denote the inverse function of 1
P (Zi>t)

. Note that

k
n
Z
�̂Z(k)
n;n�k � c(1 + (1� �)� + j�j�)

= f k
n
Z
�̂Z(k)
n;n�k � k

n
Z�
n;n�kg+ k

n
U�(n=k)f Z�n;n�k

U�(n=k)
� 1g

+f k
n
U�(n=k)� c(1 + (1� �)� + j�j�)g

= f k
n
Z�
n;n�k(�̂Z(k)� �) logZn;n�kg(1 + op(1))

+ k
n
U�(n=k)f Z�n;n�k

U�(n=k)
� 1g

+f k
n
U�(n=k)� c(1 + (1� �)� + j�j�)g:

Using the fact that Zn;n�k=U(n=k) = 1 +Op(1=
p
k), we have

p
k

log(n=k)
f k
n
Z
�̂Z(k)
n;n�k � c(1 + (1� �)� + j�j�)g

d! N1(��1; �
4(1 + 21^(1��)�+j�j�+(1��)�^j�j�

1+(1��)�+j�j� )):

Similarly,
p
m

log(n=m)
fm
n
W

�̂W (m)
n;n�m � c(1 + (1 + �)� + j�j�)g

d! N2(��2; �
4(1 + 21^(1+�)�+j�j�+(1+�)�^j�j�

1+(1+�)�+j�j� )):

Note that the above two normal limits are dependent and the dependence
structure is unknown. However, by requiring k=m! 0 which implies �1 = 0,
we have p

k

log(n=k)
f k
m
Z
�̂Z(k)
n;n�kW

��̂W (m)
n;n�m � fn(�)g d! N(0; �2);

where

�2 = c2(1 + (1 + �)� + j�j�)2�4f1 + 2
1 ^ (1� �)� + j�j� + (1� �)� ^ j�j�

1 + (1� �)� + j�j� g:

Hence, it follows that the estimator �̂n de�ned in (1.7) satis�es the following
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Theorem 4.1. Suppose (1.4), (4.1) and (4.4) hold and k=m! 0 as n!1.
Then

p
k

log(n=k)
f�̂n � �g d! N(0; �2(

d

d�
f�(�))2):

Remark 3. If we can �nd the dependence structure between the two normal
limits N1 and N2, then we may be able to take m = k and choose the sample
fraction k in an optimal way as in the tail index estimation and extreme
tail probability estimation (see Drees and Kaufmann (1998) and Hall and
Weissman (1997)). This will be a part of our future work.
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